
Chapter 2

Sets and Logic

2.1 Introduction and Summary

Sets and logic are the fundamentals that underlie all of mathematics, not just dis-
crete mathematics. However, a discrete mathematics course is a customary place
to address them directly. Sets are collections of objects. Logic is a formal way
of describing reasoning. We will both describe and construct sets, and we will
develop truth tables as a way to use logic on compound statements. Logical tools
are available for when we have trouble figuring out how to reason precisely using
English.

Both sets and logic come with a lot of notation. In order to do anything inter-
esting with either sets or logic, you need to be familiar with that notation. (In the
case of logic, we will not use the notation very often after this chapter.) Hence,
this chapter has a lot of reading that you must complete before you can get on with
the discovery and doing of related mathematics. It may feel a bit tedious; sorry.
Break it up into smaller chunks to aid focus and retention.

This chapter also contains our first introduction to the interesting proof tech-
nique of contradiction (and to the less interesting, but super-useful, proof technique
of double-inclusion). Proof by contradiction basically works by hypothesizing that
a theorem is false (say “suppose not!”) and then obtaining a statement that is clearly
false (such as 0 = 1).

Try not to be intimidated by the amount of unfamiliar material in this chapter.
We will be working with logical thinking and proof techniques all semester, and
you are not expected to fully grasp them yet. The intent of this chapter is to give
you the ideas and terminology so you can work to master the ideas as you use
them in context. You will probably want to reread parts of this material later in the
course to assist in that endeavor.
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28 2. Sets and Logic

2.2 Sets

Sets are ubiquitous in mathematics (and in life!). The definition of the word set
has a long and sordid history, full of confusions such as whether a set is allowed to
contain itself. We will be a bit imprecise here and give more of a description than
a definition.

Definition 2.2.1 (of set). A set contains elements. The elements must be distinct,
but their order does not matter. There may be finitely many or infinitely many
elements in a set. Elements can be words, objects, numbers, or other sets (i.e.,
basically anything).

When an element a is a member of a set A, we denote this by a ∈ A (and read
it aloud as “a is in A” or “a is an element of A”). The notation a1,a2 ∈ A means
that both a1 and a2 are elements of A. Often, sets are denoted by capital letters,
and their elements are denoted by related lowercase letters.

Example 2.2.2 (of your favorite sets). The sets most commonly used in discrete
math are

the natural numbers, N= {1,2,3, . . .},

the binary digits, Z2 = {0,1},

the integers, Z= {. . . ,−2,−1,0,1,2, . . .}.

Beware that some people (many computer scientists and somemathematicians)
think that 0∈N, perhaps because computer scientists often start counting with zero
instead of with one. In order to have consistency with mathematical induction (see
Chapter 4), we disagree with this view. Instead, we refer to the set {0,1,2,3, . . .}=
W as the whole numbers (but we refer to it rarely).

Example 2.2.3 (of other sets). The set {1,2,3} is the same set as {2,3,1}. Simi-
larly, {. . . ,−6,−4,−2,0,2,4, . . .} is the same infinite set as {0,2,−2,4,−4, . . .}.
(The dots indicate that the established pattern keeps on going.) By some defini-
tions, {1,1,2,3} is not a set because elements are repeated, but in this text we will
simply consider {1,1,2,3} as an inefficient expression of the set {1,2,3}. On the
other hand, {1,{1,2,3},3} is a perfectly fine (and well-expressed) set. The set
with no elements {} is often denoted /0 and called the empty set or the null set. It
is different from {{}} = { /0}, which contains one element (the empty set). A set
of four duck heads is shown in Figure 2.1.
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2.2. Sets 29

Figure 2.1. The elements of the set {dh1,dh2,dh3,dh4} are duck heads.

This is an appropriate moment to recall that |A| denotes the number of ele-
ments in a set, also called its size or its cardinality. We will only consider the
cardinality of finite sets here, and if you are interested in infinite sets, you should
look at Chapter 15. Here are a few examples: |{1,2,3}| = 3; |{{1,2,3}}| = 1;
|{{1,2,3},N}|= 2.Donot confuse set cardinalitywith absolute value, even though
they use the same notation; one applies to sets and the other to numbers, so there
is no conflict.

2.2.1 Making New Sets from Scratch

So far, we have described a set by listing all its elements. Most of the time we
instead describe the pattern that the elements follow. For example, 2Z= {k ∈Z | k
is even}= {. . . ,−4,−2,0,2,4, . . .}. The first expression is read as “two zee is the
set of k in zee such that k is even,” or as “two zee is the set of integers k such that
k is even,” or as “two zee is the set of all integers that are even.” Another way of
writing this same set dispenses with the word “even”: 2Z = {k ∈ Z | k = 2ℓ for
some ℓ ∈ Z}. Here we have substituted the definition of even for the word “even.”

Example 2.2.4. The set {a1a2a3 | ai ∈Z2} is the set of all three-digit binary strings
{000,001,010,011,100,101,110,111}. Similarly, {a1a2a3a4 | ai ∈ Z2,a1 = 1,
a3 = 0} is the set of all four-digit binary strings with first digit 1 and third digit
0, or {1000,1001,1100,1101}. The set {(a,b) | a ∈ 2Z,b ∈ {0,1,2}} is the set
of all ordered pairs where the first component is an even integer and the second
component is 0,1, or 2.
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30 2. Sets and Logic

Basically, we write sets in the form {type of elements | condition(s)}. Often
the type of elements will include a restriction to some set.

2.2.2 Finding Sets inside Other Sets

Recall from Chapter 1 that if we have two sets A and B, then A is a subset of B if
every element of A is also an element of B. Let’s say it again:

Definition 2.2.5. If A and B are sets, then A is a subset of B if every element of A
is also an element of B. We denote this relationship as A ⊂ B.

Technically, the symbol ⊂ means that A is a proper subset, so that there is at
least one element in B that is not in A, but we will be loosey-goosey with our usage
and allow A ⊂ B to mean that A is perhaps equal to B. The symbol ⊆ is used to
indicate that perhaps A and B are equal, and the symbol ( indicates that A and B
are definitely not equal. (Do not confuse ( with ̸⊂, which means that A is not a
subset of B!) Notice that /0 ⊂ A for any set A—because all zero of the elements in
/0 are also elements of A! Every set contains some nothingness.

Example 2.2.6 (of flavors of subsets and non-subsets). We start withA= {2k | k>
0,k ∈ Z}, the even natural numbers; A ⊂ N and, in fact, A ( N. In binary land,
{1} ⊂ Z2 and {0,1} ⊆ Z2 but {2} ̸⊂ Z2. Less commonly seen are the equivalent
statements Z2 ⊃ {1}, Z2 ⊇ {0,1}, and Z2 ̸⊃ {2}. We could have instead written
1 ∈ Z2,2 ̸∈ Z2 for the first and last of those statements (do you see why?).

A related concept is that of the power set P(A) of a set A. It is the set of all
subsets ofA. (You know fromTheorem 1.5.2 that ifA is finite, then |P(A)|= 2|A|.)
We will not use this concept very often, but it is worth mentioning because other
sources you encounter in your mathematical life will expect you to recognize it.

The notion of subset allows us to define the idea of set complement. We denote
the complement of A by A, though other people use notations like AC or A′ (that
last one is silly because the symbol ′ is used for so many other things, but still, you
should be warned).

Definition 2.2.7. If A ⊂ B, then A = B \A, all the elements of B that are not in A,
is called the complement of A relative to B. (This is sometimes written as B−A.)

So if you see the symbol A, know that there is secretly a B out there that you
must know about in order to understand what A is. Sometimes the universe is
temporarily redefined as a particular set (instead of the universe we live in) and
it takes the place of B for all sets A1,A2, . . . ,An in a discussion. (By the way, if
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2.2. Sets 31

there are several sets under discussion, we may refer to them as the first set or
A1 (pronounced “A-one”), the second set, the nth set, etc.). We can think of a set
complement as a way of removing one set from another.

Example 2.2.8 (of complements). As a small example, note that {1,3,5,7}\{1,5}
= {3,7}. Now let B be the set of four-digit binary strings. Then B \ {a1a2a3a4 |
ai ∈ Z2,a1 = 1,a3 = 0}= {0000,0001,0010,0011,0100,0101,0110,0111,1010,
1011,1110,1111}.

The notation B\A can be extended to situations where A is not a subset of B;
in these cases, we interpret B \A to mean B \ (elements of A in B) = B \ (A∩B).
For example, {1,3,5,7} \ {1,5,6} = {3,7}. We simply remove any elements of
B that are elements of A.

2.2.3 Proof Technique: Double-Inclusion

There is a simple way to show that two sets are equal (if in fact they are), and it
has a special name because it is used so frequently. You may deduce that name
from the title of this section. To show that A = B, show first that A ⊂ B and then
show that B ⊂ A. This means that A is included in B and B is included in A and
thus arises the term double-inclusion.

Of course, it might be useful to understand how to show that A ⊂ B (or B ⊂ A)
in order to execute a double-inclusion proof. A technical way to think about A ⊂ B
is with the statement if a ∈ A, then a ∈ B. So a formal inclusion proof proceeds as
follows:

Let a be any element of A.

(Reasoning, statements.)

Therefore, a ∈ B, and so A ⊂ B.

Example 2.2.9. Two different expressions can describe the same set. Let us show
that two descriptions of the set of even numbers are equivalent. To that end, let
E1 = {k ∈ Z | k = 2ℓ for some ℓ ∈ Z} and let E2 = {2r+6 | r ∈ Z}. First, we will
show that E1 ⊂ E2. Let e be any element of E1. Then e = 2ℓ for some ℓ ∈ Z. If we
let r = ℓ−3, then e = 2ℓ= 2(r+3) = 2r+6, where r ∈ Z, and therefore e ∈ E2.
Now, we will show that E2 ⊂ E1. Let t be any element of E2. Then t = 2r + 6,
where r ∈ Z. Setting ℓ = r+ 3, we have that t = 2r+ 6 = 2(r+ 3) = 2ℓ, where
ℓ ∈ Z, and therefore t ∈ E1. Because E1 ⊂ E2 and E2 ⊂ E1, we conclude that
E1 = E2.
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32 2. Sets and Logic

2.2.4 Making New Sets from Old

The most common operations on sets are the three defined here.

Definition 2.2.10. The union of sets A and B is a set A∪B containing all the el-
ements in A and all the elements in B (with any duplicates removed). Similarly,
the union of sets A1,A2, . . . ,An is A1 ∪A2 ∪·· ·∪An =

∪n
i=1 Ai and contains all ele-

ments in the Ai (with any duplicates removed). Dealing with infinitely many sets
is a little bit trickier and depends on how many there are (see Chapter 15 for more
on this), but for now we’ll say that

∪∞
i=1 Ai and

∪
i∈N Ai are the same.

Example 2.2.11. Let A = {egg,duck,3,4} and let B = {duck,goose,7,8}. Then
A∪B = {egg,duck,goose,3,4,7,8}.

Let Ai = {i}. Then
∪∞

i=1 Ai = N.

Definition 2.2.12. The intersection of sets A and B is a set A∩B containing every
element that is in both A and B. Similarly, the intersection of sets A1,A2, . . . ,An
is A1 ∩A2 ∩·· ·∩An =

∩n
i=1 Ai and contains only elements that are in all of the Ai.

We may sometimes take infinite intersections as in
∩∞

i=1 Ai and
∩

i∈N Ai.

Example 2.2.13. With A and B and Ai defined as in Example 2.2.11, A ∩ B =
{duck} and

∩∞
i=1 Ai = /0.

Two sets A and B are called disjoint if A∩B= /0. We now have enough notation
to give a super-formal way of restating the sum principle.

Theorem 2.2.14. If A1, . . . ,An are disjoint finite sets, then |A1 ∪ ·· · ∪An| =
|A1|+ · · ·+ |An|.

That is perhaps the most boring way to state the sum principle (can you think
of a more boring way?), so we will not generally use it. It is, however, worth
noting that almost every mathematical statement can be rewritten to use formal
set language; and, it is also worth noting that this often borifies a given statement.
(Definition: bor · i · f y, to intensify the level of boringness something has.) At the
same time, we informally use set theory in our daily lives; for example, red-headed
women are the intersection of the set of redheads and the set of women. Most of
the time, we don’t even notice that we’re using set theory, but if you listen to
conversations and look in the media, it’s all over the place (albeit implicitly).

Definition 2.2.15. The Cartesian product of sets A and B is a set A×B containing
all possible ordered pairs where the first component is an element of A and the
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2.2. Sets 33

second component is an element of B. In other words, A × B = {(a,b) | a ∈
A and b ∈ B}. Likewise, the Cartesian product A1 ×A2 × ·· · ×An is the set of
all n-tuples (a1,a2, . . . ,an) where ai ∈ Ai.

Example 2.2.16 (of Cartesian products). The set {duck,goose}×{egg}= {(duck,
egg),(goose,egg)}. When the empty set is involved, there’s a trick; {5,7,9,11}×
/0 = /0 because there are no possible ordered pairs with the second component
from the empty set. Binary strings of length two are formally Z2 ×Z2 = {0,1}×
{0,1}= {(0,0),(1,0),(0,1),(1,1)}. This is sometimes abbreviated as (Z2)

2. Like-
wise, binary strings of length n are formally Z2 ×Z2 ×·· ·×Z2 = (Z2)

n.

2.2.5 Looking at Sets

The most common example of a Cartesian product is that the real plane R2 is
secretly R×R, as shown in Figure 2.2. (R is shorthand for the real numbers.)

Figure 2.3 shows two other examples of Cartesian products.

1 2

1

3

R

R

Figure 2.2. At left, R2; at right, {1,2}×{1,3}.

duck egg

1

3

2

3

1 2

Figure 2.3. At left, {duck,egg}×{�,◦}. At right, {1,2}×{1,3}×{2,3}. Although the
set looks as though it is misplaced, it is not. (Grey lines are added to help locate the points
in space but are not part of the set.)
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34 2. Sets and Logic

A

B
C

D

Figure 2.4. Each Venn diagram shows the relationship between two sets. Note that B ⊂ A
but no subset relationship exists betweenC and D.

A

B
C

D

Figure 2.5. At left, A\B, the part of A that does not include B, is shaded; at right, C∩D,
the overlap betweenC and D, is shaded.

We need ways of visualizing larger and more abstract sets. The usual method
is called a Venn diagram, in which we draw a big box to denote the universe and
then blobs to represent sets. Here are a couple of examples, shown in Figure 2.4.
Those are pretty boring because they simply show two sets each. The information
provided by the Venn diagrams is what kind of subset relationship (if any) exists
between the two sets. Let’s indicate some new sets that are derived from the old
sets—in Figure 2.5 we shade the results of performing set operations on our old
sets. This process extends to some fancy shaded diagrams when we have three sets
and multiple set operations, as in Figure 2.6. In Figures 2.7–2.9, we show how to
find these same sets using hatching.

A B

C

A B

C

A B

C

Figure 2.6. From left to right, (A∩B)∪C, A∩ (B∪C), and A∪C.
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A B

C

A B

C

A B

C

Figure 2.7. From left to right, A, A∩B, and (A∩B)∪C.

A B

C

A B

C

A B

C

Figure 2.8. From left to right, B, B∪C, and A∩ (B∪C).

A B

C

A B

C

A B

C

Figure 2.9. From left to right, A, A∪C, and A∪C.

To exhibit (A ∩ B)∪C, we look within the parentheses. We start at left in
Figure 2.7 by hatching A. Because we want A∩B, we use a different hatching
for B so that A∩B is crosshatched. Then, to demonstrate the union with C, we
crosshatchC to match.

To exhibit A∩ (B∪C) in Figure 2.8, we again look within the parentheses.
We start by hatching B. Because we want B∪C, we use the same hatching on C
as on B. In contrast, we want to intersect this set with A, so we use a different
hatching on A so that the intersection is crosshatched.

The first step in showingA∪C is to hatchA at left in Figure 2.9. To showA∪C,
we use the same hatching onC as on A. Finally, what we want to exhibit is A∪C,
so we apply hatching on the remainder of the diagram and erase the previously
applied hatching.
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36 2. Sets and Logic

If you would like to practice using Venn diagrams, here are three online re-
sources that you will likely find helpful.

http://demonstrations.wolfram.com/InteractiveVennDiagrams/: This soft-
ware lets you click on parts of a two- or three-set Venn diagram to shade
them, and then it shows the set notation for the corresponding set and its
complement.

http://randomservices.org/random/apps/VennGame.html: This applet has
you click on a set-notation description and then shades the corresponding
regions of a Venn diagram.

http://math.uww.edu/~mcfarlat/143venn.htm: This “quiz” applet has 15
different symbolic descriptions of sets. You have to figure out which regions
on the corresponding Venn diagrams should be shaded, and mousing over a
nearby diagram will show the correct shading.

Check Yourself

There may seem to be a lot of these problems, but each one is quick to do.

1. List the elements of {z ∈ Z | −10 ≤ z < 10}.

2. Write the set {2,4,6,8,10} as a set of elements subject to a condition.

3. What is the cardinality of the set{duck, /0,{duck,egg},{duck,{duck,egg, /0}}}?

4. Is {3,6,13,67} ⊂ {67,4,53,5,13,6}?

5. List the elements of P({−1,5,20}).

6. Let A = {5,6,7,8,9,23}, B = {6,7,9,456,3.142}, and C ={7,4,8,2.3,π,6}. List
the elements of …

(a) … A∪B.
(b) … B∩C.
(c) … A\C.

7. Let D = {6.53,42,1,hat} and F = {0,−2}. List the elements of …

(a) … D×F .
(b) … F ×D.
(c) … D×D.
(d) … /0×F .

Copyrighted Material - Taylor & Francis

http://demonstrations.wolfram.com/InteractiveVennDiagrams/
http://randomservices.org/random/apps/VennGame.html
http://math.uww.edu/~mcfarlat/143venn.htm


2.3. Logic 37

8. Draw a visual representation of the set {1,2,3}×{4,5}.

9. Make a Venn diagram that represents {1,2,3,4,5,6}∩{4,5,6,7,8,9}.

10. Challenge:

(a) Invent three sets of your own.
(b) Find a different way to write each of the sets (for example, list the elements,

or describe what the elements have in common using set notation).
(c) Make a Venn diagram showing the relationships between your three sets.

2.3 Logic

Regular old English communication is not very precise, and many sentences have
more than one interpretation. The reason logical notation and language have de-
veloped is so that there can be no question as to what a statement is intended to
convey. The word “logic” is used to refer to an area of mathematics as well as a
type of thinking. In all of mathematics, we use logical thinking, and we use the
notation and language of the area of mathematics known as logic when less formal
communication does not serve us well.

The basic component of logical language is the statement, which is a sentence
that is either true or false. (To say that in a snooty way, a statement has a truth value
from the set {true, false}.) Here is a non-statement: “Be a blue-footed booby.”
That sentence is an imperative; likewise, questions are not statements. Similarly,
“{−3,0,2}\{0,1}” is not a statement because it lacks a verb; it is only an expres-
sion.

Example 2.3.1 (of statements). Here are a few statements.

The December 2009 issue of Mathematics Magazine has 78 pages.

32−6 = 16.

{1,5,7}∩{1,2,8}= {2}.

There is a one-to-one correspondence between four-digit binary strings and
the corners of a four-dimensional cube.

In logic, we don’t care about whether a statement is true or whether it is false.
(Reread Example 2.3.1 with this in mind!) Our intent will be to examine the re-
lationships between statements when they are combined in certain ways. We care
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38 2. Sets and Logic

about the roles that statements play rather than their validity or truth value. Thus,
logical language omits the details of statements by referring to them with variables
(usually P or Q or R), so that one can stick any statements into the templates that
result. This simultaneously makes logical language useful and more difficult to
read.

2.3.1 Combining Statements

There are just a few constructions used in logic to combine statements, called con-
nectives. They are as follows:

and is the verbal analogue to set intersection, so P-and-Q is only true if both
P and Q are true;

or is the verbal analogue to set union, so P-or-Q is true whenever either P
or Q is true;

not makes a true statement false and makes a false statement true; it gives a
statement its opposite meaning;

implies means that one statement is a consequence of the other; it is also
written as if-then and is called a conditional statement.

Example 2.3.2 (of a very compound statement). Consider the statement if x ∈ Z
and x < 2.7 then x is negative or x ∈ {0,1,2}. The implication combines the
substatements x ∈ Z and x < 2.7 and x is negative or x ∈ {0,1,2}. Each of those
has two substatements of its own; the and has substatements x ∈ Z and x < 2.7,
and the or has sub-statements x is negative and x ∈ {0,1,2}. Then, note that the
statement under consideration is true. (If we changed x ∈ {0,1,2} to x ∈ {0,1},
then it would be false.)

Example 2.3.3 (of ambiguity without parentheses). Consider the statement x ∈ Z
and x < 3.6 or x > 628.3. Does it mean (x ∈ Z and x < 3.6) or x > 628.3, or does
it mean x ∈Z and (x < 3.6 or x > 628.3)? The number x = 1,002.7 is described by
the first statement but not the second statement. The number x =−23 is described
by both statements. When we combine statements, we must be careful that the
resulting statements are unambiguous, and so we must use enough parentheses.

Now we will be completely precise: we will define each of the connective
terms using a truth table. As the name indicates, a truth table is a table that lists
the truth values of a statement. Here is a silly and useless truth table:
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2.3. Logic 39

P P
T T
F F

This can be read aloud as when P is true, P is true; when P is false, P is false.
See? It is indeed useless.

Wewill now define and (denoted∧), or (denoted∨), and not (denoted¬) using
serious and useful truth tables.

P Q P∧Q
T T T
T F F
F T F
F F F

P Q P∨Q
T T T
T F T
F T T
F F F

P ¬P
T F
F T

P Q P xor Q
T T F
T F T
F T T
F F F

Looking at these truth tables, we can see that there is a difference between the
usual English use of or and the formal logical use of or. After dinner, a host might
ask, “Would you like coffee or tea?” (The answer “neither” corresponds to the line
in the truth table where P and Q are both false.) The intent is to offer either coffee
or tea, not both—regular English or is actually exclusive or, abbreviated xor. We
have given a bonus truth table for xor above. Notice that the number of rows in
a truth table depends on the number of statements involved. We need 2 rows for
P, 4 for P,Q, 8 for P,Q,R, 16 for P,Q,R,S, and so forth, so that we can have all
possible combinations of true and false.

Example 2.3.4. We will make a truth table for (P∧Q)∨R.

P Q R P∧Q (P∧Q)∨R
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Sometimes we can ignore a few rows of a truth table: if we have particular state-
ments corresponding to P,Q,R, . . ., and we know that one of the statements is true
(or, likewise, false), then we only need the rows of the truth table corresponding
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40 2. Sets and Logic

to that truth (or falsehood). Let us suppose that Q stands for the statement the sun
is plaid. This is clearly false, so we could just write

P Q R P∧Q (P∧Q)∨R
T F T F T
T F F F F
F F T F T
F F F F F

Translating between logic and set notations. There is a correspondence
between set and logic notations, particularly when the logical statements are
about sets. The elements for which the statement P∧Q holds are those in
the set A = {x | P is true for x} and the set B = {x | Q is true for x}, and
together those elements form the set A∩B. Similarly, the elements for which
the statement P∨Q holds are those in the set A = {x | P is true for x} or the
set B = {x | Q is true for x}, and together those elements form the set A∪B. In
this sense, ∧ (or and) for statements corresponds to ∩ for sets, and ∨ (or or)
for statements corresponds to ∪ for sets. The analogy for the connective not
is a bit subtler; elements for which ¬P holds are those not in the set A = {x | P
is true for x}, but then where are they? For this to make sense, we must make
reference to a universe set U so that the elements not in A are those in A, the
complement of A relative toU .

Example 2.3.5 (of combining set and logic notations). Wecan describe the setA1∩
(A2 ∪A3) as {x | x ∈ A1 ∩ (A2 ∪A3)}. Via a set of equivalences, we can turn it into
another set:

{x | x ∈ A1 ∩ (A2 ∪A3)}= {x | x ∈ A1 and x ∈ (A2 ∪A3)}
= {x | x ∈ A1 and x ∈ (A2 or A3)}
= {x | (x ∈ A1 and x ∈ A2) or (x ∈ A1 and x ∈ A3)}
= {x | (x ∈ A1 ∩A2) or (x ∈ A1 ∩A3)}
= {x | (x ∈ A1 ∩A2)∪ (x ∈ A1 ∩A3)}
= (A1 ∩A2)∪ (A1 ∩A3).

Cool!

Next is implies (denoted by⇒). We read P ⇒ Q as “P implies Q” or as “If P,
then Q.” Implication can be seen from different perspectives; when we are writing
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a proof, P⇒Q needs justification, andwe considerP andQ as separate statements,
with⇒ standing in for the chain of argumentation that forms the bulk of a proof.
In a logical context, P ⇒ Q is a single statement that has truth values defined by
the following truth table.

P Q P ⇒ Q
T T T
T F F
F T T
F F T

This might seem a little weird. Or, more precisely, the last two lines of the
table might seem a little bit weird. How can P ⇒ Q be true if P is false? Consider
a practical and pleasant example, namely, the statement if you go to the party, then
you will get some candy. If you don’t go to the party, you don’t expect to get any
candy, but you might get some anyway from some other source. But it’s still true
that if you did go, you’d get candy, so even though you don’t go to the party, the
implication still holds; the promise made to you is true.

There are many equivalent ways of writing implication, which is lovely but
sometimes confusing. The statement P ⇒ Q is usually read as P implies Q or as
if P then Q but can also be read as P only if Q and P is sufficient for Q to hold.
On the other hand, Q ⇒ P can also be read as P if Q (see, if Q then …) and P is
necessary for Q. Let’s look again at the statement if you go to the party, then you
will get some candy. Here, P is you go to the party and Q is you will get some
candy. We could restate the statement as going to the party is sufficient for getting
some candy, or as you go to the party only if you get some candy, or also as getting
some candy is necessary when you go to the party.

Now, check this out: we can combine truth tables. (Note that arrows do work
the way they should, so P ⇐ Q means “If Q, then P.”)

P Q P ⇒ Q
T T T
T F F
F T T
F F T

P Q P ⇐ Q
T T T
T F T
F T F
F F T

P Q P ⇒ Q P ⇐ Q (P ⇐ Q)∧ (P ⇒ Q)

T T T T T
T F F T F
F T T F F
F F T T T
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It may not surprise you to learn that we abbreviate (P ⇐ Q)∧ (P ⇒ Q) as
P ⇔ Q and read that as “P if and only if Q.” This is a fairly common kind of
mathematical statement, used to show that two statements P and Q are logically
equivalent. (More generally, any time two compound statements have the same
truth tables, they are considered logically equivalent.) Some people are irritated
by having to write out the words “if and only if” and abbreviate the phrase to iff.
This statement type is called a biconditional. Additionally, even though we’re
not talking about proofs at the moment, it’s worth pointing out that if you want
to prove a biconditional statement you almost always have to split it into the two
implications and prove them separately. (It’s possible to string together a bunch of
biconditionals, but that’s hard. Don’t bother.) We often write (⇒) to indicate we’ll
prove that P implies Q and then write (⇐) to indicate we’ll prove that Q implies
P … and we start a new paragraph for each.

Advice. If you’re new to the mathematical uses of and, or, not, and implies, then
you might want to carry their truth tables around with you for a while until you
internalize them.

Logic is related to our goal of learning proof crafting because there we need
to produce rigorous and airtight reasoning. Well, using logical language certainly
does that! When we aren’t sure whether we’re being rigorous enough, logic is
here for us to fall back on. However, we don’t want to resort to formal logic too
often because it kills ease of communication. Plus, logical language is devoid of
context—it doesn’t care whether a given statement is true or false, but we do. And
we want to convince others of that truth or falsehood.

On the other hand, logical notation is used in writing computer code, espe-
cially in creating conditionals (that’s code-speak for if-then statements). For ex-
ample, If[ (a==b || a==0) && c < 5, c, 0] says if a = b or a = 0, and if c is less
than 5, then return the value of c; otherwise, return 0. It may seem like the major
use of logic for computer scientists is knowing the notation so that code can be
written, but it is important to understand logical equivalence so that code can
be refined for speed increases. Hardware designers use circuitry that corresponds
to logical connectives, sominimizing their number can have positive consequences
for power consumption and manufacturing cost.

2.3.2 Restriction of Variables via Quantifiers

One can make—and in fact we have already made—statements that include vari-
ables, such as k is even or x2 −3 = 1. In these cases, whether or not the statement
is true depends on what value the variable (here, k or x) has. The statement k is
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even is true only when k is even (duh) and x2 − 3 = 1 is true only when x = 2
or x = −2 (slightly less duh). Notice that statements always have verbs in them
(is this a “duh”?) so they differ from functions like k or x2 − 3 that merely pro-
duce numbers. Sometimes people will refer to a variable-including statement as
P(k) instead of just P; we won’t do that here because it confuses us and, therefore,
potentially you as well.

The quantifiers “for all” (denoted ∀, which is sometimes colloquially referred
to as “the upside-down A” by students who forget what it stands for) and “there
exists” (denoted ∃, which is similarly sometimes colloquially referred to as “the
backwards E”) restrict the variables referred to in a statement. We can rewrite our
two example variable statements using these quantifiers.

Example 2.3.6. The statement for all even k, k is even is certainly true, though for
all k, k is even is false and there exists k such that k is even is true. Similarly, for
all x, x2 −3 = 1 is false, whereas there exists x such that x2 −3 = 1 is true.

We can prove that last statement. Consider x = 2 and note that 22 −3 = 1, so
there does exist an x such that x2 − 3 = 1. This technique generalizes. Existence
proofs can be done simply by giving an example: you’ve shown that the desired
object exists! But this is the only time an example works as a proof.

Sometimes it would be more convenient if people used quantifiers in ordinary
English. For example, in the common statement every duck wants a cookie, the
speaker could mean that given any duck, it desires some cookie (∀ d ∈Ducks,∃ c∈
Cookies such that d wants c), or the speaker could mean there exists a cookie that
every duck wants (∃ c ∈ Cookies such that ∀ d ∈ Ducks,d wants c). Notice that
this exemplifies not only the vagueness of English but that placing quantifiers in
different orders changes the meaning of a statement. So be careful!

Example 2.3.7. Consider the statement ∀n ∈ 2Z,∃ a,b ∈ Z such that a = 2k1+ 1,
b = 2k2 +1, and n = b−a. This basically says that for every even integer, there
exist two odd integers such that the even integer is the difference of the odd inte-
gers. This is a true statement; given any even integer n, the integer a = n−1 will
be odd, as will b = n−1+n = 2n−1, and b−a = 2n−1− (n−1) = n.

If we change the order of the quantifiers, we may obtain ∃ a,b ∈ Z such that
a = 2k1 + 1,b = 2k2 + 1, and such that ∀n ∈ 2Z,n = b− a. This says that there
exist two odd integers such that for every even integer, that even integer is the
difference of the two odd integers. This is a false statement; no matter which two
odd integers a,b are considered, they have a single difference b− a that is even.
Any other even integer, such as b−a+2, cannot be the difference of a and b, so the
statement does not hold for most even integers (let alone for every even integer).
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2.3.3 Negation Interactions

Even professional mathematicians sometimes find negating statements to be some-
what challenging. To be safe, take the English-mathematics version of a statement,
substitute quantifiers (but don’t go to full logic-speak), and then use the rules we
will see here.

Example 2.3.8. ¬(All ducks like cookies) is logically equivalent to there exists a
duck who does not like cookies. Unsurprisingly then, ¬(some duck likes cookies)
is logically equivalent to all ducks dislike cookies. More mathematically, ¬(for all
integers k, k = 2.5) is equivalent to there exists an integer k such that k ̸= 2.5.

Basically, if you have the statement¬(∀ stuff), that converts to ∃¬(stuff), and if
you have the statement ¬(∃ stuff), that converts to ∀¬(stuff). At least this reduces
the problem of negating to a shorter statement, though (stuff) might have some
more quantifiers hidden within it.

Example 2.3.9 (of wacky negations). Let’s negate a couple of statements. Con-
sider for all ducks, there exists a cookie such that a tree weeps. In logic notation,
this becomes ∀ ducks, ∃ a cookie such that a tree weeps. Thus, the negation pro-
ceeds as ¬(∀ ducks, ∃ a cookie such that a tree weeps), which becomes ∃ a duck,
¬(∃ a cookie such that a tree weeps), and then ∃ a duck, such that ∀ cookies ¬(a
tree weeps), ending with there exists a duck such that for all cookies, no tree weeps.
Consider now there exists an egg such that it cracks for all cooks. Its negation is
slightly simpler. We translate first to logical notation to achieve ∃ an egg, such that
it cracks ∀ cooks. Its negation is ¬(∃ an egg, such that it cracks ∀ cooks), which
becomes ∀ eggs, ¬(∀ cooks it cracks), then ∀ eggs, ∃ cooks¬(it cracks) and finally
∀ eggs, ∃ cooks it does not crack. This doesn’t make much grammatical sense, so
we reword it to read for any egg, there exists a cook who cannot crack it.

Negation plays nicely with other connectives, as follows.

DeMorgan’s laws (logic version). (¬P)∨(¬Q) is logically equivalent to¬(P∧
Q), and (¬P)∧ (¬Q) is logically equivalent to ¬(P∨Q).

Example 2.3.10. No ducks and no chickens is the same as no ducks or chickens.

People often think DeMorgan’s laws are pretty obvious, but we have stated
them here for completeness (as well as because sometimes they are needed when
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statements P and Q are elaborate). We will investigate another form of DeMor-
gan’s laws in Section 2.4.

Negation and implication. The statement P ⇒ Q is logically equivalent to
the statement ¬Q ⇒¬P.

Definition 2.3.11 (of implication relatives). We sometimes call P ⇒ Q the original
statement and always call ¬Q ⇒ ¬P the contrapositive statement. Along these
lines, Q ⇒ P is the converse statement, and ¬P ⇒ ¬Q is the inverse statement,
and also the contrapositive of the converse statement. All four of these statements
are known as implications.

Notice that an implication and its converse are usually not both true at the
same time. For example, if I am at the combination Pizza Hut and Taco Bell, then
I am at the Pizza Hut is always true, but if I am at the Pizza Hut, then I am at the
combination Pizza Hut and Taco Bell is often false.

Should you wish to practice the use of logic notation, logical thinking, and
truth tables, here are some resources.

http://demonstrations.wolfram.com/PropositionalLogicPuzzleGenerator/:
You are shown some polygons along with a list of statements in logic no-
tation. (The logic notation is not quite the same as used in this book, but
there is a help option that explains it.) Each statement is marked as true
or false. The challenge is that the polygons are not labeled but referred to
in the statements as A, B, C, etc., and you get to match the labels with the
polygons.

http://demonstrations.wolfram.com/LogicWithLetters/ and
http://demonstrations.wolfram.com/2DLogicGameWithLetters/ and
http://demonstrations.wolfram.com/LogicWithLogicians/: These puzzles do
not use formal logic notation but give practice in logical thinking.

http://www.cs.utexas.edu/~learnlogic/truthtables/: After typing in a logi-
cal statement, you are given a corresponding blank truth table to fill in—it
just has headers and a few beginning columns. You can choose whether to
have your work checked entry by entry, or when you’re done filling in the
table. Warning: this applet uses a single arrow for implies instead of the
double arrow we use in this text.
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Check Yourself

These problems take less time to do than they at first appear to take.

1. Let P represent the statement Ximena is pretty, Q represent Ximena is quizzical, and
R represent Ximena is a rugby player. Write (P∨Q)∧R as an English sentence.

2. WriteMiyuki does not like kumquats, but ze likes pickles or daikon in logic notation.

3. Rewrite every cat drinks beer as an implication.

4. Challenge: Come up with two examples of mathematical statements and two ex-
amples of mathematical non-statements.

5. Using truth tables, verify that the converse of a statement is not logically equivalent
to the original statement. (Suggestion: make the columns P, Q, P ⇒ Q, andQ ⇒ P,
and compare the last two columns.)

6. Write the contrapositive of the statement if the maple tree is orange, then the scis-
sors are closed.

7. Using truth tables, verify that the statement if I am at the combination Pizza Hut
and Taco Bell, then I am at the Pizza Hut is always true.

8. Negate the statement there exists an even number n such that n < 10.

2.4 Try This! Problems on Sets and Logic

These problems are intended to be discussed with peers. Some students find these
problems quite challenging and others find them easy. Your eventual success in
discrete mathematics is unlikely to be related to your feelings about this particular
collection of problems.

1. What is the cardinality of {0,cat,{dog},{2.1,6}}? List all its subsets. (How
many should there be?)

2. Formally negate the statement “You can fool all of the people all of the time.”

3. List several elements of the set E = {x ∈Z | 1
2 x ∈Z} and then give a simpler

description of E.

4. Here are DeMorgan’s laws, given in logic notation: ¬(P∨Q) is logically
equivalent to (¬P) ∧ (¬Q) and ¬(P ∧ Q) is logically equivalent to
(¬P)∨ (¬Q).
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(a) Express DeMorgan’s laws using set notation.
(b) Prove DeMorgan’s laws using truth tables.
(c) Prove DeMorgan’s laws using Venn diagrams.
(d) Prove DeMorgan’s laws using set-element notation. (Suggestion: use

double-inclusion.)
(e) Can you state DeMorgan’s laws for three or more sets?
(f) Does that give you any ideas for stating, using logic notation, DeMor-

gan’s laws for three or more statements?

5. LetA be the set of even numbers from−6 to 6 (inclusive), and letB be the set
of odd numbers from −6 to 6 (inclusive), living in the universe of integers
from −10 to 10 (inclusive).

(a) List the elements of B.
(b) What is A∪B?
(c) Describe A\B using fewer symbols.

6. Is ¬(P ⇒ Q) logically equivalent to P∧¬Q?

7. Let Ak = {0,1, . . . ,k}. What is
∪n

i=1 Ai? How about
∩n

i=0 Ai?

8. Draw a Venn diagram representing (A∩B)∩ (A∪C).

9. Is it true that ∃m ∈ Z | ∀n ∈ Z,m = n+5?

2.5 Proof Techniques: Not!

After all that boring reading, you probably are sighing at the thought of dealing
with more material in this chapter. But fear not! This is shorter and more interest-
ing (really!).

We already know how to do a straightforward proof, by directly proving an
implication P ⇒ Q: we assume P is true and then deduce that Q is therefore true.
We already know one way to disprove P ⇒ Q: find a counterexample. Now we
will use a single fact from logic to burst wide open the clouds surrounding proof
and shine glowing rays of truth on the situation.

Remember from Section 2.3.3 that the contrapositive of a statement is logi-
cally equivalent to the statement itself. That means we could prove (¬Q)⇒ (¬P)
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instead! This is but a tiny step removed from doing a direct proof: here we assume
¬Q and deduce that ¬P is therefore true. In fact, you can use the template from
Section 1.4 (page 12) by simply inserting ¬Q for P and inserting ¬P for Q.

Example 2.5.1. Let n,m ∈ N. We will prove that if n ·m is odd, then an n×m
grid cannot be tiled with dominoes. (A grid is tiled if every square is covered
exactly once.) The contrapositive of this statement is if an n×m grid can be tiled
with dominoes, then n ·m is not odd. So, suppose an n×m grid can be tiled with
dominoes. There are a total of n ·m squares, and every domino covers two squares.
Therefore, the tiling uses n·m

2 dominoes, and so n ·m must be even. Therefore, n ·m
is not odd.

There is a related technique we can use—it is called proof by contradiction and
it proceeds by assuming the statement we want to prove is false and obtaining a
logical problem of some kind. For an oversimplified example, if we want to prove
that P ⇒ Q, we would assume P is true and Q is false, and if we can show that Q
false implies P false, then this contradicts our assumption that P was true. (Read
that aloud three times…) You may astutely notice that this is actually proving the
contrapositive. In this case, we might start by drafting a proof by contradiction,
continue by discovering that we’ve proven the contrapositive, and write the clean
version of the proof as a contrapositive proof.

More commonly when using proof by contradiction, the P in P ⇒ Q is a com-
pound statement containing several conditions (e.g., if k is an integer, ℓ is even,
and the moon is green), and we will only contradict one part of P rather than prov-
ing the negation of P as a whole (e.g., showing that the moon is not green and thus
deriving a contradiction).

Less common but still useful is assumingQ is false and deriving a contradiction
unrelated to the statements under consideration—for example, showing that Q is
false implies that 2 is an odd number.

Template for a proof by contradiction:

1. Restate the theorem in the form if (conditions) are true, then (conclu-
sion) is true.

2. On a scratch sheet, write suppose not. Then write out (conditions) and
the negation of (conclusion).
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3. Try to simplify the statement of ¬(conclusion) and see what this might
mean.

4. Attempt to derive a contradiction of some kind—to one ormore of (con-
ditions) or to a commonly known mathematical truth.

5. Repeat attempts until you are successful.

6. Write up the results on a clean sheet, as follows.

Theorem: (State theorem here.)
Proof: Suppose not. That is, suppose (conditions) are true but
(conclusion) is false.
(Translate this to a simpler statement if applicable. Derive a con-
tradiction.)
Contradiction!
Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)

Example 2.5.2. We will prove that there are infinitely many powers of 2, i.e.,
20,21,22, . . . . Suppose not. Then there are finitely many powers of 2; let the num-
ber of them be n. Therefore, we can sort them in increasing order of size. Consider
the largest of these, k. Then 2k is not one of the n powers of 2; it is larger than
any of them because 2k > k. Therefore, there are at least n+1 powers of 2, which
contradicts the supposition that there were only n of them.

Contradiction can also be used to disprove false statements. In this case, as-
sume the statement is true and derive a contradiction.

Check Yourself

1. Prove that if n2 is odd, then n is odd. (Suggestion: try proving the contrapositive.)

2. Prove that if there are ten ducks paddling in four ponds, then some pond must con-
tain at least three paddling ducks. (Suggestion: try contradiction.)

3. Challenge: Develop your own statement that can be proved by contradiction.
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2.6 Try This! A Tricky Conundrum

Consider the following argument: You must learn about sets or learn about logic
if you go on to the next chapter. You did not learn about sets and did not go on to
the next chapter. Therefore, you must not have learned about logic.

1. Decide for yourself whether or not the conclusion is correct (that you must
not have learned about logic). Make a note of this decision.

2. In a small group, exchange your decisions and share your reasoning (justify
your decisions). Please collaborate from here on out.

3. Let’s check our logic formally.

(a) Dissect the first sentence and find three statements within it that you
can label with letters.

(b) Turn the first sentence into an expression using formal logic symbols.
(c) Express the second and third sentences in formal logic symbols, too.
(d) Make a (big) truth table that includes parts for each of the sentences

and for the argument as a whole.

4. Compare the result of this truth table to your original idea. If they agree,
explain how they are compatible. If they do not agree, find the source of the
error.

5. If you have some time left over, work on these proofs.

(a) For n ∈ N, prove that if n3 +6n2 −2n is even, then n is even.
(b) Let x ∈ R. Show that if x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.
(c) Prove that an 8× 8 chessboard with a square missing cannot be tiled

with dominoes.
(d) Prove that for n odd, an n×n chessboard missing its lower-right-hand

corner can be tiled with dominoes.

2.7 Additional Examples

Example 2.7.1 (of manipulating set notation). Let S1 = {q + 1 ∈ Z | q = 2k for
some k ∈ Z}, and let S2 = {2r+ 5 | r ∈ Z}; we want to show that S1 = S2. First,
we will show that S1 ⊂ S2. Let s be any element of S1. Then s = 2k+1 for some
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k ∈ Z. If we let r = k−2, then s = 2k+1 = 2(r+2)+1 = 2r+5, where r ∈ Z,
and therefore s ∈ S2. Now, we will show that S2 ⊂ S1. Let t be any element of
S2. Then t = 2r+ 5, where r ∈ Z. Setting k = r+ 2, we have that t = 2r+ 5 =
2(k− 2)+ 5 = 2k+ 1, where k ∈ Z, and therefore t ∈ S1. Because S1 ⊂ S2 and
S2 ⊂ S1, we conclude that S1 = S2.

Example 2.7.2 (of Venn diagrams). We will exhibit (A∩B)∪ (A∩B) using Venn
diagrams.

We begin by looking within the parentheses. The first set of parentheses con-
tains A ∩ B. We start at left in Figure 2.10 by hatching A. Because we want
A ∩ B, we use a different hatching for B and then combine these so that A ∩ B
is crosshatched.

A B A B A B

Figure 2.10. At left, A; in the middle, B; at right, A∩B.

The second set of parentheses contains A∩B. We start at left in Figure 2.11
by hatching A. Because we want A∩B, we use a different hatching for B and then
combine these so that A∩B is crosshatched.

A BB A BA

Figure 2.11. At left, A; in the middle, B; at right, A∩B.

Finally, we combine these sets. We start at left in Figure 2.12 by showing
A∩B, and in the middle we show A∩B. Because we want (A∩B)∪ (A∩B), we
display both at once using the same type of hatching.
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A B A B A B

Figure 2.12. At left, A∩B; in the middle, A∩B; at right, (A∩B)∪ (A∩B).

Example 2.7.3 (of breaking down a very compound statement). Consider the state-
ment if x∈Z and x>−7.2 then x is positive or x∈{0,−1,−2,−3,−4,−5,−6,−7}.
The largest logical substructure is the if-then implication, which combines the sub-
statements ⟨x ∈ Z and x >−7.2⟩ and ⟨x is positive or x ∈ {0,−1,−2,−3,−4,−5,
−6,−7}⟩. Each of those has two substatements of its own; the and has substate-
ments ⟨x ∈ Z⟩ and ⟨x > −7.2⟩, and the or has substatements ⟨x is positive⟩ and
⟨x ∈ {0,−1,−2,−3,−4,−5,−6,−7}⟩.

Example 2.7.4 (of evaluating statements with truth tables). Here is an argument
someone might make: The jelly bean is blue. Blue things are tasty. Therefore,
the jelly bean is tasty. Is this argument correct? We will represent jelly bean as J,
blue as B, and tasty as T . Then the jelly bean is blue is really if it is a jelly bean,
then it is blue or J ⇒ B. We can similarly write the other statements as B ⇒ T and
J ⇒ T . Surely, if J ⇒ B and B ⇒ T , then J ⇒ T , right? Let’s see…

J B T J ⇒ B B ⇒ T (J ⇒ B)∧ (B ⇒ T ) J ⇒ T ((J ⇒ B)∧ (B ⇒ T ))⇒ (J ⇒ T )

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F F T
F F T T T T T T
F F F T T T T T

Yup, it’s all true! Literally, all entries in the last column of the truth table are
T—this means the implication, and therefore the argument, is correct.

Example 2.7.5 (of quantifier order mattering). Let d,e ∈ Z. Consider the state-
ment ∀e,∃d such that d < e. This true statement basically says that given an
integer, we can find a smaller one. For example, given e = −32, we can find
d =−4,389.
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If we change the order of the quantifiers, our new statement is ∃d,∀e such that
d < e. This statement says there is some integer such that every other integer is
larger. That’s not true!

(If you are (or have been) a student of calculus, compare this example to the
formal (ε-δ ) definition of limit.)

Example 2.7.6 (of wacky negations). Consider the statement for all futons, there
exists a duck such that stripes are in fashion. In logic notation, this becomes ∀
futons, ∃ a duck such that stripes are in fashion. Thus, the negation proceeds as
⟨¬(∀ futons, ∃ a duck such that stripes are in fashion)⟩; ⟨∃ a futon, ¬(∃ a duck
such that stripes are in fashion)⟩; ⟨∃ a futon, such that ∀ ducks ¬(stripes are in
fashion)⟩; … and finally, ⟨there exists a futon such that for all ducks, stripes are
not in fashion⟩.

2.8 Where to Go from Here

Commandment. Go back and reread the material on proof in Section 1.4.
And (grin) reread Section 3 on how to read mathematics.

We will apply the concepts introduced in this chapter throughout the text, but
logic will be particularly important in Chapter 5 when we study the construction
of algorithms. The type of basic set theory introduced in this chapter is pervasive
in and essential for all of mathematics and has a somewhat different flavor when
used in courses based in continuous as opposed to discrete mathematics, such as
real analysis and topology. If after working through thematerial in this chapter, you
want to see more examples and have more elementary exercises to work, consult
Book of Proof by Richard Hammack [12].

Venn diagrams are a source of much interesting investigation. If you try to
draw a Venn diagram that represents four or more sets, you will quickly run into
trouble showing all possible intersections. For a good survey of approaches to this
problem, see http://www.combinatorics.org/Surveys/ds5/VennEJC.html, which
also tells you more than you ever wanted to know about Venn diagrams—and
includes a zillion references.

Set theory and logic are subfields of mathematics on their own, so there is a
great deal to learn about each of these. (Sometimes they are lumped together as
foundations of mathematics.) We will address a small bit of set theory in Chap-
ter 15. You can take upper-level undergraduate courses on set theory and on logic;
if you wish to self-study, Sweet Reason: A Field Guide to Modern Logic by Tom
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Tymoczko and Jim Henle and An Outline of Set Theory by Jim Henle should be
the resources you use first.

Within mathematics, set theory and logic are small subfields but are quite ac-
tive. For example, the Association for Symbolic Logic sponsors sessions of re-
search talks at national mathematics conferences. One famous result in the area is
Gödel’s incompleteness theorem, which basically says that in any logical system
there are statements that cannot be proven to be true or shown to be false. Classical
problems in foundations of math were often related to what set of axioms (assump-
tions or rules) is needed, or is best, for various statements to be true. Modern logic
research involves making formal abstract models of other parts of mathematics in
order to prove more powerful theorems.

Credit where credit is due: The first activity in Section 2.6 was adapted from an example
in [8]; the first puzzle and the project in Section 2.10 were adapted from exercises in [1].
The example on page 45 references a song by Das Racist (find it on YouTube). Problem 12
in Section 2.12 includes a phrase from “Song for a Future Generation” by the B-52s. Four
problems in the latter part of Section 2.12 were donated or inspired by Heather Ames
Lewis.

2.9 Chapter 2 Definitions

set: A mathematical object that contains
distinct unordered elements. There may
be finitely many or infinitely many ele-
ments in a set.

element: Elements can be words, objects,
numbers, or sets (i.e., basically any-
thing).

empty set: The set with no elements. Also
called the null set.

null set: The empty set.
cardinality:The number of elements in a set.
size: The cardinality of a set.
subset: A is a subset of B if every element
of A is also an element of B.

proper subset: A is a proper subset of B
there is at least one element in B that is
not an element of A.

power set: The set of all subsets of A, de-
noted P(A).

set complement: If A ⊂ B, then A = B\A,
all the elements of B that are not in A, is
called the complement of A relative to B.

union: The union of sets A and B is a set
A∪B containing all the elements in A and
all the elements in B (with any duplicates
removed). The union of many sets Ai
contains all elements in the Ai (with any
duplicates removed).

intersection: The intersection of sets A and
B is a set A∩B containing every element
that is in both A and B. The intersection
of many sets Ai contains only elements
that are in all of the Ai.

disjoint: Two sets A and B are called dis-
joint if A∩B = /0.
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Cartesian product: The Cartesian product
of sets A and B is a set A × B contain-
ing all possible ordered pairs where the
first component is an element of A and
the second component is an element of
B. In other words, A×B = {(a,b) | a ∈
A and b ∈ B}. Likewise, the Cartesian
product A1 × A2 × ·· · × An is the set of
all n-tuples (a1,a2, . . . ,an) where ai ∈
Ai. The name Cartesian is derived from
René Descartes (1596–1650).

Venn diagram: A picture in which a big
box denotes the universe of things under
consideration and blobs represent sets.
Venn diagrams are used to show relation-
ships between sets. Named after John
Venn (1834–1923), whowrote influential
works on logic and probability/statistics.

statement: A sentence that is either true or
false; it is the basic component of logical
language. (To say that in a snooty way,
a statement has a truth value from the set
{true, false}.)

connective: A logical construction used to
combine statements.

truth table: A table that lists the truth val-
ues of a statement.

and: The verbal analogue to set intersec-
tion, so P-and-Q is only true if both P and
Q are true; denoted∧. The corresponding
truth table is shown in Figure 2.13.

or: The verbal analogue to set union, so P-
or-Q is true whenever either P or Q is
true; denoted ∨. The corresponding truth
table is shown in Figure 2.13.

xor: “Exclusive or” means that one state-
ment or the other is true, but not both.
The corresponding truth table is shown in
Figure 2.13.

not: This gives a statement its opposite
meaning; denoted by ¬, it makes a true
statement false and makes a false state-
ment true. The corresponding truth table
is shown in Figure 2.13.

implies: This means that one statement is
a consequence of the other; denoted ⇒.
The corresponding truth table is shown in
Figure 2.13.

if-then: A statement involving implication.

conditional: An if-then statement.

if and only if: “P if and only if Q” is de-
noted P ⇔ Q and means that the state-
ments P and Q are logically equivalent.
The corresponding truth table is shown in
Figure 2.13.

DeMorgan’s laws: The logical rules for
how not interacts with or and and.
Named after Augustus DeMorgan
(1806–1871).

iff: If and only if.

biconditional: An if-and-only-if state-
ment.

quantifier: Quantifiers such as “for all” and
“there exists” restrict the variables re-
ferred to in a statement.

implication:A statement of the form P ⇒ Q.

contrapositive: WhenP⇒Q is the original
statement,¬Q⇒¬P is the contrapositive
statement.

converse: When P ⇒ Q is the original
statement, Q ⇒ P is the converse state-
ment.

inverse statement: When P ⇒ Q is the
original statement, ¬P ⇒ ¬Q is the in-
verse statement.
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P Q P∧Q
T T T
T F F
F T F
F F F

P Q P∨Q
T T T
T F T
F T T
F F F

P Q P xor Q
T T F
T F T
F T T
F F F

P ¬P
T F
F T

P Q P ⇒ Q
T T T
T F F
F T T
F F T

P Q P ⇔ Q
T T T
T F F
F T F
F F T

Figure 2.13. The truth tables for and, or, xor, not, implies, and if and only if.

2.10 Bonus: Truth Tellers

One application of logical thinking is the class of truth-teller puzzles. The basic
format for these is that some statements are made, and each speaker either always
tells the truth or always lies. Your assignment is to figure out what’s going on
(either who is telling the truth or what the truth of the matter is). Such puzzles can
be unraveled using truth tables or simply by using logical reasoning. Here we will
give a few examples of how to use truth tables to resolve these puzzles.

Suppose you meet some ducks. It is known that a given duck either always
tells the truth or always lies. (This is theorized to be the origin of the common
expression “Ducks usually lie.” See [21].)

Example 2.10.1. One duck says, “I am a truth-telling duck.” Another duck quacks,
“I am a lying duck.” Can we determine anything about either duck’s nature? Let
us make a truth table to investigate. Let D represent the duck; it gets the value T if
it is a truth-telling duck and the value F if it is a lying duck. The statement “D tells
the truth” is true exactly when D is a truth-telling duck; the statement “D lies” is
true exactly when D is a lying duck.

D D tells the truth D lies
T T F
F F T

That’s the unvarnished truth of the situation. But, of course, a lying duck lies
(duh)… and our truth table doesn’t take that into account. So we modify the truth
table to reveal what each type of duck would say in each situation—we swap T
and F for the lying duck:
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D D tells the truth D lies
T T F
F /F T /T F

We can now see that either sort of duck would say that it tells the truth, so we
can determine nothing about the first duck. We also see that neither sort of duck
would say that it lies, so the second “duck” must not be a duck at all.

Example 2.10.2. A pair of ducks approaches. One quacks, “Exactly one of us is
a liar.” The other says, “Both of us tell the truth.” Huh! What is going on? Let’s
look at a truth table.

D1 D2 D1 xor D2 lies D1 ∧D2 tell the truth
T T F T
T F T F
F T T F
F F F F

Again, we modify the table to account for what lying ducks say, and remember
that D1 made the statement in the third column, whereas D2 made the statement in
the fourth column:

D1 D2 D1 xor D2 lies D1 ∧D2 tell the truth
T T F T
T F T /F T
F T /T F F
F F /F T /F T

Interestingly, we can only conclude that D2 is a liar—the statements are consistent
whether D1 is a truth teller or a liar!

Puzzle 1. Amy finds a present on hir doorstep. Ze suspects it was left by either
Rachel, Tess, or Nicol. Ze confronts each one.

Rachel: Not me! Tess knows you, and Nicol is your BFF.
Tess: I don’t know you, and besides, I’ve been on vacation in Europe
for the last several weeks. I didn’t leave you a present.
Nicol: It wasn’t me, but I did happen to see Tess and Rachel walking
along the river together last week. It must have been one of them.
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Let us assume that the present-giver is lying and the other two individuals are
telling the truth. Who left Amy the present?

Puzzle 2. In Math Curse [22], the main character has a strange experience at
dinner. “While passing the mashed potatoes, Mom says, ‘What your father says
is false.’ Dad helps himself to some potatoes and says, ‘What your mother says is
true.’ … Can that be true?” Figure out what is going on here… and if you have
not already done so, readMath Curse. Your local public library surely has it in the
picture-book section.

Project: You are walking about and see some tasty-looking berries. You also
meet a duck, which, like any duck, always lies or always tells the truth. You
may ask the duck exactly one question. Explain why you will not definitely
learn whether the tasty-looking berries are safe to eat by asking any of the
following questions:

Are these tasty-looking berries safe for a human to eat?

Do you tell the truth?

Do you tell the truth and are these tasty-looking berries safe for a human
to eat?

Do you tell the truth or are these tasty-looking berries safe for a human
to eat?

If you tell the truth, then are these tasty-looking berries safe for a human
to eat?

If these tasty-looking berries are safe for a human to eat, then do you
tell the truth?

Do you tell the truth if and only if you lie?

Design a single question to ask the unknown duck such that the answer will
tell you whether the tasty-looking berries are safe to eat.

If you want to play with many, many, many more puzzles of this sort, consult a
book by Raymond Smullyan. He has written lots of logic puzzle books—perhaps
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the first was What Is the Name of This Book?—and they are easy to find. If you
prefer an electronic playground, here are a few sources of logic puzzles:

http://demonstrations.wolfram.com/KnightsKnavesAndNormalsPuzzleGenerator/,
http://demonstrations.wolfram.com/KnightsAndKnavesPuzzleGenerator/,
http://demonstrations.wolfram.com/AnotherKnightsAndKnavesPuzzleGenerator/.

All generate collections of statements. You decide which speakers are knights
(who tell the truth) and which are knaves (who lie). The software has options
to translate each statement into logic notation and to reveal the solution to each
puzzle.

2.11 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 595. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 7 and 9.

1. On an October 2014 visit to the CVS
Minute Clinic, the check-in kiosk asked
the question, “If you have a copay for
today’s visit, will you be paying for it
with a credit or debit card?”

(a) Identify the formal logic quantifiers
and structure in this question.

(b) The visit in question was for a flu
vaccine, which does not require a
copay. The kiosk gave options of
Yes and No. How should the visitor
have answered?

(c) Can you find a simpler way to
word the question clearly? (In other
words, what should the kiosk ques-
tion ask?)

2. There was a recent campaign slogan
heard on the radio: Not just Blue Cross
Blue Shield of Massachusetts, but Blue
Cross Blue Shield … of you. Why is
this mathematically nonsensical for res-
idents of Massachusetts?

Q

R

S

Figure 2.14. A Venn diagram of mys-
tery.

3. Consider the Venn diagram in Figure
2.14.

(a) Express the shaded area as a set
using unions, intersections, and/or
complements of the sets Q, R, and S.

(b) LetQ= {k ∈Z | |k| ≤ 10}, R= even
numbers, and S = {n∈N | n is a per-
fect square}. List the elements of the
shaded area.
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4. Let A = multiples of 4, and B = multi-
ples of 6. Write A∩B as a set in the form
{ sets | conditions }.

5. Negate the statement ∀ n ∈ Z,∃ y ∈ 2N
such that n = y · k for some k ∈ Z. Is
either the statement or its negation true?

6. Prove that k ∈ Z is positive if and only
if k3 is positive.

7. Make a truth table for ¬(P ∧ Q) ∧
((P ∨ Q) ∧ R). Can you express this

statement (henceforth referred to as
aaaaaa!) more simply?

8. Let A = {0,1,2} and B = {1,3,5,7}.
(a) List the elements of

(A×B)∩ (B×A).
(b) List the elements of

(A\B)× (B\A).
9. Show that

(A×B)∪ (C×B) = (A∪C)×B.
10. Show that {2k | k ∈ N}∪{4k+ 1 | k ∈

W}∪{4k+3 | k ∈W}= N.

2.12 Problems about Sets and Logic

1. List the elements of {n ∈ N | n2 = 4}.

2. An excerpt from a 2010Blue Cross Blue
Shield survey: “Do not include care
you got when you stayed overnight in a
hospital. Do not include the times you
went for dental care visits … In the last
12 months, not counting the times you
needed care right away, how often did
you get an appointment for your health
care at a doctor’s office or clinic as soon
as you thought you needed?” What type
of needed care is the question asking
about? What is excluded? Can you
find a simpler way to word the question
clearly?

3. Another excerpt from a 2010Blue Cross
Blue Shield survey: “In the last 12
months, how often did your doctor or
health provider discuss or providemeth-
ods and strategies other than medica-
tion to assist you with quitting smoking
or using tobacco?” Analyze the connec-
tives in the question. Are any or all of

them used in the same way we use them
in mathematics?

4. Compute |{z ∈ Z | z >−10,z3 < 0}|.
5. Make a truth table for P∧ (¬P∨Q).

6. Write the set {1,2,4,8, . . .} without us-
ing dots.

7. Use Venn diagrams to indicate the even
numbers less than ten.

8. Let A = {1,2,3} and B = {2,3,4}. List
the elements of …

(a) … (A×A)∩ (B×B).
(b) … (A×B)∪ (B×A).
(c) … A× (A\B).

9. Using truth tables, verify that the contra-
positive and original statement are logi-
cally equivalent.

10. Again using truth tables, verify that the
converse and inverse statements are log-
ically equivalent.

11. Give a counterexample to the statement
|A∪B|= |A|+ |B|.
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12. Is the statement if the moon is made of
green cheese, then Aristotle is the Pres-
ident of Moscow true or false?

13. Draw a Venn diagram that indicates
(A∪B)\C.

14. Decide whether or not it is true that
(A×B)∪ (C×D) = (A∪C)× (B∪D).
If true, give a proof. If false, give a
counterexample.

15. Show that if A and B are sets, then if
A\B = /0, then B ̸= /0 (unless A = /0).

16. Suppose R is false but that (P ⇒ Q)⇔
(R∧S) is true. Is P true or false? What
about Q?

17. Could we rewrite the conditional
((c > 5 && b == a) || c >= 5)
in a simpler way? If so, what is it? (Sug-
gestion: use a truth table.)

18. Write this in English: ∀k ∈ 3Z,∃S ⊆
N, |S|= k. (Is it true?) What is the nega-
tion of this statement? (Is the negation
true?)

19. Prove that n ∈N is odd if and only if n2

is odd.
20. Prove that Z = {3k | k ∈ Z}∪ {3k + 1

| k ∈ Z}∪{3k+2 | k ∈ Z}.
21. Prove that there are infinitely many

prime numbers. (Suggestion: try using
contradiction.)

22. Show that n ∈ N is not divisible by 4 if
and only if the binary representation of
n ends in 1 or in 10. (Suggestion: use
the contrapositive.)

23. Express P ⇒ Q using ¬ and ∨ but not
⇒. (Suggestion: play around with truth
tables.)

24. Some of the pigeonhole principle proofs
in Chapter 1 are secretly proofs by con-
tradiction or proofs that use the contra-
positive. Which ones?

25. On route I-91 near Springfield, MA,
there was once a sign that said “WASH
YOUR BOAT” (pause) “AFTER USE”
(pause). Explain why you are comply-
ing with the sign if you do not own a
boat. How does this relate to truth ta-
bles?

26. Compute the cardinality of the set …
(a) … {wiggle,worm,wiggle worm}.
(b) … {wiggle,{wiggle},{worm},

worm}.
(c) … {{{wiggle,worm}}}.

27. Let A = {(2,5),(−3,1),(4,2),(1,1),
(0,1)}. List the elements in each of the
following sets (or write /0 if appropri-
ate).
(a) {(a1,a2) ∈ A | a1 < a2}.
(b) {a1 | (a1,a2) ∈ A and a1 > a2}.
(c) {a2 | (a1,a2) ∈ A and a2 = 0}.

28. Let the universe be U = {x ∈ N | x ≤
10}, and let A = {1,2,3,4,5}, B =
{5,6,7}, and C = {1,6,9}. List the el-
ements of …
(a) … A∪C.
(b) … (B\C)\A.
(c) … (A∩B)×C.

29. Write the negation of x is prime or x <
52. (Don’t say, “It’s not true that ….”)

30. Use a truth table to show that ((¬p)∧
q)∧ (p∨ (¬q)) is a contradiction.

31. Write the negation of for all integers
x and y, the number x−y

5 is an integer.
(Don’t say, “It’s not true that ….”)

32. Write each of the following statements
using formal logic notation.
(a) Even numbers are never prime.
(b) Triangles never have four sides.
(c) There are no integers a,b such that

a2/b2 = 2.
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(d) No square number immediately fol-
lows a prime number.

33. Write the contrapositive of if x2 > 100,
then y has a sister.

34. Carefully write out some of your re-
sults from Problem 4 of Section 2.4:
State DeMorgan’s laws for two sets us-
ing set notation, and prove them using
set-element notation. Now state De-
Morgan’s laws for n sets.

35. Carefully write out more of your results
from Problem 4 of Section 2.4: Prove
DeMorgan’s laws for two statements us-
ing Venn diagrams, being sure to in-
clude intermediate steps and complete
sentences. Now state DeMorgan’s laws
for n statements.

36. Prove that if a natural number n is even,
then n−1 is odd …
(a) … using a direct proof.
(b) … by proving the contrapositive.
(c) … using proof by contradiction.

37. Prove that x is even if and only if 4x2 −
3x+1 is odd.

38. Challenge: Try to rewrite this sen-
tence as a logical statement!! (That is,
write it as a collection of short state-
ments joined by logical connectives and
quantifiers.) Can you write a simpli-

fied version of the next statement? The
following two categories of charitable
organizations are not required to have
a “Certificate of Solicitation”: An or-
ganization that is primarily religious
in purpose and falls under the regula-
tions 940 CMR 2.00; or An organization
that does not raise or receive contribu-
tions from the public in excess of $5,000
during a calendar year or does not re-
ceive contributions from more than ten
persons during a calendar year, if all
of their functions, including fundrais-
ing activities, are performed by persons
who are not paid for their services and if
no part of their assets or income inures
to the benefit of, or is paid to, any offi-
cer or members (M.G.L. c. 68, s. 20).
(Source: http://www.mass.gov/ago/
doing-business-in-massachusetts/
public-charities-or-not-for-profits/
soliciting-funds/overview-of
-solicitation.html)

39. Write the set {. . . ,−8,−4,0,4,8, . . .}
without using dots.

40. Evaluate the statement A∩B = A\B. Is
it true? If so, prove it. If not, find a
counterexample and determine whether
it is always false or whether there exist
A,B for which the statement is true.

2.13 Instructor Notes

This chapter is written with the intent that students will read Sections 2.1, 2.2, and 2.3 and
attempt the Check Yourself problems before the first class of the week. You may look at
the amount of text/material in the chapter and think, “There’s no way we can get through
this much material in a week.” If you expect mastery from the students, then yes, there’s
no way. But if you expect that the students will get the gist of the material, with little
immediate recall and some details filled in over time, then a week is enough time (says the
author from experience). The point of dumping all this material on the students at once,
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and quickly, is to de-emphasize background material while giving them surface familiarity
with the concepts; they can then develop deeper familiarity over time as they use sets and
logical thinking in other contexts. The practical effect is that students will need to look up
notation and terminology and facts/theorems/truth tables all week and for some weeks to
come.

Because set theory and logic involve so much new notation, and because different
sources use different notation, it is worth exposing students to variances. Examples in-
clude denoting such that as s.t. or | or :, denoting the set {1, . . . ,n} as [n], using − or \ for
set subtraction, noting that | can mean divides as well as such that, and denoting comple-
mentation by an overline versus a superscriptedC versus a prime. Whatever notation you
like to use, point it out to the students. Of course, you may not prefer the notation used in
this book, and students are likely to encounter other notations in their mathematical lives;
you may as well warn them now.

Such a discussion of notation is a good warmup for the first class of the week. There
is a lot of reading in Sections 2.2 and 2.3, so it makes sense to follow a short warmup
with a request for any questions over the reading or Check Yourself problems. After such
a discussion, break students into groups to work on Section 2.4. The DeMorgan’s law
exercise is likely to take them quite a while, so it is unlikely that they will complete these
problems in the remaining class time.

Ask the students to read Section 2.5 for the next class. You may want to devote some
class time to further work on Section 2.4 before embarking on the activity in Section 2.6,
and it’s always good to ask whether there are questions over the reading or the Check
Yourselfs. (Should those be pluralized as Check Yourselves?) It is likely that this activity
will take most of a class period, if not all of it. My experience is that much of a third class
meeting is needed to fully address all the problems.

A cheery warmup for a third day of class is to project the Greek alphabet (Google
Images will produce a table to your liking) and go through the pronunciations and uses of
the letters. Some are listed on page 641. Students like to share their prior knowledge as
part of this discussion.

If you choose to include the Bonus Section 2.10material in class, youmight show your
class aDoctorWho clip (from “The Pyramids ofMars”) containing a truth-tellers problem;
it is available at https://www.youtube.com/watch?v=W90s58LtYhk. (This tip courtesy of
Tom Hull!) Beware that this may provide savvy students with significant clues for solving
the final question of the Section 2.10 Project.

Finally, please remember that this chapter is an overview of set theory and logic and
proof techniques. Students will practice using these ideas throughout the course and need
not have mastered them just yet. Should you want to supplement this material with some
additional basic proof problems, a few are provided in Section TI.2.
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