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CHAPTER 1

Leibniz’s Dream

Situated southeast of the German city of Hanover, the ore-rich veins of
the Harz mountain region had been mined since the middle of the tenth
century. Because the deeper parts tended to fill with water, they could only
be mined so long as pumps kept the water at bay. During the seventeenth
century water wheels powered these pumps. Unfortunately, this meant that
the lucrative mining operations had to shut down during the cold mountain
winter season when the streams were frozen.

During the years 1680–1685, the Harz mountain mining managers were
in frequent conflict with a most unlikely miner. G. W. Leibniz, then in his
middle thirties, was there to introduce windmills as an additional energy
source to enable all-season operation of the mines. At this point in his
life, Leibniz had already accomplished a lot. Not only had he made major
discoveries in mathematics, he had also acquired fame as a jurist, and had
written extensively on philosophical and theological issues. He had even
undertaken a diplomatic mission to the court of Louis XIV in an attempt to
convince the French “Sun King” of the advantages of conducting a military
campaign in Egypt (instead of against Holland and German territories).1

Some 70 years earlier, Cervantes had written of the misadventures of a
melancholy Spaniard with windmills. Unlike Don Quixote, Leibniz was in-
curably optimistic. To those who reacted bitterly to the widespread misery
in the world, Leibniz responded that God, from His omniscient view of all
possible worlds, had unerringly created the best that could be constructed,
that all the evil elements of our world were balanced by good in an optimal
manner.∗

But Leibniz’s involvement with the Harz Mountain mining project ul-
timately proved to be a fiasco. In his optimism, he had not foreseen the
natural hostility of the expert mining engineers towards a novice proposing
to teach them their trade. Nor had he allowed for the inevitable break-in
period a novel piece of machinery requires or for the unreliability of the
winds. But his most incredible piece of optimism was with respect to what
he had imagined he would be able to accomplish with the proceeds he had
expected from the project.

∗Voltaire’s Dr. Pangloss in Voltaire’s Candide was a sendup of this Leibnizian doc-
trine.

1
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Leibniz had a vision of amazing scope and grandeur. The notation he
had developed for the differential and integral calculus, the notation still
used today, made it easy to do complicated calculations with little thought.
It was as though the notation did the work.

In Leibniz’s vision, something similar could be done for the whole scope
of human knowledge. He dreamt of an encyclopedic compilation, of a univer-
sal artificial mathematical language in which each facet of knowledge could
be expressed, of calculational rules which would reveal all the logical inter-
relationships among these propositions. Finally, he dreamed of machines
capable of carrying out calculations, freeing the mind for creative thought.
Even with his optimism, Leibniz knew that the task of transforming this
dream to reality was not something he could accomplish alone. But he did
believe that a small number of capable people working together in a scien-
tific academy could accomplish much of the design in a few years. It was to
fund such an academy that Leibniz embarked on his Harz Mountain project.

Leibniz’s Wonderful Idea

Leibniz was born in Leipzig in 1646 into a Germany divided into some-
thing like 1,000 separate, semiautonomous political units, and devastated
by almost three decades of war. The Thirty Years War, which didn’t end
until 1648, was fought mainly on German soil, although all of the major
European powers had participated. Leibniz’s father, a professor of philos-
ophy at the University of Leipzig, died when the child was only six. Over
the opposition of his teachers, Leibniz gained access to his father’s library
at the age of eight, and soon became a fluent reader of Latin.

Leibniz, destined to become one of the greatest mathematicians of all
time, got his first introduction to mathematical ideas from teachers who had
no inkling of the exciting work elsewhere in Europe that was revolutionizing
mathematics. In the Germany of that day, even the elementary geometry
of Euclid was an advanced subject, studied only at the university level.
However, in his early teens, his school teachers did introduce Leibniz to
the system of logic that Aristotle had developed two millennia earlier, and
this was the subject that aroused his mathematical talent and passion.

Fascinated by the Aristotelian division of concepts into fixed “cate-
gories,” Leibniz thought of what he came to call his “wonderful idea”: he
would seek a special “alphabet” whose elements represented not sounds,
but concepts. A language based on such an alphabet should make it pos-
sible to determine by symbolic calculation which sentences written in the
language were true and what logical relationships existed among them.
Leibniz remained under Aristotle’s spell and held fast to this vision for the
rest of his life.
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Indeed, for his bachelor’s degree at Leipzig, Leibniz wrote a thesis on
Aristotelian metaphysics. His master’s thesis at the same university dealt
with the relationship between philosophy and law. Evidently attracted to
legal studies, Leibniz obtained a second bachelor’s degree, this time in law,
writing a thesis emphasizing the use of systematic logic in dealing with the
law. Leibniz’s first real contribution to mathematics developed out of his
Habilitationsschrift (in Germany, a kind of second doctoral dissertation)
in philosophy also at Leipzig: As a first step towards his “wonderful idea”
of an alphabet of concepts, Leibniz foresaw the need to be able to count
the various ways of combining such concepts. This led him to a systematic
study of the problem of counting complex arrangements of basic elements,
first in his Habilitationsschrift and then in his more extensive monograph
Dissertatio de Arte Combinatoria.2

Continuing his legal studies, Leibniz presented a dissertation for a doc-
torate in law at the University of Leipzig. The subject, so typical for
Leibniz, was the use of reason to resolve cases in law thought too difficult for
resolution by the normal methods. For reasons that are not clear the Leipzig
faculty refused to accept the dissertation, so Leibniz presented it instead
at the University of Altdorf, near Nuremberg where it was received with
acclaim. At the age of 21, his formal education completed, Leibniz faced
the common problem of the newly graduated: how to develop a career.

Paris

Not being interested in a career as a university professor in Germany,
Leibniz pursued his only real alternative: to find a wealthy noble patron.
Baron Johann von Boineburg, nephew of the Elector of Mainz, was quite
willing to play this role. In Mainz, Leibniz worked on a project to update
the legal system based on Roman civil law, was appointed a judge at the
High Court of Appeal, and tried his hand at diplomatic intrigue. This last
included an abortive attempt to influence the selection of a new king for
Poland and a mission to the court of Louis XIV.

The Thirty Years War had left France as the “superpower” on the Eu-
ropean continent. Mainz, situated on the banks of the Rhine, had known
military occupation during the war. So, the burghers of Mainz understood
very well the importance of forestalling hostile military action, and there-
fore, of good relations with France. It was in this context that Boineburg
and Leibniz concocted the scheme, already mentioned, to convince Louis
XIV and his advisers of the great advantages of making Egypt the ob-
ject of their military endeavors. The most important historical effect of
this proposition—essentially the same proposition that led Napoleon to a
military disaster over a century later—was that it brought Leibniz to Paris.
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Leibniz arrived in Paris in 1672 to press the Egyptian scheme and to
help untangle some of Boineburg’s financial affairs. Before the end of the
year disaster struck: the news came that Boineburg had died of a stroke.
Although he continued to perform some services for the Boineburg fam-
ily, Leibniz was left without a reliable source of income. Nevertheless he
managed to remain in Paris for another four extremely productive years
that included two brief visits to London.3 On the first visit in 1673, he was
unanimously elected to the Royal Society of London based on his model
of a calculating machine capable of carrying out the four basic operations
of arithmetic. Although Pascal had designed a machine that could add
and subtract, Leibniz’s was the first that could multiply and divide as
well.∗ Leibniz’s machine incorporated an ingenious gadget that became
known as a “Leibniz wheel.” Calculating machines continued to be built
incorporating this device well into the twentieth century. About his ma-
chine, Leibniz wrote:

And now that we may give final praise to the machine we may say
that it will be desirable to all who are engaged in computations
which, it is well known, are the managers of financial affairs, the
administrators of others’ estates, merchants, surveyors, geographers,
navigators, astronomers . . . But limiting ourselves to scientific uses,
the old geometric and astronomic tables could be corrected and new
ones constructed by the help of which we could measure all kinds
of curves and figures . . . it will pay to extend as far as possible the
major Pythagorean tables; the table of squares, cubes, and other
powers; and the tables of combinations, variations, and progressions
of all kinds, . . . Also the astronomers surely will not have to continue
to exercise the patience which is required for computation. . . . For
it is unworthy of excellent men to lose hours like slaves in the labor
of calculation which could safely be relegated to anyone else if the
machine were used.4

The machine Leibniz was “praising” was limited to ordinary arithmetic.
But Leibniz grasped the broader significance of mechanizing calculation. In
1674 he described a machine that could solve algebraic equations. A year
later, he wrote comparing logical reasoning to a mechanism, thus pointing
to the goal of reducing reasoning to a kind of calculation and of ultimately
building a machine capable of carrying out such calculations.5

A crucial event for Leibniz, then 26, was meeting the great Dutch scien-
tist Christiaan Huygens then living in Paris. The 43-year-old Huygens had
already invented the pendulum clock and discovered the rings of Saturn.

∗Blaise Pascal, born on June 19, 1623, at Clermont-Ferrand, France, one of the
founders of the mathematical theory of probability, was a prolific mathematician, physi-
cist, and religious philosopher. His calculating machine, designed and built circa 1643,
brought him considerable fame. He died in 1662.
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What was perhaps to be his most important contribution, the wave theory
of light, was still to come. His conception—that light was fundamentally
to be viewed like the waves spreading across a pond when a pebble is
tossed into it—directly contradicted the great Newton’s account of light
as consisting of a stream of discrete bullet-like particles.∗ Huygens gave
Leibniz a reading list enabling the younger man to quickly overcome his
lack of knowledge of current mathematical research. Soon Leibniz was mak-
ing fundamental contributions.

The explosion of mathematical research in the seventeenth century had
been fueled by two crucial developments:

1. The technique of dealing with algebraic expressions (what is gener-
ally called “high-school algebra”) had been systematized and became
essentially the powerful technique we still use today.

2. Descartes and Fermat had shown how, by representing points by pairs
of numbers, geometry could be reduced to algebra.

Various mathematicians were using this new power to solve problems that
would not previously have been accessible. Much of this work involved what
nowadays are called limit processes. Using limits means solving a problem
by using approximations to the required answer that get systematically
closer and closer to that answer. The idea was not to be satisfied with any
particular approximation, but rather, by “going to the limit,” to obtain an
exact solution.

An example that may help to clarify this concept is one of Leibniz’s
own early results, one of which he was quite proud. This was the equation:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

On the left side of the equals sign is the familiar number π that occurs in the
formulas for the circumference and the area of a circle.∗ On the right side is
what is called an infinite series; the individual numbers alternately added
and subtracted are called the terms of the series. The dots . . . mean that
it continues indefinitely. The full infinite pattern consists of fractions, with
1 as numerator and the successive odd numbers as denominators, being
alternately added and subtracted, and is intended to be clear from the
finite part shown: after subtracting 1

11
, add 1

13
, then subtract 1

15
, etc. But

can one actually perform an infinite number of additions and subtractions?
Not really. But, starting at the beginning and breaking off at any point, an

∗Although Huygens’s view came to be generally accepted, the coming of quantum
physics in the twentieth century made it clear that both Newton and Huygens had been
right; each grasped an essential characteristic of light.

∗The number π
4

is in fact the area of a circle whose radius is 1
2
.
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Number of terms Sum correct to eight decimal places

10 0.76045990

100 0.78289823

1,000 0.78514816

10,000 0.78537316

100,000 0.78539566

1,000,000 0.78539792

10,000,000 0.78539816

Table of approximations to Leibniz’s series

approximation to a “true” answer is obtained, and that approximation gets
better and better as more terms are included. In fact, the approximation
can be made as accurate as one wishes by including enough terms. In the
table on page 7, it is shown how this works out for Leibniz’s series. When
including 10,000,000 terms, a value is obtained that agrees with the true
value of π

4
, namely 0.7853981634 . . ., to eight places.†

Leibniz’s series is so striking because it connects the number π, and
therefore the area of a circle, with the succession of odd numbers in a
particularly simple way. It is an example of one kind of problem that could
be solved using limit processes, that of finding areas of figures with curved
boundaries.

Another kind of problem susceptible to attack using limits was finding
exact rates of change, such as the varying speed of a moving body. During
the last months of 1675, towards the end of his stay in Paris, Leibniz made a
number of conceptual and computational breakthroughs in the use of limit
processes that, taken together, are called his “invention of the calculus”:

1. Leibniz saw that the problems of finding areas and calculating rates
of change were paradigmatic, in the sense that many different kinds
of problems were reducible to one or the other of these two types.∗

2. He also perceived that the mathematical operations required in calcu-
lating the solutions to problems of these two types were in fact inverse
to each other in much the same sense that the operations of addition
and subtraction (or multiplication and division) are inverse to one

†I used my PC to obtain the table of approximations to π
4

from Leibniz’s series. A
short Pascal program I wrote for the purpose runs for less than a second on a contem-
porary PC.

∗Thus, finding volumes and centers of gravity are problems of the first kind, and
computing accelerations and (in economic theory) marginal elasticity are problems of
the second type.
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another. Nowadays these operations are called integration and differ-

entiation, respectively, and the fact that they are inverse is called, in
the textbooks, the “fundamental theorem of the calculus.”

3. Leibniz developed an appropriate symbolism (the notation still in use
today) for these operations,

∫

for integration and d for differentia-
tion.† Finally he found the mathematical rules needed for carrying
out the integrations and differentiations that occurred in practice.

Taken together these discoveries transformed the use of limit processes,
from an exotic method accessible only to a handful of specialists, into a
straightforward technique that could be taught in textbooks to many thou-
sands of people.6 Most important for the purposes of this book, his success
convinced Leibniz of the critical importance of choosing appropriate sym-
bols and finding the rules governing their manipulation. The symbols

∫

and d did not represent meaningless sounds like the letters of a phonetic
alphabet; they stood for concepts and thus provided a model for Leibniz’s
boyhood “wonderful idea” of an alphabet representing all fundamental
concepts.

Much has been written about the entirely independent development of
the calculus by Newton and by Leibniz, and about the bitter accusations
of plagiarism tossed back and forth across the English Channel before the
foolishness of such charges was finally understood by all. It is the great
superiority of Leibniz’s notation that is significant for our story.7 A key
technique used in integration (called in the textbooks, the method of “sub-
stitution”) is virtually automatic in Leibniz’s notation, but relatively com-
plicated in Newton’s. It has even been alleged that slavish devotion to their
national hero’s methods caused the English followers of Newton to lag far
behind their continental contemporaries in developing the mathematical
perspectives that the calculus had uncovered.

Like so many who have tasted the special quality of life in Paris, Leibniz
wanted very much to remain there as long as he could. He attempted to
maintain his Mainz connections while continuing to live and work in Paris.
But it soon became clear that, so long as he remained in Paris no funds
from Mainz would be forthcoming.

Meanwhile an offer of a position arrived from the Dukedom of Hanover,
one of the multitude of principalities of which seventeenth century Germany
was composed. Although Duke Johann Friedrich had some genuine interest
in intellectual matters, and the offer gave some promise of financial security,
Leibniz was not eager to live in Hanover. After delaying as long as he could,
Leibniz accepted the offer early in 1675.

†The symbol for integration
∫

is actually a modified “S” intending to suggest “sum,”
and the symbol “d” is likewise intended to suggest the idea of “difference.”
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In his letter of acceptance, he asked for the “freedom to pursue his own
studies in arts and sciences for the benefit of mankind.”8 In no hurry to
leave Paris, he stayed until the fall of 1676, departing only when it became
clear that no position in Paris would be forthcoming and that the Duke
would accept no further delay. Leibniz was to spend the rest of his life in
the service of the Dukes of Hanover.

Hanover

Leibniz apparently understood perfectly well that despite his request for
“freedom to pursue his own studies in arts and sciences,” success in his new
position would require him to do work that his patron would find useful and
practical. He undertook to upgrade the ducal library and proposed various
ideas for improving public administration and agriculture. Soon thereafter,
he began promoting his ill-fated project to use windmills for improving
the Harz Mountain mining operations. In 1680, only a year after the Harz
project with Leibniz in charge had finally been approved, his position was
suddenly endangered by the duke’s sudden death.

It now became necessary to convince the new duke, Ernst August, to
continue to found Leibniz’s position and to support the Harz Mountain
project. The new duke was a practical man. Unlike his predecessor, he
wasn’t willing to spend much on the library. Leibniz soon learned not to
involve Ernst August in scholarly discussions.

To help cement his position, he offered to write a short history of the
duke’s family. When the duke finally closed down the Harz project five
years later, Leibniz proposed a more elaborate version: if a few gaps were
filled, the family tree could be traced back to the year 600. The duke
evidently regarded this as a most appropriate way to employ one of the
greatest thinkers of all time. Leibniz was granted a regular salary, a personal
secretary, and travel funds for searching out genealogical information. Most
likely, the optimistic Leibniz hardly imagined that he would find himself
chained to this project for the remaining three decades of his life. Georg
Ludwig, who succeeded Ernst August on his death in 1698, was especially
adamant in nagging Leibniz to get on with the family history.

If Leibniz had any pupils in Hanover, they were women, for he shared
none of the common prejudices concerning the intellectual capabilities of
the female sex. Duchess Sophie, the talented wife of Ernst August, and
Leibniz had frequent conversations about philosophical matters and car-
ried on an extensive correspondence when Leibniz was away from Hanover.
She made sure also that her daughter Sophie Charlotte, who was to become
Queen of Prussia, also had the benefit of Leibniz’s teachings. Sophie Char-
lotte, not content simply to receive Leibniz’s wisdom, energetically raised
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questions that helped Leibniz to clarify his ideas. As the contemporary
Leibniz scholar Benson Mates explains:

For most of Leibniz’s life, these women were his principal advocates
at the courts in Hanover and Berlin. Sophie Charlotte’s sudden death
in 1705 devastated him; it was such an obvious loss to him that he
even received formal expressions of sympathy from the emissaries
of foreign governments; and when Duchess Sophie . . . died in 1714,
his ability to obtain support for anything other than continuing the
Brunswick history came to an end.9

The history project did provide Leibniz with an excuse to travel, and
he made use of this freedom to an extent that vexed his noble patrons.
Of course Leibniz took full advantage of the possibilities of developing
and maintaining scholarly contacts. In Berlin he even was able to found
a Society of Science, later institutionalized as an academy. His extensive
correspondence continued to span the full variety of his interests.

Leibniz seemed never to tire of explaining that, since God had done as
well as was possible in creating the world, there must be a pre-established

harmony between what existed and what was possible and that there was
a sufficient reason (whether or not we could find it) for every single thing
in the world.

In the realm of diplomacy, Leibniz had two pet projects: one was to
reunite the various branches of the Christian church; the other, which ac-
tually succeeded, was to obtain for the Dukes of Hanover the succession to
the British throne. But when Georg Ludwig actually did become George
I of England only two years before Leibniz’s death in 1716, he brusquely
rejected his employee’s request for permission to leave the Hanovarian back-
water for London with his patron, ordering him to hurry up and finish the
family history.

The Universal Characteristic

But what of the “wonderful idea” of Leibniz’s youth, his grand dream to
find a true alphabet of human thought and the appropriate calculational
tools for manipulating these symbols? Although he had resigned himself
to the fact that unaided he could never accomplish such a thing, he never
lost sight of this goal, thinking and writing about it throughout his life. It
was clear that the special characters used in arithmetic and algebra, the
symbols used in chemistry and astronomy, and the symbols he introduced
for the differential and integral calculus provided a paradigm showing how
crucial a truly appropriate symbolism could be.

Leibniz referred to such a system of characters as a characteristic. Unlike
the alphabetic symbols which had no meaning, the examples just mentioned



The Universal Characteristic 11

were, for him, a real characteristic in which each symbol represented some
definite idea in a natural and appropriate way. What was needed, Leibniz
maintained, was a universal characteristic, a system of symbols that was
not only real, but which also encompassed the full scope of human thought.

In a letter explaining this to the mathematician G. F. A. l’Hôspital,
Leibniz wrote: “Part of the secret of” algebra “consists of the characteristic,
that is to say of the art of properly using” the symbolic expressions. This
care for proper use of symbols was to be the “thread of Ariadne” that would
guide the scholar in creating his characteristic.

As the early twentieth century logician and Leibniz scholar Louis Coutu-
rat explained:

. . . it is algebraic notation that incarnates, so to speak, the ideal of
the characteristic and which is to serve as a model. It is also the
example of algebra that Leibniz cites consistently to show how a
system of properly chosen symbols is useful and indeed indispensible
for deductive thought.10

Perhaps the most enthusiastic explanation of his proposed characteristic
was in another letter, this one to Jean Galloys with whom Leibniz had
extensive correspondence:

I am convinced more and more of the utility and reality of this gen-
eral science, and I see that very few people have understood its ex-
tent. . . . This characteristic consists of a certain script or language
. . . that perfectly represents the relationships between our thoughts.
The characters would be quite different from what has been imagined
up to now. Because one has forgotten the principle that the charac-
ters of this script should serve invention and judgment as in algebra
and arithmetic. This script will have great advantages; among oth-
ers, there is one that seems particularly important to me. This is
that it will be impossible to write, using these characters, chimerical
notions (chimères) such as suggest themselves to us. An ignoramus
will not be able to use it, or, in striving to do so, he himself will
become erudite.11

In the letter to Galloys quoted above Leibniz refers to arithmetic as well
as algebra as showing the importance of an appropriate symbolism. He
had in mind in particular the advantage of the Arabic system of nota-
tion that we still use today based on the digits 0 to 9 over previous sys-
tems (like the Roman numerals) for ordinary calculation. When Leibniz
discovered binary notation, in which any number can be written using
only the digits 0 and 1, he was impressed by the simplicity of this sys-
tem. He believed that it would be useful in laying bare properties of num-
bers that otherwise would be hidden. Although this belief turned out to
be unjustified, this interest on Leibniz’s part is remarkable in the light
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of the importance of this binary notation in connection with modern
computers.

Leibniz saw his grand program as consisting of three major components.
First, before the appropriate symbols could be selected, it would be neces-
sary to create a compendium or encyclopedia encompassing the full extent
of human knowledge. He maintained that once having accomplished this,
it should prove feasible to select the key underlying notions and to provide
appropriate symbols for each of them. Finally, the rules of deduction could
then be reduced to manipulations of these symbols, via what Leibniz called
a calculus ratiocinator, what nowadays might be called a symbolic logic.

To a present-day reader, it is hardly surprising that Leibniz did not
feel able to accomplish such a program on his own, especially given the
constant pressure he was under to produce the family history that his
patron regarded as his principal task. It is difficult to understand how
Leibniz could have seriously believed that the universe we inhabit, in all of
its complexity, could be reduced to a single symbolic calculus.

We can only hope to begin to comprehend the matter by attempting
to see the world through the eyes of Leibniz. For him nothing, absolutely
nothing, about the world was in any way undetermined or accidental. Ev-
erything was in fact entirely determined by the plan, clear in the mind of
God, by means of which He had created the best world that could be cre-
ated. Hence, for Leibniz, all aspects of the world, natural and supernatural,
were connected by links one could hope to discover by rational means. Only
from this perspective can we understand how, in a famous passage, Leibniz
could write of serious “men of good will” sitting around a table to solve
some critical problem. After writing out the problem in Leibniz’s projected
language, his “universal characteristic,” it would be time to say “Let us
calculate!” Out would come the pens and a solution would be found whose
correctness would necessarily be accepted by all.12

Leibniz wrote with enthusiasm about the importance of producing the
calculus ratiocinator, the algebra of logic, that would presumably be needed
to carry out these calculations:

For if praise is given to the men who have determined the number
of regular solids—which is of no use, except insofar as it is pleasant
to contemplate—and if it is thought to be an exercise worthy of
a mathematical genius to have brought to light the more elegant
properties of a conchoid or cissoid, or some other figure which rarely
has any use, how much better will it be to bring under mathematical
laws human reasoning, which is the most excellent and useful thing
we have.13

Unlike the universal characteristic concerning which Leibniz wrote with
such passion and conviction, but produced little in the way of specifics, he
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Definition 3. A is in L, or L contains A, is the same as to say that L can be made to
coincide with a plurality of terms taken together of which A is one. B ⊕N = L signifies
that B is in L and that B and N together compose or constitute L. The same thing
holds for a larger number of terms.

Axiom 1. B ⊕N = N ⊕ B.

Postulate. Any plurality of terms, as A and B, can be added to compose a single term
A⊕B.

Axiom 2. A⊕A = A.

Proposition 5. If A is in B and A = C, then C is in B. For in the proposition A is in

B the substitution of A for B gives C is in B.

Proposition 6. If C is in B and A = B then C is in A. For in the proposition C is in

B the substitution of A for B gives C is in A.

Proposition 7. A is in A. For A is in A⊕A (by Definition 3). Therefore (by Proposition
6) A is in A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition 20. If A is in M and B is in N , then A⊕B is in M ⊕N .

Sample from one of Leibniz’s logical Calculi

did make a number of attempts to produce a calculus ratiocinator. Part
of his most polished effort in this direction is shown in the above illus-
tration.14 A good century and a half ahead of his time, Leibniz proposed
an algebra of logic that would specify the rules for manipulating logical
concepts in the manner in which ordinary algebra specifies the rules for
manipulating numbers. He introduced a special new symbol ⊕ to represent
the combining of arbitrary “pluralities of terms.” The idea was something
like the combining of two collections of things into a single collection con-
taining all of the items in either one. The plus sign encourages us to think of
this operation as being like ordinary addition, but the circle around it warns
us that it is not exactly like ordinary addition because it is not numbers
being added. Some of his algebraic rules are also to be found in high-school
algebra textbooks: to some extent the same rules work for logical concepts
as for numbers.

But there’s more to the story. There are also rules that are very different
from those for numbers. The most striking rule of this latter kind, one that
in a somewhat different context George Boole was to make the cornerstone
of his algebra of logic, is Leibniz’s Axiom 2, A⊕A = A, which expresses the
fact that combining a “plurality of terms” with itself will yield nothing new:
evidently combining all the things belonging to a given collection with that
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same collection of things, will just produce that same collection, all over
again. Of course addition of numbers is quite different: 2 + 2 = 4 not 2.

In the next chapter, we will see how George Boole, presumably ignorant
of Leibniz’s efforts, produced a serviceable symbolic logic along the lines
that Leibniz had pioneered. Boole’s logic subsumed the logic Aristotle had
introduced 2000 years earlier, but it was only with the work of Gottlob
Frege well into the nineteenth century, that the serious limitations shared
by the logical systems of Aristotle and of Boole were really overcome.15

Despite Leibniz’s voluminous correspondence, we have little idea of
what he was like as a person. One biographer claims to see in the few
portraits of Leibniz we possess, the image of a tired, unhappy, pessimistic
man, in contradiction to his optimistic philosophy.16 Others have remarked
that he liked to give cakes to his neighbors’ children. Apparently, he pro-
posed marriage when he was 50, but thought better of it when the lady
hesitated.17 We have the picture of Leibniz spending long days and often
entire nights seated at his desk managing his enormous correspondence
with remarkable punctuality, his meals brought to him from an inn by his
servants. What is clear is that he was indefatigable in his work.∗

It is tempting to indulge in a bit of “what if?” What if Leibniz had
not been shackled to his patrons’ family history, and was free to devote
more time to his calculus rationcinator? Might he not have accomplished
what Boole was only to do so much later? But of course, such speculation
is useless. What Leibniz has left us is his dream, but even this dream can
fill us with admiration for the power of human speculative thought and can
serve as a yardstick for judging later developments.

∗In part, this picture comes from the 1951 biography completed by Professor Kurt
Huber in prison while awaiting execution by the Nazis. He had supported the efforts of
his students at the University of Munich who formed the “White Rose” underground
group and were decapitated for distributing anti-Nazi leaflets. There are today a number
of streets in Germany named for him including a Professor Huber Platz at the University
of Munich. (I am indebted to Benson Mates for this information about Professor Huber’s
heroic role.)
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