
C H A P T E R 7

Catcher Framing

7.1 Introduction

In this chapter we explore the idea of catcher framing ability. In doing so,
we will use the PITCHf/x data introduced in Section 1.5.1 and the Base-
ball Savant data introduced in Section 1.6.2 and discussed in greather depth
in Chapter 12. We will also touch briefly upon the ability to store data in
relational databases, which is discussed in greather depth in Chapter 11.

The story of catcher framing ability in sabermetrics is an interesting one.
Historically, scouts and coaches insisted that certain catchers had the ability to
“frame” pitches for umpires. The idea was that by holding the glove relatively
still, you could trick the umpire into calling a pitch a strike even if it was
techincally outside of the strike zone (see Lindbergh [2013] for a great visual
explanation). Sabermetricians were generally dubious about both the existence
and the impact of this skill. Most people who had studied the impact of catcher
defense concluded that it was not nearly as valuable as scouts and coaches
believed.

Part of the problem was that until the mid-2000s, pitch-level data was
hard to come by. With the advent of PITCHf/x, more sophisticated modeling
techniques became viable on these more granular data. New studies that es-
timated the impact of catcher framing substantiated both the existence of a
persistent ability (i.e., catchers with good framing numbers stayed good over
time) and the magnitude of the effect (i.e., good framers were actually really
valuable) [Turkenkopf, 2008, Fast, 2011, Brooks and Pavlidis, 2014, Brooks
et al., 2015, Judge, 2018a, Deshpande and Wyner, 2017].

These new findings led to changes in the baseball industry—defensive-
minded catchers like José Molina starting getting multi-year contracts that
were not justified by their batting skill. Minor league instruction placed greater
emphasis on improving framing skills. Of course, as soon as MLB decides to let
robots call balls and strikes, then this catcher framing ability will evaporate
instantly.

This issue is a nice parable in that it illustrates how sabermetric thinking
can (and does) change based on the availability of data and the sophistication

163

copyrighted material - Taylor & Francis

164 � Catcher Framing

of modeling techniques, as well as how the game on the field can change due
to sabermetric insights.

7.2 Acquiring Pitch-Level Data

First, we need to acquire pitch-level data that tells us where each pitch crossed
the strike zone. The easiest way to do this is with the pitchRx package. In
this case, since we want to store a fair amount of data, we are going to use
a SQLite database to store the data. The src_sqlite() function from dplyr

creates a new, local, empty SQLite database.

library(tidyverse)

db <- src_sqlite("data/pitchrx.sqlite", create = TRUE)

Next, we load pitchRx and use the scrape() function to pull down as
much information as we can. In this example, we pull data from the month of
May 2016.

library(pitchRx)

files <- c("inning/inning_all.xml", "inning/inning_hit.xml",

"miniscoreboard.xml", "players.xml")

scrape(start = "2016-05-01", end = "2016-05-31",

connect = db$con, suffix = files)

The object db maintains a connection to our SQLite relational database. This
database now contains several tables, each of which contains different infor-
mation.

db_list_tables(db$con)

[1] "action" "atbat" "coach" "game" "hip" "media"

[7] "pitch" "player" "po" "runner" "umpire"

The pitch table contains the PITCHf/x information. We can bring that in-
formation from SQLite into R using the tbl() and collect() functions, both
of which are provided by dplyr.

my_pitches <- db %>%

tbl("pitch") %>%

collect()

The resulting object my_pitches is a data frame that contains 128610 obser-
vations and 50 variables.

copyrighted material - Taylor & Francis

Where Is the Strike Zone? � 165

7.3 Where Is the Strike Zone?

In order to understand the impact of catcher framing, we need a way to
characterize the probability that any given pitch is called a strike. In the
PITCHf/x data, each pitch has a type, which is simply S for a called strike,
B for a ball, and X if the batter swings. We plot these outcomes in Figure 7.1.
Note that pitches thrown in the strike zone are both more likely to be called a
strike and more likely to be swung at. Note also that many pitches are called
strikes even though they are technically outside of the strike zone.

plate_width <- 17 + 2 * (9/pi)

k_zone_plot <- ggplot(NULL, aes(x = px, y = pz)) +

geom_rect(xmin = -(plate_width/2)/12,

xmax = (plate_width/2)/12,

ymin = 1.5,

ymax = 3.6, color = crcblue, alpha = 0) +

coord_equal() +

scale_x_continuous("Horizontal location (ft.)",

limits = c(-2, 2)) +

scale_y_continuous("Vertical location (ft.)",

limits = c(0, 5))

How do we know where the strike zone is? By the rulebook, only a part of
the ball need pass over home plate in order for the pitch to be called a strike.
Home plate is 17 inches wide, and the ball is 9 inches in circumference, so the
outside edges of the strike zone from our point-of-view are about ± 0.947 feet.
The top and bottom of the strike vary by batter, but are of comparatively less
interest here. The object k_zone_plot is a blank ggplot2 object on which we
plot a random sample of the data from PITCHf/x in Figure 7.1.

k_zone_plot %+% sample_n(my_pitches, 10000) +

aes(color = type) +

geom_point(alpha = 0.1) +

scale_color_manual(values = c(crcblue, "white", "black"))

Another way to think about the strike zone is in terms of zones that are
pre-defined by PITCHf/x. The strike zone itself is divided into a 3×3 grid, with
four additional regions defined outside of the strike zone. We first compute the
observed probability of a called strike in each one of those zones, as well as
its boundaries. We use the quantile() function to mitigate the influence of
outliers.

taken <- my_pitches %>%

filter(type != "X")

zones <- taken %>%

copyrighted material - Taylor & Francis

166 � Catcher Framing

0

1

2

3

4

5

−2 −1 0 1 2
Horizontal location (ft.)

Ve
rti

ca
l l

oc
at

io
n

(ft
.)

type
B

S

X

FIGURE 7.1 Scatterplot of balls, called strikes, and swings, May 2016.

group_by(zone) %>%

summarize(

N = n(),

right_edge = min(1.5, max(px)),

left_edge = max(-1.5, min(px)),

top_edge = min(5, quantile(pz, 0.95, na.rm = TRUE)),

bottom_edge = max(0, quantile(pz, 0.05, na.rm = TRUE)),

strike_pct = sum(type == "S") / n(),

px = mean(px),

pz = mean(pz))

In Figure 7.2 we plot each zone, along with the probability that a pitch
taken in that zone will be called a strike. Note that these pre-defined zones
are exclusive of those pitches “on the black”.

library(ggrepel)

k_zone_plot %+% zones +

geom_rect(aes(xmax = right_edge, xmin = left_edge,

ymax = top_edge, ymin = bottom_edge,

fill = strike_pct, alpha = strike_pct),

color = "lightgray") +

geom_text_repel(size = 3, aes(label = round(strike_pct, 2),

color = strike_pct < 0.5)) +

scale_fill_gradient(low = "gray70", high = crcblue) +

scale_color_manual(values = c("white", "black")) +

copyrighted material - Taylor & Francis

Modeling Called Strike Percentage � 167

FIGURE 7.2 Strike probability for pitches taken in pre-defined areas of

the strike zone.

guides(color = FALSE, alpha = FALSE)

7.4 Modeling Called Strike Percentage

The zone-based strike probabilities in Figure 7.2 are limited by their discrete
nature. What we really want is a model that will give us the estimated strike
probability for any pitch based on its horizontal and vertical location. To this
end, we fit a generalized additive model. This model will fit a smooth surface
over the entire area, while including only the two explanatory variables for
location. The s() function indicates over which variables the smoothing is to
occur (px and pz). We set the family argument to binomial, to ensure that an
appropriate link function (in this case, the logistic function) is used to model
our binary response variable, which is defined by the Boolean expression type

== "S".

library(mgcv)

strike_mod <- gam(type == "S" ~ s(px, pz),

family = binomial, data = taken)

copyrighted material - Taylor & Francis

168 � Catcher Framing

0

1

2

3

4

5

−2 −1 0 1 2
Horizontal location (ft.)

Ve
rti

ca
l l

oc
at

io
n

(ft
.)

0.25

0.50

0.75

.fitted

FIGURE 7.3 Estimated strike probability for taken pitches using a gen-

eralized additive model.

7.4.1 Visualizing the estimates

An easy way to visualize the estimates produced by our model is to plot
the fitted values. Here we use the augment() function from the broom pack-
age to compute these fitted values and add them to our data frame. The
type.predict argument tells R to compute the estimates on the probability
scale (i.e., of the response variable).

library(broom)

hats <- strike_mod %>%

augment(type.predict = "response")

Next, we can simply update our k_zone_plot object with this new data
frame, add some points (geom_point()), and map the color aesthetic to the
fitted values we just computed (.fitted). Figure 7.3 reveals that on these
data, the GAM effectively mapped the pattern of balls and strikes.

k_zone_plot %+% sample_n(hats, 50000) +

geom_point(aes(color = .fitted), alpha = 0.1) +

scale_color_gradient(low = "gray70", high = crcblue)

copyrighted material - Taylor & Francis

Modeling Called Strike Percentage � 169

7.4.2 Visualizing the estimated surface

Of course the GAM that we built is a continuous surface. One of the benefits
of fitting such a model in the first place is that it allows us to estimate the
probability of a called strike for any pitch whose location coordinates we
know—not just the ones present in our training data set.

We can visualize our model as a surface by plotting the estimated proba-
bility across a fine grid of horizontal and vertical coordinate pairs. The modelr
package has several functions, including data_grid() and seq_range() that
help us create a grid of values relevant for our data.

library(modelr)

grid <- taken %>%

data_grid(px = seq_range(px, n = 100),

pz = seq_range(pz, n = 100))

Next, use the augment() function just as before, except this time, we spec-
ify the newdata argument to be the data frame of grid points that we just
created. This results in a 10000 row data frame that contains the estimated
called strike probability for each coordinate pair.

grid_hats <- strike_mod %>%

augment(type.predict = "response", newdata = grid)

Once again, we update our k_zone_plot with these new data.
The geom_tile() function in Figure 7.4 offers a nice alternative to
geom_contour().

tile_plot <- k_zone_plot %+% grid_hats +

geom_tile(aes(fill = .fitted), alpha = 0.7) +

scale_fill_gradient(low = "gray92", high = crcblue)

tile_plot

7.4.3 Controlling for handedness

Contrary to what the rulebook states, it stands to reason that the effective
strike zone may depend on with which hand the pitcher throws, and on which
side of the plate the batter stands. Unfortunately, these data are not present
in the pitch table. Rather, these data are present in the atbat table. To get
that information aligned with our pitch-level data, we use an inner_join()
between the two tables, using the variables num and gameday_link as matching
keys.

copyrighted material - Taylor & Francis

170 � Catcher Framing

0

1

2

3

4

5

−2 −1 0 1 2
Horizontal location (ft.)

Ve
rti

ca
l l

oc
at

io
n

(ft
.)

0.25

0.50

0.75

.fitted

FIGURE 7.4 Estimated strike probability over a grid for taken pitches

using a generalized additive model.

more_taken <- db %>%

tbl("pitch") %>%

filter(type != "X") %>%

inner_join(tbl(db, "atbat"),

by = c("num", "gameday_link")) %>%

collect()

The resulting data frame has variables for p_throws and stand in addition
to the location data encoded in px and pz. We can now fit another GAM
across these four variables. Note that the binary variables p_throws and stand

are not smoothed, and are thus outside of the s() function in the model
specification formula.

hand_mod <- gam(type == "S" ~ p_throws + stand + s(px, pz),

family = binomial, data = more_taken)

We must now recompute our grid of values such that they include the two
additional binary variables.

hand_grid <- more_taken %>%

data_grid(px = seq_range(px, n = 100),

pz = seq_range(pz, n = 100),

p_throws, stand)

copyrighted material - Taylor & Francis

Modeling Called Strike Percentage � 171

0

1

2

3

4

5

−2 −1 0 1 2
Horizontal location (ft.)

Ve
rti

ca
l l

oc
at

io
n

(ft
.)

0.005

0.010

0.015

0.020
.fitted

FIGURE 7.5 Standard deviation of estimated called strike probability

across all four pitcher-batter handedness combinations.

hand_grid_hats <- hand_mod %>%

augment(type.predict = "response", newdata = hand_grid)

The following code will produce a faceted plot across the four combinations
of batter and pitcher handedness. However, as it is difficult to perceive marked
difference across these four facets, we omit the plot here.

tile_plot %+% hand_grid_hats +

facet_grid(p_throws ~ stand)

Instead, we plot the standard deviation across the four handedness combi-
nations in Figure 7.5. In the heart of the strike zone, we see no differences due
to handedness. However, the standard deviation of called strike probability is
as large as 2 percentage points in some area around the perimeter of the strike
zone.

diffs <- hand_grid_hats %>%

group_by(px, pz) %>%

summarize(N = n(), .fitted = sd(.fitted))

tile_plot %+% diffs

copyrighted material - Taylor & Francis

172 � Catcher Framing

7.5 Modeling Catcher Framing

In order to estimate the framing ability of catchers, we need to know who the
catcher is during every pitch. Unfortunately, that information is difficult to
extract from the data we get from pitchRx. Instead, we use the Statcast sum-
mary data provided by Baseball Savant and accessible through the baseballr
package (see Chapter 12).

Previously, we downloaded these data for the 2017 season. We now load
those data from a CSV file.

sc_2017 <- read_csv("data/statcast2017.csv")

Preparing these data for modeling will take some work. First, we are only
interested in those pitches where there was no swing. Second, because we want
to use the called strike GAM we built earlier (strike_mod), we need to rename
the location variables from their Statcast names (plate_x, plate_z) to their
PITCHf/x equivalents (px, pz). Third, we will evaluate our GAM for called
strike probability on each pitch. This helps us control for the location of each
pitch. It is relatively slow to fit the mixed model of this section on the full
dataset, so we use the sample_n function to take a sample of 10,000 pitches
for this exercise.

set.seed(111653)

sc_taken <- sc_2017 %>%

filter(type != "X") %>%

rename(px = plate_x, pz = plate_z) %>%

sample_n(10000) %>%

mutate(strike_prob = predict(strike_mod, newdata = .,

type = "response"))

Next, we follow Brooks et al. [2015] in fitting a generalized linear mixed
model. The response variable is whether the pitch was called a strike or a ball.
Let p denote the probability that a called pitch is a strike. Our first mixed
model writes the logit of the probability of a strike p as the sum

log p

1 − p
= β0 + β1strike prob+ catcher.

In this model, strike_prob is the “fixed effect” for the estimated called strike
probability based on its location computed from the previous model. So we
are essentially controlling for the pitch location in this model. In addition,
it is assumed that the individual catchers have “random” parameters, called
catcher1, . . . , catcherC , with mean 0 and standard deviation of sc.

This model can be fit using the glmer() function in the lme4 package. The
code indicates the response variable is type == "S", strike_prob is the fixed
effect and pos2_person_id (the catcher id) represents the random effect.

copyrighted material - Taylor & Francis

Modeling Catcher Framing � 173

library(lme4)

mod_a <- glmer(type == "S" ~ strike_prob + (1|pos2_person_id),

data = sc_taken, family = binomial)

We recover information about the fixed effects using the tidy() function
from the broom package.

tidy(mod_a, effects = "fixed")

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -2.82 0.0576 -49.0 0

2 strike_prob 5.96 0.106 56.3 0

Certainly different catchers will have different impacts on the probability of
a called strike. The variability in these impacts is measured by the standard
deviation of these random catcher effects sc that we display by the tidy()
function by setting the effects paramter to ran_pars.

tidy(mod_a, effects = "ran_pars")

A tibble: 1 x 3

term group estimate

<chr> <chr> <dbl>

1 sd_(Intercept).pos2_person_id pos2_person_id 0.0437

This model also provides estimates of the catcher random effects
{catcherj} that one extracts with the ranef() function. We put the estimates
together with the catcher ids in the data frame c_effects.

c_effects <- mod_a %>%

ranef() %>%

as_tibble() %>%

transmute(id = as.numeric(levels(grp)),

effect = condval)

The names of the catchers are missing, but we include a separate file
masterid.csv that provides a table for these ids and names. We merge the
name information with the data frame c_effects and display the names of
the catchers with the largest and smallest random effect estimates below.

master_id <- read_csv("data/masterid.csv")

c_effects <- c_effects %>%

left_join(select(master_id, mlb_id, mlb_name),

copyrighted material - Taylor & Francis

174 � Catcher Framing

by = c("id" = "mlb_id")) %>%

arrange(desc(effect))

c_effects %>% head()

A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 592663 0.0243 J.T. Realmuto

2 543877 0.0152 Christian Vazquez

3 553869 0.0148 Elias Diaz

4 471083 0.0112 Miguel Montero

5 543432 0.0111 Ryan Lavarnway

6 455139 0.0103 Robinson Chirinos

c_effects %>% tail()

A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 465041 -0.0108 Francisco Cervelli

2 488912 -0.0113 Tuffy Gosewisch

3 502570 -0.0125 Rocky Gale

4 596119 -0.0132 Blake Swihart

5 572033 -0.0152 Josh Phegley

6 457454 -0.0180 Jarrod Saltalamacchia

From this output, we see that J.T. Realmuto was most effective in getting
a called strike and Jarrod Saltalamacchia was least effective.

One criticism of this first model is that no allowances were made for the
pitcher or batter, and it is believed that both people have an impact on the
probability of a called strike. We can extend the above model to include ran-
dom effects for both the pitcher and the batter. We write this model as

log p

1 − p
= β0 + β1strike prob+ catcher + pitcher + batter.

Here the individual pitchers are assigned parameters p1, . . . , pP that are as-
sumed to be random from a distribution with standard deviation sp. In addi-
tion, the individual batters are assigned parameters b1, . . . , bB that come from
a distribution with standard deviation sb.

This larger model is fit with a second application of the glmer() function,
adding batter and pitcher as inputs in the regression expression.

mod_b <- glmer(type == "S" ~ strike_prob + (1|pos2_person_id) +

(1|batter) + (1|pitcher),

data = sc_taken, family = binomial)

copyrighted material - Taylor & Francis

Modeling Catcher Framing � 175

Using the effects argument in the tidy() function, we display estimates
of the three standard deviations sc, sp, and sb. Note that the value of sc is
slightly different than it was in the previous model.

tidy(mod_b, effects = "ran_pars")

A tibble: 3 x 3

term group estimate

<chr> <chr> <dbl>

1 sd_(Intercept).batter batter 0.266

2 sd_(Intercept).pitcher pitcher 0.187

3 sd_(Intercept).pos2_person_id pos2_person_id 0.0319

This table is helpful in identifying the components that contribute most
to the total variability in called strikes. The largest standard deviation is
sb =0.266 which indicates that called strikes are most influenced by the iden-
tity of the batter, followed by the identity of the pitcher, and last by the
identity of the catcher.

As before, we extract the catcher effect estimates by the ranef() function,
create a data frame of ids, names, and estimates for all catchers, and then
display the best and worst catchers with respect to framing. These lists are not
similar to the lists prepared with the simpler random effects model, suggesting
these catchers worked with different pitchers and batters who impacted the
called strikes.

c_effects <- mod_b %>%

ranef() %>%

as_tibble() %>%

filter(grpvar == "pos2_person_id") %>%

transmute(id = as.numeric(as.character(grp)),

effect = condval)

c_effects <- c_effects %>%

left_join(select(master_id, mlb_id, mlb_name),

by = c("id" = "mlb_id")) %>%

arrange(desc(effect))

c_effects %>% head()

A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 425784 0.0133 Rene Rivera

2 452095 0.00789 Tyler Flowers

3 431145 0.00758 Russell Martin

4 455117 0.00542 Martin Maldonado

copyrighted material - Taylor & Francis

176 � Catcher Framing

5 425772 0.00527 Jeff Mathis

6 519222 0.00520 Austin Romine

c_effects %>% tail()

A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 519237 -0.00549 Cameron Rupp

2 446308 -0.00614 Matt Wieters

3 543877 -0.00658 Christian Vazquez

4 518960 -0.00658 Jonathan Lucroy

5 592663 -0.00765 J.T. Realmuto

6 547172 -0.00925 Tony Wolters

This is clearly not a thorough analysis since we only used a small dataset
and did not include other effects such as umpires that could impact the called
strike probability. But these mixed models with inclusion of fixed and ran-
dom effects are very useful for obtaining estimates of player abilities making
adjustments for other relevant inputs.

7.6 Further Reading

The first study of catcher framing using PITCHf/x was Turkenkopf [2008].
See Fast [2011] for a follow-up piece. Lindbergh [2013] provides a highly-
readable lay overview of the evolution of thinking on catcher framing. More
sophisticated models for catcher framing include Brooks and Pavlidis [2014],
Brooks et al. [2015], Judge [2018a], Deshpande and Wyner [2017].

7.7 Exercises

1. Strike Probabilities on a Grid

(a) Divide the zone region into bins by use of the following script.

seq_x <- seq(-1.4, 1.4, by = 0.4)

seq_z <- seq(1.1, 3.9, by = 0.4)

taken %>%

mutate(px = cut(plate_x, seq_x),

pz = cut(plate_z, seq_z)) -> taken

(b) By use of the group_by() and summarize() functions, find the num-
ber of strikes and balls among called pitches in each bin.

(c) Find the percentage of strikes in each bin. Comment on any inter-
esting patterns in these strike percentages across bins.

copyrighted material - Taylor & Francis

Exercises � 177

2. Strike Probability Batter Effects

In the first exercise, the strike probability percentages were found for
different zones. By tabulating the balls and strikes across bins and for
the variable stand, explore how the strike probabilities vary by the side
of the batter.

3. Strike Probability Pitcher Effects

In the first exercise, the strike probability percentages were found for
different zones. By tabulating the balls and strikes across bins and for
the variable p_throws, explore how the strike probabilities vary by the
throwing arm of the pitcher.

4. Count Effects

One way to explore the effect of the count on a strike probability is to
fit the logistic model using the glm() function:

fit <- glm(type == "S" ~ Count,

data = taken, family = binomial)

In this expression, Count is a new variable derived from the balls and
strikes variables in the taken data frame. From the output of this fit,
interpret how the strike probability depends on the count.

5. Home/Away Effects

One way to explore the effect of home field on a strike probability is to
fit the logistic model using the glm() function:

fit <- glm(type == "S" ~ Home,

data = taken, family = binomial)

In this expression, Home is a new variable that is equal to one if the
batter is from the home team, and equal to zero otherwise. From the
output of this fit, interpret how the strike varies among home and away
batters.

copyrighted material - Taylor & Francis

