Featured

**Daina Taimina**

March 29, 2018

Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the cr...

**Meenakshi Mukerji**

October 16, 2019

Wondrous One Sheet Origami is a how-to book full of beautiful origami designs covering a wide range of folding levels from simple to high intermediate, with more emphasis on the latter. The book is meant for audiences 12 years of age and above, and children folding at higher than age level. Most of...

**Jane Cronin**

September 05, 2019

Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as...

**Martin Vermeer, Antti Rasila**

August 21, 2019

Carl Friedrich Gauss, the "foremost of mathematicians," was a land surveyor. Measuring and calculating geodetic networks on the curved Earth was the inspiration for some of his greatest mathematical discoveries. This is just one example of how mathematics and geodesy, the science and art of...

**Marshall A. Whittlesey**

August 15, 2019

Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the...

**Gyorgy Kiss, Tamas Szonyi**

August 02, 2019

Finite Geometries stands out from recent textbooks about the subject of finite geometries by having a broader scope. The authors thoroughly explain how the subject of finite geometries is a central part of discrete mathematics. The text is suitable for undergraduate and graduate courses....

**Daina Taimina**

August 02, 2019

Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the...

**Ronald N. Umble, Zhigang Han**

June 07, 2019

Designed for a one-semester course at the junior undergraduate level, Transformational Plane Geometry takes a hands-on, interactive approach to teaching plane geometry. The book is self-contained, defining basic concepts from linear and abstract algebra gradually as needed. The text adheres to the...

**Karoly Bezdek, Zsolt Langi**

April 24, 2019

Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume...

**Jun Mitani**

March 27, 2019

The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step...

**Prem K. Kythe**

March 04, 2019

The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain...

**Séverine Fiedler - Le Touzé**

November 26, 2018

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP². Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section...

**Ronald B. Guenther, John W Lee**

November 08, 2018

Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical...