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Logistic Regression Models 

Joseph M Hilbe 
 

ERRATA and COMMENTS 

 4th Printing (Printed Sept, 2010) 

(updated to: 19 May, 2014) 
 

The 4th printing enhances Stata code to use version 11 rather than version 9-10 code. The book was 

completed before Stata version 11 was published. For example, when constructing synthetic data, the 

book now uses the new Stata pseudo-random number generators rather than the ones I created back 

in 1995 – the suite of rnd* commands -- or Roberto Gutierrez’s unpublished genbinomial command.  

   No more corrections to the text are planned for future printings. A second edition is planned to be 

published in late 2014 and will include nested logistic regression, and chapters on latent class models 

and on Bayesian logistic models. Both single and multilevel models will be examined. Certain areas 

of the present edition will be re-written to assist in clarity.  Any suggestions you have, or typos/errors 

you discover in the present printing of the first edition, will be most appreciated.  

   Instructors may request a gratis 187-page Solutions Manual for Logistic Regression Models, 

Chapman & Hall/CRC, ISBM: 978-1-4398-2066-7. Contact author for details (hilbe@asu.edu or 

jhilbe@aol.com). It is available from publisher, but I will need to give you added information.  

   NOTE: 4th Printing is found on page opposite the table of contents. The numbers on the line under 

"Printed in the United States of America..." end with the number 4 -- the last number is the printing. 

Thanks to Zhehui Luo of the Michigan State Dept. of Epidemiology and students in my courses on 

Logistic Regression and Advanced Logistic Regression for identifying remaining typos & errors. 

Reginald Jordon is to be especially acknowledged for identifying several items that had not been 

caught for 3 years. I have added comments and additions to the actual errata. The Comments section 

follows the Errata, beginning with page 3.  
 

Page xvii: Final full paragraph at the bottom of the page.  The books web site should now read: 

http://works.bepress.com/joseph_hilbe/ 

 

Page 1(bottom) page 2 (top): Starting from the sentence beginning with "First, the error term..." 

on the bottom line of Page 1, amend to read: 

"First, the error terms are non-normally distributed. Second, the..." 

 

Page 18: The terms A*D/B*C near the bottom of the page: Change to small letters to read as: 

"The odds ratio is calculated by (a*d)/(b*c)  or (a/c)/(b/d)." 

 

Page 19: Near top of page: add "nolog" to first Stata command line under "MAXIMUM 

LIKELIHOOD LOGISTIC COMMAND". Read as: 

". logistic death anterior, nolog" 

 

      Page 20: output at top of page. First BIC should be AIC. 
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Page 30,31: The comments to the right of the calculations of probabilities for each of the three 

non-reference Killip level. Delete the ending phrase for each, "with respect to KK1".  

 

Page 39:  The top Stata output in mid page: the term "ons" should read "_cons" 

 

      Page 73: The paragraph following the list of predictors in mid page. Replace the paragraph with 

the following paragraph: 

      
      "We would ordinarily prefer to model age a as continuous predictor. But this assumes that the 

odds ratio is the same across all ages. If we suspect that this is not the case, it is preferable 
to categorize the predictor into units reflective of changes in odds ratios.  Age is indeed 
skewed to the right, so we shall model age using the four levels of age which have previously 
been made into indicator or dummy (0,1), variables. I show on the next page how the 
indicator variables were created, and why."   

 

      Page 86:  Stata code near bottom of page: ant]erior should be anterior 

 

Page 110  Eq 5.19   Close parentheses for both numerator an denominator. 

 

Page 118:  ">"  sign between RR and left side equation should be "" 

 

Pages 120 and 128: The "///" symbols should be "//". 

 

Page 130 third word, “percent”, of the first full paragraph is misspelled. The sentence should 

read as:  “The 95% confidence interval of the attributable risk is given as” 

 

Also, same page, first line following Eq 5.39, the words, "lower" and "upper" should be reversed. 

 

Page 132 third/fourth line under equation 5.40. Change sentence beginning with "Scaling 

replaces" to read as: 

"... Scaling replaces W by the product of the model standard error and square root of the Pearson 

dispersion statistic."   

Thus,                              scaled SE = se(βs) = se(β)*sqrt(Pdispersion). 

 

Page 133: Close space between rbinomial and (d,exb).   
CREATE BINARY LOGISTIC RESPONSE WITH DEFINED DATA; BINOMIAL DENOMINATOR=100 

. gen d = 100 

. gen exb = 1/(1+exp(-xb)) 

. gen y = rbinomial(d, exb) 

 

Page 172: R code: 2nd block of code from the top of page.  Should read as: 
          

age1 <- ifelse(agegrp=='=<60', 1, 0) 
age2 <- ifelse(agegrp=='61-70', 1, 0) 

age3 <- ifelse(agegrp=='71-80', 1, 0) 

age4 <- ifelse(agegrp=='>80', 1, 0)   

 

Place the above code above final block of code on page 171.  
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page 191:  Stata code near bottom of page: Replace "of" with "if" to read: 
. drop if class==4 

 

page 212: mid page. The command, " gen byte whlo = white*los" should be typed instead: 

. gen whlo = white*los 

 

Since one of the values of los is greater than 100, los must be stored as an integer. bytes can 

range from -127 to 100. The result was the loss of the observation with los=116, and a slight 

change in coefficient and SE values. Page 218 has model done correctly.  

Note that integer storage types range from -32,767 to 32,740. Long types range from -

2,147,483,647 to 2,147,483,620.  For numbers with decimals, stored as floats. If greater than -/+ 

1.7*10^38 then store as double.  

 

Page 215: The command "corr, _coef cov" is no longer used in recent version of Stata. To obtain  

the variance-covariance matrix now, simply type "vce" on the command line.  

 

Page 215: Amend equations 6.11 and 6.12 so that there is a bracket on the 3rd term of each 

 

      Variance = (r1-r0)2 * V(1) + [x(r1-r0)]2 * V(3) + 2x(r1-r0)2 * CV(1,3)          (6.11)     

      SE   = sqrt[(r1-r0)2 * V(1) + [x(r1-r0)]2 * V(3) + 2x(r1-r0)2 * CV(1,3)]          (6.12)     

 

Page 216: Lower part of page,  

First line of code (numbers) under 95% CONFIDENCE INTERVALS AT LOS=1, should read: 

. di (.7709236 -.0477605*1) - 1.96* sqrt(.087415 + 1^2 * .000335+2*1*(-.003864)) 

.16871516 

In the book the final term is missing a negation sign. It should read '-.003864'. It is correct in 

other places on the page.   

 

Page 217. 7 lines from the top. The correct value for the upper confidence interval of the odds 

ratio is 3.5880576, not 3.26671, which is the exponentiation of the lower CI of the odds ratio.  

To get the correct value one exponentiates 1.277611, i.e. exp(1.277611) = 3.5880576. 

 

Page 217: Section 6.4.5, line 5. IRR should read OR.  

 

Page 217:  The formula used to calculate a p-value near the bottom of the page is mistaken. See 

page 104 for explanation. The last Stata code and output on the page should read as: 

 
. di (1-normprob(1.404184))*2 

.16026407 

 

The corresponding R code is (for pages 239/240) 
 

> pnorm(1.40184, lower.tail=F)*2 

 

Page 219, Figure 6.4 Stata's graph commands have changed since first written. New code is: 
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. scatter xb0 xb1 los, connect(l l) symbol(O d) xlabel(0 10 to 100) sort  

   l1title(Predicted logit) title(Interaction of White and LOS) 

 

Page 220, Figure 6.5 Stata's graph commands have changed since first written. New code is: 

 
. scatter yhat0 yhat1 los, connect(l l) symbol(O d) xlabel(0 10 to 100)  

   sort l1title(Predicted logit) title(Interaction of White and LOS) 

 

Page 227: 5 lines from the bottom, first term and number in line. "80" should read "90". 

. 

Page 236. Section 6.1, line 3. "tpass <-" typed twice. Delete one of them. 

 

Page 237, lines 7 and 8 from top.  

1)  comment should read, "man:woman give age=adult / man:woman|age=child 

2) next line, "#no plotgr3 in R" should read "#no postgr3 in R" 

 

Page 247 Section 7.1.2  

Substitute the table below for the one in the book.  

 

MODEL         DEVIANCE     DIFFERENCE    DF    MEAN DIFFERENCE 

============================================================= 
intercept     1486.290 

 

MAIN EFFECTS 

anterior      1457.719     28.500       1        28.500 

hcabg         1453.595      4.124       1         4.124 

killip        1372.575     81.020       3        27.001 

agegrp        1273.652     98.923       3        32.974 

============================================================= 

 

Page 259. Add sentence to the end of Section 7.3, just above 7.3.1 

"In general, BIC statistics give greater adjustment weight to the number of predictors in the 

model than does AIC. "  

 

Page 263: Section 7.3.3-7.3.5 to be amended to read as follows. Substitute the text between the 

double-double lines for what is now in the book. My apologies for the inconvenience.   

Delete the current section 7.3.3 LIMDEP AIC.  It is appropriate for normal models, not logistic 

models.   
 

=================================================================== 

                                               PAGE 263 TO MID 267 

=================================================================== 

=================================================================== 

7.3.3  Other AIC statistics 

 
There have been a number of AIC-type statistics developed since Akaike first constructed his 

information criterion in 1973. Two others that have found considerable use are both called 

corrected AIC statistics. The first was by Sigiura (1978), formulated as 
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𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 
𝑛(𝑝 + 1)

𝑛 − 𝑝 − 2
 

                                                                                                                                            (7.24) 

Simulation studies have shown it to have less bias than the AIC, and to perform better than AIC 

when n/p is small.  

   The second corrected version was by Bozdogan  (1987).  He defined the equation as  
 

𝐶𝐴𝐼𝐶 = −2𝐿 +  𝑝{𝑙𝑛(𝑛) + 1} 
                                                                                                                                                        (7.25) 

Bozdogan criticized Akaike's original formulation of AIC due to the fact that it does not depend 

on sample size. Because of this he showed that it lacked the properties of asymptotic 

consistency.  Sigiura's definition addresses the same problem. Studies have demonstrated that 

𝐴𝐼𝐶𝑐 in particular is preferred to AIC for assessing comparative model fit. We use 𝐴𝐼𝐶𝑛 instead 

for most of our comparative analyses. It appears to be able to select the best fitted model as well 

as the statistic with more terms.  
 

7.3.4 BAYESIAN INFORMATION CRITERION (BIC) 
 

The BIC statistic was first developed by Gideon E. Schwarz of Hebrew University, Jerusalem, in 

1978. His formulation was in response to Akaike's 1973 information criterion, whereby more 

weight is given to the number of predictors in the model. Schwarz also included a term for 

sample size, which all subsequent formulations of AIC or BIC after the original AIC have done. 

The philosophical basis of Schwarz's information criterion is Bayesian, unlike Akaike, but the 

resulting AIC and BIC equations have typically differed by only a term or so. The rationale for 

the two types of information criteria differ, but the resulting formulae are similar. The reasons 

for this go beyond the scope of this book. 

    Schwarz's Bayesian Information Criterion (BIC), also referred to as simply Schwarz Criterion 

in SAS output, is given as 
 

                                       BICS    =  -2LL + k*ln(n)                                               (7.26) 
 

The model with a lower BIC statistic is regarded as the  better fitted model.  The models being 

compared may be nested, but need not be.  The models may be of different sample sizes as well. 

Comparisons of treatment and control data are common applications of the BIC statistic.  

   For an example, we model the same predictors as before, but use the GLM logistic model. I 

follow estimation with a command called abic, which produces two AIC statistics and two BIC 

statistics. The AIC-BIC pair in the right column are the statistics that are commonly displayed 

following Stata maximum likelihood estimation. The Stata command, estat ic, displays these  

statistics to the screen.   
 

. glm death anterior hcabg kk2-kk4 age3 age4, nolog fam(bin) eform 

 

Generalized linear models                          No. of obs      =      4503 

Optimization     : ML                              Residual df     =      4495 

                                                    Scale parameter =         1 

Deviance         =  1276.319134                    (1/df) Deviance =   .283942 

Pearson          =  4212.631591                    (1/df) Pearson  =  .9371817 
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Variance function: V(u) = u*(1-u)                  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u))              [Logit] 

 

                                                   AIC             =  .2869907 

Log likelihood   = -638.1595669                    BIC             = -36537.86 

------------------------------------------------------------------------------ 

             |                 OIM 

       death | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    anterior |   1.894096   .3173418     3.81   0.000     1.363922    2.630356 

       hcabg |   2.195519   .7744623     2.23   0.026     1.099711    4.383246 

         kk2 |   2.281692   .4117012     4.57   0.000     1.602024    3.249714 

         kk3 |   2.218199   .5971764     2.96   0.003     1.308708    3.759743 

         kk4 |   14.63984   5.218374     7.53   0.000     7.279897    29.44064 

        age3 |   3.549577   .7119235     6.32   0.000     2.395823    5.258942 

        age4 |   6.964847    1.44901     9.33   0.000     4.632573    10.47131 

------------------------------------------------------------------------------ 

 

. abic 

AIC Statistic =   .2869907             AIC*n      = 1292.3191 

BIC Statistic =   .2908262             BIC(Stata) = 1343.6191 

 

Notice that the model output includes an AIC and BIC statistic. The displayed BIC statistic is -

36537.86, which is different from Stata’s BIC which is displayed in the abic output --- with a 

value of 1343.6191. The value of AIC in the model output is the same as indicated by (left 

column) AIC in the abic output. The model BIC is based on the Deviance definition, and is 

expressed as 

          BICR = D – df * ln(n)                                              (7.27) 
 

We may calculate it as follows, 
     
di 1276.319134 - 4495*ln(4503)   // LL - dof*ln(n) 

-36537.864 

         

which gives the same value as shown in the above model output. This version of BIC was 

specifically designed by the University of Washington’s Adrian Raftery in 1986 to be used with 

GLM software.  GLM algorithms generally base model convergence on the deviance function, 

and a few applications do not even estimate a log-likelihood function during the modeling 

process. The BICR statistic is given rather than Schwarz's statistics due to the GLM estimation 

environment. abic provides Schwarz's criterion, giving us both versions to be used for 

comparative analysis.  

   The BICS statistic may be calculated as  
 

. di -2*(-638.15957) + 8 * ln(4503) 

1343.6191 

 

which is identical to the value displayed in abic results. The abic right column statistics can be 
produced using Stata's  estat ic command.  
 

. estat ic 

 

----------------------------------------------------------------------------- 

       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 

-------------+--------------------------------------------------------------- 

           . |   4503           .   -638.1596      8     1292.319    1343.619 

----------------------------------------------------------------------------- 

               Note:  N=Obs used in calculating BIC; see [R] BIC note 
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Raftery developed a table providing the degree of model preference based on the absolute 

difference between the BIC statistics of two models.  
 
   |difference|       Degree of preference 
   ----------------------------------------------- 
      0  -   2                 Weak 
      2  -   6                 Positive 
      6  - 10                 Strong  
         > 10                 Very Strong 
 
Models A and B:  
     If BICA – BICB  <  0,  then A preferred 
     If BICA – BICB  >  0,  then B preferred 
or 
     Model with lower BIC value preferred.  
 

For the example models we have worked with in this chapter, the reduced model has the 

following partial output.  
 

                                                   No. of obs      =      4503 

                                                   Residual df     =      4497 

                                                   AIC             =  .3074784 

Log likelihood   = -686.2875063                    BIC             = -36458.43 

 

. abic 

AIC Statistic =   .3074783             AIC*n      = 1384.5751 

BIC Statistic =   .3095883             BIC(Stata) = 1423.05 

 

The deviance based BIC statistics are         :   -36537.86  to -36458.43 

The log-likelihood based BIC statistics are:      1343.62  to     1423.05 
 
DEVIANCE 
. di -36537.86 –(-36458.43) 

-79.43 

 
LOG-LIKELIHOOD 
. di 1343.62  -  1423.05 

-79.43 

 

Both differences are identical. This relationship maintains for other nested models as well. In 

either case, however, the absolute difference between the full and reduced model is substantially 

greater than 10, indicating a very strong preference for the full model.  

     The AIC and BIC statistics give us consistent advice. Both the AIC and BIC tests tell us that 

the full model is preferred.  

     Recall that the true value of the AIC and BIC statistics rests in the fact that they can both 

compare non-nested models. For example, modeling the same data using the full model with a 

Bernoulli loglog link, the likelihood BIC statistic is 1335.4843. Compare this to the same 

statistic logit link value of 1343.6191. The difference is 8.13, in favor of the loglog link. This 

indicates that the loglog link is strongly preferred over the logit link.  
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Note that the deviance statistic is used only for GLM-based statistical procedures. The log-

likelihood is the normal way to estimate all other maximum likelihood models. Most 

contemporary GLM algorithms have, though, a calculated log-likelihood function as part of the 

output, therefore the deviance-based formula is rarely used now.  
 

7.3.5  HQIC GOODNESS OF FIT STATISTIC 
 

The HQIC, or Hannan and Quinn Information Criterion (Hannan & Quinn,1979), is defined as  
 

                 HQIC  = -2{LL – k*ln(k))/n                                    (7.28) 
 

The calculated values for the nested models we have been discussing in this chapter are: 
 

. di -2*(-638.15957 -8*ln(8))/4503 

.29082616 

 

. di -2*(-686.28751 -6*ln(6))/4503  

.3095883 

 

The HQIC test is an alternate version of BIC, used in LIMDEP. If the values of the BIC and 

HQIC differ greatly, it is wise to check the models.  

     It is vital to be certain you know which version of AIC and BIC is being used. Whatever the 

version, be consistent throughout the comparative evaluation of models.   

 

7.3.6  A Unified AIC Fit Statistic 
==================================================================== 

==================================================================== 

==================================================================== 
 

Page 272.  Equation 7.31,  Parentheses are needed for the denominator of the second term within 

brackets, y/(m*μ)). The equation should read as: 

 

d = +/- sqrt[2Σy * ln(y/(m*μ)) – (m –y)*ln((m – y)/(m*(1-μ))] 

 

Page 293. R code: 3rd line from top.   

Use:                    library(PresenceAbsence)  

in place of:         library(epicalc) 
 

Same block of code: amend to read: 
cmx(cmxdf, threshold=0.05, which.model=1)  #confusion matrix 

 

Page 299; Equation 8.14: the final term should read 𝑙𝑛 (
𝑚
𝑦 ). 

Following 8.16 add (not a correction - an enhancement) 
or 

                              D = 2{yln(1/) + (m-y)ln(1/(m-)) }                     (8.16a) 
 

Page 300: Code in mid-page. Should read as: 

Dev= 2{yln(1/) + (m-y)ln(1/(m-)) } 
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  2 =  (y-)2 / (*(1-/m))            

LL = { y*ln(/m)+(m-y)*ln(1-(/m))}   

 

NOTE: The deviance in the book is OK, but this has better convergence properties. See Hilbe & 

Robinson, Methods of Statistical Model Estimation (2012), Chapman & Hall/CRC. 

 

Page 302 line 5 of the text.  The sentence should read:  

"... freedom is the number of observations in the model minus the number of predictors, 

including the intercept. For a model parameterized as odds ratios, an exponentiated intercept is 

assumed, if not displayed, in the output. However, such an intercept has little useful 

interpretation".  

 

Page 322: Amend  

 . save overex   /// save data 

to  

. save overex   // save data 

 

Page 323:  Delete "/// a user authorized command" near the top right of the page. 

 

Page 335: Delete the "[" at the start and  "]" at the end of the long line of Stata code in middle of 

page. 

 

Page 350: Code was dropped from the book in printing that was in my manuscript -- the 

poissonX2 function.  Below I have included the function as it should exist in the book.   

 
fit9_2i<- glm(studytim ~ drug, data=cancer, family=poisson) 131  

poissonX2 = function(y, e) { #Compute Pearson chi-square for poisson  

#y: number successes  

#e: expected probability  

return(sum((y-e)^2/e))  

}  

summary(fit9_2i)  

fit9_2iX2<- poissonX2(cancer$studytim, fitted(fit9_2i, type='response'))  

cat('Pearson X2:', fit9_2iX2, 'Dispersion:', fit9_2iX2/fit9_2i$df.residual,  

'AIC/d.f.:', fit9_2i$aic/fit9_2i$df.residual, '\n') 
 

Note: For PearsonX2.r function information, see 'Comments' section of this document. 

 

Page 351, near bottom:  "id <- ln(d)" should read  "id <- log(simul$d)" 

 

Page 357:  The denominator of "Category or Level 3" should have all negative signs, not  

the two positive signs.   The formula should read 

 

                                    Logit = ln[(p1 + p2 + p3)/ (1 -  p1 - p2 - p3)] 

 

Page 368:  Box 10.1:  the section on white should read as 
white:  The expected odds of being admitted to the hospital as an emergency patient is some 40 % less 
among those who identified themselves as white compared with those who identified themselves as 
non-white, holding the other predictors constant 
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hmo: Patients belonging to an HMO… 

 

Page 376: Line immediately above Section 10.4: change words "a higher level" to "Emergency". 

 

Page 387: The first word, “The”, of the paragraph immediately under equation 11.9 is mistaken. 

The paragraph should start out as: 

“It is important to remember that the above parameterization is based on set-“ 

 

Page 388:  the table about ¼ a page from the top has the 0 and 1 values in the wrong places. It 

should instead read as: 

                                                 Response 

                                                   0       1 

     ---------------- 

                       Predictor   0   |    A      B   | 

1   |    C      D   | 

     ---------------- 
           

If you find additional errata, please advise. I will post them to this Errata page in the future. Thank 

you to those who have identified typos. I will list your names in the second edition.  

 

Page 518:  Section 13.4.  Use the lme4 package with the glmer function rather than nlme4.  

Newer packages exist for estimating these types of models; e.g., glmmADMB. Also see the 

sabre package.  
 

Pages 546-547: We use the grouped 8 observation hiv data for page 546, but switch to the hiv1 data 

for the model at the bottom of page 547, which is an observation-based models with 47 patients. The 

bottom line of texts on page 547 can be amended to read 

“We now model hiv on levels of cd4 and cd8 using the observation-based hiv1 data.“ 

 

REFERENCES 
p 621: Replace the current reference for Swartz, J to read as: 

Schwarz, G (1978). Estimating the dimension of a model, Annals of Statistics, Vol 6, 2:461-464. 
 

Add: 

Bozdogan, H. (1987). Model-selection and Akaike's information criterion (AIC): The 

general theory and its analytical extensions. Psychometrika, 52, 345-370. 

 

Sugiura, N (1978). Further analysis of the data by Akaike's information criterion and the finite 

corrections. Communications in Statistics. A 7, 13-26. 

 

COMMENTS 
Page 65: I probably should have added the formula for the second derivative of the Bernoulli link 

function under Equation 4.12.  

𝑔′′(µ) = (2µ − 1) (
∂η

∂µ
)

2

=  
(2µ − 1)

µ2(1 − µ)2
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                                                                                                                                           (4.12a) 

Page 67: Table 4.1 provides a schematic algorithm for the estimation of a binary logistic model. I 

have provided full working code for estimating a generic logistic regression using Stata and R. I 

display the code and output below for each below the final Comment in this section. 

 

Page 132  Comment: In R, the glm quasibinomial family is the same as scaling the binomial 

logistic model standard errors by the Pearson dispersion statistic.   I recently discovered that the 

R vcov() function that is used by programmers for calculating standard errors in fact creates 

scaled standard errors.  This results in the SEs of models using sqrt(diag(vcov(modelname))) for 

calculating SEs to have different SEs from Stata, SAS, and other applications, particularly when 

the data is correlated. Dividing the displayed SEs by the square root of the Pearson dispersion 

statistic produces model SEs. R's glm() function, which is used for estimating both binary and 

grouped logistic models, adjusts SEs so that model SEs are displayed in the results.  

 

    . Page. 198: xi3 and postgr3 are used for a graph at the bottom of the page. The explanation of 

these commands are given a bit later on pages 199-201. 

 

Page 300 Suggestion: the deviance function as presented is the standard one shown in texts. 

However, it does not work properly if used in an R GLM program. A much more simple and 

suitable expression for the equation, requiring less memory, is the following: 
 

 Dev = 2{y*ln(1/) + (m-y)*ln(1/(m-))} 
 

Page 350/351: PearsonX2.r has been changed to P__disp.r. It can be used as a function in the msme 

package when loaded. The code is: 

 

===================================================== 
# Function to calculate Pearson and Pearson dispersion  

#   following glm and glm.nb:  source(P__disp.r) 

# x=modelname: ex: P__disp(mymodel)  30Jan,2012 J. Hilbe 

P__disp <- function(x) { 

   pr <- sum(residuals(x, type="pearson")^2) 

   dispersion <- pr/x$df.residual 

   cat("\n Pearson Chi2 = ", pr ,  

       "\n Dispersion   = ", dispersion, "\n") 

} 

===================================================== 

 

Joseph M Hilbe:  hilbe@asu.edu or jhilbe@aol.com  

 

STATA USER AUTHORED LOGIT COMMAND. First published in the November 

2005 issue of The American Statistician in a review of Stata. The review may be obtained from my 

BePress Selected Works site, http://works.bepress.com/joseph_hilbe/    

============================================================= 
*! version 1: LOGISTIC REGRESSION   :IRLS METHOD OF  ESTIMATION 

* Joseph Hilbe: TAS - Stata 9.0 review: 7Jul2005 

program define  jhlogit 

version 6 

set type double 

syntax  varlist(default=none) [if] [, EForm]   
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gettoken y varlist : varlist 

if `"`if'"' != `""' { 

        preserve                /* ensure the dataset returns at end of pgm */ 

        keep `if'                /* retain only estimation sample */ 

} 

if "`eform'" !=  "" { local eform "eform(Odds Ratio)" } 

qui  { 

tempvar mu eta u w z dev oldev llike chi2 aic  bic 

* INITIALIZATION OF MU AND ETA 

count 

local nobs =  _result(1) 

gen `mu' = (`y' +  0.5)/2 

gen `eta' = ln(`mu'/(1-`mu')) 

* VARIABLE  INITIALIZATION 

local i      1 

gen `u'     =0 

gen `w'     =0 

gen `z'     =0 

gen `dev'  =1 

gen `oldev'=1 

gen `chi2'  =1 

local ddev  1 

* IRLS SCORING 

while (abs(`ddev')> 1e-6 ) { 

replace  `u' = (`y'-`mu')/(`mu'*(1-`mu')) 

replace  `w' = `mu'*(1-`mu') 

replace `z' = `eta'  + `u' 

regress `z' `varlist' [iw=`w'], mse1  dep(`y') 

drop  `eta' 

predict  `eta' 

replace `mu'   =  1/(1+exp(-`eta')) 

replace `oldev'=  `dev' 

replace `dev'  = ln(1/`mu')  if `y'==1 

replace `dev' =   ln(1/(1-`mu')) if `y'==0 

replace  `dev'  = sum(`dev') 

replace  `dev'  = 2*`dev'[_N] 

local  ddev     = `dev' -  `oldev' 

local  i        = `i'+1 

} 

local npred =  _result(3)               /* number of predictors */ 

local df    = `nobs' - `npred' -  1    /* degrees of freedom   */ 

* CALCULATION OF  LOG-LIKELIHOOD AND GOF STATISTICS  

egen `llike' =  sum(`y'*ln(`mu')+(1-`y')*ln(1-`mu')) 

gen `aic' = (-2*`llike' +  2*`npred')/`nobs'           //    AIC/observations 

} 

* PUT VALUES INTO MATRIX 

qui regress, noheader `eform' 

tempname b  V 

mat `b' =  get(_b)           /*  coefficient vector */ 

mat `V' =  get(VCE)          /*  variance-covariance matrix */ 

mat post `b' `V', depname(`y')  obs(`nobs') 

* OUTPUT 

di " " 

di in gr "Logistic  Estimates" 

mat mlout, `eform' 

di in gr _col(1) "Observations = " in  ye `nobs' in gr _col(53) "Deviance     =   " in ye  `dev' 
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di in gr _col(53) "Loglikelihood = "  in ye `llike' 

di in gr  _col(1)  "AIC Statistic =  " in ye `aic' 

set type double 

end 

=================================================================== 

 

 

 

USE OF COMMAND 
 

. use medpar           /* dataset explained in text, Ch 5.11; p. 159 */ 

 

. jhlogit died hmo white 

  

Logistic  Estimates 

------------------------------------------------------------------------------ 

        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         hmo |  -.0122465   .1489251    -0.08   0.934    -.3041342    .2796413 

       white |   .3033872   .2051795     1.48   0.139    -.0987573    .7055318 

       _cons |  -.9261862   .1973903    -4.69   0.000    -1.313064   -.5393082 

------------------------------------------------------------------------------ 

Observations = 1495                                 Deviance     =   1920.602 

                                                    Loglikelihood = -960.301 

AIC Statistic =  1.2873592 

 

 

R -- Bernoulli or binary logistic regression  - 
============================================================================== 
# BINARY LOGISTIC REGRESSION. BASIC FUNCTION   7 July, 2011 

# From: Hilbe, J.M and A.P Robinson (2012), Methods of Statistical Model  

#    Estimation, Chapman & Hall/CRC 

irls_logit <- function(formula, data, tol=.000001) {  # irls_logit options 

  mf <- model.frame(formula, data)              # define model frame as mf 

  y <- model.response(mf, "numeric")            # set model response as y 

  X <- model.matrix(formula, data = data)       # predictors in matrix X 

  if (any(is.na(cbind(y, X)))) stop("Some data are missing.") 

  mu <- (y + .5)/2                              # initialize μ                           

  eta <- log(mu/(1-mu))                         # initialize η               

  dev <- 2 * sum( y*log(1/mu) + (1 - y)* log(1/(1-mu)) ) 

  deltad <- 1                                   # initialize deltad = 1 

  i <- 1                                          # initialize i=1 

  while (abs(deltad) > tol ) {                    # IRLS loop begin 

    w <-  mu*(1-mu)                               # weight 

    z <- eta + (y - mu)/w                         # working response 

    mod <- lm(z ~ X-1, weights=w)                 # weighted regression 

    eta <- mod$fit                                # linear predictor 

    mu <- 1/(1+exp(-eta))                         # fitted value; probability  

    dev.old <- dev                                # setup for convergence 

    dev <- 2 * sum( y*log(1/mu) + (1 - y)* log(1/(1-mu)) ) # deviance 

    deltad <- dev - dev.old                       # test of 2 iterations 

    cat(i, coef(mod), deltad, "\n")               # iteration log 

    i <- i + 1                                    # recalibrate iter number 

  } 

    beta <- mod$coef                             # save coefficients 
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    pr <- sum(residuals(mod, type="pearson")^2)  # calc Pearson disp 

    prdisp <- pr/mod$df.residual 

    return(list(coef = coef(mod),                # coef & SE display 

            se = sqrt(diag(vcov(mod)))/ sqrt(prdisp)))   

} 

=============================================================================== 
 

 

USE -- how source() is defined is based on where irls_logit.r is stored on your computer. It will 

be a function in the msme library later in 2011 (download from CRAN).  

   Coefficients and model standard errors are displayed. Confidence Intervals, Z statistic, and p-

values can be easily calculated. Note that the scaled SEs calculated by vcov() are amended to 

produce true model SEs.  

   NOTE: A complete description of OLS, IRLS, maximum likelihood, EM, simulation, and other 

major methods of estimation can be found in Hilbe and Robinson, Methods of Statistical Model 

Estimation, Chapman & Hall/CRC. The irls_logit function is fully described as an example of 

IRLS estimation. Other more complex IRLS models are also discussed. In addition, we created a 

glm-like function called irls, which corrects what we believe to be shortcomings in glm() and 

glm.nb(), describing its modular logic the specifics of the code. After the msme library is loaded, 

irls() will be able to be used like glm() is now, together with a summary() function. irls(), 

however, provides a much more extensive list of post-estimation statistics. The book was 

published May 28, 2013. 
 

> library(COUNT)  # Package associated with my Negative Binomial Regression 

> source("c://rfiles/irls_logit.r")    # locate where function is saved 

> data(medpar) 

 

> i.logit <- irls_logit(died ~ hmo + white, data=medpar) 

1 -1.051936 -0.01343265 0.318181 1064.628                  # iteration log 

2 -0.9224268 -0.01216259 0.3017145 -4.193304  

3 -0.9261831 -0.01224641 0.3033848 -0.001737683  

4 -0.9261862 -0.01224648 0.3033872 -3.808509e-10  

 

COEFFICIENTS and STANDARD ERRORS 
> i.logit 

X(Intercept)         Xhmo       Xwhite      

 -0.92618620  -0.01224648   0.30338724 

 

$se 

X(Intercept)         Xhmo       Xwhite  

   0.1973903    0.1489251    0.2051795 

 

LOWER 95% CONFIDENCE INTERVAL 
> i.logit$coef - 1.96*i.logit$se 

X(Intercept)         Xhmo       Xwhite  

 -1.31346050  -0.30443326  -0.09916926 

 

UPPER 95% CONFIDENCE INTERVAL 
> i.logit$coef + 1.96*i.logit$se 

X(Intercept)         Xhmo       Xwhite  

  -0.5389119    0.2799403    0.7059437 
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The Z-statistic and P-values may be easily calculated from the above, but the confidence intervals 

will indicate if a predictor is significant as well. When odds ratios are displayed, exp(i.logit$coef), 

recall that the standard errors are determined using the delta method, which in this case is quite 

simple:  exp(β)*se(β); ie.  

                                      ORse <- exp(i.logit$coef)* i.logit$se.   

See page 35 in text.  
 

Also of possible interest to readers, other books of mine which have been recently published are: 

 

Hardin & Hilbe, Generalized Linear Models and Extensions, third edition (Stata Press--

Chapman & Hall/CRC) [GLME3] was published May 23, 2012.  

 

Hilbe, (ed) Astrostatistical Challenges for the New Astronomy, Springer, was published Nov 7, 

2012 

 

Hardin & Hilbe, Generalized Estimating Equations, 2nd edition (Chapman & Hall/CRC) 

[GEE2] was published December 10, 2012..  

 

Hilbe and Robinson, Methods of Statistical Model Estimation (Chapman & Hall/CRC) was 

published May 28, 2013,  

 

Shults and Hilbe, Quasi-Least Squares Regression (Chapman & Hall/CRC) was published Jan 

29, 2014 

 

Zuur, Hilbe, and Ieno, A Beginner's Guide to Modeling GLM and GLMM: a frequentist and 

Bayesian perspective for ecologists (Highlands Statistics) was published June 10, 2013.  

 

Hilbe, Modeling Count Data (Cambridge University Press) is completed and is due to be 

published in June 2014.  

 

Miner, Bolding, Hilbe, et al, Practical Predictive Analytics and Decisioning Systems for 

Medicine (Elsevier) is due to be published in the late summer 2014. 

 

Thanks to Gary Anderson of the University of Melbourne for catching a number of typos and 

places that needed attention. Also I thank Dongjae Jung, Fabiana MacMillan,  Elmira Mukailova,  

Jorge Rosas, Mark Jones, Mark David, Alan Burt, Christer Johansson, Rhondda Jones, and Yun-

Jung Choi for identifying several typos and errors. Their assistance is much appreciated.  

 

http://lms.statistics.com/user/view.php?id=993&course=340
http://lms.statistics.com/user/view.php?id=1279&course=631
http://lms.statistics.com/user/view.php?id=1279&course=631
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