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Chapter 3

Auctions

Chapter 2 described several implementations of adversarial risk analysis (ARA), and
compared those with solution concepts used in traditional game theory. This chapter
extends that discussion through an in-depth treatment of auctions, a classic problem
of practical importance. Specifically, we consider continuous asymmetric, first-price,
independent-value, sealed-bid auctions with risk-neutral bidders.

Continuity means that the bids may take any value in an interval, in contrast with
the discrete games treated in Chapter 2. Symmetric auctions assume that the values
opponents have for the item on offer are randomly drawn from the same (known)
distribution, whereas asymmetric auctions allow different opponents to draw from
different (known) distributions. In first-price auctions, the highest bidder wins, and
pays the amount of that bid. The independent-value condition implies that the pri-
vate value that one bidder has for an object is not influenced by the private value that
other bidders have for that object. The sealed-bid condition ensures that whatever
initial information a bidder has about the value distributions of his opponents does
not change as the auction proceeds (in contrast with, say, an English auction, where
opponents place increasingly higher bids until all but one has dropped out). Finally,
risk neutrality implies that each bidder attempts to maximize his expected monetary
profit. For concision, we shall use the term “auction” to refer to a continuous asym-
metric, first-price, independent-value, sealed-bid auction among risk-neutral bidders.

Auctions of this kind are common, and are especially popular when the commer-
cial value of the item on offer is difficult to determine. They are sometimes used by
auction houses, such as Christie’s and Sotheby’s. In the defense industry, companies
make sealed bids on federal contracts, and the lowest qualified bidder prevails. But
this is a distinction without a difference: the defense contractor’s decision problem
is formally equivalent to the situation in which the highest bidder wins.

In this chapter, for concreteness, we assume a high-bid auction. Specifically, a
lady named Bonnie is bidding against a man named Clyde for a first edition of The

Theory of Games and Economic Behavior. Also, this auction does not have a reserva-
tion price (a secret lower bound set by the owner—if no bid exceeds the reservation
price, the book will not be sold).
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68 3 Auctions

Auctions easily illustrate aleatory, epistemic, and concept uncertainty. Aleatory
uncertainty arises when Bonnie does not have full knowledge of the condition of
the book—it could be damaged, which would lower its value, or it might contain
marginalia by Lloyd Shapley, which would increase its value. Epistemic uncertainty
about the private value of an opposing bidder (i.e., Clyde) can appear in several
ways. Perhaps Clyde has better knowledge of the condition of the book; or perhaps
the book had been owned by Clyde’s thesis advisor, and thus has sentimental value
to him. Finally, concept uncertainty occurs when Bonnie does not know what kind
of strategic analysis Clyde will perform when calculating his bid.

The following sections consider bidding strategies from several different perspec-
tives, using both classical and ARA techniques. The intent is to highlight the as-
sumptions that are needed and the kinds of solutions that result. When possible,
for simplicity, the analysis treats two-person auctions, but the last section discusses
three-person auctions, which is sufficient to understand the n-person case.

3.1 Non-Strategic Play

Suppose Bonnie believes that Clyde is non-strategic. In that case, the rule Clyde uses
to select his bid for the first edition does not depend upon his analysis of Bonnie’s
situation. For example, Clyde’s rule might be to bid 90% of his true value.

If Bonnie has a distribution F over Clyde’s bid, then, under the assumption that
her utility function for money is linear, she will maximize her expected utility in a
first-price auction by bidding

x∗ = argmaxx∈IR+ (x0− x)F(x), (3.1)

where x0 is Bonnie’s true value for the book. To see this, note that her utility (or
profit) from a successful bid of x is (x0− x), and her personal probability that a bid
of x wins the two-person auction is F(x). Thus the right-hand side of (3.1) is just her
expected utility when she bids x (cf. Raiffa, Richardson and Metcalfe, 2002). Figure
3.1 illustrates this situation.

Fig. 3.1 A decision tree in which the possible bids are continuous. The distribution of Clyde’s bid
is F , so the probability that Bonnie wins with a bid of x is F(x).
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3.1 Non-Strategic Play 69

As a subjective Bayesian, Bonnie finds the distribution F through introspection,
during which she reconciles everything she knows about Clyde with everything she
knows about auctions, the market value of first editions of The Theory of Games

and Economic Behavior, and all other relevant data. Often this is formalized by con-
sidering an infinite sequence of hypothetical wagers (De Finetti, 1974). In practice,
such precision is impossible, and humans use cognitive shortcuts and approximations
when eliciting personal probabilities (cf. O’Hagan et al., 2006).

In this example, a straightforward protocol for Bonnie to obtain her F is to divide
the introspection into two parts. First, she puts a subjective distribution G1 over the
value of the first edition to Clyde. Then, she places a subjective distribution G2 over
the fraction of his true value that he bids. The distribution G1 for Clyde’s true value
might be approximated by considering the sales prices of other first editions in re-
cent auctions, or the appraisal value by experts, and so forth. Bonnie could adjust G1

upward if she believes that Clyde puts special value on the book (e.g., she knows that
it had been owned by Clyde’s thesis advisor). Similarly, to find G2, Bonnie’s distri-
bution for the fraction Clyde bids, she might draw upon knowledge of his success
record in previous auctions, or statements he has made in the past, or empirical work
in economics on the distribution of underbidding (cf. Case, 2008; Keefer, 1991).

For example, suppose Bonnie describes her epistemic uncertainty about Clyde’s
true value by a random variable V with distribution G1 on (0,∞). She assumes he
bids an unknown (and thus, to Bonnie, random) fraction P of that value, for which
she has distribution G2 with support in [0,1]. Then her subjective distribution over
Y = PV , the amount of Clyde’s bid, can be found through a double integral over the
shaded region shown in Fig. 3.2. Specifically, when G1 and G2 have densities g1 and
g2, respectively, then

F(y) = IP[PV ≤ y] = int
y
0

∫ 1

0
g1(v)g2(p)d pdv+

∫ ∞

y

∫ y/v

0
g1(v)g2(p)d pdv

= G1(y)+
∫ ∞

y
g1(v)G2(y/v)dv. (3.2)

This formulation assumes that the true value and the proportional reduction are in-
dependent. But if Bonnie thinks that Clyde’s non-strategic rule is more complicated
(e.g., the proportion P increases as the true value increases), then the analysis is still
straightforward, although Bonnie would need to solve a more difficult integral.

It is worth emphasizing that this decomposition of the calculation into a value and
a proportion is simply a device for helping Bonnie to develop her personal probability
over the fundamental quantity of interest, the bid Y that Clyde makes. She may have
other ways to discover F , perhaps through the advice of an informant, or data on
Clyde’s previous bids.

The following example shows, for the situation in which Clyde bids an unknown
fraction of his true value, how the distribution of his bid Y is determined from the
distributions G1 and G2 that Bonnie needs to assess for her beliefs about the value
that the book has to Clyde and the fraction that he will bid, respectively.
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70 3 Auctions

Fig. 3.2 Region of integration
when the bid is a proportion
of the true value.

Example 3.1: Suppose Bonnie’s personal value for the book on auction is
x0 = $150. She models Clyde’s value for the book as a random variable taking
values between $0 and $200 with uniform distribution G1(v) = v/200. And she
models the distribution for the proportion of his value that he bids as G2(p) =
p9 for 0≤ p≤ 1. Then the distribution F of Clyde’s bid y is

F(y) = G1(y)+

∫ 200

y
g1(v)G2(y/v)dv =

9
8

y

200
− 1

8
y9

2009

for $0 ≤ y≤ $200. Thus Bonnie finds the bid x∗ that maximizes her expected
utility by solving (3.1). She takes the derivative and sets it to 0, obtaining

0 =
d

dx
[(x0− x)F(x)] = 675− 9x− 675

2008 x8 +
5

2008 x9.

Numerical solution shows her bid should be about half of x0, or x∗ = $75.

In this discussion, concept uncertainty is absent since Bonnie is assumed to be-
lieve that Clyde is non-strategic. More precisely, she believes he is the kind of non-
strategic player whose bid is proportional to his true value. Her epistemic uncertainty
is expressed through the distributions G1 and G2, which leads her to F . As posed,
there is no aleatory uncertainty, since in this scenario Bonnie knows the value, x0,
that she has for the book.

Now suppose that Bonnie does not know her true value x0 for the book (e.g., it
has not been appraised, or its provenance is uncertain). In that case, its value is a
random variable, say X0, with distribution H. Bonnie wants to make the bid x that
maximizes her expected utility IEH [(X0 − x)F(x)] = (µ − x)F(x), where µ is the
expected value of X0. Conveniently, she need not completely specify H; in order to
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maximize expected utility, all she requires is its mean. (This is a consequence of the
risk neutrality assumption, which implies that her utility for money is linear.)

In many situations, aleatory uncertainty is the dominant concern. A defense con-
tractor who bids on a project probably does not know all the costs and difficulties
that will arise, and thus does not know exactly what profit would be realized from his
bid. This uncertainty can be more important than uncertainty about solution concepts
used by opponents, or epistemic uncertainty about the valuations of opponents, es-
pecially as the number of opponents increases. In contrast, when each bidder knows
the value of the item on offer (e.g., an auction for opera tickets, where each oppo-
nent knows his personal utility for opera), then epistemic and concept uncertainty
become important. This situation is typical in private value auctions, where each
bidder knows his own value, but not those of other bidders. But in common value
auctions, for which all bidders have the same (possibly unknown) value for the item
on offer, concept uncertainty is likely to dominate the analysis.

3.2 Minimax Perspectives

In a first-price private values auction, the minimax (technically, the maximin) per-
spective is unhelpful. Bonnie seeks to maximize her minimum utility against the
worst possible bid by Clyde. If her preferences are linear in money, and if her true
value for the Theory of Games and Economic Behavior is x0, then Bonnie’s utility
function when she bids x and Clyde bids y is

u(x,y) =

{
x0− x if x > y

0 else.

Thus Bonnie solves
max

x
min

y
u(x,y)

which is 0 for all x≤ x0 (since Clyde could bid more than x0).
If Bonnie knew that Clyde’s true value was y0 with y0 < x0, then her maximin

solution is to bid just a little bit more than y0. And in the pessimistic limit, as y0

increases to x0, Bonnie’s bid increases and her profit diminishes to zero. At that
limit, any bid x such that 0≤ x≤ x0 fails to achieve the maximin solution against the
worst possible bid by Clyde.

This line of thinking is untenable. Empirical evidence shows that people bid less
than their true value (Case, 2008). One of those bidders wins the auction and realizes
a positive profit. So a different solution concept is required to analyze bidding.

For example, an ARA solution concept properly leads Bonnie to underbid. She
models Clyde’s bidding strategy, and then maximizes her expected utility under that
model. If she believes that Clyde’s bid will have some distribution F , then Bonnie
maximizes her expected utility by solving (3.1). When F is continuous with F(x0)>
0, one can show that Bonnie’s bid is strictly less than x0.
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72 3 Auctions

Because traditional auctions encourage underbidding, Vickrey (1961) proposed
an alternative—the second-price auction, which incentivizes participants to bid their
true values. In a second-price auction, the highest bidder wins but pays the amount
of the second-highest bid.

To see the underlying logic for the second-price auction, suppose Bonnie bids x

and Clyde bids y. Then the gain for Bonnie is x0− y if x > y, and 0 otherwise. If
Bonnie were to bid a value x− < x0, then one of three outcomes must occur in a
second-price auction:

(i) If y > x0, then Bonnie would gain 0 from both a truthful bid x0

and from her underbid.
(ii) If y < x−, then Bonnie would gain x0− y from both a truthful bid

x0 and from her underbid.
(iii) If x− ≤ y ≤ x0, then Bonnie would fail to gain x0 − y; she can

maximize her minimum gain by increasing her bid to x0.

Thus Bonnie should not underbid. Similarly, if Bonnie were to bid x+ > x0, then one
of three things must happen:

(i) If y < x0, then Bonnie would gain x0− y from both a truthful bid
x0 and from her overbid.

(ii) If y > x+, then Bonnie would gain 0 from both a truthful bid x0

and from her overbid.
(iii) If x0 ≤ y ≤ x+, then Bonnie would lose y− x0; she can minimize

her loss by decreasing her bid to x0.

Thus Bonnie should not overbid. Taken together, these prove that Bonnie ought to
bid her true value in a second-price private values auction.

This conclusion for the second-price auction is true whether or not Bonnie adopts
an ARA perspective. If Bonnie bids x and Clyde bids y, then Bonnie gains (x0− y)
if x > y and otherwise gets 0. Bonnie does not know y, so ARA views it as a random
variable Y to which she assigns a subjective distribution F . It is convenient to assume
that F has density f (but this may be relaxed). Then Bonnie’s expected utility from
a bid of x− such that x− < x0 is

IEF [x
−−Y ] =

∫ x−

0
(x0− y) f (y)dy

and

IEF [x
−−Y ]≤

∫ x−

0
(x0− y) f (y)dy+

∫ x0

x−
(x0− y) f (y)dy = IEF [x0−Y ].

The inequality is strict if f is positive on any region in (x−,x0). Similarly, if Bonnie
bids x+ > x0, then
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IEF [x
+−Y ] =

∫ x0

0
(x0− y) f (y)dy+

∫ x+

x0

(x0− y) f (y)dy≤ IEF [x0−Y ],

since the term x0− y in the second integral is negative. Again, the inequality is strict
if f (y) is positive in (x0,x

+).
However, in some second-price auctions, it is in Bonnie’s interest to overbid, but

only if there is the prospect of repeated play against the same opponent. Specif-
ically, if Bonnie were confident that Clyde’s true value is greater than hers, then
overbidding will increase the price he must pay and thus reduce his profit, which
will advantage her in future auctions. For example, Boeing knows it will compete
with Lockheed Martin for future military contracts. So Boeing wants to ensure that
Lockheed Martin makes the smallest possible profit on each contract. If the U.S. De-
partment of Defense awarded contracts through second-price auctions, then Boeing’s
bidding strategy should treat this game as part of a larger multi-game with repeated
play against the same opponent (Camerer, 2003).

It deserves emphasis that in both the first-price and second-price auctions, there
are concerns about the applicability of the Nash equilibrium solution concept. Even
in the second-price auction there is evidence that real people do not bid as the solution
concept directs; instead, they often irrationally underbid (Rothkopf, 2007).

This analysis assumed that Bonnie had no aleatory uncertainty: she knows x0, her
value for the first edition. But, as previously discussed, the logic still holds when the
value of the book is a random variable with known mean µ , provided that Bonnie is
risk neutral. Since Bonnie seeks to maximize her expected utility, she can replace x0

by µ in the preceding inequalities, which leads her to bid µ , her expected value for
the book.

3.3 Bayes Nash Equilibrium

Much of the research on first-price, sealed-bid, independent-value, rational-bidder
auctions has focused on Bayes Nash Equilibrium (BNE) solutions (Krishna, 2010;
Klemperer, 2004). There are two cases:

• In the symmetric case, it is assumed that the value each bidder has
for the item on auction is a random draw from the same commonly
known distribution.

• In the asymmetric case, it is assumed that the value each bidder has
for the item on auction is a random draw from a distinct distribu-
tion, and that those distributions are known to all bidders.

For the symmetric case, the general solution was found by Vickrey (1961). For the
asymmetric case, there remain many open questions; in particular, no current algo-
rithm provably converges to the solution (Fibich and Gavious, 2011).
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In the symmetric case, suppose there are n bidders and that the ith bidder has
value Vi for the item on offer, where V1, . . . ,Vn are independent with distribution G. It
is assumed that each bidder knows his own value, but not those of his opponents. The
strong common knowledge assumption needed for the BNE is that each bidder knows
G, and knows that all other bidders also know G. Additionally, in this discussion,
assume that all bidders are risk neutral—each seeks to maximize his or her expected
profit.

The objective in the symmetric case is to find the bidding function b(v) that maps a
value v into a corresponding bid. If one assumes that G is continuous, increasing and
differentiable, with support on a compact interval [L,U ], then the BNE solution exists
and is unique, and b(v) is also continuous, increasing and differentiable (Myerson,
1991, Chap. 3).

Symmetry implies that the equilibrium bidding function b(·) is the same for all
players. Suppose that Bonnie values the object at v and, consequently, bids b(v).
Then her random profit has expected value

[v− b(v)]IP[b(v) wins ].

This is a winning bid if and only if all other players place bids b(vi) that are less
than b(v). Note that G is continuous, so one may ignore the possibility of ties. Since
b(v) is strictly increasing, it wins if and only if the values vi for all other players are
less than Bonnie’s v. The values are independent, so this happens with probability
G(v)n−1. Thus her expected profit from bidding b(v) is

[v− b(v)]G(v)n−1 (3.3)

and the same expression holds for all of the other bidders, with their own personal
values vi substituted for Bonnie’s value v.

By definition, the equilibrium bid for the ith bidder should be b(vi). Since this is
an optimum of (3.3) and b(·) is continuous, it follows that

b(v) = argmaxw [v− b(w)]G(w)n−1

for w in some ball around v. Thus, the derivative of this expression at w = v must be
zero:

0 =
d

dw
[v− b(w)]G(w)n−1

= (v− b(v))(n− 1)G′(v)G(v)n−2− b′(v)G(v)n−1.

Solving this differential equation shows that for any v in [L,U ],

b(v) =

∫ v
0 z(n− 1)G′(z)G(z)n−2 dz

G(v)n−1 . (3.4)

In general, this expression requires numerical solution.
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Example 3.2: Suppose that the value each bidder holds is an independent draw
from the distribution G(v) = vq for 0 ≤ v≤ 1 and q > 0. In that case one can
find a closed form solution for (3.4):

b(v) = v−q(n−1)
∫ v

0
q(n− 1)zqn−q dz =

qn− q

qn− q+ 1
v.

This result shows that as the number n of bidders increases, Bonnie should bid
a larger fraction of her true value v, as one would expect. Also, as q increases,
Bonnie must bid a larger fraction of her true value.

The ARA perspective has a more natural justification for the BNE solution than
the common knowledge assumption. Instead of assuming that everyone knows the
common distribution G on the values, it is easier to imagine that Bonnie believes
that each of her n− 1 opponents will draw his true value from G. Bonnie then finds
exactly the same solution to the symmetric auction.

The asymmetric auction is more difficult. In general, no expression such as (3.4)
exists. When bids are discrete (e.g., they must be whole dollars), then tie-breaking
rules are needed to ensure the existence of an equilibrium solution (Lebrun, 1996;
Maskin and Riley, 2000a). But when the distributions for the values of the bidders
are continuous and differentiable, and one of several possible additional regularity
conditions is satisfied, then the bidding functions are unique, continuous, and differ-
entiable (Lebrun, 2006; Maskin and Riley, 2000b). The two most practical regularity
conditions are: (1) all value distributions have common support with density that is
strictly positive at the lower limit of the support (Lebrun, 1999); or (2) the valua-
tion distributions are locally log-concave at the largest of the lower bounds of the
non-common support sets (Lebrun, 2006).

Figure 3.3 shows the MAID that describes the two-person asymmetric auction.
The double circle around “Winner” denotes a deterministic node: once both Bonnie’s
and Clyde’s bids are declared, the outcome is non-random.

Fig. 3.3 The MAID for a two-person auction. Rectangular decision nodes show the bid that each
party makes. Hexagons show the outcome for each bidder given the bids that are placed. Circular
nodes indicate that, from the opponent’s perspective, the true value is a random variable.

copyrighted material - Taylor & Francis



✐

✐

“K25115” — 2015/6/4 — 12:04 — page 76 —
✐

✐

✐

✐

✐

✐

76 3 Auctions

To discuss the asymmetric auction, let FIJ denote what bidder I thinks is the bid
that bidder J will place, and let GIJ denote what bidder I thinks is the distribution
of bidder J’s value. Thus, if Bonnie thinks that Clyde’s bid has distribution FBC, her
bid should be b∗ = argmaxb∈IR+ (b0− b)FBC(b) where b0 is her known true value.
And if Clyde thinks that Bonnie’s bid has distribution the FCB, then his bid should
be c∗ = argmaxc∈IR+ (c0− c)FCB(c), where c0 is Clyde’s true value. Since neither
knows the true value of their opponent, the BNE approach puts commonly known
distributions over those values, and solves

B∗ = argmaxb∈IR+ (B− b)FBC(b)∼ FCB (3.5)

C∗ = argmaxc∈IR+ (C− c)FCB(c)∼ FBC,

where B∼GCB is what Clyde believes is the distribution for Bonnie’s true value and
C ∼ GBC is what Bonnie believes is the distribution for Clyde’s true value, and both
know what distribution the other has and knows that this is known. If this system
of equations has a unique solution, then it determines the FBC that Bonnie needs
to calculate her optimal bid, and the FCB that Clyde needs to find his optimal bid.
Rarely does (3.5) have a closed-form solution. Kaplan and Zamir (2012) describe
some special cases.

Example 3.3: Suppose B ∼ Unif(0,1) and C ∼ Unif(0,2). Then the unique
solution to (3.5) is

FBC(x) = 4x/(4− 3x2) FCB(y) = 8y/(4+ 3y2)

for 0≤ x,y≤ 2
3 (both distributions are 0 for x,y < 0 and 1 for x,y > 2

3 ).
To verify this, one can find the maximizing B∗ and C∗ in (3.5) by differen-

tiating and setting the results to 0:

B =
FBC(B

∗)
fBC(B∗)

+B∗ C =
FCB(C

∗)
fCB(C∗)

+C∗.

For the FBC and FCB that are given, solve for B∗ and C∗, obtaining

B∗ =
4− 2

√
4− 3B2

3B
C∗ =

4− 2
√

4+ 3C2

−3C
.

These are both monotone increasing functions, which is logical since the opti-
mum bid should increase with the personal value.

If a random variable W has distribution H(w) and θ (·) is a monotone in-
creasing transformation with inverse θ−1(·), then the distribution of θ (W ) is
H(θ−1(w)). Since GCB(b) = b for 0≤ b≤ 1 and GBC(c) = c/2 for 0≤ c≤ 2,
then a little algebra confirms that FBC and FCB solve the system.
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When there is no closed-form solution to (3.5) one must use numerical methods.
The standard approach is the backshooting algorithm, developed by Marshall et al.
(1994). It was later refined by Bajari (2001), Li and Riley (2007), and Gayle and
Richard (2008). But Fibich and Gavious (2011) proves that no backshooting algo-
rithm can converge in an epsilon ball around zero. There are additional issues when
the value distributions GBC and GCB have one or more crossings (i.e., when one dis-
tribution does not stochastically dominate the other, so neither GBC(x)≥ GCB(x) for
all x nor GBC(x) ≤ GCB(x) for all x). Hubbard, Kirkegaard and Paarsch (2011) pro-
posed a corroborative “visual test” for the accuracy of the numerical solution in the
case of multiple crossings, but Au (2014) found errors in the argument. Au proposes
a new algorithm, the Backwards Indifference Derivation (BID) scheme, which is
successful in cases with known solutions and passes the visual test that backshooting
methods sometimes fail. The BID algorithm forms a mesh that discretizes the values
of possible bids for each bidder, finds adjacent values between which each bidder is
indifferent, and then refines the mesh.

This BNE framework relies upon the common knowledge assumption. For two
bidders, the ARA formulation finds the same result through an alternative logic. In-
stead of common knowledge, Bonnie might reasonably believe that Clyde draws his
value from GBC and she also thinks that he believes her value is a draw from GCB.
Then Bonnie is led to solve (3.5). But when there are more than two bidders, the
ARA perspective opens a larger class of equilibrium problems. Bonnie can model
not only what she thinks are the distributions of her opponents’ values, but also what
she believes are the distributions each opponent has for the values of the other bid-
ders. This topic is further developed in Section 3.6.

3.4 Level-k Thinking

Bayesian level-k thinking is an important family of ARA strategies. The family is
diverse, since, at each level, the analyst has many choices regarding how to model the
epistemic and aleatory uncertainties. This section applies level-k thinking to auctions
(cf. Banks, Petralia and Wang, 2011).

If Bonnie is a level-0 thinker, she bids non-strategically, making no attempt to
model her opponents. She might bid 90% of her true value, or place the bid that won
a similar book at a recent auction. And the case in which Bonnie is a level-1 thinker
was addressed in Section 3.1. She assumed Clyde was non-strategic, and found her
best bid given her distribution over his actions.

Things are more interesting when Bonnie is a level-2 thinker. She models Clyde
as a level-1 thinker, who believes that Bonnie is a level-0 thinker. Bonnie begins her
ARA by developing a subjective distribution FCB to describe what Bonnie believes
Clyde thinks is the distribution for her bid. She also needs a subjective distribution
GBC for what she believes is Clyde’s true value. Finally, she needs to know her own
true value b0 (or, if there is aleatory uncertainty regarding, say, the condition of the
book, she needs her expected value, µ).
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In this framework, suppose Bonnie believes that Clyde seeks to maximize his
expected utility. Clyde knows his true value c0, and will make the bid c∗ such that

c∗ = argmaxc∈IR+ (c0− c)F∗B (c),

where F∗B is the distribution that Clyde has for Bonnie’s bid. Since Bonnie knows
neither F∗B nor c0, she uses her subjective beliefs to solve the analogous problem:

C∗ = argmaxc∈IR+ (C0− c)FCB(c),

where C0∼GBC and FCB is Bonnie’s belief about Clyde’s belief about the distribution
of her bid. Since C0 is a random variable, then so is C∗; denote its distribution by FBC.

Bonnie has now obtained her belief FBC about the distribution of Clyde’s bid,
enabling her to solve (3.1). The result is the bid that maximizes her expected utility,
where the expectation takes proper account of her uncertainty about both Clyde’s
true value and his belief about her bid.

Example 3.4: Suppose Bonnie, a level-2 thinker, thinks Clyde believes that her
value for the book is a random variable with the uniform distribution on [$100,
$200]. And further suppose that she thinks Clyde believes that the proportion
of her value that she will bid is a random variable with distribution p9 for
0 ≤ p ≤ 1. From Example 3.1 (with the roles reversed), she thinks Clyde’s
distribution on her bid is FCB(b) =

9
8 (b/200)− 1

8 (b/200)9 on [$0, $200], and
thus his optimal bid is approximately half of his true value.

Bonnie does not know Clyde’s true value, but she has a distribution GBC

that describes her subjective judgment. Suppose that judgment is that his true
value has the triangular distribution on [$252, $360] with peak at $300. Since
Clyde should bid 50% of his true value, Bonnie believes that his bid will be a
random variable with triangular distribution FBC(c) that is supported on [$126,
$180] with peak at $150.

Recall that Bonnie’s true value for the book is b0 = $150. She seeks the
bid b∗ that maximizes her expected profit, or (150−b)FBC(b). Simple calculus
shows Bonnie should bid $141.67.

This level-2 solution raises three questions. First, how can one calculate the so-
lution when the assumed distributions are non-trivial? Second, is it reasonable for
Bonnie to have such precise opinions about Clyde’s beliefs? And third, when should
Bonnie proceed to higher levels of thinking?

How Can One Calculate Solutions?

In general there will not be a closed-form solution. The optimum bid must be found
numerically, through the following algorithm:
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Repeat from j = 1 to J:

Sample c
j
0 ∼ GBC

Solve c∗j = argmaxc∈IR+ (c
j
0− c)FCB(c).

Set F̂BC(b) =
1
J ∑J

j=1 I(c∗j ≤ b).

Solve b∗ = argmaxb∈IR+ (b0− b)F̂BC(b).

The first step simulates from what Bonnie thinks is Clyde’s value distribution and
finds his optimal bid for that random draw. The second step finds the empirical
cumulative distribution of his optimal bid. The third solves Bonnie’s optimization
problem, using the empirical cumulative distribution function of his optimal bid. As
J increases, the approximation becomes arbitrarily accurate. If the distributions GBC

or FCB are discrete, then the solution may not be unique; adjacent support points (i.e.,
neighboring values) can have equal expected utility.

Often, FCB is not explicitly available. In that case, the algorithm must be ex-
tended. For example, suppose Bonnie believes that Clyde thinks her true value has
distribution G1(b) and that she will bid a random proportion of that value, where
the proportion has distribution G2(p). In that case she can modify the algorithm as
follows:

Repeat from k = 1 to K:

Sample vk ∼ G1

Sample pk ∼ G2

Set ck = pkvk.

Set F̂BC(c) =
1
K ∑K

k=1 I(ck ≤ c).

Repeat from j = 1 to J:

Sample c
j
0 ∼ GBC

Solve c∗j = argmaxc∈IR+ (c
j
0− c)F̂CB(c).

Set F̂BC(b) =
1
J ∑J

i=1 I(y∗j ≤ b).

Solve b∗ = argmaxb∈IR+ (b0− b)F̂BC(b).
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As before, the empirical cumulative distribution function F̂BC converges to the dis-
tribution FBC as K and J increase. More complicated rules for generating FBC (such
as assuming some dependence between Vk and Pk) can be accommodated through
modifications of this algorithm.

How Does Bonnie Have Precise Opinions about Clyde’s Beliefs?

In real applications, Bonnie would encounter substantial cognitive difficulty in devel-
oping her ideas about FBC, and perhaps even GBC. The preceding discussion teased
apart that development into two pieces: her belief about Clyde’s true value and her
belief about the proportion of that value that he bids. But it avoided serious con-
sideration of how to model both distributions. Also, the discussion did not address
concept uncertainty. How certain can Bonnie be that Clyde is non-strategic, and that
the particular instantiation of his non-strategy is to bid a fraction of his true value?

This difficulty is fundamental—people do not think clearly enough to have fully
coherent Bayesian beliefs that incorporate all of their information and intuition. The
literature on elicitation of subjective probabilities is extensive and discouraging: ex-
perts are overconfident, the framing of the problem matters, mutually contradictory
opinions are held, and so forth. O’Hagan et al. (2006), Kahneman (2003), and Garth-
waite, Kadane and O’Hagan (2005) are prominent voices in this discussion. Fortu-
nately, in many situations the solution is insensitive to minor errors in the specifica-
tion of subjective opinion, and sensitivity analysis can flag the cases when greater
reflection is required.

There are sensible strategies that can improve Bonnie’s assessments. For example,
she may not know FCB with confidence, but it is not intellectually overwhelming
for her to consider, say, ten fairly distinct choices for it. In examining those ten
alternatives for FCB, Bonnie will find that some of them seem more likely to her
than others, and she should give those distributions higher probabilities. Then she
can combine those by taking the weighted sum of the distributions, with weights
corresponding to her probabilities. If done thoughtfully, the resulting distribution
will capture much of her judgment. And, of course, the same procedure could be
used to formulate her belief about the distribution of Clyde’s true value for the book,
GBC.

A more sophisticated approach enables Bonnie to express her uncertainty about
FCB through a Dirichlet process with central measure F and concentration parameter
α . The effect of this would be to increase the variance of FBC above that found
from a derivation based on a single FCB. There is a large literature on Bayesian
nonparametrics using Dirichlet processes. Müller and Rodriguez (2013) is a short
introduction, and Ghosh and Ramamoorthi (2008) provides a more mathematical
treatment.

What Level Should One Use?

As previously mentioned, choosing the correct value of k for level-k thinking is an
issue. The auction example considered k = 0,1,2, but one could certainly go higher.
Bonnie might attempt to model what Clyde believes Bonnie believes about Clyde,
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leading to a level-3 analysis (which is straightforward, but the layered reasoning
becomes tedious).

Ideally, Bonnie wants to think just one level higher than does Clyde. If she goes
beyond that, she is solving the wrong problem, and in general the resulting bidding
strategy will be inferior. Thus, selecting the value of k entails uncertainty about pre-
cisely which version of the level-k solution concept Clyde is using.

Let pk denote Bonnie’s personal probability that Clyde is a level-k thinker, for
k = 0,1, . . ., such that ∑ pk = 1. If pk > 0, Bonnie should do a level-k+1 analysis to
determine Fk

BC, her distribution for Clyde’s bid. Then Bonnie combines all of these
distributions as a mixture distribution, so that FBC = ∑ pkFk

BC. This FBC is the ex-
pression of Bonnie’s full belief about Clyde’s bid, and incorporates her uncertainty
about the depth of his strategic thinking. She uses this FBC in (3.1), solving to find
her optimal bid.

At some point in the potentially infinite ascent, Bonnie will feel that she no longer
has relevant information about Clyde’s beliefs. For that value of k, she should assign
a uniform distribution over all unknown quantities. A discussion of the use of non-
informative distributions to terminate the hierarchy is given in Ríos Insua, Rios and
Banks (2009).

3.5 Mirror Equilibria

For auctions, the mirror equilibrium approach is similar to the BNE solution concept.
With just two bidders, the key calculation is the same, although the perspective and
assumptions are different (cf.0 Banks, Petralia and Wang, 2011). One solves (3.5),
but instead of assuming that the distributions are common knowledge, the GBC is
Bonnie’s belief about the distribution of Clyde’s value and the GCB is what she thinks
is Clyde’s distribution for her value. Then, after deriving FBC, her distribution for
Clyde’s bid, Bonnie uses her known value b0 and solves (3.1).

But the mirror equilibrium solution becomes interestingly different from the BNE
formulation when the number of bidders is greater than two.

3.6 Three Bidders

Essentially all of the previous discussion addressed games in which there are only
two opponents. But an important advantage of ARA is that it enables a more nu-
anced treatment of many-player games. Specifically, the ARA formulation allows
one to frame fresh problems in auction theory when there are more than two bid-
ders, by permitting asymmetric models for how each opponent views the others. We
develop the ARA solutions in cases with three opponents for both the level-k think-
ing solution concept and the mirror equilibrium solution concept. In the following
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discussion, we now assume that Bonnie is bidding against both Alvin and Clyde to
obtain a first edition of the Theory of Games and Economic Behavior.

3.6.1 Level-k Thinking

If Bonnie is a level-1 thinker, then she assumes that Alvin and Clyde are non-
strategic, and there is no novelty in the analysis. She has distributions over the
non-strategic bids of each, and chooses her bid according to the maximum of those.
Specifically, she has a subjective distribution FA over Alvin’s bid A and a subjec-
tive distribution FC over Clyde’s bid C, and she calculates the distribution F of
max{A,C}. Then she makes the bid

b∗ = argmaxb∈IR+(b0− b)F(b),

where b0 is her true value for the book.
But now suppose Bonnie is a level-2 thinker. She thinks that Alvin has a belief

about the distribution of her bid and also Clyde’s bid; similarly, she thinks Clyde
has a distribution for her bid and for Alvin’s. Recall the previous notation: FIJ(x) is
what Bonnie thinks player I thinks is the distribution for player J’s bid, and GIJ(x)
is her belief about what player I thinks is the distribution for player J’s value. Since
her level-2 analysis assumes both Alvin and Clyde are level-1 thinkers who believe
their opponents are level-0 thinkers, then knowing FIJ directly determines GIJ , as in
Example 3.1, where Clyde bids a fraction P of his value V .

The level-2 ARA formulation means that Bonnie thinks Alvin will make the bid
a∗ = max{a∗B,a∗C} for

a∗B = argmaxa∈IR+(a0− a)IP[B∗ < a]

a∗C = argmaxa∈IR+(a0− a)IP[C∗ < a],

where a0 is Alvin’s true value, B∗ is a random variable whose distribution is Alvin’s
opinion about Bonnie’s bid, and C∗ is a random variable whose distribution is Alvin’s
opinion about Clyde’s bid. Bonnie does not know a0, and she does not know Alvin’s
distributions for the bids, but as a Bayesian, she has a subjective opinion about these.
She regards a0 as a random variable with distribution GBA, and her best guess is that
B∗ and C∗ have distributions FAB and FAC, respectively.

In order to find FAB, Bonnie uses the fact that Alvin thinks she is a level-0 thinker.
He views her as non-strategic, and thus thinks her bid follows some probability dis-
tribution, perhaps an unknown proportion of her unknown true value, where both the
unknown proportion and the unknown true value can be modeled as random vari-
ables. (Of course, she could think that he thinks she follows some other kind of rule,
e.g., bidding the last winning bid for similar first editions, or using a random num-
ber generator, but she will still always have a subjective distribution over what he
believes about the distribution of her bid.)
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Thus, Bonnie’s opinion about the distribution of Alvin’s bid is found by solving

A∗B = argmaxa∈IR+(A0− a)FAB(a)

A∗C = argmaxa∈IR+(A0− a)FAC(a)

and then assuming that Alvin bids the larger of those two random variables. So his
bid is A∗ = max{A∗B,A∗C}.

Similarly, Bonnie belief about Clyde’s bid C∗ is that it has the distribution of
max{C∗A,C∗B}, where

C∗A = argmaxc∈IR+(C0− c)FCA(c)

C∗B = argmaxc∈IR+(C0− c)FCB(c)

and C0 is Clyde’s true value, with distribution GBC, since it is unknown to Bonnie.
Just as before, Bonnie uses her beliefs about what Clyde thinks about Alvin’s non-
strategy and her non-strategy to identify FCA and FCB, respectively, and thus finds the
distribution of C∗.

Bonnie has calculated her distribution for Alvin’s bid A∗ and Clyde’s bid C∗. Now
she should place the bid

b∗ = argmaxb∈IR+(b0− b)IP[max{A∗,C∗}< b].

Generally, this ARA solution will require extensive numerical computation.
One can go further. If Bonnie does a level-3 analysis, she requires two replicates

of the level-2 analysis, where Bonnie imagines each opponent is solving his own
system of level-2 equations. The nested thinking is complex but straightforward, and
the notation must be extended. Let GIJ(x) represent what Bonnie thinks bidder I

thinks is the distribution of the value of the book to bidder J, and let GIJK represent
what Bonnie thinks bidder I thinks is the distribution that bidder J has for bidder K’s
value for the book. Similarly, let FIJ represent what Bonnie thinks is the distribution
that bidder I has for bidder J’s bid, and FIJK represent what Bonnie thinks bidder I

thinks is the distribution that bidder J has for bidder K’s bid.
Bonnie thinks the level-2 Alvin will reason as follows. First, he thinks Bonnie

will make the bid b∗ = max{b∗A,b∗C} for

b∗A = argmaxb∈IR+(b0− b)IP[A∗ < b]

b∗C = argmaxb∈IR+(b0− b)IP[C∗ < b],

where b0 is Bonnie’s true value, A∗ is a random variable with distribution FBA, and C∗

is a random variable with distribution FBC. Since b0 is unknown to Alvin, he treats it
as a random variable B0 with distribution GAB. Alvin also does not know know FBA or
FBC, but Bonnie believes he thinks A∗ has distribution FABA, and C∗ has distribution
FABC. This means that, to Alvin, Bonnie’s solutions B∗A and B∗C are random variables,
and he thinks Bonnie’s bid B∗ has the distribution of their maximum.

In order to find FABA, Bonnie thinks level-2 Alvin will model her as a level-1
thinker. That means that he thinks she thinks that his starting point in the level-k
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hierarchy is non-strategic. He will have some distribution over what she thinks will
be his non-strategic bid, which Alvin must elicit from his personal beliefs. Bonnie
does not know what that distribution is, but suppose her subjective belief is that it is
HABA. In that case, Bonnie’s best opinion about what Alvin thinks a level-1 Bonnie
would bid in order to beat him is

B∗A = argmaxb∈IR+(B0− b)HABA(b),

where B0 has distribution GAB. Solving this gives FABA.
Similarly, Bonnie thinks Alvin thinks that her starting point in the level-k rea-

soning is that Clyde is non-strategic, and thus Alvin must have a distribution over
Bonnie’s belief about Clyde’s bid. Denote Bonnie’s best guess about Alvin’s dis-
tribution for Bonnie’s belief about Clyde’s bid by HABC. So Alvin thinks a level-1
Bonnie solves

B∗C = argmaxb∈IR+(B0− b)HABC(b),

where B0 has distribution GAB, as before. Solving this gives FABC.
Finally, Alvin should think that Bonnie will bid the maximum of B∗A and B∗C. This

maximum has distribution FAB.
Similarly, Bonnie thinks Alvin thinks Clyde will bid C∗ = max{C∗A,C∗B} such that

C∗A = argmaxc∈IR+(c0− c)IP[A∗ < c]

C∗B = argmaxc∈IR+(c0− c)IP[B∗ < c]

where c0 is Clyde’s true value, which is unknown to Alvin, and for which Bonnie
believes he has distribution GAC. Also, A∗ is a random variable that Bonnie thinks
has distribution FACA, and B∗ is a random variable that she thinks has distribution
FACB.

Now Bonnie has calculated what she believes Alvin thinks is the distribution of
her bid B∗ and the distribution of Clyde’s bid C∗. So her best guess is that Alvin will
make the bid

a∗ = argmaxa∈IR+(a0− a)IP[max{B∗,C∗}< a].

She does not know his value a0, and thus replaces it with the random variable A0

with distribution GBA. Solving this new equation provides her distribution FBA for
Alvin’s bid A∗.

She repeats this reasoning for Clyde instead of Alvin, ultimately obtaining FBC,
her distribution for Clyde’s bid C∗. Now, Bonnie should make the bid

b∗ = argmaxb∈IR+(b0− b)IP[max{A∗,C∗}< b].

Obviously, implementing the ARA paradigm for the level-k solution concept is
intricate—the nested reasoning is difficult for humans to describe, much less per-
form. But the logic is actually simple, and one can write software that automatically
performs these recursions, and thus handles many more than three opponents.

As a final note, when there are more than two bidders, it is possible for different
bidders to think at different levels. For example, if Bonnie thinks Alvin is a level-2
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thinker but Clyde is only a level-1 thinker, then her analysis might be denoted as
level-(3,2) thinking.

3.6.2 Mirror Equilibrium

Now consider the use of the mirror equilibrium solution concept when there are
three bidders. This concept assumes that all bidders are solving the problem in
the same way, but with possibly different subjective distributions over all unknown
quantities.

The two-person system in (3.5) extends so that the basic problem is to solve

A∗ = argmaxa∈IR+ (A0− a)F∗A (a)

B∗ = argmaxb∈IR+ (B0− b)F∗B (b) (3.6)

C∗ = argmaxc∈IR+ (C0− c)F∗C (c)

from the perspective of each of the players, where F∗I (x) is what bidder I thinks is
the chance that a bid of x will win. Bonnie does not know F∗I , but she can use ARA
to find FI , which is her belief about what each opponent thinks is the chance that a
given bid is successful.

Figure 3.4 may be helpful in following the reasoning. It shows the notation that
describes what Bonnie thinks each person believes about the distributions for each
of the other bidders’ true values. As indicated previously, GIJ is what Bonnie thinks
bidder I believes is distribution of the true value for bidder J, and GIJK is the distri-
bution that Bonnie thinks bidder I thinks bidder J has for the true value of the book
to bidder K.

Fig. 3.4 A representation of what Bonnie believes about the opinions held by each of the bidders
regarding the value of the book to each the other bidders.
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First, she models Alvin’s logic. Bonnie thinks he obtains his distribution for her
bid by solving (3.6) with A0 ∼GABA, B0 ∼ GAB, and C0 ∼ GABC. Since he, like Bon-
nie, does not know the true F∗I , he must develop his own beliefs about them. Here,
his FA is the distribution of the maximum of B∗ and C∗, FB is the distribution of the
maximum of A∗ and C∗, and FC is the distribution of the maximum of B∗ and C∗. Af-
ter numerical computation to find the equilibrium solution, he obtains FAB, his belief
about the distribution of Bonnie’s bid.

Next, Alvin considers Clyde. Bonnie thinks he solves (3.6) with A0 ∼ GACA,
B0 ∼ GACB, and C0 ∼ GAC. He proceeds as before, and obtains FAC, his belief about
the distribution of Clyde’s bid. From this, Bonnie thinks his distribution for the prob-
ability of winning with a bid of a is FA, where FA is the distribution of the maximum
of B∼ FAB and C ∼ FAC.

Bonnie’s analysis for Clyde is analogous. To find Clyde’s distribution for Bonnie’s
bid, she thinks he solves (3.6) with A0 ∼ GCBA, B0 ∼ GCB, and C0 ∼ GCBC to obtain
FCB. Similarly, to find Clyde’s distribution for Alvin’s bid, he uses A0 ∼ GCA, B0 ∼
GCAB, and C0 ∼GCAC to obtain FCA. Putting these together, Bonnie thinks that Clyde
thinks the probability that a bid of c will win is FC(c), which is the distribution of the
maximum of A∼ FCA and B∼ FCB.

Based on this reasoning, Bonnie thinks that Alvin’s bid will be

A∗ = argmaxa∈IR+(A0− a)FA(a)∼ FBA,

where A0 ∼ GBA. And she thinks Clyde’s bid will be

C∗ = argmaxc∈IR+(C0− c)FC(c)∼ FBC,

where C0 ∼ GBC. From this, the chance that a bid of b will win is FB(b), where FB

is the distribution of the maximum of A∗ ∼ FBA and C∗ ∼ FBC. Now Bonnie uses her
known value b0 and solves

b∗ = argmaxb∈IR+(b0− b)FB(b)

to obtain her best bid under the mirror equilibrium solution concept.
Some readers may question whether a solution is guaranteed to exist in the mirror

equilibrium analysis. The answer is that it must, because at each step, one solves a
well-posed Nash equilibrium problem for an asymmetric n-person auction. Lebrun
(1999) shows that an equilibrium solution always exists, and Lebrun (2006) proves
that, under a mild log concavity condition, the equilibrium is unique.

Exercises

3.1. Suppose n people are bidding to own a Miró in a first-price sealed-bid auction.
Each participant has a private valuation for the painting vi, i = 1, . . . ,n: it represents
how much the ith bidder is willing to pay. Assume all bidders believe that the others
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have private valuations that are independent and Unif[0,1], and that all bidders know
each bidder makes this assumption. Consider only bidding strategies of the form
s(v) = α v for α ∈ [0,1], so that each participant bids a fraction of his valuation. Find
a symmetric Bayes Nash equilibrium in this family of strategies.

3.2. Suppose Bonnie is certain that Clyde will bid a fraction P of his true value V for
the book Theory of Games and Economic Behavior. Also, suppose her distribution
over Clyde’s value V has a density function with support on [a,b], 0 ≤ a < b, and
P has distribution supported on [0,1] and is independent of V . Describe how Bonnie
should obtain her distribution for Clyde’s bid when a > 0. Find Bonnie’s optimal
bid when her value for the book is x0 = $160 and she models V with an uniform
distribution between $100 and $200 and P with the distribution p2 for 0≤ p≤ 1.

3.3. In Exercise 3.3, suppose Bonnie models Clyde’s value as a triangular distri-
bution supported between $100 and $200 with peak at $150, and his proportional
reduction P as a Beta(20,10). Approximate Bonnie’s beliefs about the distribution
of Clyde’s bid, and obtain her optimal bid when x0 = 200.

3.4. Suppose Bonnie believes there is a positive probability that her opponent’s bid
will be lower than her value x0 for the item on offer. Prove that Bonnie’s optimal bid
x∗ against a non-strategic opponent is strictly lower than x0. Assume that Bonnie’s
distribution F over her opponent’s bid is continuous with F(x0)> 0.

3.5. A Dutch auction (or open-outcry descending-price auction) is an auction in
which the seller starts off asking a high price for the item on offer. Then, the price is
gradually reduced until a bidder accepts the last announced price. The first bid wins
and pays the last price called by the seller. Prove that a Dutch auction has the same
optimal bidding strategy as a sealed-bid first-price auction. (Dutch auctions are used
when one wants to sell quickly; e.g., bidding on a fishing boat’s catch.)

3.6. Bonnie and Clyde are the only bidders for a Juan Gris painting. The auctioneer
thinks the item is of high value to both, but he also thinks that each believes the
other is an amateur collector who does not value the painting highly. Specifically, the
auctioneer thinks Bonnie’s and Clyde’s valuations are greater than $10M but each
believes the other’s valuation is less than $1M. From the auctioneer’s perspective, is
it smart to have a sealed-bid first-price auction? What auction mechanisms might be
better?

3.7. Suppose a $100 bill is offered in a first-price sealed-bid auction between Bonnie
and Clyde. Assume bids must be integer multiples of pennies ($0.01). (If both bid
the same amount, a coin determines the winner.) Find the Nash equilibrium of this
auction. Now suppose Bonnie knows that in real auctions of this kind, participants’
bids have the discrete uniform distribution between $60 and $100. How much should
she bid?

3.8. In Exercise 3.8, suppose Bonnie is bidding against both Alvin and Clyde. Bids
many now be continuous, and she knows that with three bidders, bids are uniformly
distributed between $70 and $100. What should Bonnie bid?
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