WRITING DISSERTATION AND GRANT PROPOSALS
Epidemiology, Preventive Medicine and Biostatistics
Writing dissertation and grant proposals: epidemiology, preventive medicine and biostatistics / Lisa Chasan-Taber.

Summary: "The scientific proposal-writing process can be a daunting experience for graduate students and young researchers. This book covers all aspects of the process, from structure and style to obtaining research grant funding. Organized much like a research proposal, the book covers identifying a research topic, drafting a hypothesis, conducting a literature review, describing methods for data collection and analysis, and presenting the proposal. The final section describes strategies for putting together a winning NIH proposal and responding to reviewer comments. Concepts are illustrated with examples, applications, exercises, and checklists of guidelines."-- Provided by publisher.

Includes bibliographical references and index.

Contents

Preface xxi
Author xxiii

1 Ten Top Tips for Successful Proposal Writing 1
 1.1 Tip #1: Start Early 1
 1.2 Tip #2: Create a Vision with the Help of a Mentor 2
 1.3 Tip #3: Look at Who and What They Funded before You 3
 1.4 Tip #4: Spend Half Your Time on the Abstract and Specific Aims 4
 1.5 Tip #5: Show That You Can Pull It Off 6
 1.6 Tip #6: Your Methods Should Match Your Aims and Vice Versa 7
 1.7 Tip #7: A Proposal Can Never Have Too Many Figures or Tables 8
 1.8 Tip #8: Seek External Review Prior to Submission 9
 1.9 Tip #9: Be Kind to Your Reviewers 10
 1.10 Tip #10: If at All Possible, Choose a Topic That You Find Interesting! 11

PART ONE Preparing to Write the Proposal 13

2 Starting a Dissertation Proposal 15
 2.1 Purpose of the Dissertation 15
 2.2 Purpose of the Dissertation Proposal 16
 2.3 Step #1: Preliminary Qualifying Exams 16
 2.4 Step #2: Selecting a Dissertation Topic 17
 2.4.1 Ascertaining If Original Data Collection Is Required 18
 2.4.2 Pep Talk 19
 2.5 Step #3: Choosing a Chair 19
 2.6 Step #4: Choosing the Dissertation Committee Members 19
 2.6.1 Role of the Dissertation Committee 21
 2.6.2 Balance of Responsibilities between the Dissertation Chair and the Dissertation Committee 22
 2.7 Step #5: Writing the Dissertation Proposal 22
 2.7.1 Structure of the Dissertation Proposal 22
 2.7.2 Dissertation Proposal as a Contract 23
 2.7.3 Format of the Dissertation Proposal 23
 2.8 Step #6: Proposal Defense 24
 2.9 Step #7: Submission of the Proposal to the Graduate School 25
 2.10 Step #8: Conduct the Dissertation Research 25
 2.11 Step #9: Dissertation Defense 25
 2.12 Step #10: Submit the Dissertation to the Graduate School 26
3 How to Develop and Write Hypotheses

3.1 Need for Hypotheses

3.2 More about the Distinction between Hypotheses and Specific Aims

3.3 Hypotheses Should Flow Logically from the Background and Significance Section

3.4 How to Write Hypotheses If the Prior Literature Is Conflicting

3.5 Guideline #1: A Research Hypothesis Should Name the Independent and Dependent Variables and Indicate the Type of Relationship Expected between Them

3.6 Guideline #2: A Hypothesis Should Name the Exposure Prior to the Outcome

3.7 Guideline #3: The Comparison Group Should Be Stated

3.8 Guideline #4: When Your Study Is Limited to a Particular Population, Reference to the Population Should Be Made in the Hypothesis

3.9 Guideline #5: Hypotheses Should Be as Concise as Possible and Use Measureable Terms

3.10 Guideline #6: Avoid Making Precise Statistical Predictions in a Hypothesis

3.11 Guideline #7: A Hypothesis Should Indicate What Will Actually Be Studied—Not the Possible Implications of the Study or Value Judgments of the Author

3.12 Stylistic Tip #1: When a Number of Related Hypotheses Are to Be Stated, Consider Presenting Them in a Numbered or Lettered List

3.13 Stylistic Tip #2: Because Most Hypotheses Deal with the Behavior of Groups, Plural Forms Should Usually Be Used

3.14 Stylistic Tip #3: Avoid Using the Words Significant or Significance in a Hypothesis

3.15 Stylistic Tip #4: Avoid Using the Word Prove in a Hypothesis

3.16 Stylistic Tip #5: Avoid Using Two Different Terms to Refer to the Same Variable in a Hypothesis

3.17 Stylistic Tip #6: Remove Any Unnecessary Words

3.18 Stylistic Tip #7: Hypotheses May Be Written as Research Questions—But Use Caution

3.19 Hypothesis Writing Checklist

4 Conducting the Literature Search

4.1 How Do Literature Reviews for Grant Proposals Differ from Literature Reviews in Journal Articles or in Dissertation Proposals?

4.2 Writing a Literature Review Is an Iterative Process
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Step #1: Creating a Literature Review Outline</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Step #2: Searching for Literature (Do’s and Don’ts)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4.1</td>
<td>Choosing a Relevant Database</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>4.4.2</td>
<td>What Type of Literature to Collect for Each Section of the Literature Review Outline</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>4.4.2.1</td>
<td>a. Introduction: public health impact of outcome (disease)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>4.4.2.2</td>
<td>b. Physiology of exposure–outcome relationship</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>4.4.2.3</td>
<td>c. Epidemiology of exposure–outcome relationship</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>4.4.3</td>
<td>Should You Collect Epidemiologic Literature That Only Secondarily Evaluated Your Exposure–Outcome Relationship?</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>4.4.4</td>
<td>Collecting Literature for an Effect Modification Hypothesis</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>4.4.5</td>
<td>What to Do When Your Search Yields Thousands of Hits</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4.4.6</td>
<td>What to Do If There Are Too Few Hits</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>4.4.7</td>
<td>How to Retrieve Articles (Hits)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>4.4.8</td>
<td>How to Scan Articles for Relevance</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>4.4.9</td>
<td>Evaluating Your References for Completeness</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Step #3: Organizing the Epidemiologic Literature—Summary Tables</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5.1</td>
<td>What Data Should I Include in a Summary Table?</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>4.5.2</td>
<td>Reviewing the Table to Identify Research Gaps</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>4.5.3</td>
<td>Should I Include the Summary Table in My Proposal?</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Examples</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4.6.1</td>
<td>Example #1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4.6.2</td>
<td>Example #2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4.6.3</td>
<td>Example #3</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>Scientific Writing</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Tip #1: Consider Your Audience</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Tip #2: Avoid Using the First-Person Singular</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Tip #3: Use the Active Voice</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Tip #4: Use Transitions to Help Trace Your Argument</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Tip #5: Avoid Direct Quotations Both at the Beginning and within the Literature Review</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Tip #6: Avoid Saying The Authors Concluded…</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Tip #7: Omit Needless Words</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Tip #8: Avoid Professional Jargon</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Tip #9: Avoid Using Synonyms for Recurring Words</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Tip #10: Use the Positive Form</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Tip #11: Place Latin Abbreviations in Parentheses; Elsewhere Use English Translations</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Tip #12: Spell Out Acronyms When First Used; Keep Their Use to a Minimum</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Tip #13: Avoid the Use of Contractions</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Tip #14: Spell Out Numbers at the Beginning of a Sentence</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Tip #15: Placement of References</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>Strive for a User-Friendly Draft</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
5.17 Take Advantage of Writing Assistance Programs 81
5.18 Solicit Early Informal Feedback on Your Proposal 81
5.19 Who Must Read Your Proposal 82
5.20 Incorporating Feedback 82
5.21 How to Reconcile Contradictory Feedback 83
5.22 Annotated Example 84

PART TWO The Proposal: Section by Section 87

6 Specific Aims 89
6.1 Purpose of the Specific Aims Page 89
6.2 A Word of Caution 90
6.3 Outline for the Specific Aims Page 90
6.3.1 Paragraph #1: Study Background and Research Gap 91
6.3.2 Paragraph #2: Synopsis of the Study Methods 93
6.3.3 Paragraph #3: Your Aims and Corresponding Hypotheses 94
6.3.4 Paragraph #4: Summary of Significance and Innovation 95
6.4 Tip #1: How to Deal with the One-Page Limitation for the Specific Aims Page 97
6.5 Tip #2: Avoid Interdependent Aims 97
6.6 Tip #3: Aims Involving the Use of an Existing Dataset—Pros and Cons 98
6.7 Tip #4: Should You Aim to Conduit Analytic or Descriptive Studies? 99
6.8 Tip #5: How to Decide Whether to Include Exploratory or Secondary Aims 100
6.9 Tip #6: Don’t Be Too Ambitious 100
6.10 Tip #7: Remember That All Aims Should Be Accompanied by Hypotheses 101
6.11 Tip #8: If You Plan to Evaluate Effect Modification in Your Methods, Then Include This as a Specific Aim 102
6.12 When to Consider Discarding Your Original Aims and Hypotheses 103
6.13 Annotated Examples 103
6.13.1 Example #1: Needs Improvement 103
6.13.2 Example #2: Does Not Need Improvement 105

7 Background and Significance Section 109
7.1 Refer Back to Your Literature Review Outline 109
7.2 Background and Significance Should Be Made Up of Subsections Corresponding to Each Hypothesis 110
7.3 Section a: Summarize the Public Health Impact of Outcome (Disease) 110
7.4 Section b: Summarize the Physiology of Exposure–Outcome Relationship 111
7.5 Section c: Summarize the Epidemiology of Exposure–Outcome Relationship (Describe Studies in Groups) 113
 7.5.1 In Summarizing the Epidemiologic Literature, Note the Relationships between Study Methods and Their Corresponding Findings 114
 7.5.2 Finding the Research Gap in the Prior Epidemiologic Literature 115
 7.5.3 How Big a Research Gap Do I Need to Fill? 115
 7.5.4 Highlight the Limitations of Prior Studies That Your Proposal Will Be Able to Address 116
 7.5.5 What Should You Do If the Prior Literature Is Conflicting? 117
 7.5.5.1 Let reviewers know that you are aware of controversies 117
 7.5.5.2 Give clear reasons for taking a side 117
 7.5.6 Highlight Key Studies 118
7.6 Section d: Summarize the Significance and Innovation 119
7.7 Tip #1: Should You Have One Consolidated Background and Significance Section? 120
7.8 Tip #2: Be Sure to Express Your Own Opinions about a Prior Study’s Limitations 121
7.9 Tip #3: You May Refer to Comments from a Review Article 121
7.10 Tip #4: Occasionally You May Provide the Historical Context 122
7.11 Tip #5: Summarize at the End of Each Section in the Background and Significance Section 122
7.12 Tip #6: Avoid Broad and Global Statements in the Background and Significance Section 123
7.13 Tip #7: Be Comprehensive and Complete in Citations 123
7.14 Tip #8: References Should Directly Follow the Studies That They Relate To 124
7.15 Tip #9: If You Are Commenting on a Time Frame, Be Specific 125
7.16 Annotated Examples 125
 7.16.1 Example #1: Needs Improvement 125
 7.16.2 Example #2a: Grant Proposal Version Not in Need of Improvement 128
 7.16.3 Example #2b: Dissertation Proposal Version Not in Need of Improvement 128

8 Summarizing Preliminary Studies 133
 8.1 What Are Preliminary Studies? 133
 8.2 Do Preliminary Data Need to Be Previously Published? 134
 8.3 How to Describe Preliminary Data 135
 8.4 Use the Preliminary Studies Section to Demonstrate Established Relationships with Your Coinvestigators 136
 8.5 What If You Do Not Have Preliminary Data? 137
8.6 What If Your Preliminary Data Contradict Your Proposed Hypotheses? 138
8.7 Double-Check That All Your Preliminary Findings Relate to One or More of Your Proposed Hypotheses 139
8.8 Pitfalls of Preliminary Data 140
8.9 Where to Place Preliminary Studies in an NIH Grant Proposal? 140
8.10 Should I Include Preliminary Results Even If the Grant Does Not Require Them? 140
8.11 Preliminary Studies within Proposals Based upon Existing Datasets 141
8.12 Tip #1: Include Tables and Figures in the Preliminary Studies Section 142
8.13 Tip #2: When Describing Results in a Table or Figure, Point Out the Highlights for the Reviewer 143
8.14 Tip #3: Include Descriptive Tables of the Study Population 144
8.15 Tip #4: Describe Preliminary Findings in Layperson’s Terms 145
8.15.1 How to Describe a Relative Risk in Layperson’s Terms 146
8.15.2 How to Describe a Beta Coefficient in Layperson’s Terms 146
8.15.3 How to Describe Effect Modification in Layperson’s Terms 147
8.16 Stylistic Tip #1: Describe Tables in Numeric Order 147
8.17 Stylistic Tip #2: Try to Describe Tables from Top to Bottom 147
8.18 Stylistic Tip #3: Spell Out Numbers That Start Sentences 148
8.19 Stylistic Tip #4: Avoid Presenting Confidence Intervals and p-Values 148
8.20 Stylistic Tip #5: Avoid Referring to Your Tables as Active Beings 149
8.21 Stylistic Tip #6: Tips for Table Titles 150
8.22 Preliminary Study Examples 150
8.22.1 Preliminary Study #1 151
8.22.2 Preliminary Study #2 151

9 Study Design and Methods 153
9.1 Goals of the Study Design and Methods Section 154
9.2 Overall Strategy 154
9.3 Identify Benchmarks for Success 155
9.4 Section a: What Is Your Study Design? 156
9.4.1 Consider a Study Design Figure 157
9.5 Section b: Study Population (Setting, Subject Ascertainment, and Eligibility) 159
9.5.1 How to Describe Subject Ascertainment 160
9.5.2 How to Describe Eligibility Criteria 160
9.6 Section c: Exposure Assessment 161
9.6.1 How Your Exposure Data Will Be Collected 161
9.6.2 Exposure Parameterization 163
9.6.3 How to Parameterize Your Variable 163
9.6.4 Validity of Exposure Assessment 164
9.6.5 What to Do If There Are No Prior Validation Studies 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>Section d: Outcome Assessment</td>
<td>167</td>
</tr>
<tr>
<td>9.8</td>
<td>Section e: Covariate Assessment</td>
<td>168</td>
</tr>
<tr>
<td>9.9</td>
<td>Section f: Variable Categorization Table</td>
<td>169</td>
</tr>
<tr>
<td>9.10</td>
<td>Pitfalls to Avoid</td>
<td>173</td>
</tr>
<tr>
<td>9.11</td>
<td>Examples</td>
<td>174</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Example #1</td>
<td>174</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Example #2</td>
<td>176</td>
</tr>
<tr>
<td>10</td>
<td>Data Analysis Plan</td>
<td>179</td>
</tr>
<tr>
<td>10.1</td>
<td>Part I: Framework for the Proposed Data Analysis Plan</td>
<td>179</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Start the Data Analysis Plan by Repeating Your Specific Aims Verbatim</td>
<td>179</td>
</tr>
<tr>
<td>10.1.2</td>
<td>What If All Your Aims Require the Identical Data Analysis Plan?</td>
<td>180</td>
</tr>
<tr>
<td>10.2</td>
<td>Part II: Scope and Depth of Proposed Analyses</td>
<td>181</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Step #1: Are Your Specific Aims Descriptive or Analytic?</td>
<td>181</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Step #2: How Will You Parameterize Your Variables?</td>
<td>182</td>
</tr>
<tr>
<td>10.3</td>
<td>Outline for a Basic Data Analysis Plan</td>
<td>183</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Univariate Analysis Plan</td>
<td>183</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Bivariate Analysis Plan</td>
<td>185</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Multivariable Analysis Plan</td>
<td>187</td>
</tr>
<tr>
<td>10.3.3.1</td>
<td>A. Select an appropriate model</td>
<td>187</td>
</tr>
<tr>
<td>10.3.3.2</td>
<td>B. Specify how the model will adjust for potential confounding factors (i.e., covariates)</td>
<td>188</td>
</tr>
<tr>
<td>10.3.3.3</td>
<td>C. Specify how you will evaluate potential effect modifiers</td>
<td>190</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Exploratory Data Analyses</td>
<td>191</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Mock Tables</td>
<td>192</td>
</tr>
<tr>
<td>10.4</td>
<td>Part III: Best Practices</td>
<td>192</td>
</tr>
<tr>
<td>10.5</td>
<td>Example Data Analysis Plan for a Dissertation Proposal</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>Power and Sample Size</td>
<td>203</td>
</tr>
<tr>
<td>11.1</td>
<td>Timeline</td>
<td>203</td>
</tr>
<tr>
<td>11.2</td>
<td>What Is Power?</td>
<td>204</td>
</tr>
<tr>
<td>11.3</td>
<td>Key Characteristics of Power</td>
<td>204</td>
</tr>
<tr>
<td>11.4</td>
<td>When Is It OK Not to Include a Power or Sample Size Calculation?</td>
<td>205</td>
</tr>
<tr>
<td>11.5</td>
<td>Step #1: Estimate Your Sample Size</td>
<td>206</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Basis for Sample Size Estimation</td>
<td>206</td>
</tr>
<tr>
<td>11.6</td>
<td>Step #2: Choose User-Friendly Software to Calculate Power</td>
<td>207</td>
</tr>
<tr>
<td>11.7</td>
<td>Step #3: Remind Yourself of Your Measure of Association</td>
<td>208</td>
</tr>
<tr>
<td>11.8</td>
<td>Step #4: Calculate and Present Your Power for Ratio Measures of Association (i.e., Relative Risks)</td>
<td>209</td>
</tr>
<tr>
<td>11.8.1</td>
<td>A. For Cohort and Cross-Sectional Studies</td>
<td>209</td>
</tr>
<tr>
<td>11.8.2</td>
<td>B. For Unmatched Case–Control Studies</td>
<td>211</td>
</tr>
<tr>
<td>11.8.3</td>
<td>C. How to Display Your Power in the Proposal</td>
<td>212</td>
</tr>
</tbody>
</table>
11.9 Step #5: Calculate and Present Your Power for Difference Measures of Association (i.e., Continuous Outcome Variables) 214
 11.9.1 A. For Cohort and Cross-Sectional Studies 215
 11.9.2 B. How to Display Your Power in the Proposal 215
11.10 What If Your Power Is Not Adequate? 216
11.11 Other Factors That Influence Power 217
11.12 Final Pep Talk 217

12 Review of Bias and Confounding 219
 12.1 First: A Pep Talk 220
 12.2 Study Limitations: Chance, Bias, and Confounding 220
 12.3 Chance 221
 12.4 Bias 222
 12.5 Nondifferential Misclassification 222
 12.5.1 Nondifferential Misclassification of Exposure 222
 12.5.2 Nondifferential Misclassification of Outcome 223
 12.6 Selection Bias 225
 12.6.1 Selection Bias in a Case–Control Study 225
 12.6.2 Selection Bias in a Cohort Study 226
 12.7 Information Bias 226
 12.7.1 Information Bias in a Case–Control or Cross-Sectional Study 227
 12.7.2 Information Bias in a Cohort Study 228
 12.8 Confounding 229
 12.8.1 Confounding in Randomized Trials 231
 12.8.2 Difference between Confounding and Effect Modification 231
 12.8.3 Will You Be Missing Information on Any Potential Confounding Factors? 232
 12.9 Other Limitations Specific to Cross-Sectional and Case–Control Studies 234
 12.10 Generalizability 234
 12.10.1 Reasons to Limit Generalizability 236
 12.11 Exercises 237
 12.12 Issues for Critical Reading 239
 12.12.1 Cohort Studies 239
 12.12.2 Randomized Trials 240
 12.12.3 Case–Control and Cross-Sectional Studies 241
 12.13 Examples 242
 12.13.1 Example #1 242
 12.13.2 Example #2 244
13 How to Present Limitations and Alternatives 245
 13.1 Which Limitations to Highlight? 245
 13.2 Part I: How to Strategically Present Limitations—a Fourfold Approach 246
 13.2.1 Step #1: Describe the Potential Limitation 246
 13.2.2 Step #2: Describe the Potential Impact of the Limitation on Your Study Findings 247
 13.2.3 Step #3: Discuss Alternatives 249
 13.2.4 Step #4: Describe Methods to Minimize the Limitation 249
 13.2.5 Conclusion to Fourfold Approach to Address Limitations 250
 13.2.6 Where to Place Your Study Limitations in a Grant Proposal 250
 13.2.6.1 Limitations section at the end of the approach section 251
 13.2.6.2 Intermingled limitations sections 251
 13.3 Part II: Methods to Minimize Classic Limitations—Design and Analysis Techniques 252
 13.3.1 How to Present Nondifferential Misclassification 252
 13.3.1.1 Design techniques to minimize nondifferential misclassification 252
 13.3.1.2 Analysis techniques to minimize nondifferential misclassification 253
 13.3.2 How to Present Selection Bias 253
 13.3.2.1 Study design techniques to minimize selection bias 254
 13.3.2.2 Analysis techniques to minimize selection bias 254
 13.3.3 How to Present Information Bias 254
 13.3.3.1 Study design techniques to minimize information bias 254
 13.3.3.2 Analysis techniques to minimize information bias 255
 13.3.4 How to Present Confounding 256
 13.3.4.1 Study design techniques to minimize confounding 256
 13.3.4.2 Analysis techniques to minimize confounding 258
 13.3.4.3 Techniques to minimize lack of data on a confounder 259
 13.3.5 How to Present Survivor Bias 260
 13.3.6 How to Present Temporal Bias 260
 13.3.7 How to Present Generalizability 261
 13.4 Examples 262
 13.4.1 Example #1 262
 13.4.2 Example #2 264
14 Reproducibility and Validity Studies 267
14.1 Why Conduct a Reproducibility or Validity Study? 267
14.2 What Is Reproducibility and Validity? 268
14.3 Relationship between Reproducibility and Validity 269
14.4 Both Subjective and Objective Measurement Tools Require Evidence of Reproducibility and Validity 270
14.4.1 Questionnaires 270
14.4.2 Particular Challenge of Behavioral Questionnaires 271
14.4.3 Objective Measures Also Require Reproducibility and Validity Studies 272
14.5 Study Design of Reproducibility Studies 273
14.6 Study Design of Validity Studies 274
14.6.1 Subjective Comparison Measures 274
14.6.2 Objective Comparison Measures 275
14.6.3 Number of Administrations of the Comparison Method 276
14.7 Writing Data Analysis Sections for Reproducibility/Validity Studies 277
14.8 Writing Limitations Sections for Reproducibility/Validity Studies 278
14.8.1 Threats to Observed Reproducibility Scores 279
14.8.2 Threats to Observed Validity Scores 281
14.8.3 Threats to Generalizability 282
14.9 How to Interpret Findings from Reproducibility/Validity Studies 283
14.10 Issues of Sample Size and Power for a Reproducibility and Validity Study 284
14.11 Summary 284
14.12 Example 285

15 Abstracts and Titles 287
15.1 Outline for Proposal Abstract 287
15.2 How to Get Started Writing an Abstract 288
15.3 When to Finalize the Abstract 289
15.4 NIH Review of an Abstract 290
15.5 Examples of Funded Abstracts 290
15.6 Strategies for Meeting the Word Count/Line Limitations 291
15.7 Abstract: Step by Step 291
15.7.1 Background Section 291
15.7.1.1 Public health impact of outcome (disease) 292
15.7.1.2 Physiology of exposure–outcome relationship 292
15.7.1.3 Epidemiology of exposure–outcome relationship 293
15.7.2 II. Research Aims 294
15.7.3 III. Highlights of the Methodology 295
15.7.4 IV. Summary of the Significance and Innovation 297
15.8 How to Write a Title for Your Proposal 299
15.8.1 Tip #1: Use Agency-Friendly Keywords 300
15.8.2 Tip #2: Titles Should Include the Key Variables Being Evaluated 301
15.8.3 Tip #3: The Title Should Not State the Expected Results of the Proposed Study 301
15.8.4 Tip #4: Titles Should Mention the Study Design If a Strength 302
15.8.5 Tip #5: The Title Should Mention the Study Population When Important 302
15.8.6 Tip #6: Titles Should Mention Any Other Unique Features of the Study 303
15.8.7 Tip #7: A Title Should Be Consistent with the Overall Study Goal 303
15.8.8 Stylistic Tip #1: Avoid Clever Titles 304
15.8.9 Stylistic Tip #2: Avoid Writing Titles as Questions 304
15.9 Examples 305
15.9.1 Example #1 305
15.9.2 Example #2: Needs Improvement 306
15.9.3 Example #3: Needs Improvement 307

16 Presenting Your Proposal Orally 309
16.1 How to Get Started 309
16.2 General Guidelines 310
16.2.1 Guideline #1: Organize the Presentation Based on Your Proposal Outline 310
16.2.2 Guideline #2: How to Allocate Presentation Time 310
16.2.3 Guideline #3: A Presentation Cannot Have Too Many Figures or Tables 311
16.2.4 Guideline #4: How to Create User-Friendly Text Slides 314
16.2.5 Guideline #5: Recommended Slide Aesthetics 315
16.3 Presenting Background and Significance 315
16.4 Presenting Preliminary Studies or Findings from the Prior Literature 318
16.4.1 Keep Results Tables Simple 319
16.4.2 Presenting Mock Tables for a Dissertation Proposal 321
16.5 Include Backup Slides 321
16.6 Guidelines for Your Speech 322
16.6.1 Guideline #1: Consider How Your Words Will Supplement Your Slides 322
16.6.2 Guideline #2: How to Discuss Tables/figures 322
16.6.3 Importance of Rehearsing Your Speech 324
16.6.4 Cultivating a Relationship with the Audience 324
16.6.5 Tip #1: Don’t Undercut Your Message 325
16.6.6 Tip #2: Try Not to Talk Too Quickly 325
16.6.7 Tip #3: Try Not to Spend Too Much Time on Each Slide 325
16.7 Consider How the Presentation Will Be Evaluated 325
16.8 Proposal Presentation Critique 326
PART THREE
Grantsmanship

17 Choosing the Right Funding Source

17.1 Part I: Developing Your Grant-Funding Plan
17.1.1 Step #1: Locate a Mentor for Grantsmanship
17.1.1.1 How to identify a mentor
17.1.2 Step #2: Develop Your Overall Grantsmanship Goal
17.1.2.1 Plan for a steady trajectory of grants from small to large
17.1.2.2 Avoid classic pitfall #1: Don’t skip straight to large funding mechanisms
17.1.3 Plan for More Than One Potential Funding Pipeline
17.1.4 Serve as a Coinvestigator on Established Teams
17.1.5 Avoid Classic Pitfall #2: Do Not Propose Overly Ambitious Specific Aims
17.1.6 Avoid Classic Pitfall #3: Do Not Embed Pilot or Validity Studies within a Larger Proposal

17.2 Part II: Choosing the Appropriate Funding Mechanism for Your Early Grants
17.2.1 Focus on Grants Targeted to Early-Career Faculty and Postdoctoral Fellows
17.2.2 Internal University Funding
17.2.3 Foundation Grants
17.2.4 Resources for Selecting the Right Funding Source
17.2.5 Look at Who and What They Funded before You
17.2.6 Look at Who Serves as Reviewers

17.3 Part III: Step-by-Step Advice for Finding the Right Funding Source at NIH
17.3.1 Step #1: Determine Which NIH Institute’s Mission Encompasses Your Topic
17.3.2 Step #2: Choose a Funding Mechanism Sponsored by Your Selected NIH Institute
17.3.2.1 Doctoral and postdoctoral fellowships (F series) “Ruth L. Kirschstein Individual National Research Service Award” (NRSA)
17.3.2.2 Training grants (T series) “Ruth L. Kirschstein Individual National Research Service Award”
17.3.2.3 Career development awards (K series)
17.3.2.4 Loan repayment programs
17.3.2.5 Research supplements
17.3.2.6 Research awards (R series)
17.3.2.7 New investigator advantages
17.3.3 Step #3: Choose the Corresponding Funding Opportunity Announcement Number
17.3.3.1 Read the FOA carefully!
17.4 Examples of Choosing the Right Funding Sources
17.4.1 Example #1: A Postdoctoral Researcher Transitioning to Early-Career Faculty
17.4.2 Example #2: An Early-Career Faculty Member

18 Submission of the Grant Proposal
18.1 How to View the Submission Process Overall
18.2 Part I: Getting Started
 18.2.1 How Far Ahead to Start the Grant Preparation Process
 18.2.2 Begin to Assemble the Research Team Early
 18.2.2.1 How to choose collaborators
 18.2.2.2 Establish working relationships with coinvestigators before submission
 18.2.2.3 Consider a multiple principal investigator model
 18.2.3 Spend Half Your Time on the Specific Aims and Project Summary (Abstract)
 18.2.4 Allow Time for External Review Prior to Submission
 18.2.5 External Review: Chalk-Talk Forums
 18.2.6 External Review: Mock NIH Study Sections
18.3 Part II: Strategic Tips for Each Component of the Grant Submission
 18.3.1 Section I: Scientific Component
 18.3.1.1 I.a. Title
 18.3.1.2 I.b. Project summary (abstract)
 18.3.1.3 I.c. Specific aims
 18.3.1.4 I.d. Project narrative
 18.3.1.5 I.e. Research strategy
 18.3.1.6 I.f. Training information for doctoral and postdoctoral fellowships (F series)
 18.3.1.7 I.g. Candidate information for career development awards (K series)
 18.3.1.8 I.h. Bibliography and references cited
 18.3.1.9 I.i. Human subjects protection/responsible conduct of research
 18.3.1.10 I.j. Inclusion of women, minorities, and children; Targeted/planned enrollment
 18.3.2 Section II: Nonscientific Forms
 18.3.2.1 II.a. Cover letter
 18.3.2.2 II.b. Facilities and other resources
 18.3.2.3 II.c. Equipment
 18.3.2.4 II.d. Biosketch
 18.3.2.5 II.e. Budget and budget justification
 18.3.2.6 II.f. Resource sharing plan
 18.3.2.7 II.g. Appendices and supplemental materials
 18.3.2.8 II.h. Other pages
18.3.3 Section III: Items Needed from Others
18.3.3.1 III.a. Letters of support
18.3.3.2 III.b. Biosketches
18.3.3.3 III.c. Consortium/contractual arrangements
18.4 Part III: Timeline for Submission of an NIH Grant

19 Review Process
19.1 Part I: Review Process
19.1.1 Scientific Review Group (Study Section)
19.1.2 Role of the Scientific Review Officer
19.1.3 Study Section Reviewers
19.1.4 How the Study Section Members Review Your Grant Application
19.1.5 Review Criteria for Research Grants (R Series)
19.1.5.1 Overall impact
19.1.5.2 1. Significance
19.1.5.3 2. Investigator(s)
19.1.5.4 3. Innovation
19.1.5.5 4. Approach
19.1.5.6 5. Environment
19.1.6 Review Criteria for Career Development Awards (K Series)
19.1.6.1 Overall impact for a career award
19.1.6.2 1. Candidate
19.1.6.3 2. Career development plan/career goals and objectives
19.1.6.4 3. Research plan
19.1.6.5 4. Mentor(s), co-mentor(s), consultant(s), and collaborator(s)
19.1.6.6 5. Environment and institutional commitment to the candidate
19.1.7 Review Criteria for Fellowship Awards (F Series)
19.1.7.1 Overall impact/merit for a fellowship award
19.1.7.2 1. Fellowship applicant
19.1.7.3 2. Sponsors, collaborators, and consultants
19.1.7.4 3. Research training plan
19.1.7.5 4. Training potential
19.1.7.6 5. Institutional environment and commitment to training
19.1.8 During the Study Section Meeting
19.1.9 Common Reasons for Low Scores
19.1.10 Tips for a Successful Review
19.2 Part II: After Your Application Is Reviewed
19.2.1 Step #1: Read the Summary Statement
19.2.2 If Your Application Was Streamlined (Unscored)
19.2.3 Step #2: Contact Your Program Official
20 Resubmission of the Grant Proposal

20.1 Part I: Pathway to Resubmitting
 20.1.1 Whether to Resubmit
 20.1.2 Contact Your Program Official
 20.1.3 Timing of a Resubmission
 20.1.4 Not All Reviewer Comments Are Equal
 20.1.5 How Much Revision Is Necessary
 20.1.6 Study Section Review of Resubmissions

20.2 Part II: Introduction to the Resubmission
 20.2.1 General Format of the Introduction Page
 20.2.2 Tip #1: Clearly Connect Your Responses to Specific Reviewer Concerns
 20.2.3 Tip #2: Resist the Urge to Defend Yourself
 20.2.4 Tip #3: Avoid Disagreeing with a Reviewer
 20.2.5 Tip #4: If You Must Disagree with a Reviewer, Focus on the Science
 20.2.6 Tip #5: Avoid Using Cost or Logistics as a Rationale for Not Being Responsive to a Reviewer Comment
 20.2.7 Tip #6: Multiple-Bullet-Point Response to Major Concerns Is Highly Responsive
 20.2.8 Tip #7: Acknowledge Your Mistakes or Lack of Clarity
 20.2.9 Tip #8: Don’t Skip Any Reviewer Comments
 20.2.10 Tip #9: Avoid Collapsing Too Many Reviewer Concerns into One Bullet Point
 20.2.11 Tip #10: Be Sure to Make Changes to the Body of the Proposal
 20.2.12 Stylistic Tip #1: Use Active (Not Passive) Voice
 20.2.13 Stylistic Tip #2: Avoid Use of the First Person
 20.2.14 Stylistic Tip #3: Don’t Waste Too Much Space Apologizing

20.3 Part III: Body of the Resubmission
 20.3.1 How to Identify Revisions to a Grant Proposal
 20.3.2 Rereview the Published Literature to Check for Recent Relevant Publications
 20.3.3 Obtain Revised Letters of Collaboration
 20.3.4 Update Biosketches: Both Your Own and Those of Your Coinvestigators

20.4 Examples
 20.4.1 Proposal to Conduct a Randomized Trial of a Postpartum Diabetes Prevention Program
 20.4.2 K Award Proposal to Conduct a Web-Based Intervention Study to Prevent Weight Gain in Men
Preface

For more than 15 years, I have taught a graduate course on grant proposal writing for students in the School of Public Health and Health Sciences at the University of Massachusetts at Amherst. With their encouragement and suggestions, this textbook has come to be a reality. Competition for research funds has never been more intense and, at the same time, the grant application and review process at such agencies as the National Institutes of Health (NIH) are undergoing significant transformation. Writing Dissertation and Grant Proposals: Epidemiology, Preventive Medicine, and Biostatistics is unique in representing an up-to-date textbook targeting effective grant proposal writing in this growing and important field.

The text covers all aspects of the proposal-writing process from soup to nuts. Step-by-step tips address grant structure and style alongside broader strategies for developing a research funding portfolio. Throughout, concepts are illustrated with annotated examples from successfully funded proposals in the field. Strategies to avoid common errors and pitfalls (e.g., do’s and don’ts) and summary checklists of guidelines are provided. Essentially, the text can be viewed as a virtual cookbook of the appropriate ingredients needed to construct a successful grant proposal.

Therefore, this text is not only highly relevant for early-stage investigators including graduate students, medical students/residents, and postdoctoral fellows, but also valuable for more experienced faculty, clinicians, epidemiologists, and other health professionals who cannot seem to break the barrier to NIH-funded research. This book can serve as the primary text for courses in grant and proposal writing and as an accompanying text to courses in research methods, epidemiology, preventive medicine, statistics, and population health, as well as a personal resource.

Chapter 1, Ten Top Tips for Successful Proposal Writing, reviews what I believe are the ten most important factors in developing a grant proposal. The text is then divided into three parts. Part One, Preparing to Write the Proposal, begins with Chapter 2, Starting a Dissertation Proposal, which provides tips on selecting a dissertation topic, strategies for selecting and interacting with a dissertation committee, and a plan of action with suggested timelines. Chapter 3, How to Develop and Write Hypotheses, outlines strategies for developing your ideas into effective hypotheses. The often daunting task of conducting the literature search is made manageable through the step-by-step approach provided in Chapter 4, Conducting the Literature Search. Guidelines for writing with clarity and precision are provided in Chapter 5, Scientific Writing.

Part Two, The Proposal: Section by Section, follows the structure of a research proposal beginning with crafting your Specific Aims (Chapter 6) to leverage a research gap that your proposal will address and then continuing through Background and Significance Section (Chapter 7), Summarizing Preliminary Studies (Chapter 8), Study Design and Methods (Chapter 9), Data Analysis Plan (Chapter 10), and Power and Sample Size (Chapter 11).
Potential study limitations and a fourfold approach to strategically present and minimize these limitations are reviewed in Chapter 12, *Review of Bias and Confounding*, and Chapter 13, *How to Present Limitations and Alternatives*. Issues specific to pilot and feasibility studies, often excellent topics for early grant proposals, are described in Chapter 14, *Reproducibility and Validity Studies*. Techniques for crafting your abstract, potentially the most critical component of a grant proposal, are discussed in Chapter 15, *Abstracts and Titles*. Chapter 16, *Presenting Your Proposal Orally*, covers preparing the visual and oral content of a proposal presentation.

Part Three, Grantsmanship, provides strategies for putting together a winning NIH proposal and is kicked off by Chapter 17, *Choosing the Right Funding Source*, which outlines how to develop a grant funding plan. Chapter 18, *Submission of the Grant Proposal*, continues by providing strategic tips for each component of the grant application. Chapter 19, *Review Process*, describes the review criteria for research, career, and fellowship awards; ways to maximize your chances for a successful review; and potential reasons for rejection. Finally, Chapter 20, *Resubmission of the Grant Proposal*, goes on to describe the pathway to resubmitting your grant proposal along with strategic tips for how to be highly responsive to reviewer concerns—the key criteria in a successful resubmission.

Throughout the chapters, examples from successfully funded proposals in the field appear in shaded boxes. These excerpts have been edited to remove reference to specific investigators and study sites; details of the study design have often been modified. Therefore, superscripts in the text demonstrate where references should be placed, but actual references are not included. In this manner, the examples focus on the structure and techniques used in scientific writing and can be broadly applied to a variety of grant topics.

While the focus of the text is on principles to guide the pursuit of funding primarily from NIH, these principles also apply to other federal and state agencies as well as foundations. NIH, however, remains the largest funder of biomedical research in the world, and NIH funds research in just about every area that is remotely related to human health and disease. It is also important to note that this book is not designed to teach you research methodology or statistics; readers without exposure to these areas would profit by referring to an introductory text. Instead, the focus of the text is on how to convert your research ideas into a successful grant proposal. Keep in mind that in science, if one is to make an impact, it is not sufficient to reach the truth; you must persuade your colleagues of it.

Finally, I would like to acknowledge the help I received in bringing this book to completion. The concepts in this book owe much to the work and ideas of my mentors, colleagues, and former students and were greatly informed by the grant review panels on which I have served. This book is also in debt to earlier courses that I took at Harvard and is a tribute to my mentor Dr. Meir Stampfer. In addition, crucial input on specific chapters has been provided by Drs. Michael D. Schmidt, Amy E. Haskins, Sarah Goff, Larissa R. Brunner Huber, Scott Chasan-Taber, Renée Turzanski Fortner, and Tiffany A. Moore Simas. JCT contributed her formidable formatting skills. The support of my indomitable daughters, Adina and Jessie, has been unwavering. Lastly, this book is dedicated to my husband Scott, the composer of the best proposal I have ever heard.
Author

Dr. Lisa Chasan-Taber is a professor of epidemiology and the former associate dean for research in the School of Public Health and Health Sciences at the University of Massachusetts Amherst. She is a reproductive epidemiologist and a nationally and internationally recognized expert on physical activity during pregnancy. Early in her career, Dr. Chasan-Taber received the American Diabetes Association Career Development Award, and she has consistently been funded by the National Institutes of Health (NIH) as a principal investigator for the last 15 years. Dr. Chasan-Taber was a standing member of the NIH Infectious Disease, Reproductive Health, Asthma, and Pulmonary Epidemiology (IRAP) Study Section and has served on multiple national review panels, as a mentor on NIH Research Career Development Awards, and as the principal investigator of Mentoring Grants designed to provide early-career faculty with successful grant-writing strategies. For more than 15 years, she has taught a class on proposal and grant writing for epidemiology graduate students, which serves as the basis for this book. She has been recognized for her research through the Chancellor’s Medal, the highest recognition bestowed to faculty by the university, and for her teaching excellence and innovative approaches to instruction through the College Outstanding Teacher Award. Chasan-Taber received her postdoctoral and doctoral training in epidemiology at the Harvard School of Public Health, a master’s in public health from the University of Massachusetts, and a bachelor of arts from the University of Pennsylvania.
Ten Top Tips for Successful Proposal Writing

If I were asked to distill my proposal writing advice down to the 10 most important tips, the following would be my list. These best practices in grantsmanship also apply to any type of proposal writing.

1.1 Tip #1: START EARLY

These days, funding is more difficult to obtain than it has ever been before. However, graduate students and early-career faculty have certain advantages upon which they can capitalize. In fact, given the current challenging economic climate, making the most of these advantages is now more important than ever.

Doctoral and postdoctoral granting mechanisms as well as early-career awards provide the highest chances for success. A primary advantage of these mechanisms is that they typically do not require significant preliminary data. This is fortuitous, as you are unlikely to have preliminary data at this point in your career. Instead, funding decisions for these awards rely most heavily on your promise and potential as a candidate.

This potential is indicated by three items:

- Your education to date (including prior publications and project-related experience)
- The mentors with which you have surrounded yourself
- The public health importance of your topic

A key advantage of these funding mechanisms is that, unlike larger grant awards, you will be competing in a smaller pool of investigators all of whom will be at a comparable stage in their careers as yourself. This advantage should not be minimized, as it avoids the risk of competing against senior investigators who already have established track records. As a senior investigator once said, “Avoid competing against the ‘big boys and girls’ as long as you can!” This advantage that you now
have will quickly be over after several years pass by and you find yourself no longer eligible for these early-career investigator awards.

Therefore, if you are a graduate student, seek out grant mechanisms designed for graduate students. Such grants include National Institutes of Health (NIH) predoctoral (F31) and postdoctoral (F32) fellowship awards. If you are an early-career faculty member, look for grants designed for early-career faculty members. These may include small seed-money grants provided by your university (e.g., Faculty Research Grants) or foundation grants targeted for career development (e.g., the American Diabetes Association Career Award, the March of Dimes Starter Scholar Award). In addition, NIH offers career development awards such as the K series awards. At the same time, always be on the lookout for opportunities to collaborate as a coinvestigator on other applications where the principal investigator (PI) is a senior, established investigator. If you need help identifying these programs, most universities have resources to help you find grants relevant to your interest area and level. Online services are available as well. Chapter 17, Choosing the Right Funding Source, provides an in-depth discussion of how to locate these opportunities.

1.2 TIP #2: CREATE A VISION WITH THE HELP OF A MENTOR

In spite of my advice in Tip #1 to start small, this does not mean that you should not have a vision. Indeed, it is critical that postdoctoral fellows and early-career faculty have a big vision. Each small grant—be it a seed grant, a postdoctoral fellowship, or an early-career award—should be viewed as providing preliminary data for one or two of the specific aims of your ultimate larger grant. Typically, large grants are funded by the NIH R01 mechanism.

Therefore, early on in the process, it is critical to try to envision your ultimate large project. For example, let’s assume that a typical R01 contains three to five specific aims. Once you are able to envision these aims, your next steps become clear: Step by step, you start biting off small chunks of this larger grant through writing small grants designed to support one or two of these ultimate aims. These small grants should not be designed to provide the definitive answer to these aims but instead to show that the aims are feasible and/or provide preliminary data in their support. These small grants will be limited by smaller sample sizes and budgets, but will be able to show proof of principal—that you can pull it off (see Tip #5).

Seek the advice of your mentor

A key factor in developing a vision of your ultimate large project is the advice of your mentor(s). If you do not currently have a mentor, speak to your department chair and ask if they can provide you with a mentor. If not, it is usually considered acceptable to seek out your own mentor. Indeed, many early-career faculty will assemble a mentorship team, each member of which can provide guidance in different career aspects (e.g., a teaching mentor, a research mentor). Consider both on-site and off-site faculty as potential mentors. In this age of teleconferencing and
e-mail, I often find that I communicate more with my off-site mentors than with those
directly down the hall. You can use web-based resources such as Community of Science
cfm) to help locate a potential mentor by searching on your topic and identifying a list of
PI names. Then view the grant track record by which these investigators achieved their
aims. Ask yourself if it matches up with where you want to be in your grantmaking career.

Key pitfalls to avoid

Early-career faculty want to be successful and, as such, are often tempted
by the wish to immediately make a big impact and _land a big grant_.

Others are under pressure from their institutions and department chairs
to immediately apply for a large grant (e.g., an NIH R01) without a track record of
smaller grant funding. In my experience as an NIH review panel member, this approach
is almost certainly destined to fail. Review panels often see a large grant as the culmi-
nation of a growing body of work. They want to see evidence of this stairway to success
and it’s your job to demonstrate that you have been on this stairway. You do this by
showing your successful procurement and management of previous smaller grants, as
well as the translation of these grants into publications. A desirable grant-funding
history starts from small seed grants progressing to larger and larger awards in a cumu-
lative fashion. Chapter 17, _Choosing the Right Funding Source_, provides example plans
for a steady trajectory of grants from small to large. While it is always tempting to skip
to the last page of a novel to see what happens, one needs to earn one’s way there.

There are certainly some exceptions to this rule. For example, you may be an early-
career faculty member within a research team that already has a track record in your area.
If so, you could take advantage of their expertise by including them as coinvestigator(s)
or even as a co-PI on your proposal. In addition, because they are participating on the
grant, you gain the advantage of including their preliminary data in your application.
However, as described in Chapter 19, _Review Process_, and Chapter 20, _Resubmission of
the Grant Proposal_, one of the key criteria upon which a grant is scored is the expertise
of the PI. Regardless of your investigative team, if you are the PI, the reviewers will be
looking for your track record in managing a large grant. It is unlikely you will be able to
provide this assurance of feasibility at an early stage in your career.

1.3 TIP #3: LOOK AT WHO AND WHAT THEY FUNDED BEFORE YOU

Funding agencies will often make publically available a list of prior grant awardees.
These lists may include the grant title, recipient name, amount awarded, and institution. If
the granting agency does not provide a list of past grant recipients, your own institution’s
grants and contracts office may have a list of investigators on your campus who have
obtained these same grants. Look over this list and see if you or your mentors know any
of these investigators.

This is useful for several reasons. First, it shows the interest of the funding agency
in funding research in epidemiology and preventive medicine. Some funding agencies
simply don’t have the interest or track record in funding population-based research and instead limit their funding to laboratory studies (*bench science*). Second, it is reasonable to consider asking successful fundees to share their applications with you, particularly if you, or your mentors, recognize any names on the fundee list or see that they are from your institution. Reassure these successfully funded investigators that you are simply seeking a model for the appropriate scope and depth of the research plan, not the actual content of their aims. When framed in this manner, people are typically willing to share.

Funding websites are a rich source of information

In addition to posting prior grant awardees on their website, funding agencies may also post a list of prior and current grant reviewers and their affiliations. Go through this list and review the expertise of these investigators. Ask yourself if their expertise overlaps with your study aims and methodology. For example, are any of these investigators population health researchers? Are any from similar departments/divisions to yours? It would be a high-risk proposition to write a proposal for a foundation that does not include investigators in epidemiology and preventive medicine on their review panels.

1.4 TIP #4: SPEND HALF YOUR TIME ON THE ABSTRACT AND SPECIFIC AIMS

The bulk of your writing time should be spent refining your abstract and specific aims. Indeed, writers of successful grant applications typically report that 50% of their time was spent on revising and rewriting their specific aims (Figure 1.1). The specific aims should be the first item that you write when you *set pen to paper*, prior to writing a literature review or methodology section. Early in the process, send a one-page sketch of your study design and aims—in the manner of an NIH grant—to your mentor and coinvestigators with the goal of kicking off an iterative process of rewriting, revising, and rereviewing. In addition, it is critical that these aims be understandable by anyone with a scientific background. Chapter 3, *How to Develop and Write Hypotheses*, discusses strategies and writing conventions for developing hypotheses and specific aims including exercises and annotated examples and tips.

Another excellent resource is the NIH Reporter (http://projectreporter.nih.gov/reporter.cfm). This site can be invaluable in helping you to formulate the scope of

<table>
<thead>
<tr>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft aims</td>
</tr>
<tr>
<td>Calculate power</td>
</tr>
<tr>
<td>Calculate budget</td>
</tr>
</tbody>
</table>

FIGURE 1.1 The first 3 steps in proposal writing.
Ten Top Tips for Successful Proposal Writing

Because these awards have all successfully been funded, they serve as excellent examples. Viewing funded abstracts can help you answer the following questions: “How many aims did the investigators include?” “What was their sample size?” You can limit your search to particular key terms as well as particular grant mechanisms (e.g., smaller and larger awards). The output, in addition to listing the abstract, will also provide the name of the review panel and the NIH institute. Therefore, surfing the NIH Reporter is not only useful for both the smaller grant mechanisms but also for envisioning the ultimate larger grant. More on NIH is included in Part Three “Grantsmanship.”

One reason that specific aims are so critical is the nature of the peer review process, described in more detail in Chapter 19, Review Process. Briefly, because only three to four reviewers are assigned as primary and secondary reviewers of your grant, the majority of reviewers on the review panel may only read your abstract and/or specific aims during the 10–20 min time period that the grant is discussed. Therefore, it is critical that the aims not only provide a snapshot of the entire study but also convey what is novel. Chapter 15, Abstracts and Titles, provides tips and strategies for how to write, and what merits inclusion, in your abstract. See Figure 1.1.

After drafting your aims, the second step in this process is to calculate your statistical power to achieve these aims. This will help you to answer the question, “Will your sample size provide you with sufficient power to detect a difference between groups, if there is truly a difference?” If you are basing your grant upon a preexisting dataset, your sample size is typically fixed, and the question of whether or not you have adequate power can be answered quickly. A negative answer, while disappointing, can quickly and efficiently result in a change in study aims.

If instead you are proposing to launch a new study and recruit participants, you can choose the sample size you need to achieve sufficient power. However, in this case, progressing to Step #3 of calculating the budget will be critical. A common pitfall of new investigators is to be too ambitious—proposing a larger sample size than they have the budget and experience to handle. Chapter 11, Power and Sample Size, provides user-friendly approaches to power and sample size calculations, available software, and annotated examples with strategies and tips.

Therefore, the third step is to evaluate if your budget can afford your required sample size. The number of participants will have an immediate impact on the costs of conducting your study. Such costs include the number of assays, interviewer time for recruitment and follow-up, as well as the cost of participant incentives. Also, ask yourself whether your study site can feasibly provide this number of participants. For example, does the hospital actually see that number of patients per day/week/year? Are that many patients likely to be eligible and agree to participate? Such questions of feasibility can be answered by your own preliminary work, by that of your coinvestigators, or by other investigators at your proposed study site. Alternatively, if you are proposing a pilot grant, you can clearly state that the goal of your pilot is to assess recruitment and eligibility rates to calculate power for a larger grant submission. Chapter 8, Summarizing Preliminary Studies, describes this approach in greater detail.

Now, in light of everything you have learned from Steps 1, 2, and 3, and incorporating your mentors’ and colleagues’ feedback, go back and refine the aims and start the
process over again. Once you have settled on the aims, you will find that writing the rest of the application will flow easily. As described in Part Two of this text, “The Proposal: Section by Section,” each section of a well-written grant proposal flows directly from and mirrors components of the specific aims.

1.5 TIP #5: SHOW THAT YOU CAN PULL IT OFF

Showing that you can logistically and feasibly conduct the proposed grant is critical if you are a graduate student or early-career faculty. Assurance that you can pull it off is a key factor for which the reviewer is seeking reassurance and can be accomplished through several techniques. First, if possible, collaborate with senior investigators who have conducted similar grants in similar populations. Their involvement on your proposal will be a critical factor supporting your potential for success.

Capitalize upon your coinvestigators

It is important that these coinvestigators do not appear in name only. Show established working relationships with these investigators via either coauthored publications (or submitted publications under review), copresentations, or an established mentoring relationship (e.g., as part of a training grant). Another way to show an ongoing relationship with coinvestigators is to list grants on which you are both investigators or consultants. Of course, much of this information will appear in your biosketches, but you cannot rely upon the reviewers to connect the dots between you and your coinvestigators. Instead, make it easy for the reviewers by pointing out this prior collaboration in your Preliminary Studies Section. Specific examples of this grantsmanship strategy as well as others are discussed in detail in Chapter 8, *Summarizing Preliminary Studies*.

A second way to show that you can pull it off is to present evidence that you have conducted smaller feasibility studies as mentioned in Tip #1. Such feasibility studies can provide key data on a number of factors. They can provide evidence that you, as a PI, are able to recruit subjects and collect data. Such preliminary data have the added benefit of providing key figures necessary for calculating power and sample size for your larger grants. Participant satisfaction surveys administered in a feasibility study can provide data on the acceptability of your methods. Validation studies of your proposed methods (as described in Chapter 14, *Reproducibility and Validity Studies*) can provide assurance that a study based upon these methods will work. In summary, ideally, the goal is to show proof of principal.

Avoid interdependent aims

It is important to acknowledge here that in earlier, more economically advantaged times, it was considered acceptable for a large NIH R01 grant to include pilot studies within its aims. However, in the current climate, reviewers do not look favorably upon this approach. They naturally ask, “What if the pilot study finds that the methods are not successful? How would the investigator accomplish the subsequent aims of the project?” For example, imagine if aim 1 proposes to conduct a validation study of the questionnaire to be used in aims 2 and 3. If aim 1 subsequently fails to find that the questionnaire is valid, then how can the remainder of the project proceed? These are termed interdependent
aims and reviewers often consider such aims to be a fatal flaw of a proposal. In Chapter 6, *Specific Aims*, I describe how to create a strong set of study aims, avoiding this as well as other pitfalls.

1.6 TIP #6: YOUR METHODS SHOULD MATCH YOUR AIMS AND VICE VERSA

A typical pitfall that early-career investigators fall into is to fail to include methods to address each of their study aims or, alternatively, to include additional methods that do not correspond to any study aims. These scenarios can simply be summed up as (1) proposing to study A and B, but only including methods for A, or (2) proposing to study A, but including methods designed to measure A and B.

The former situation will be viewed by reviewers as an important omission. For mentored career award applications, in particular, this mistake may be attributed to the mentor, which in some ways is even worse than having the error attributed to you. That is, this mistake can be interpreted as an indicator of poor mentorship either due to minimal effort by the mentor (e.g., in failure to spend time to adequately review your proposal) or due to the inability of the mentor to detect this problem at all. It may be viewed as reflective of the future amount and content of mentorship that you would be receiving over the course of the grant period if awarded.

Avoid being overly ambitious

The latter situation, in which the grant describes more analyses than are necessary to conduct the stated aims, is a great temptation of early-career investigators who are often driven to demonstrate to the reviewers how rich the dataset will be and therefore how many questions they can answer. However, this approach can be viewed as overly ambitious. An ambitious application is one of the most common reason for reviewers to give an application a poor score (or to triage the application, as described in Chapter 19, *Review Process*). Instead, it is much more impressive to exercise restraint and have a focused plan with a data analysis section directly tied to the specific aims.

However, there are some specific situations where it is reasonable to mention additional methods that do not correspond to the proposed aims. For example, in a small grant proposal (e.g., a seed grant), it is often reasonable to state that some data will be collected solely to support subsequent grant applications. However, this is only considered appropriate when it is highly efficient both in terms of study design and participant burden to collect this information in real time, as opposed to returning to participants at a later point in time. The application could state,

<table>
<thead>
<tr>
<th>eg example</th>
</tr>
</thead>
</table>

> While we are not including genetic aims within this proposal, these stored samples will be available to support the investigation of future hypotheses. Similarly, placentas will be collected and stored for future hypotheses.
In this example, it is clear that trying to collect this information at a later point in time would not be feasible, either because the samples would no longer be available or because disease may have already occurred and thereby influenced levels of these samples. In these situations, a data analysis plan would not be included for these proposed future aims.

So, moving forward, there are several ways to ensure that your methods match up with your aims and vice versa. The most traditional approach (and the approach that is most kind to your reviewer) is to copy your aims verbatim from the specific aims page and repeat them, in italics, in the data analysis section. Below each italicized aim, you will insert the relevant statistical analysis designed to achieve this aim. Alternatively, another acceptable approach is to format the structure of the proposal sequentially such that aim #1 is immediately followed by the methods to achieve aim #1; aim #2 follows, and is immediately followed with the methods to achieve aim #2, etc. This approach tends to only be efficient when each aim has a distinct methodologic and data analysis plan. Otherwise, you run the risk of repetition of similar methods and wasteful use of precious space. In Chapter 9, Study Design and Methods, and Chapter 10, Data Analysis Plan, I describe tips for efficient writing of methods and data analyses sections corresponding to study aims.

1.7 TIP #7: A PROPOSAL CAN NEVER HAVE TOO MANY FIGURES OR TABLES

In general, the more figures and tables in a grant application, the better. Not only does the process of creating these figures and tables help you to crystallize your specific aims and study methods, but they are also kinder to the reviewers. As compared to dense text, tables and figures are easier for the reviewer to digest and help them more quickly grasp your methods. This fact should not be underestimated given how pressed the reviewer is for time. Figures and tables also demonstrate your grasp of your proposal and your organizational skills. They can save space by reducing the text—critical for the page limitations of most proposals.

Indeed, the inclusion of figures and tables is relevant for every section of a grant application. For example, in the specific aims section, a figure showing how the specific aims interrelate is always appreciated by reviewers (Chapter 6, Specific Aims). Another key figure displaying your anticipated results can be placed in the Background and Significance section (see Chapter 7, Background and Significance Section). Some reviewers feel that this latter figure is essential. Other examples include study design figures, tables listing study variables, and statistical power displays. The grant application often ends with a timeline figure—showing each study activity and the quarters during which it will be conducted. Chapter 9, Study Design and Methods shows examples of key tables and figures that can be used throughout the proposal, ranging from specific aims tables and study design figures to tables for the data analysis and power/sample size sections.
1.8 TIP #8: SEEK EXTERNAL REVIEW PRIOR TO SUBMISSION

It is generally acknowledged that a local mock study section review almost doubles your chances of funding. A study section is defined as the NIH review panel that conducts the initial scientific merit review of research applications. Mock study sections simulate a real study section by following the grant review process as closely as possible.

Example procedures for conducting a mock study section:

Early-career faculty will submit a proposal for review using the NIH submission guidelines. The review panel will be made up of senior faculty who have served on NIH study sections, are familiar with the area of study, and have a track record of mentorship. Each proposal will be reviewed by 3 section members. Faculty will receive the written reviews of their proposals and the NIH scoring system will be applied (1–9).

To provide even greater mentorship, a mock NIH study section can be modified in a few key ways from a true NIH study section. For example, early-career faculty can be invited to sit in on mock study sections as silent observers. While it may be stressful to watch the reviewers discuss your proposal, you will experience first-hand the dynamics of study section deliberations and the proposal review process becomes demystified. After the session is over, many mock sessions schedule a short debriefing period to allow early-career faculty to ask questions and talk directly with the reviewers. This differs substantively from a true study section after which you will only receive written comments from the reviewers. NIH posts video tapes of mock study sections on their website. These are invaluable to watch.

Another useful way to get constructive feedback on your proposal is to participate in a chalk-talk forum. These consist of informal seminars to discuss your research ideas and/or specific aims early in the process—prior to writing a full proposal. If your department does not currently offer such a forum, suggest that they start one. Chapter 16, Presenting Your Proposal Orally, provides a step-by-step guide for creating an oral and visual presentation of your proposal.

Some departments will fund early-career faculty to attend local and national grant-writing workshops and will compensate outside scientists, with expertise on the proposed topic, to review and critique your grant proposals. Your office of grants and contracts may sponsor a grantsmanship seminar series or brown bag lunch session in which you can participate. Lastly, many departments will enlist the services of a grant writer. By encouraging you to concisely convey your aims and methods as clearly as possible, the best grant writers will help you to further refine your specific aims and convey the potential impact of your findings.

Real-world (not mock) submission and resubmission processes are carefully described in a step-by-step manner with accompanying strategic tips in Chapter 18, Submission of the Grant Proposal, Chapter 19, Review Process, and Chapter 20, Resubmission of the Grant Proposal.
1.9 TIP #9: BE KIND TO YOUR REVIEWERS

Reviewers are assigned a large number of applications to read and discuss. This task is in addition to their own responsibilities as a researcher themselves. So, a happy reviewer should be one of your top goals.

Subheadings should match review criteria

The most effective way to make a reviewer happy is to help them complete their review forms. Every reviewer, regardless of funding agency, is required to use a structured critique form. For example, NIH reviewers are required to write bullet points on the strengths and weaknesses of overall impact, significance, investigators, innovation, approach, and environment. However, the formatting requirements of NIH grant applications do not require clearly labeled sections for each of these criteria. Therefore, the first way to be kind to your reviewers is by using these key terms as subheadings in your application.

For example, the reviewer must describe whether they believe your grant is innovative. You may have thought that the innovative aspects of your application were obvious and therefore failed to include a specific subsection on innovation. This is risky. Not only may the reviewer fail to see all the innovative aspects of your proposal, but you run the risk that they may not deduce any innovation at all. Simply including a clearly labeled subsection on innovation will save the reviewer time. It does not guarantee that they will agree with you but provides a basis for their draft of that section in their critique. In Chapter 7, Background and Significance Section, I describe tips for writing the innovation section.

Highlight key sentences

A second key kindness is to bold, or otherwise highlight, one key sentence in each paragraph of the Background and Significance section. Indeed, the act of searching for this key sentence provides the added benefit of ensuring that each paragraph does indeed have a key point. With space at a premium in grant proposals (e.g., current limits for the research strategy for smaller NIH grants can be as low as six pages), each paragraph needs to count.

Another way to be kind to the reviewers is in the Preliminary Studies section. The description of each preliminary study should end with a sentence specifying the rationale for why it is relevant to the current proposal. This summary sentence removes the burden on the reviewer. It is your job to connect the dots between your preliminary work and how it relates to or supports your proposed aims. The act of creating these sentences also serves a dual purpose of ensuring that you are not including extraneous preliminary findings not directly relevant to your aims. Examples of such summaries are provided in Chapter 8, Summarizing Preliminary Studies.

Another way of being kind to the reviewer is by inserting a brief summary paragraph at the very beginning of the Methods section that encapsulates all the key features of the study design. This paragraph would give the sample size, study population, study design (e.g., prospective cohort case–control study, cross-sectional study), the key assessment tools to be used (e.g., self-reported questionnaire, plasma samples, medical record data), and any other key features of your study methods. This will help the
reviewer to concisely present your study to the review panel. Examples of such summaries are provided in Chapter 9, Study Design and Methods.

The same person cannot write a proposal and review it for clarity

Regardless of how carefully you reread your grant, and no matter how conscientious you are, simply by virtue of your familiarity with the material, you will not be able to review it for final clarity. One common approach is to ask your colleagues to read the application. It is well accepted that a well-written application should be readable and understandable by anyone with scientific knowledge. Therefore, it is not necessary that your readers have expertise in your area of interest and perhaps even preferable if they do not.

While this is often surprising to hear, it is important to note that some of your assigned grant reviewers may not have expertise in your area of interest. That is, while one reviewer may have a specific background in your area, others are assigned based on their expertise in the proposed methodology (e.g., epidemiology), and others are assigned to review the statistical analysis section. For example, a grant designed to identify risk factors for infertility may be assigned to the following three reviewers: (1) a physician who has a track record of publications on in vitro fertilization techniques, (2) an epidemiologist who has conducted prospective cohort studies among infertile women, and (3) a statistician. It is even possible that the physician or the epidemiologist will not have direct experience with infertility but are instead more generalist reproductive or perinatal epidemiologists.

However, it is reassuring to note that, if your proposal is well written, even a generalist reviewer will be able to assess (1) whether your goals are clearly stated, (2) whether your proposal clearly justifies how it extends prior work in the field, (3) what is innovative about your proposal, as well as (4) the impact of your potential findings on public health and clinical practice. In recent years, the last point has become a critical factor in funding decisions. With the recent revision in the NIH grant review process, reviewers now prioritize the overall impact. This aspect alone is often the most critical in the assigned score for an application. In Chapter 7, Background and Significance Section, I outline tips for writing this section. Chapter 19, Review Process, describes how these sections are considered in the review process.

In summary, the underpinning of all of these kindnesses is to remember that it is not the job of the reviewer to justify the importance of your proposal but instead your job to lay out your rationale and give the reviewers the opportunity to critique it. You do the work; they conduct the critique. This is the recipe for a happy reviewer.

1.10 TIP #10: IF AT ALL POSSIBLE, CHOOSE A TOPIC THAT YOU FIND INTERESTING!

There is nothing less conducive to your future success and day-to-day productivity than choosing a topic that you do not find interesting. However, given today’s difficult grant-funding climate, the only way to ensure grant success is to have several proposals in
the pipeline and/or under review at once. In this way, even if all the initiatives are not the most interesting to you, at least one of them will likely be. It is even more preferable if these initiatives fit within an overall research theme (as discussed in Tip #2: Create a Vision) so that, in the wonderful event that all are funded, they can all serve as pilot data for your larger R01-type grant.

Another way to ensure success is to also serve as a coinvestigator on a grant led by one of your senior colleagues while you are beginning your own independent research track. The advantages of serving as a coinvestigator on ongoing or new proposals submitted by your more established colleagues should not be underestimated. These grants will require a somewhat reduced effort on your part (in comparison to being PI). In addition, because ongoing projects were underway before you joined, you can also anticipate an earlier payoff in terms of timing of published manuscripts. Joining an established research project also provides you with the opportunity to apply for supplementary funding that builds upon the aims (and the established methods and successes) of these ongoing grants.

All this being said, developing your own independent line of research proposals is important. Indeed, one criterion for tenure and promotion at many research institutes is movement away from the area of your dissertation work and development of independence in your own research aims. If the work of your departmental colleagues does not relate to your area, then other collegial relationships and sources of grant data can be found in many locations—be they across campus or even across the state or country (see Chapter 17, Choosing the Right Funding Source). Luckily, in these days of electronic communication, Skype, and other electronic media, it has become increasingly easy to communicate with colleagues at other institutions electronically.

In summary, these 10 top tips for successful proposal writing should help to launch you on your proposal writing journey!