Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics

Free Standard Shipping

Purchasing Options

ISBN 9781466506206
Cat# K14616



SAVE 20%

eBook (VitalSource)
ISBN 9781466506213
Cat# KE16103



SAVE 30%

eBook Rentals

Other eBook Options:


  • Focuses on the statistical treatment of assemblies of atoms and molecules
  • Provides rigorous theoretical foundations as well as applications of vital chemical significance
  • Covers simulation methods and various aspects of chemical dynamics
  • Presents different extensions of density functional theory, via time-dependent and spin-dependent situations
  • Explains the changes in molecular systems due to various perturbations and dynamics of nonlinear systems


Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics.

This book covers a wide range of subjects, including discussions on the following topics:

  • Time-dependent DFT
  • Quantum fluid dynamics (QFD)
  • Photodynamic control, nonlinear dynamics, and quantum hydrodynamics
  • Molecules in a laser field, charge carrier mobility, and excitation energy transfer
  • Mechanisms of chemical reactions
  • Nucleation, quantum Brownian motion, and the third law of thermodynamics
  • Transport properties of binary mixtures

Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts’ perspectives. This book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.

Table of Contents

Theoretical Studies of Nucleation and Growth
Rakesh S. Singh, Mantu Santra, and Biman Bagchi

Transport Properties of Binary Mixtures of Asymmetric Particles: A Simulation Study
Snehasis Daschakraborty and Ranjit Biswas

Time-Dependent Density Functional Theoretical Methods for Nonperturbative Treatment of Multiphoton Processes of Many- Electron Molecular Systems in Intense Laser Fields
John T. Heslar, Dmitry A. Telnov, and Shih-I Chu

Symmetries and Conservation Laws in the Lagrangian Picture of Quantum Hydrodynamics
Peter Holland

Synchronization in Coupled Nonlinear Oscillators: Relevance to Neuronal Dynamics
Jane H. Sheeba, V. K. Chandrasekar, and M. Lakshmanan

Nonperturbative Dynamics of Molecules in Intense Few-Cycle Laser Fields: Experimental and Theoretical Progress
Deepak Mathur and Ashwani K. Tiwari

Selective Photodynamic Control of Bond Dissociation Using Optimal Initial Vibrational States
Bhavesh K. Shandilya, Manabendra Sarma, Vandana Kurkal- Siebert, Satrajit Adhikari, and Manoj K. Mishra

Theoretical Framework for Charge Carrier Mobility in Organic Molecular Solids
S. Mohakud, Ayan Datta, and S. K. Pati

Quantum Brownian Motion in a Spin-Bath
Sudarson Sekhar Sinha, Arnab Ghosh, Deb Shankar Ray, and Bidhan Chandra Bag

Excitation Energy Transfer from Fluorophores to Graphene
R. S. Swathi and K. L. Sebastian

Third Law of Thermodynamics Revisited for Spin-Boson Model
Sushanta Dattagupta and Aniket Patra

Mechanism of Chemical Reactions in Four Concepts
María Luisa Cerón, Soledad Gutiérrez-Oliva, Bárbara Herrera, and Alejandro Toro-Labbé

All-Atom Computation of Vertical and Adiabatic Ionization Energy of the Aqueous Hydroxide Anion
Jun Cheng and Michiel Sprik

Vibrational Spectral Diffusion and Hydrogen Bonds in Normal and Supercritical Water
Amalendu Chandra

Editor Bio(s)

Swapan Kumar Ghosh earned a B.S. (Honors) and an M.S. from the University of Burdwan, Bardhaman, India, and a Ph.D. from the Indian Institute of Technology, Bombay. He did postdoctoral research at the University of North Carolina, Chapel Hill. Dr. Ghosh is currently a senior scientist with the Bhabha Atomic Research Centre (BARC), Mumbai, India, and head of its theoretical chemistry section. He is also a senior professor and dean-academic (Chemical Sciences, BARC) of the Homi Bhabha National Institute, Department of Atomic Energy (DAE), India, and an adjunct professor with the University of Mumbai–DAE Centre of Excellence in Basic Sciences, India. Dr. Ghosh’s research interests are theoretical chemistry, computational materials science, and soft condensed matter physics.

Pratim Kumar Chattaraj earned a B.S. (Honors) and an M.S. from Burdwan University and a Ph.D. from the Indian Institute of Technology (IIT), Bombay, and then joined the faculty of the IIT, Kharagpur. He is now a professor with the Department of Chemistry and also the convener of the Center for Theoretical Studies there. He visited the University of North Carolina, Chapel Hill, as a postdoctoral research associate and several other universities throughout the world as a visiting professor. Apart from teaching, Professor Chattaraj is involved in research on density functional theory, the theory of chemical reactivity, aromaticity in metal clusters, ab initio calculations, quantum trajectories, and nonlinear dynamics. He has been invited to deliver special lectures at several international conferences and to contribute chapters to many edited volumes.