

Table of Contents

Introduction to this lab manual	2
Lab 0: Installing a Virtual Machine and Linux (CentOS)	4
Lab 1: Exploring the Gnome GUI	12
Lab 2: Exploring the Bash Shell (part I)	14
Lab 3: Exploring the Bash Shell (part II)	16
Lab 4: Exploring the Linux File System (part I)	18
Lab 5: Exploring the Linux File System (part II)	21
Lab 6: Exploring the Linux File System (part III)	23
Lab 7: Process management	25
Lab 8: The vi Editor	28
Lab 9: Regular Expressions and Grep (part I)	31
Lab 10: Regular Expressions and Grep (part II)	33
Lab 11: Regular Expressions with sed and awk	35
Lab 12: Shell Scripting (part I)	37
Lab 13: Shell Scripting (part II)	39
Lab 14: User and Group Accounts (part I)	41
Lab 15: User and Group Accounts (part II)	43
Lab 16: The Linux File System Revisited (part I)	45
Lab 17: The Linux File System Revisited (part II)	47
Lab 18: The Boot Process	49
Lab 19: Controlling and Configuring Services	51
Lab 20: Configuring Your Network (part I)	53
Lab 21: Configuring Your Network (part II)	55
Lab 22: Software Installation	57
Lab 23: Backups and Scheduling Tasks	59
Lab 24: Monitoring the Linux Operating System	61
Lab 25: Apache Installation and Configuration (part I)	63
Lab 26: Apache Installation and Configuration (part II)	65

[bookmark: _Toc386026117]Introduction to this lab manual

This document is being prepared as an ancillary for the textbook Linux with Operating System Concepts. The labs are prepared for Red Hat Linux (CentOS 6) although with some adaption could be used with other Linux (or Unix) operating systems. The lab manual is divided into two sections, the first set (labs 1-11) covers introductory Linux material while the second set (labs 12-23) covers system administration topics, echoing the format of the textbook. In the first set, it is assumed that certain files and directories are already available so that the student can perform steps to test out permissions, regular expressions and shell scripts. A script has been set up so that you can easily install the needed files/directories. See the instructions on setting up the virtual machine.

Each lab involves completing steps and answering questions. Some steps are spelled out entirely for the student. These are followed by incomplete steps where the student must determine how to accomplish a task given the previous step(s). The result of each lab will be students’ answers to the questions posed in the lab.

There are 25 labs to go along with the 15 textbook chapters (plus an installation lab). Aside from lab 0, labs should take between 60 and 120 minutes to complete depending on the level of preparation of the student and how quickly the student can work through the labs. You should tailor the labs as you see fit based on the material you cover or do not cover in class as well as the material you feel is most important for the students to experience.

A note to the instructor:

You should work through each lab to determine what material you might retain and what material you might skip. It is assumed that you will use VirtualBox from Oracle for your student VMs. Aside from VirtualBox, you will need to create a Red Hat Linux CentOS 6 installation disk.

A note to the student:

In order to complete each lab in a timely fashion, you should prepare for the lab in advance by reading the lab and any corresponding material from the textbook. In the labs, questions appear in italic font face. Specific command whether through the GUI or the command line will appear in bold face font. In such cases, pressing <enter> after the command is assumed. For instance, when told “type pwd”, it means to type “pwd” and press <enter>.

For each of the labs, it is assumed that you will use the VM that you create in lab 0. Follow these initial steps for all labs (unless otherwise noted).
1. Start VBox.
2. Select your VM and click Show. A new window opens with your VM in it. If you shut down your VM previously, you will see the boot process take place.
3. Once the VM is booted up, select the Student account (password: linuxiscool).
4. Open a terminal window.
From there, you can proceed with the lab.

At the end of each lab, you may shut down your VM (power off) or save your VM. You should then close VBox. If you do not save or power off your VM, you may lose data between sessions. You should close VBox when done so that you are not burdening your computer with the software running and taking up memory space.

[bookmark: _Toc386026118]Lab 0: Installing a Virtual Machine and Linux (CentOS)

There are many sources for virtual machine software. Several are open source or freely available. For instance, one is from VMWare (www.vmware.com). There are several products available. vSphere server allows you to establish VMs stored in a cloud so that users can remotely access their VMs via the vSphere client software. The vSphere system administrator(s) can also access any or all of the VMs in the cloud. This approach would be useful if you are planning on establishing VMs for hundreds of users who can access their VMs from campus or remotely. Alternatively, there are VMWare Workstation and VMWare Player available. These are both available for a limited free trial period or for purchase. There is also an open source version of Workstation and Player available. We are going to recommend instead that you use Virtual Box, available from Oracle (www.oracle.com). Virtual Box was developed and owned by Sun Microsystems (which has since been purchased by Oracle). You can download free versions of Virtual Box from the Oracle site or directly from www.virtualbox.org, which includes versions for Windows, Mac OS X and Linux.

Aside from acquiring VirtualBox (denoted as VBox from here on), you will need a CentOS installation disk. You will have to set this up for your students. Go to www.centos.org/download and select the Download now button. Select any of the links to download the CentOS iso. As the iso file is quite large, the download could take minutes or hours. NOTE: at the time of this writing, CentOS 6.5 was available. Once saved, burn this onto a DVD (or if you are doing this from your home computer, make a note of the directory that is storing the iso file).

NOTE: the following step assumes that you are installing VBox in Windows. Other operating systems may have slightly different looks. To install VirtualBox, double click on the installation program and permit the program to run on your computer (if asked). This brings up the setup wizard:

[image:]
Click next. The next window allows you to perform a custom installation. It will probably look like this:
[image:]
Here, you can select the application(s) to install and the location of the installation. Unless you wish to change the defaults, just click Next. You will be asked whether to create a shortcut icon on either the desktop or quick launch bar. Select as you desire and click Next. You may receive a network interfaces warning about VirtualBox temporarily resetting your network connection. This is only temporary, so click Yes to proceed with the installation. Then confirm the Installation. The installation may take a few minutes. During the course of installation, you will be told about VirtualBox installing new device drivers. Clicking on the “always trust Oracle” will allow the installation to proceed without any further interruptions. Finally, click on Finish and start VirtualBox. The initial VirtualBox image is a welcome message.

You will want to install your virtual machine from this initial windows using the New button.

[image:]

Enter a name for your virtual machine. You might call it CentOS (or centos). In entering CentOS, VBox will be smart enough to select for you the proper type and version. If you use another name such that this does not happen, then select under Type Linux and under Version Red Hat. Select Next.

[image:]

You are next asked the memory size to provide for your VM. Modify this to 4096 MB, which is an adequate size (the default of 512 MB would not allow you to install a Linux with a GUI). Select Next. You are next asked about whether to create a virtual hard drive, use an existing virtual hard drive or not add one. Select Create a virtual hard drive now and select Create. The default type of virtual hard drive is a VirtualBox Disk Image, use this default and select Next. You may use a fixed sized hard disk but this locks you into a size that may be wasteful so select Dynamically allocated and Next. You are next asked for the size of disk to use. Although it defaults to 8 GB, we will be specifying partitions that need about 10 GB so you should adjust this to 10 GB and select Create. At this point, you will be returned to the VBox manager window with one VM available as listed in the lower left pane underneath the New button. In this case, the VM is powered off. Select the VM (if it is not already selected) and select the Start button. The first time you start this VM, you will have to use the CentOS installation disk to install the OS into the VM. This should be a one-time occurrence (unless you make a mistake in which case you should stop the installation, delete the VM and start over).

Clicking Start will provide a new window containing your centos VM. It will look like the following. The pop-up window alerts you about being able to move easily from within your VM to outside your VM and your Windows environment. Clicking inside the window causes your mouse and keyboard to be captured by your VM (that is, all mouse and keyboard interaction is now with your VM) and pressing your right ctrl key will release the mouse and keyboard so that they interact with your outer OS. You might find during the initial part of the installation that the VM “uncaptures” your mouse so you might have to click inside the window again.
[image:]

At this point, VBox is ready to install an operating system. Select the folder icon as shown below and then use the file browser to find your iso file. Select the Start button. The installation process will now start.

[image:]

Click inside the VM window. Follow these steps.
1. Using your arrow keys, select Install or upgrade an existing system and press <enter>.
2. Media test: you will probably want to skip this. To move from OK to Skip, press the <tab> key and then <enter>. You will see a message the the VM is running anaconda to install the OS. At this point, press your right ctrl key to leave your VM window and enlarge the window. Now click back inside the VM window.
3. Click on the Next button at the bottom of the first window.
4. Select the appropriate language and keyboard type (e.g., English (Next), U.S English (Next)).
5. Select Basic Storage Devices (Next). Make sure Apply my choice to all devices is selected, click Yes, discard any data.
6. Enter a hostname, you might use centosVM.domain.organization or just centosVM (Next)
7. Select your proper time zone, and leave the check box checked for System clock uses UTC (Next)
8. Enter the root password linuxiscool (or some other password if you prefer but make sure it is one you will remember, and confirm it (Next).
9. For installation type, select Use All Space, click the checkbox Review and modify partitioning layout (Next).
10. From the next screen, you will see a partitioning that includes both LVM and your hard drive (sda[footnoteRef:1]). Click on the line with sda (not sda1 or sda2) and click the Delete button at the bottom of the window. From the pop-up window, click Delete to confirm the choice. Now, repeat the following 4 times: [1: If you are using an IDE hard disk, you might find the selections in steps 8 and 9 reference hda instead of sda.]

a. Click Create. From the pop-up window, select Standard Partition and Create. An Add Partition pop-window appears. From the mount type drop down box select /, for file system: ext4, for size 4000, click OK.
b. Repeat a using mount type /var, for file system ext4, for size 2000, click OK.
c. Repeat a, skipping mount type, using file system type swap, size 2000, OK.
d. Repeat a with mount type /home, system type ext4, under additional size options, Fill to maximum allowable size, OK.
When done, you should see the following screen. Click on the Next button. From the pop-up window, select Format. From the warning pop-up window, select Write changes to disk. Formatting will take a few moments.
[image:]

11. For boot loader, make sure Install boot loader on /dev/sda is selected (Next).
12. You are asked about the default installation, select Desktop. Leave Customize later checked (at the bottom) as you will modify the install in a later lab (Next). At this point, the Linux installation will start. This takes several minutes (depending on the speed of your computer, anywhere from 10 to 45 and 20 to 25 on average).
13. When the installation is complete, you will be asked to reboot your computer. This is actually the VM that will reboot. Click on Reboot.
14. After rebooting, you will be at a Welcome screen. (Forward), agree to the license (Forward), create your own user account using an account name that is your last name and your first initial as in foxr (do not use foxr, you will create such an account later). Enter your full name and enter the password linuxiscool and confirm it (Forward). Adjust the date/clock if necessary (Forward). Finally you can alter the Kdump configuration. This screen may either tell you that altering Kdump will require rebooting or it may yield an error about insufficient memory. In either case, ignore this page and click Finish.
The system finishes booting, leaving you at a log in screen. Click your user account, enter your password and log in.

Open a terminal window by right clicking on the desktop and selecting Open in Terminal. You will receive a prompt that probably looks like
	[username@hostname Desktop]$
At the $, you can enter your commands.

Enter ip addr. This will show you your network device IP addresses. You should have two network devices, lo and probably eth0 (although it might be named eth# where # is some other digit than 0). The lo device is your loopback device which lets software talk to your computer as if your computer was some remote computer across a network. You cannot use lo to reach the Internet. This device will always have an address of 127.0.0.1, indicated in the output as your inet address. Your eth0 device will probably have no address. If it does not, you will need to set up the network configuration. This step is simple. From the System menu select Preferences and the item Network Connections. You should find one device, probably labeled eth0 (called System eth0). Select this entry and click Edit.... From the pop-up window, click on the Connect automatically checkbox and make sure Available to all users is selected at the bottom of the window. Click on Apply... You will be asked to authenticate as root (remember the password is linuxiscool), do so. You can now close the Network Connections window. Redo the ip addr command to make sure that you have an IP address.

To finish off your setup, we will automatically create some user accounts and populate those accounts with some files. You will use these in some of the labs coming up. In your terminal window, type su. This allows you to switch user to root. Enter the root password (linuxiscool). From the command prompt, which is now a #, you will enter the following commands. First, make sure you are in the proper directory, type pwd, the response should be /home/username/Desktop where username is the username you entered for your first non-root account. If you are not here, type cd /home/username/Desktop. Enter the following commands (the # is your prompt, do not type it in).

	# wget www.nku.edu/~foxr/linux/setup.sh
	# chmod 745 setup.sh
	# ./setup.sh
The setup.sh program is a shell script which will take just a few moments to run. You will see a bunch of output scroll past, you can ignore it. When done, you will have three additional accounts on your computer, foxr, zappaf and Student. You will primarily use the Student account in most of the remaining labs as well as root. All three of these accounts, as well as root, have the same password, linuxiscool. You may change passwords if you wish but only do so if you can remember the new passwords. To change username’s password, as root, enter
	# passwd username <enter>
You will be asked to enter a new password for the given user and then confirm it. As root, you can use any password you want including passwords that are deemed weak. Or, as username, you can just enter passwd. To change to another user, type su username. Typing su by itself will change you to root. If you are root, typing su username will change you to that user without requiring that you specify username’s password.

At this point, you can type exit to leave root and return to your own account. If you want to explore, do so although you should probably read chapters 2 and 3 before exploring on your own. Otherwise, when you are ready, start working through the labs. Typing exit a second time will exit you from the terminal window (it will close), or close the window by clicking the X in the upper right hand corner of the window. You may now shut down your VM either by selecting Shut Down... from the System menu or by going back to the VBox control panel, right clicking on your VM and selecting Close Power Off.

You may now proceed on to the labs!

[bookmark: _Toc386026119]Lab 1: Exploring the Gnome GUI

1. Examine the Applications menu
a. What do you find under Accessories?
b. What do you find under Internet?
c. What do you find under Office?
d. What do you find under System Tools?

2. Select Applications > Accessories > Passwords and Encryption Keys (you may have to scroll down in the VM, see the scroll bar on the right hand side). From the pop-up window, click on Passwords: login, right click on this entry and select Change Password. Enter your current password (linuxiscool) and then a new password under Password and Confirm password. As you type, the “New password strength” bar indicates how strong your password is. Click on the Change button and then close the Passwords window. What is a strong password?

3. Examine the Places menu
a. Select Computer
i. Using the file manager, double click on Filesystem. A new window appears labeled “/”. What does this mean? What directories do you find in the new window? Which of these directories have items?
ii. Double click on bin (open this directory). What types of items are found here? What names do you recognize? Close the bin window.
iii. Open etc. Scroll down passed the folders. What types of things do you find here? Look for the file passwd. Double click on it. What type of window opens? What are the contents of the passwd file? Close this file. Close the “/” window. Close the Computer window.
iv. Open home. What folders do you find? Open zappaf. Try to open each folder in turn. Which ones are you able to? Notice the folders that have an X above them. What does this mean? Close all open windows.
b. Select Home folder from Places
i. What is the label in the new window that appears? What items do you find in this folder? What does this folder represent? Do you know the full path name for this folder (directory)?
ii. Open FILES. What is stored there?
iii. Open DUMMY-DIRECTORY. What is stored there?
iv. How is the set up of your (Student’s) home directory similar to the set up you might find in Windows?
v. Close all open windows.

4. Examine the System menu
a. Select Preferences > File Management. Explore the pop-up window choices. Close this window.
b. Select Administration. Select Authentication. What happens? Why? Close this window.
c. Select Administration > Printing. What happens? How does this differ from what happened with Authentication?
d. Select other choices under Administration. Which ones are like Authentication? Are any others like Printing? Which selections are available to Student (not root)?

5. In the desktop area away from any icon, right click and select Open in Terminal (this choice is also available under Accessories of the Applications menu).
a. What is provided as your prompt?
b. Enter the command pwd. This tells you your current working directory. Where are you? Because you opened the terminal window from the GUI, you should be in the Student user’s Desktop. Type cd .. to reach Student’s home directory, which is one level above Desktop.
c. Enter the command ls. What do you see?
d. Enter the command ls –l. What do you see? How does this one differ from ls?
e. Enter the command who. What does this tell you?
f. Enter the command whoami. What response do you get?
g. Enter the command cd ~foxr. What happens to your prompt? Type ls. What do you see?
h. Enter the command cd ~zappaf. What happens to your prompt? Type ls. What do you see?

6. Type su and login as root (password: linuxiscool). What user does your prompt now tell you you are? What prompt character do you have, $ or #? Type passwd Student. Since you are root, you do not have to login as Student to issue a password. Change the password back to linuxiscool (from what you changed it to in step 2a). Type exit to leave root and return to Student’s account. As Student, type passwd zappaf. What result do you get? How does this differ from if you were root? Type control+c to exit from this command.

7. On the bottom right of the desktop you will see 2 squares, one is blue the other is grey.
a. Click on the grey square. What happens? Why did your terminal window disappear?
b. Return to the first square. From your terminal window, type exit. Did your window disappear for the same reason as it did in 7a? If not, why did it disappear?

8. Move the mouse over the various icons at the top of the window and at the bottom. Find the icon for updates. How many updates are there? What happens if you try to install them? Cancel and quit out of this.

Under System, select Log Out. Logging out will take a few moments.

[bookmark: _Toc386026120]Lab 2: Exploring the Bash Shell (part I)

Remember to open a terminal window.

1. The simplest Linux commands can be used without options.
a. Enter ls. What does this command do? Enter pwd. What does this command do?
b. Type cd ~. What does this command do? How does your prompt change? Type ls again. How does this differ from part a?
c. Type each of these commands and briefly explain what each does. whoami, arch, uname, date, vmstat.
d. Type cd ~/FILES followed by more addresses.txt and less addresses.txt. Type more /etc/passwd and less /etc/passwd. How do the two instructions, more and less, differ?
e. Type which arch, which ifconfig, which vmstat. What are the responses to each? Type which useradd. What was the response? Why? What does which do?

2. We will now explore commands that use options.
a. Type ls. Now type ls –l. How do the two differ?
b. Type host. As the command expects a hostname, you are given the command’s usage. Type host kosh.nku.edu. What is the response? Type host –v kosh.nku.edu. What does the –v option do? Look at the response from the command, what sections do you see? The IP address given at the bottom of this command is the DNS server that responded to your host command. Type host –i IPaddr where IPaddr is the IP address of the DNS server from the previous command. What is the name of the DNS’s IP alias? What does the –i option do?
c. Type ps which shows you all active processes. There are a number of options available. For ps, most of these options do not start with a hyphen. Type each of these: ps a, ps u and ps x. How do the responses differ?

3. To see what a command does (including its available options), view the command’s man page.
a. What does man stand for?
b. Type man ps. Use the space bar or arrow keys to control moving up and down in the man page and q to exit. What does this man page tell you about ps? Provide a short (2-3 line) summary.
Use man to explore each of these commands and answer the following questions:
c. ls: what does –a do? what does –r do? what does –R do?
d. who: what does –b do? what does –H do?
e. vmstat: what does this instruction do? there are a number of synopses, what are these?

4. The history list allows you to recall previous commands.
a. Type history. How many commands are in your list?
b. To recall the most recent instruction, type !!. Type this. What happens? Why?
c. To recall a previous instruction, type !# where # is the number in the list. For instance, type !1. What happened? Why? Type !n where n is the number of the instruction prior to the history command (this should correspond to the man instruction from step 3). What happened?
d. You can also type !str where str is a string of the beginning of the command. Type !m. This should recall your last man command. Type !p and it should recall your last ps command (from 2c). Type !ho. What command is executed? To execute this, why did you use !ho instead of !h?
e. Type history again. How much longer is your list now than it was in step 4a?

5. An alias is a definition that allows you to execute an instruction through a shortcut.
a. To see what aliases are already defined, type alias. How many aliases are there?
b. Define your own alias with the notation alias name=command. If the command on the right side contains one or more blank spaces, enclose the command in ‘’ marks. Type this one: alias home=‘cd ~’. Type home to make sure it works. Explain the command and why we called it home.
c. Enter an alias to perform a long listing of the current directory, showing all files in reverse alphabetical order. Use man as needed on ls. Test it out to see if it works correctly. What alias did you create?
d. Enter an alias to output your current working directory, your user name, the architecture, and the date. Specify multiple instructions by separating each instruction with a semicolon (;). What alias did you enter?
e. To remove a defined alias, type unalias name where name is the name of the alias. Type unalias home Type alias. Is the home alias listed? NOTE: you can recreate your home alias if you want to keep it.

6. Variables store values. Environment variables are variables defined by a script but the user can also define them.
a. To output all environment variables, enter the env command. What are the values of each of these variables? PWD, HOME, USER, HOST, PS1.
b. To create a variable, type name=value where name is the variable name and value is the value you want to store there. The value should either be a string, in which case it can contain any characters desired, or an integer. If you use a string which contains any spaces, enclose the string in either ‘’ or “”. We will use “”, at least for now. Establish two variables, FIRST and LAST to store your first and last names. What commands did you enter?
c. To output the value of a variable, use echo $VARNAME as in echo $HOME or echo $FIRST. Write a single echo statement to output the values stored in FIRST and LAST. What command did you use? If a blank space did not appear between the two names, how would you ensure that the output had a space between the first and last names?
d. What echo command would you use to output your first, last names, user name, and your home directory.

[bookmark: _Toc386026121]Lab 3: Exploring the Bash Shell (part II)

Reminder: open a terminal window.

1. Shortcuts: ~, tab completion, wildcards
a. The ~ symbol represents “home directory”. Type cd ~. Where are you? Type cd ~zappaf. What does your prompt now say? Type cd ~foxr/HUMOR. What directory does your prompt show now?
b. cd to ~foxr/HUMOR. Type cat bumperstickers to make sure it exists. Type cat b[tab] meaning type cat b and then hit the tab key. What happened? Type cat s[tab]. This emits a beep (if you have speakers turned on) indicating that the interpreter could not uniquely identify a file. Type cat sm[tab]. What appears? Type cat s[tab][tab] (tab key twice). What happened?
c. Change directory to /usr/bin (cd /usr/bin). Type cat c[tab][tab]. What happens? How did this differ from doing cat s[tab][tab] from step 1b?
d. Change directory to ~/DUMMY-DIRECTORY. Type ls and then ls *.txt. Compare the results.
e. Change to directory2. Type ls to view the files. Type ls aa?.*. Why did aa1.abC match but not aa10.bBC? What does the ? do? Change directory to ~/DUMMY-DIRECTORY/directory3/c1. Type ls foo?. Why does foo not appear but foo2 and foo3 do?
f. Return to DUMMY-DIRECTORY and type ls *.[bc]*. Which files are listed? Why did aaa.abc not appear? What does the [] do?

2. Command Line Editing
a. In ~/DUMMY-DIRECTORY there are files named file1.txt – file4.txt. Let’s rename them to end with .dat. The mv instruction (used to rename files) can only rename one file at a time. Enter mv file1.txt file1.dat. The novice Linux user would then retype this instruction 3 times changing the numbers each time (from 1 to 2, etc). Command line editing will save you time and effort. How? Type control+p. What does this do? Type control+b. What does this do? Repeat this until you reach the “.” before the .dat. Hit the backspace key to erase the “1”. Type 2. Now type escape+b (hit the escape key and then type b) two times. What does escape+b do? Type control+b to move back to the period and then backspace to erase the “1”. Type 2. Press <enter> to enter the instruction. Repeat this operation twice to change the 2’s to 3’s and then the 3’s to 4’s.
b. To create an empty file, type touch filename. Let’s create the file a_file.txt. Use the touch statement. Now, we want to create a new file called b_file.dat. Explain how you would do this with command line editing. Note: control+a moves you to the beginning of a line, control+e to the end.
c. What do each of these do: control+k, control+y, escape+f, control+d, escape+d.

3. A pipe (|) redirects the output of one program (command) to be the input to another.
a. cd to /etc. Type ls. The files scroll past. We can use more or less to present the information one screen at a time. Type ls | more. What happens? More responds to the space bar, <enter> and s and q. What do each of the space bar, enter, s and q do? Type ls | less. What happens? The less command is controlled by the same keys plus the arrow keys. Experiment with less and summarize how it differs from more.
b. Type ls | sort –r | less. What does this command do?
c. Change directory to ~zappaf/ZAPPA. Type the following command cat c* | grep “f$” | sort. Explain what each part of this instruction does. The $ in “f$” says “match an ‘f’ that ends the line”.
d. cd back to /etc. The command wc filename will output the number of characters (bytes), words and lines in filename. Use ls and a pipe to wc to find out how many files in /etc start with the letter ‘c’. How many did you find? What command did you enter?

4. File redirection is used to alter the input/output of a command.
a. While in /etc, type ls > ~/etc-files.txt. This command performs an ls and sends the output to the file etc-files.txt rather than to the window. Why is the ~/ necessary? HINT: try it without the ~/.
b. Change directory to /bin. Type ls >> ~/etc-files.txt. cd to your home directory and type less etc-files.txt. Examine ~/etc-files.txt. Explain the difference between > and >>.
c. Most Linux commands obtain input from files rather than keyboard so there is little need for the < redirection. Let’s see. Type less < ~/etc-files.txt and type less ~/etc-files.txt. Is there any difference?
d. Now let’s try <<. This works as command << string where command then obtains input from keyboard until you type string. Type wc << quit. Now type the following: Hello there<enter>, how are you today?<enter>, quit<enter>. What was the output of the command?
e. Let’s combine << and > to create a text file using cat. From your home directory, type cat << quit > list.txt. Now enter any list of items (e.g., grocery items, band names) but unsorted, and type quit to end. What output are you given? Type less list.txt. You should see your list. Type the command cat << quit | sort > list2.txt. Enter the same list. Type less list2.txt. How does this version of the file differ? Explain each part of the command you entered.

5. If you enter a variable or alias, it only lasts during this session. You can instead define these in one of several files so that they are available in any and every shell.
a. Change to ~Student and type cat .bashrc. This script tests to see if the file /etc/bashrc exists and if so, executes it. It also has user-defined components. Currently, there should be a single alias. Examine /etc/bashrc. It defines several environment variables like PROMPT_COMMAND, PS1 and PATH. If you want to alter your PS1 or PATH, would you do this in /etc/bashrc or ~/.bashrc? Why?
b. Look at ~/.bash_profile. What does this script do that .bashrc did not?
c. Type echo “alias me=‘ps aux | grep Student’” >> .bashrc to define a new alias and add it to your .bashrc file. Examine your .bashrc to make sure it is now there. Explain what the command does. Type me. Why does it not work?
d. Type source .bashrc. Type me What happens this time? What does source do?
e. In which order do the two scripts .bash_profile and .bashrc execute? How do you know?
[bookmark: _Toc386026122]Lab 4: Exploring the Linux File System (part I)

1. Paths: we explore relative and absolute paths. A relative path starts at the current directory. To move down, type cd directoryname. To move up, type cd ... An absolute path starts at the Linux root level, / as in /home/foxr/myfiles. NOTE: remember to use tab completion when possible!
a. Type cd /. This is the root level. Type cd etc followed by cd sysconfig and cd networking. Type pwd. Where are you? Return to / (cd /). Now type cd /etc/sysconfig/networking. Type cd .. three times. Where are you? From /, type cd home/Student. Where are you? You can also get there with cd ~.
b. From Student’s home directory, type ls, one item is the subdirectory FILES. What command would you use to reach the FILES subdirectory? Enter the command. From here, how would you reach DUMMY-DIRECTORY using a relative path? Enter the command. What directory are you in according to your prompt?
c. From DUMMY-DIRECTORY, we want to return to the networking subdirectory. Enter an cd command using an absolute path. What command did you enter? What directory does your prompt say? From here, what command would you enter using an absolute path to return to the DUMMY-DIRECTORY?
d. Your PATH variable was defined in /etc/profile and appended to in /etc/bashrc and in .bashrc_profile. What are the contents of PATH? (hint: recall how to output the value of an variable from lab 2 step 6) When you enter a command, if the command is not in the current directory, all directories in PATH are tested. To discover where a command is, use which, as in which wc. Where is wc stored? Where is pwd stored? What happens when you enter which useradd? Why? Another command to locate commands is whereis. Try whereis useradd. How did this result differ from which useradd?

2. Basic file system commands: touch, cp, mv, rm, rmdir. Remember tab completion in steps like 2b, 2c.
a. cd to ~Student. Type touch test1.txt to create a new empty file. Type ls –l. The fifth item in the long listing is the file’s size. Type touch test2.txt test3.txt test4.txt. Type ls –l. What are the sizes for the four files?
b. To copy a file, use cp currentfile newfile. Type ls FILES. Let’s copy the sales.txt file from its current location to the current directory. The current directory is indicated with a period. The command is cp FILES/sales.txt . Give it a try. Did it work? We can copy multiple files at a time using wildcards. Type cp FILES/*.txt . Type ls to make sure it worked. Change directory to ~/DUMMY-DIRECTORY/dir5. There are several .dat files. Enter a cp command to copy all of these files to Student’s home directory. What command did you come up with?
c. From dir5, type echo hi >> cde.dat. This will add the word “hi” to this empty file. Change directory to Student’s home directory. We want to copy this file from dir5 to ~Student but the file already exists in ~Student. Enter the appropriate cp command to copy this file but add the option –i after cp. The –i option is interactive mode which, if the file already exists, asks the user if the file should be overwritten. Answer ‘n’ when asked. Type cat cde.dat and you will see it is still empty. Now repeat the cp command without the –i option. What happens? Explain why and when you should use –i with cp.
d. The option –r performs a recursive copy. Switch directory to DUMMY-DIRECTORY. Type the command cp –r directory3 temp. This instruction will recursively copy everything in directory3, including subdirectories and their contents, into a new directory called temp. Once done, explore the contents of temp and compare it to directory3. In your own words, what does recursive mean?
e. The mv command can be used to move a file from one location to another, rename a file, or move a group of files to the same destination. With the temp directory created from 2d, type mv temp .. What does this instruction do? Change directory to /home/Student. Is temp there? Are the contents the same as before? Type mv temp temp2. Do an ls. What did this instruction do?
f. Change directory to DUMMY-DIRECTORY again and type ls. You should find 4 files ending in .dat renamed during your last lab. We want to change their names back to .txt. Enter the command mv *.dat *.txt. What happened? Now type mv file1.dat file1.txt. This version works by renaming one file so why didn’t it work using the *? Using command line editing, repeat this last mv command 3 times to rename the other 3 files back to their .txt extensions.
g. Change directory back to ~Student. Earlier, you copied sales.txt here. Type rm sales.txt. Do an ls to see if the file was deleted. There are also several .dat files here. Enter a command to delete them all (but only the .dat files). HINT: use the wildcard (*). What command did you enter?
h. As with cp, rm has a –i (interactive) option for safety. Change directory to FILES and type rm –i *.txt. Answer ‘n’ to each prompt. How could you ensure that whenever you type rm, the –i option is used without having to necessarily type rm –i?
i. From step c above, you copied the entire directory3 subdirectory of DUMMY-DIRECTORY and then moved it up to ~Student and renamed it temp2. Cd to ~Student. Type rm temp2. What happened? Now cd to temp2 and type rm *. What happened? The rm command is used to delete files, not directories. To delete a directory, you can use rmdir. Try rmdir c1 (this is the letter ‘c’ followed by the number ‘1’, not a lower case ‘L’). What happens? Another option is to use the recursive option of rm, just as you used it in cp. Type rm –r *. What happens? Change directory back to ~Student. Do an ls. Even though its contents are gone, the temp2 directory still exists. Delete it using rmdir. What command did you enter?
j. Just as there is an rmdir command, there is an mkdir command to create a new directory. This is somewhat like touch, it creates an initially empty directory. Type mkdir new. Type ls –l. What size is this directory (even though it is empty)? Do its permissions (the first 10 characters of the line) match the other directories? If not, how does it differ?

3. Examining files’ contents with head/tail. By default, they list the first/last 10 lines of a file.
a. Cd to /etc. cat passwd, head passwd and tail passwd. Examine the man pages of head and tail to explore the –c and –n options including using –number and +number as in the options –n -5. Type tail –c 100 passwd. What does this command do? How does tail –c +100 passwd differ? Type head –n 5 passwd. What does this command do? What command would you enter to list all of the passwd file starting at line 6?
b. The file command outputs information about files. While you are in /etc, type the command file a*. This will output information about all of the entries in /etc that start with the letter ‘a’. What types of entities do you find? Repeat this step using the option –i. How does the information about the file type differ from the version without using –i? (examine the man page as necessary)

4. More complex file commands: cmp, diff, split, ln.
c. Change back to ~Student. To compare two files to see how they differ, use diff or cmp. First, use cat << quit > temp1.txt to enter a list of 5 first names and repeat this to create another list named temp2.txt. temp1.txt should differ from temp2.txt in that they should have 3 of the same names and 2 different names. Now type cmp temp1.txt temp2.txt. What is the output? Repeat using diff. How does diff’s output differ from cmp’s?
d. Copy the file FILES/addresses.txt to ~Student. Split will split one file into multiple files. The basic format of this command is split –l # file prefix which splits file into multiple files of # lines each naming each file using the prefix followed by letter combinations (e.g., prefixaa, prefixab). Split addresses.txt into files of 3 addresses each using the prefix addr. What command did you enter? What new files were created? Repeat your previous command but add –d after the –l # option. How are these new files named? What does –d do? Delete all of these addresses files.
e. Read up on links and the command ln. From the ~Student directory, type ls –l FILES. The second item in the listing is the number of file records (hard links) pointing at the given file. They should all say 1. From ~Student, enter the command ln –s FILES/sales.txt sales2.txt. Do an ls –l on the ~Student directory. What does the entry for sales2.txt have for its first character in the permissions and how is the name listed? This is a symbolic link. Type cat sales2.txt and you will see the content of FILES/sales.txt. What is the value (use) of a link?
f. Again, type ls –l FILES. What number is provided for the links for sales.txt? The symbolic link, sales2.txt, is not a file record, but just a link. Delete sales2.txt. Do an ls –l of ~Student and then of FILES. The file sales2.txt is gone, what about FILES/sales.txt?
g. Repeat the ln command from 2c omitting –s. This creates a hard link. Type ls –l of both ~Student and FILES. How many file records point to the file now? How does sales2.txt’s appearance in the ls –l differ from step c? Delete sales2.txt. Again, do an ls –l of FILES to make sure the number of links is 1.

[bookmark: _Toc386026123]Lab 5: Exploring the Linux File System (part II)

1. Permissions access: here you will use chmod and experiment with the 3 different ways to change permissions using u,g,o +/-, u,g,o= and the 3-digit approach. Review these approaches in the text as needed.
a. Change directory to ~Student/DUMMY-DIRECTORY and type ls –l. The first 10 characters in each line are the file type and file permissions. Of the items listed, which are directories? Of the items listed, which are readable and writable by owner and group? By owner group and world?
b. Type ls –n. This displays owner and group by ID number rather than name. What number appears?
c. The chmod command has the form chmod newpermissions file(s). Using the ugo +/- approach, do the following.
i. Change aa6.bbc to not be writable by group. What command did you enter?
ii. Change aaa.abc to only be readable and writable by owner. What command did you enter?
iii. Change file1.txt to be readable by all and writable by owner only. What command did you enter?
iv. Change dir5 to be readable and executable by group and world. What command did you enter?
d. Using the ugo= approach, do the following.
i. Change directory3 to be readable, writable and executable by everyone. What command did you enter?
ii. Change file1.txt so that it is no longer executable by group or world. What command did you enter?
iii. Change file3.txt to be readable, writable and executable by owner, and no access to anyone else. What command did you enter?
e. Using the 3-digit approach, do the following.
i. Change directory4 to have permissions of rwxr-xr-x. What command did you enter?
ii. Change file4.txt to have permissions of rw-rw-rw-. What command did you enter?
iii. Change aa8.bCC to have permissions rwxrwxr--. What command did you enter?

2. Access: here you will explore access rights based on permissions.
a. Change directory to ~zappaf and type ls –l. As Student, you need ‘r’ access as world to ls a directory and ‘x’ access to cd a directory. Which of zappaf’s directories do you have ls access to? Which do you have cd access to?
b. Notice that the IQ directory has ‘r’ and ‘x’ permissions for group but not other. The IQ directory has group ownership of the cool group. Student is not a member of cool but foxr is. The su command allows you to switch to being another user. Type su foxr. The password is linuxiscool. Now you are foxr (notice the change in prompt). Attempt to ls and cd (two separate instructions) into the IQ directory. Are you successful? Notice that the GENESIS directory does not have ‘r’ or ‘x’ access for group or world. What would zappaf have to do to permit foxr ls access to this directory (not cd access) but not Student? NOTE: zappaf would have to do two things, name them both.
c. Change directory to foxr/HUMOR. What 3 digit values do each of these 13 files have?
d. As Student, which files do you have read access to in the HUMOR directory?
e. As Student, which files do you have write access to in the HUMOR directory? Why should you NOT have write access to any of these files?
f. As zappaf, which files do you have read access to in the HUMOR directory? Exit back to Student.
g. The ls command outputs items in different colors: file names in black font, executable files in green, directories in blue. Type ls –l ~foxr. The TEMP directory is outlined in green. Why? It is writable by everyone although the world should not be given write access to a directory. Change directory into the TEMP directory. Type touch a4.txt. Type ls –l. What permissions does a4.txt have? How does this file differ from the others in the directory? Delete this file. Did it work? Now try to delete the file a1.txt even though you are not the owner. Did it work? Why or why not?
h. Change directory to /etc. Many of these files are accessible only to root. Type ls –l | less. Which files listed are only readable by root? Which files are not even readable by root (based on permissions)?
i. Change directory to /sbin and type ls –l | less. Which commands can only be executed by root? Let’s test this out to see if in fact you do not have access. arp has world execute access and audispd does not. Run both programs. What is the result?
j. Switch directory to /usr/sbin and do ls –l group* user* (this command lists all of the files that start with either group or user). You will notice that the add, delete and mod commands do not offer world any form of access. The groupadd command allows world (other users) access to create a new group. Its form is /usr/sbin/groupadd groupname. Create a new group called cit371. What happens?

3. Of the files and directories examined so far, nearly all have the same name for owner and group. How can we change the owner or group of a file or directory? For this, there are two commands, chown and chgrp. The commands format is chown/chgrp newuser/newgroup file(s) (where file(s) can also be directories). In order to issue the command, you must be the current owner or root. If you want to change both owner and group, you can do this using chown indicating the new owner and group using notation newowner:newgroup. You will not be able to use chown as a normal user because you would have to have access to the new owner’s account (typically, only root has that access). However, you can change group to a group you belong to. Change directory to foxr/HUMOR if you are not already there. Using su, change to foxr (the password is again linuxiscool). Change the group of darwin to cool. What command did you enter?

[bookmark: _Toc386026124]Lab 6: Exploring the Linux File System (part III)

1. We use the find program in this lab. We will start with some basic commands. At its most basic, the command is used like this: find dir –name “string” where dir is the starting directory (the find command performs a search from that point down in the hierarchy) and string describes the filename to match again (wildcards can be included).
a. Enter the command find /usr/sbin –name user* to locate all of the files (commands) in /usr/sbin (and any subdirectories) that start with user. What files were found?
b. Enter a command to find all entries under /etc that end with .conf as an extension. What instruction did you use? Pipe the result to wc. How many entries were found?
c. A variation of using –name is –iname where the string specified is matched against file names with case insensitivity. Repeat the command entered in part b using iname. Did you get different results? What does this tell you? Redo the first command you entered in part b without the pipe and scroll through the results. You will find in some cases the response: Permission denied. Why would you get this error?

2. Aside from finding objects by name, you can locate objects based on creation, modification or access date or time or size. Review the information on find in the textbook.
a. The option –anewer filename will list all files that have been accessed more recently than filename. Use the command find ~ -anewer ~/DUMMY-DIRECTORY/file1.txt. What is the response?
b. The option –cnewer filename is the same except that it is based on creation date. Issue a command to find all files created more recently than file1.txt. What command did you enter? Did you get the same results as part c? If not, why not?
c. The options –amin # and –cmin # find all files accessed or altered within the last # minutes respectively. Switch to directory ~/DUMMY-DIRECTORY. Now type find . –cmin 1. No files should be listed. Now do echo “hi” >> aa6.bbc. This command will change the status of the file aa6.bbc to have been altered. Repeat the find command. What happened? Similar to –amin and –cmin are –atime # and –ctime # where # is days instead of minutes as with amin and cmin.

3. To find items of a given size, use –size # where # will either be an integer, a +integer or a –integer. The + and – mean “greater than” and “less than” respectively while # by itself means “exactly”. After the integer, add ‘c’ to indicate bytes, as in +100c for 100 bytes.
a. Use a find command starting at ~Student to find items of size 0. What command did you enter? Now find all files greater than 1000c. What command did you use? How many results did you find (pipe the result to wc –l).
b. If you want to search for files within a range, you can combine +integer and –integer using –a or –and. Find all files in the ~Student/FILES directory that are between 350 and 425 bytes. What command did you enter? What did you find?

4. We wrap up this lab by looking at other find options.
a. The option –empty which will find files and directories that are empty. Enter the command find ~ -empty. A lot of files will appear including everything from DUMMY-DIRECTORY. Now do the same for all items under /usr and pipe the result to wc. What command did you enter? What result did you get?
b. To limit the number of subdirectories that find will traverse, use -maxdepth #, where # is the number of subdirectories to explore such as 5. For instance –maxdepth 1 will limit find to 1 level of subdirectories. The /usr directory has many subdirectories. If we search all of /usr for –empty, we will find a number of empty files. But let’s limit our search to finding empty directories. This will be done by using –maxdepth 1 so that we only search /usr which contains only directories (all files under /usr are lower in the file space hierarchy). Issue a command to search /usr at a depth of 1 for empty files. NOTE: -maxdepth option must appear before –empty. What command did you enter? What directories were found to be empty? Expand your search to 2 levels and pipe the result to wc. How many files/directories were found?
c. The option –executable finds all items that have executable permissions (whether directories or files). Find all executable items under ~Student. What command did you enter? A variation is to use –perm and follow it by a 3-digit permission, such as 755. Search everything under ~Student for permissions of 777 and then for permissions of 666. Was anything found for 777? For 666? Why should you never have either of these permissions? Repeat your 666 and 777 commands starting at /home instead of ~Student (this will also test foxr and zappaf). While many items will have permission denied responses, what did you find? NOTE: there are also –readable and –writable options.
d. Using –perm, find all items under / that have permissions of 000. What did you find? NOTE: you will receive a lot of permission denied statements, just ignore those.
e. The default action in find is to list any matched items. Other actions include –delete, -exec command ; and –print. The –exec action allows you to specify a Linux command. The notation is a bit odd. After the command, if the command expects a parameter (for instance, a file name), you add {} and then the instruction ends with \; Write a find command to find all writable files in ~foxr/HUMOR and perform wc on them. What was your command? How many files were found? Read through the find man pages to learn more about find. We will revisit find later in the semester.

[bookmark: _Toc386026125]Lab 7: Process management

Open a terminal window.

1. Here, we shift to examining running processes in our terminal window.
a. Open a second terminal window by typing gnome-terminal. Notice that both windows are equally accessible. To close a terminal, type exit or control+d, or click on the X in the upper right hand corner or select Close Window from the File menu. Close the second window (leave the first window open). Another type of window is called an xterm. Type xterm. Return to your original terminal window. What happens when you attempt to use that terminal window? Close the xterm window (exit or control-d). Can you access your original terminal window?
b. Again, open an xterm window. In your original window, type control+z. This suspends the current running process (xterm). What message do you receive in your original window? Attempt to use the xterm window. What happens?
c. In your original terminal window, type jobs which shows you the running or stopped processes launched from that window. Type man jobs. While the man page is listed, type control+z to suspend this as well. Type top and once it starts to run, type control+z to suspend it (we will examine top later in this lab). Type jobs. What is displayed? To resume any of these jobs, type fg # where # is the job number as shown in the jobs listing. The command fg without a number will resume the job that has a + next to it (the most recently run job). Resume the man job. How did you do this? Type q to exit man. Type jobs. What is displayed now? Type fg 1 to resume xterm. Type control+z to suspend it again. Type jobs. Which job now has the +? The – indicates the second most active job. Type fg. Which job resumed? Type control+c, which will exit this job. What happened? Type fg. What job resumed? Type q to quit this program. Type jobs, you should see nothing.
d. We can launch it into the background by adding & after the instruction which will free your terminal window. Type xterm &. How does this differ from entering xterm without &? In the xterm window type man xterm and read about xterms (if desired). Return to your original terminal window and type find ~ -empty &. The find process ends, but you do not receive a prompt. Hit <enter>. What is displayed?
f. With one xterm still running, in your original terminal window type xterm to start a second xterm and control+z to suspend it. Type jobs. How do the two listings of the xterm jobs differ from each other? Type fg to resume the stopped xterm job and exit out of xterm. Type jobs again. What do the words “Running” and “Stopped” mean in the jobs output? Exit any remaining xterm windows. In your original window, type jobs again. What is output?
g. From the Applications menu, start a couple of GUI processes (for instance, Gedit, Calculator). In your terminal window, type jobs. What is displayed? Why do you not see information on the two GUI processes? Close your GUI processes.
h. In your terminal window, type xterm, man jobs and top control+z to suspend each (do not use &). Type jobs, all three should be listed as stopped. Type bg top. What happens? Type jobs. Has top’s status changed? Type bg xterm. What happens? Type jobs. Has xterm’s status changed? If so, how? The bg command moves a process into the background to continue running. Notice xterm’s status is listed as xterm &, we can access it at the same time as our terminal window. Exit xterm, resume and exit each of man and top.

2. Monitoring processes
a. Type top. Notice that the display stays in the window but changes every few seconds. What is the %CPU usage of top? Leave top running, and in a second terminal window launch the command find / -empty (ignore any messages that you receive while it is running). While find executes, look for find in top’s display. It moves around. Why is it moving? As it moves, what happens to its %CPU and %MEM values? After perhaps 30 seconds or a minute, find will end. Examine top. What happens to the find entry?
b. Another process listed in top is init with a PID of 1. Why does init have a PID of 1?
c. In a second terminal window, type man top. Search for VIRT, RES and SHR (remember to use vi’s search function). What do these three entries represent? What are the values of init’s VIRT, RES and SHR in top? Exit man when done, leave top running.
d. Start the GUI System Monitor program by selecting Applications -> System Tools. Click on the Processes tab. Compare this to what you see in top. You can alter the information that appears in the system monitor through Edit -> Preferences’ Information Fields listing. Compare the fields available in the System Monitor to those available in top. What fields differ (if any)? Close this preferences window. Click on the Resources tab. Compare the information about CPU usage, memory and swap history as shown in the GUI to what top tells you. You can close the system monitor now (leave top running).
e. You interact with top by entering letters which are commands. Type u to change users and when prompted, enter Student. What are the top processes listed for Student? What is the smallest PID and the largest PID that you see in the top window? Type u and <enter> to reset top to showing all users. Type d to change the refresh duration from the default (3 seconds) and type .5 <enter>. Notice how quickly top changes. You should see the top process change quickly. Type d 3 <enter> to reset it. Type f to obtain a listing of fields that you can adjust in top’s display. Find the entry for Controlling Tty (should be “G” or “g”) (terminal window). Enter that letter and hit <enter> to return to top. Is there a column for Tty now? Which processes are listed that are in a TTY other than ? (which means no terminal window). Type q to exit top.
f. Open a second terminal window (if you do not have a second one already open) and type ps in both windows. This lists active processes of the terminal window. How do the two outputs differ? Type ps a in either window. How does this output differ? Do a man on ps in one window. What does the a option give you? Type ps u. How does this differ from ps a? What does the u option give you? Now type ps au. This should show you the same list as ps a but with the details of ps u. In the man pages, look up VSZ, RSS and STAT – what does each mean? For STAT, you may find processes listed as Ss+, Ss, R+, S, Sl, and Ssl. What do each of these mean?
g. Type ps ax. The x option gives you processes irrelevant of terminal window. Type ps axef. This adds the parent-child relationships between processes. Type ps ax –H. This shows parent-child relationships using “Ascii Art”. Scroll up until you find gdm-binary. gdm stands for Gnome Display Manager. You should find other gdm and gnome-related processes that were spawned. Explain, for the gdm/gnome processes which spawned which. Scroll down until you find your ps ax –H instruction. What was its history (in terms of what spawned it)?

3. Priorities
a. In one terminal window, type top. In the other window, su to root and then type nice –n -20 find / -empty. Watch find’s progress in top. What are its priority and NI (nice) values? Exit as root.
b. Make a note of top’s PID. In the other window, type renice –n 10 –p PID where PID is top’s PID. What response did you get? Now redo the renice command using –n -10 instead of 10. What happens? Why did you receive this error?

4. Killing processes
a. Open an xterm in the background (xterm &). Type ps u to obtain the PID of xterm. Enter the command kill –s 9 PID where PID is the PID of xterm. What happens? (look at your other terminal window, does your prompt appear? If so, where is it?)? Restart xterm, obtain its PID and kill it using –s 1. What happens? Increase the signal until you the xterm ends. What signal is needed to kill it? Why did –s 9 kill it but not 1?
b. The killall command can be used to kill multiple processes. Launch two xterm & processes. Enter the command killall xterm. What happens? Open two more xterm & processes. Type killall –i xterm. What is the difference?
c. You can also issue killall –i –u username as in killall –i –u Student. This will iterate through every process owned by that user and ask you if you want to kill it or not. Why might a system administrator use killall?

[bookmark: _Toc386026126]Lab 8: The vi Editor

You will create two files in this lab and edit a third, all using vi.

1. Enter vi. You will see a buffer that consists of lines that start with a ~ and some welcome information. The cursor’s location is listed in the bottom right. The word “All” indicates that the whole file is being displayed. You are in command mode. To enter text, you must enter either insert or replace mode. Type I (insert mode). What appears at the bottom of the window? Enter the following, pressing <enter> to end each line.
Colorado
Kentucky
Indiana
Minnesota
North Carolina
Ohio
Texas
Type <Esc> key to exit the insert mode. What happens at the bottom of your browser? Save the file using :w filename <enter>. Use states.txt as the filename.

2. Experiment with moving around the document. First, try using: h, j, k, l (lower case L), G, 1G, $, 0 and nG where n is a line number.
a. Type 1G. Where did your cursor move to? From the top of the file, what keystrokes can you enter to move to the end of Indiana? To the beginning of Ohio? The end of Texas? Attempt to solve these with the fewest keystrokes possible.
b. Move to the bottom of the file, enter insert mode. Enter Georgia and return to command mode. How did you accomplish this entire step?
c. Let’s explore how to edit what you already have in place. Move to the beginning of North Carolina. Change North to South using the replace mode. Enter replace mode by typing R. Type Sou to overwrite Nor. You don’t have to type the ‘th’ because it’s already there. Press <Esc> to return to command mode. Type u. What happened?
d. Move the cursor back to the beginning of this line. Type r. This replace mode allows you to change only one letter. Change the ‘N’ to an ‘S’. You do not need to change the next letter, ‘o’, it is correct. Explain how to move the cursor and change the ‘r’ in North to the ‘u’ in South. Save the file by typing :w <enter>. If you wanted to change the filename, you would type :w newname <enter> but that is not necessary here.
e. Northern Kentucky has decided to form its own state so we want to add North Kentucky to the list. We will copy, paste and edit Kentucky. Move the cursor to any point in the word Kentucky. How did you get the cursor there? Type yy. This copies the entire line of the cursor into a buffer. Type p to paste the copied line into a new line above the current line (P places it below the current line – since we are copying and pasting the same line, it doesn’t matter which we use, p or P). Move to the beginning of the new line. Enter insert mode and type “North ” (North and a space). Exit insert mode.

3. We will wrap up this file by looking at other vi features.
a. You can enter commands by typing :command, one of which is sort. Type :sort <enter>. What happened? Save and exit vi (:wq). Restart vi. Type :r states.txt to load the file back into place. Move the cursor to somewhere in Minnesota and type o to move into insert mode in a blank new line that appears in the line underneath the cursor. Enter New Mexico <Esc>. Move the cursor to somewhere in Indiana, and press O (capital o). Insert Illinois <Esc>. What is the difference between i, o, O, r and R?
b. Using copy and paste, copy New Mexico and paste it and change the second occurrence to New York. Explain how you accomplished this in a step-by-step description.
c. Move to New York. Move the cursor after the ‘w’ in New (it can either be on the blank or on the ‘Y’ in York). Type D. What happens? Replace York with Jersey (the line is now New Jersey). Since New Mexico and New Jersey are in the wrong positions, sort the file again. How did you accomplish the sort? Save your file. How did you do this?
d. Move to the top of the file. To search for string, type /string <enter>. To search for further instances, type /<enter>. Type /I to search for a capital I. What do you see in your buffer? Type /. What happens? You can search backward for string using ?string. Move to the bottom of the file. How did you do that? Type ?New. Where did your cursor wind up? Type ?. Where is the cursor now? Type ? again. What happens?

3. Start a new file from the command line by typing vi courses.dat. Enter insert mode and enter all of the courses you are taking this semester. Each line should contain the course designator, number and section (e.g., CIT 371.001), a tab, the teacher’s last name, a tab, the number of hours, a tab, the location of the course (e.g., GH 160), a tab and the time the course meets (e.g., TR 12:15-1:30 pm). Do not put blank spaces around the – in the time. If you do not know the exact information, you can make it up (that is, don’t worry about be correct). If you are not taking at least 5 courses, make up some courses so that you have a list of at least 5. Save the file. An entry might look like this:
CIT 371.001 Fox 3 GH 160 TR 9:25-10:40 am
a. Let’s add blank spaces around the – in each line, as in 12:15 – 1:30. To do this, you want to position the character at each hyphen. You can move the cursor forward to the character char by typing fchar as in f-. (use tchar to place the cursor immediately before the character). Explain how you will add two blank spaces to the first line. Continue to do this for each line of the file (you only have to explain it once). You can repeat the previous t/f operation using ; (semicolon).
b. How can you search your file for an appearance of MWF?How can you move your cursor to the end of the third line?You want to order the courses by time. This will require using cut and paste. To cut a line to the buffer, use dd and then p/P to paste it. Explain in a step by step manner how to perform this sort?
Save your file and exit from vi.

4. From Linux, type cp ~zappaf/ZAPPA/overnite.sensation . to copy this file to Student’s home directory. Now, open this file in vi. How did you do that?
a. Move down to the 30th line in the file. How did you do that? The commands H, M, L, control+f, control+d, control+b, and control+u move your view in the file. Try each one. What is the difference between H, M and L? Between control+f and control+b? Between control+f and control+d?
b. Search forward for the word POODLE and count the number of occurrences found. How do you search forward after the first instance is found? How many POODLES did you find Move to the front of the line of the first occurrence of POODLE. Enter the two characters xp as a command. What does this do? Move forward to the P in POODLE and repeat xp. Move forward to the B in the word BITES. Type dw. What does this command do? Type the letter U. What did this command do?
c. Move down one line so that the cursor is on the (. Type %. What happens? Type % again. What happens?
d. Search forward for dandruff. Once on that line, type J. What happens? Type u to undo this command.
e. To repeat a command in vi, use . To repeat a command multiple types, type the command as in #command where # is a number and command is the keystroke. For instance, to delete 4 lines, you would use 4dd. The lyrics for Fifty-Fifty has 40 lines. Move the start of this song (search backward for 50). Type 40dd. What happened? The entire set of lyrics for this song should be in the buffer. Move to the bottom of the file. How did you do this? Type o to enter insert mode, and add a two blank lines. Type <Esc> and from the command mode, enter P. What happened? Summarize how you can cut and paste. Summarize how you can copy and paste (recall copy is yy).
f. Search backward for the word Pair. Once there, use the command w several times. What does w appear to do? Try W. Also try each of: b, B, e, E. Summarize what each does. NOTE: try all of these on several lines that include punctuation marks.
g. Move to the top of the file. Recall that #command repeats the given command # times. The command x deletes one character. Type 100x. What happens? Did it delete 100 characters? Type u to undo this. The command dw deletes an entire word. Try 100dw. What happens? Again, undo this. What can you conclude about x and dw from this?
Save this file and exit vi.

[bookmark: _Toc386026127]Lab 9: Regular Expressions and Grep (part I)

For much of this and the next two labs, you will use files that are already in your VM. However, for some parts, you will need the following files. Use the wget statements below to download the files. Put them into ~Student/FILES for convenience (cd to ~/FILES before doing the wget commands below).
· wget www.nku.edu/~foxr/equals.txt
· wget www.nku.edu/~foxr/names.txt
· wget www.nku.edu/~foxr/sentences.txt

1. You will start by experimenting with grep (egrep). Enter each of the following commands. Look at the output and see if you can figure out what each regular expression represents. Your instructor may discuss these in your class. There are no questions for this step.
a. egrep ‘[0-9]+’ *
b. egrep ‘[A-Z]+{12,}’ *
c. egrep ‘[A-Z]+=[0-9]+’ *
d. egrep ‘#$’ *
Notice that the output doesn’t give you much useful information, repeat this adding the option –l to egrep. The –l option prints only the matching files, not the lines of each match.
e. egrep ‘^$’ * Again, repeat this instruction using –l.
Type cd /etc for the next set of commands.
f. egrep ‘[A-Z]+=’ bashrc
g. egrep ‘if \[‘ bashrc
h. egrep ‘\(\) \{‘ bashrc
i. egrep ‘[0-255].[0-255].[0-255].[0-255]’ *
j. In the previous example, we wanted to list from files any that had IP addresses. You might notice in the output that you got a lot of output that consists of non-IP addresses. Can you figure out what is wrong with the above regex? Use this regex instead:
[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}
Can you figure out why this regex is more appropriate?

2. You are responsible for answering the questions from this point of the lab forward. Change directory to ~Student/FILES. Look at the content of the three files sales.txt, computers.txt and addresses.txt to familiarize yourself with them. We will use egrep to search for patterns in the sales.txt file.
a. In sales.txt, we will search for all lines that contain the month Feb. The command is
egrep ‘Feb’ sales.txt
	What was the response? Now how would you search for all lines that contain an entry for Smith?
b. Remember that the –c option for egrep counts the number of occurrences. Write egrep commands to count the number of entries in the file that contain Cameron. What command did you enter? How many were found?
c. Repeat b for entries that include KY.
d. Let’s find all lines that contain a commission rate of .15. Enter the command
egrep ‘.15’ sales.txt
Look at the response. What entries appeared that shouldn’t? Why did they appear? How will you fix this regex? Do so and try again to make sure you have the correct answer.
e. Let’s assume we want to find all records whose Sales value is over 9999. Type the command
egrep ‘[1-9][0-9]{4}’ sales.txt
	Why did we use [1-9] instead of just having [0-9]{5}?
f. Following up on part e, assume we instead want to find everyone who had less than 10000 for Sales. The command you might think of would be
egrep ‘[1-9][0-9]{3}’ sales.txt
Enter this command. You will see that it responded with all entries. Why didn’t it work? See if you can figure out. One solution to solve this problem is to repeat the command from part e but add the –v option to your egrep command. Try it out to see if it worked.
g. To find all entries of sales in either OH or PA, you can use egrep ‘OH|PA’ sales.txt. Try it. Write an egrep command to find all entries that contain either Barber or Cameron. What command did you enter?
h. Following up on part g, how could you search for entries that contain both OH and PA? Hint: you cannot do this with a single egrep statement, instead use a pipe between two egrep statements. Include your command in your answers.
i. Find all entries that contain at least 4 states. Notice that separating states is a comma and that commas are only used to separate states. What command did you come up with?

3. For this step, write egrep commands using the computers.txt file. Each step requires that you come up with the egrep command. The answer to place in your answer file is the egrep command you come up with which successfully accomplishes the step (except for 3f which requires an explanation).
a. Find all entries of faculty whose name starts with the letter F, G, H, I, J or K.
b. Find all entries of faculty whose name ends with an n.
c. Find all entries that are on the 4th floor of their building. This means that the room number is 4xx (so for instance, it should not include 314 just because there is a 4).
d. Find anyone whose office is only 2 digits. This one is tricky in that you have to figure out how to specify that it should not include 3-digit numbers.
e. Assume that you want to find all faculty who have a PC in their office. While the command egrep ‘PC’ computers.txt will work in this case, explain why it may not work in general. That is, can you figure out why egrep ‘PC’ computers.txt may give you wrong answers if we had other entries in the computers.txt file?

4. For this step, we will use the addresses.txt file. As with part 3, your answers to each step will be the egrep command that successfully accomplishes the given step.
a. Find all entries whose zip codes start with the digits 41.
b. Find all entries in which their first and last names both start with the letter J.
c. Find all entries of people who live in an apartment. NOTE: apartments are not necessarily indicated with the abbreviation apt, see for instance William Tuft and Jill Johnston.
d. Find all entries where the street number is at least 4 digits. NOTE: this should not match the zip codes all of which are 5 digits.
[bookmark: _Toc386026128]Lab 10: Regular Expressions and Grep (part II)

In this lab, your answers will be the egrep statements that you come up with to solve each stated problem except for step 5 where your answers will be the full Linux command that you come up with to solve each problem.

1. Use the equals.txt file.
a. Find all lines that contain an open parenthesis.
b. Find all lines that contain an assignment statement of the form variable = value where value is a numeric value.
c. Find all lines that contain a mathematical equation of the form value operator value = value where operator can be any mathematical operand and value is any numeric value. The equation does not have to be valid (for instance 9 * 10 = 11).
d. Find all lines that are sequences and not equations or assignment statements. A sequence is any collection of letters/digits separated by spaces.
e. Find all lines that contain an assignment statement of the form variable = expression where expression can include literal values (as you did with part a), variables (including $x), or arithmetic operators like a + 1.

2. Use the sentences.txt file.
a. Find all sentences that have words where there are two vowels in a row.
b. Find all sentences that contain punctuation marks other than periods.
c. Find all sentences that contain punctuation marks including periods that are not at the end of the sentence.
d. Find all sentences that contain at least three words.
e. Find all sentences that contain exactly four words.
f. Find all sentences that contain sentences in which the letters (upper or lower case) a, b, c, and d appear in that order somewhere in the words (not necessarily consecutively). This should, for instance, find “a bat can die”.

3. Use the names.txt file.
a. Find all entries of people who live in cities whose names are multiple words.
b. Find all entries of people whose cities (if given) are at least 8 letters long. Make sure you do not just search for sequences of 8 letters as this could also get last names.
c. Find all entries of people who have middle initials.
d. Find all entries of people whose zip code has “22” in it. NOTE: this should not include Mike Keneally whose street address includes “22”.
e. Find all entries of people who have complete addresses (including street number and name, city, state and zip code).

4. Change directory to /usr/share/dict. We will use the Linux dictionary, the file words, for this step.
a. Some of the entries consist of words that contain a letter followed by a digit or a digit followed by a letter. Find these and count them (using –c).
b. Find words with that have (at least) 5 consecutive vowels in them (upper or lower case).
c. Find words that are exactly 12 characters in length (words longer than 12 should not appear).
d. Find words that have a q (or Q) without a u immediately after.
e. Find all words that contain the sequence ‘aa’, ‘ii’ or ‘uu’ consecutively.
f. Find all words that have two consecutive punctuation marks.
g. Find all words that have two punctuation marks that are not consecutive.

5. The following require that you perform a Linux command and pipe the result to egrep. These may require the use of ls (part a), ls –l (part b-d), or ps aux (part e-g).
a. Find all files in /proc whose names are exactly 4-digit numbers (no 5-digit numbers).
b. Find the files in ~/DUMMY-DIRECTORY that are writable by group.
c. Find the number of files in /dev that are character-type (character-type files have use the letter c for type instead of – for regular files or d for directories).
d. Find all devices in /dev that are group writable but not group readable.
e. Find all running processes whose time is greater than 0:00.
f. Find all running processes whose status is S (but not Ss or Sl or S<, etc). NOTE: your egrep command itself is permissible in this list.
g. Find all running processes whose owner is neither root nor Student.

[bookmark: _Toc386026129]Lab 11: Regular Expressions with sed and awk

1. We will use sed on the ~Student/FILES/sales.txt file.
a. Using sed, remove all of the commas between states. We will search for , and replace it with nothing: sed ‘s/,//’ sales.txt Explain the instruction. Notice in the output, only one comma was removed. How would you change your instruction so all commas are removed?
b. Using sed, insert a $ before each sales value. Since sales amounts will be consecutive digits longer than 2, we can search for [0-9][0-9][0-9]. We replace this with $& where & refers to the original matching number.
Our is sed ‘s/[0-9][0-9][0-9]/\$&/’ sales.txt
Explain why this instruction would not cause the $ to appear before Commission rates.
c. Using sed, lower case all state abbreviations. Here, notice that all state abbreviations are at the end of the line. We would search for [A-Z,]+ and replace this with \L&. The \L means “lower case every letter in the match”. For sed, we cannot use + by itself, but instead must specify the metacharacter using \+.
Our instruction is sed ‘s/[A-Z,]\+$/\L&/’ sales.txt
What happens if you do not use the $ in the regular expression?
d. Using sed, insert a comma in the appropriate place in the Sales values. For instance, 10381 should be 10,381 and 8781 should be 8,781. To do this, we need to count from the right side of each sales amount. Each sales amount has 4 or 5 digits followed by a tab. We want the comma to appear before the 3rd digit as counted from the right. We could accomplish this using the instruction
sed ‘s/[0-9][0-9][0-9]\t/,&/’ sales.txt.
What would happen if there was a 3-digit sales amount? What would happen if there was a 7-digit sales amount?
e. Using sed, change the commission entries from the format .## to ##%. You might think to do the following sed ‘s/\.[0-9][0-9]/&%/’ sales.txt Explain why this doesn’t work correctly. To solve this, we need to remember a specific portion of the matched pattern using \(and \). We can then reference the matched portion using \1 instead of &. Our revised instruction is
sed ‘s/\.\([0-9][0-9]\)/\1%/’ sales.txt
Explain why this solution works (that is, removes the problem that the previous solution created).

2. We will use awk on the sales.txt file.
a. Write an awk command to compute the salary (Sales * Commission) for each employee for each month. We do not want to include the first row of the file which is just header information. Notice that first row has no numbers. In our awk instruction, we can then search for a pattern that includes digits, [0-9]. The instruction is
awk ‘/[0-9]/ {print $1, $2, $3*$4}’ sales.txt
How would you enhance this to output a dollar sign before each computed amount?
b. Redo your command from 2f so that any salesman who worked in NJ for the month gets a bonus of 5% (.05) added on to the commission amount. Show the command you came up with.
c. Compute the total salary for Barber from the entire file. Our awk command will search for /Barber/ and for each row found, compute the salary ($3*$4). But we want to accumulate each of these into one value, so we will add the product to a running total. This would give us: awk ‘/Barber/ {total=total+$3*$4}’ sales.txt. Unfortunately, this command runs but does not output anything. We need to add an END section. This section will contain END {print “Barber earned $” total}. The end section appears immediately before the close quote mark. Try to write the entire awk statement. What would you do to enhance the command to compute the total salary for Barber and Cameron combined? What would you do to compute the total salary for Barber and the total salary for Cameron as two separate values (using one awk command).

3. Just as we can pipe from ls or ps to egrep, we can also pipe from ls or ps to awk. Here you will pipe the results of ls –l operations to awk.
a. Let’s write a command to count the number of entries in /etc that are files (the line starts with a -). We use a count variable to count each occurrence and an END statement to output the result in the variable similar to 2h. The solution is
ls –l /etc |
awk ‘/^-/ {count=count+1} END {print count}’
How many were found? How would you modify this statement to print each file name as well?
b. Write an awk command to output all of the items in /etc that have more than 1 link pointing to them. HINT: this is the second field in the ls –l command. Use $2. What command did you come up with?
c. Write a command to sum up the size of all of the entries in /etc. You do not need a pattern, just the action to sum each entry, followed by an END statement. So instead of notation like /…/ {…} just use {…} before your END statement. What command did you come up with?
d. Write a command to list all files in /dev whose owner and group are different. For instance, many entries are root and root. Print the entire row for any entries whose owner and group differ. HINT: instead of using a pattern like /…/ you want to test to see if the field containing the owner is different from the field containing the group. These are the 3rd and 4th fields respectively, so your comparison is ($3 != $4). To output the entire line, use {print $0}. What command did you come up with?

[bookmark: _Toc386026130]Lab 12: Shell Scripting (part I)

Use wget to download these two files. You will use them later in the lab.
www.nku.edu/~foxr/CIT371/employees.txt
www.nku.edu/~foxr/CIT371/students.txt
Unless asked other questions, your answer to each part will be the script (2, 3, 6, 7, 9-11) or revised script (5, 8) you came up with that solves the problem. For these scripts, include the problem number in comments like #2.

1. Use vi to create the following script. Call the file script1. When completed, change the permissions to 745. Run the script by typing ./script1 <enter>.
#!/bin/bash
echo You are $USER
echo Your home directory is $HOME
echo Your home directory consists of `du –sH ~`
Alter your script so the output of each echo statement is redirected to the file info.txt. How did you do this?

2. Use vi to create the following script, calling it script2. When completed, change the permissions and run it.
#!/bin/bash
echo What is your name?
read NAME
echo What is your username?
read USERNAME
echo Hello $NAME, your home directory contents and size:
Complete this script by adding instructions to output this user’s home directory contents assuming that the user’s home directory will be /home/$USERNAME as well as using the du statement from script1 to output the disk usage of the user’s home directory.

3. Rewrite the script from #2 so that the NAME and USERNAME are supplied to the script by parameters and remove the first four instructions (the first two echo and the two read statements). Save and test your script.

4. Write the following script, calling the file script4. Change its permissions appropriately
#!/bin/bash
if [$# -ne 2]; then echo Illegal input
elif [$1 –gt $2]; then echo $1 is greater
else echo $2 is greater
fi
Save and run the script providing it no parameters, two parameters of 5 and 10, two parameters of 10 and 5, and two parameters of 5 and 5. What does [$# -ne 2] mean? Do we need this in the script? Show how you would alter the script so that it can also output if the two parameters are the same.

5. Write the following script calling it script5.
#!/bin/bash
read –p “Enter the number you seek ” NUM
for VALUE in $@; do
	if [$VALUE –eq $NUM]; then COUNT=$((COUNT+1)); fi
done
echo $NUM appeared $COUNT times
Run script5 passing it the list of numbers 5 10 6 12 5 18 10 4 19 21 5 12 18 22 and when prompted, input 5. Rerun the script inputting 18 instead. Rerun the script inputting 23 instead. What outputs did you get for each input?

6. Rewrite the script in #5 to input two inputs instead of just NUM and count the number of parameters that fall between the two. For instance, if the input is 10 and 20, we would have 5 matches (12, 18, 19, 12, 18).

7. Write a script that receives a list of parameters and output the largest and smallest of the list. If the user does not pass any parameters, output an error message. Test out your script to make sure it works in a variety of cases (no parameters, 1 parameter, 5 parameters, etc)

8. Enter the following script into vi, calling it script8.
#!/bin/bash
for file in $@; do
	if [[-r $file && -w $file && -x $file]]
then count=$((count+1))
fi
done
echo Of the $# files entered, $count were r/w/x
Run the script to make sure it works. Modify the script in three ways:
1. output an error message if no parameters are supplied
2. rather than counting the number of files, add up the size of these files
3. Output the average size of the file (which will be the sum/$#)

9. Write a script which receives a directory name and iterates through all of the items in this directory, counting the number of items that are regular files, that are directories, and that are links, and output this result along with the total number of items being reported on. Run your script on several directories like /etc, /bin and ~.

10. Write a script which receives a list of strings as parameters. Input an “index string”. Iterate through the list of strings and apply the `expr index …` operation on each string using the index string as the index (see chapter 7 for more information about how expr index works). Output the string and the result of the index operation. When done, run it passing the string
abacab foxtrot duke trespass
and input the index string of abcd. Your output should be abacab 1, duke 1, foxtrot 0, trespass 6.

[bookmark: _Toc386026131]Lab 13: Shell Scripting (part II)

Your answers for these labs will be the script you come up with for each step.

1. Write a script to compute payroll information for the people in the employees.txt file that you downloaded. Each row of this file consists of a person’s last name, hours and wages. To compute pay, use an if-then-else statement using this formula:
Hours <= 40 pay = hours * wages
Hours > 40 pay = 40 * wages + 2 * (hours – 40) * wages
We can’t use time and a half (1.5) for overtime, so we use 2. Output for each employee their pay and also output the total number of employees processed and the average pay computed.

2. Examine the file students.txt that you downloaded at the start of the lab. Each row of this file contains a student’s first name, last name, major, and 5 test scores. Write a script that uses a while read statement to input all of the data, line by line, compute the average test score and then assign a letter grade (see the logic on page 15 of the text). The 5th test is worth double (you should divide by 6 instead of 5 since test 5 is worth twice as much). Output for each student, the student’s last name, major and letter grade. Additionally, sum up the number of students who passed (got at least a D or higher) and the number of students who failed. When you run your script, remember to redirect input from students.txt.

3. Write a script that receives a parameter of a major and uses a while read statement to input the data from the student.txt file. Output a list of all students who are of that major and output the number of students found. For instance, you might call this with ./script16 CSC < student.txt to find all CSC students.

4. Write a script which is passed a list of items (files, directories, links, etc) in the current directory as parameters. The script will iterate through this list, obtaining the long listing for each item and convert the permissions of the item into the 3-digit numeric equivalent. To accomplish this, you will have to store the permission portion in a variable. Assume the current filename is stored in the variable FILE. You can obtain the permissions using the following instruction:
permissions=`ls –l $FILE | awk ‘{print $1}’`
The variable permissions will store the 11 characters in the permissions (the type of object, - for file, the 9 characters that make up the permissions, and a period that ends this sequence). You want to access characters 2-10. To access a single character, you can use notation like this ${permissions:INDEX:1} where INDEX is a number between 1 and 9 (recall that for this notation, the first character is at index 0). Now you want to look at the 3 sets of characters (1-3, 4-6, 7-9) and convert the r, w, and x into a value. You will need three separate sums, we can for instance call them first, second and third. If the character at index 1 is ‘r’, then add 4 to first, otherwise do nothing. If the character at index 2 is ‘w’, then add 2 to first, otherwise do nothing. And so forth. You might have if-then instructions that look like this:
if [${permissions:1:1} == r]; then first=$((first=first+4)); fi
Once done, output the name of the file and the values of first, second and third. For instance: addresses.txt 744.

5. Write a script which receives a list of parameters. If no parameters are received, output an error message. Otherwise, iterate through the list and, using a case statement, test each item in the list to see if it starts with a capital letter, lower case letter, digit or other. Count each type and output at the end the total for each category (capital, lower case, digit, other).

6. Write a script to input a list of positive numbers from the user using a while loop (exit the loop upon a negative number), storing each input as an array element. Using a for loop, iterate through the list and compute the sum, average, maximum and minimum elements in the array. Output these results.

7. Write a script to determine if a parameter supplied to the script is a palindrome or not. A palindrome is a string that reads the same forward and backward. To accomplish this, you will need to loop from 0 to the halfway point in the string and compare the character at location i to the character at location length – i – 1 where length is the length of the string. If, after passing halfway through, the two compared characters match in each iteration, then output the parameter and that it is a palindrome, else output the parameter and that it is not a palindrome.

8. Create a script containing a function of the code defined in #17 and code after the function that defines an array of several strings, some of which are palindromes and some of which are not and then code to iterate through the array, calling the palindrome function passing each array element as a parameter.

9. Examine the file /etc/rc.d/init.d/atd. This is a script that allows the system administrator to control the atd service, starting it, stopping it, etc. This script file consists primarily of a series of functions and a case statement. The idea is that someone calls this program using ./atd command where command is then compared in the case statement which then calls upon one of the functions, or if the command is not legal, it outputs a usage statement. In a similar way, write a script that has a case statement to see if the user has passed the script one of these commands: hello or start, goodbye or stop or quit, help. If hello or start, then call a function which outputs a personalized greeting to the user using the value in the variable $USER and the date. If goodbye/stop/quit, output a goodbye message. If help, output a message that provides a brief explanation on how to use Linux (e.g., Consult man pages, read the textbook, etc). If there is no command or the command is any other word, output a usage statement.

[bookmark: _Toc386026132]Lab 14: User and Group Accounts (part I)

1. Select System > Administration > Users and Groups. Log in as root. You should find four accounts: your account (from lab 0), Student, foxr, zappaf.
a. What user ID does Student have? What is Student’s login shell and home directory?
b. Click on the Groups tab. What is Student’s Group ID and group name and what members are in that group?
c. Go back to the Users tab, click Add User. Fill in the following: User Name: marst. Full Name: Tommy Mars. Enter and confirm a password (any password, if the password is too weak, use it anyway), leave login shell and home directory as the defaults, leave private group box checked, use the default for user ID. Click OK. A new user will appear in the User Manager window. What is this user’s ID?
d. Highlight user marst, click Properties to change info on the user. There are four tabs: user data, account expiration, password expiration, and groups. Click on each to explore them. To set password expiration information, first click on the Enable password expiration checkbox. To add this user to a group, you just check any group you wish in the list under the Groups tab. While marst’s user properties window is open, expire marst’s password tomorrow. How did you accomplish this? Close the properties window.
e. In your terminal window, type ls /home/marst. What was output? Why? su to root. Redo the ls command. No files. Type ls –al /home/marst. What do you find there? Obviously you did not create these files, so how did these files get created?
f. As root type passwd marst to change his password to keys and confirm it (note that you are not asked for the original password!) What warning did you get? If you just typed passwd without marst, you would be changing root’s password, so be careful!
g. Type su marst (you are not asked to enter a password because root can switch to any user!). Type exit to switch back to root and exit again to switch back to Student. Type su marst. Enter the password (keys). Type whoami. What was displayed? Type exit. Who are you now?
h. Switch to the Group tab in the User Manager GUI. There are already 4 groups, one for each user. These are “private groups”. What is a private group? Why were they automatically created for both users? Create a new group, cit371. Select the new group and select Properties. From the Properties window, click the Group Users tab and check the box for yourself to add your account to the group. Close the group properties, switch back to the Users tab, select marst and select Properties. Click on the Groups tab and select cit371. Click back on the Groups tab you should see two users added to the cit371 group. Create another group called informatics. How did you do this? Leave its membership blank for now. Close the User Manager GUI.

Su to root for the remainder of the lab except as noted.

2. You will create users and groups through the command line using useradd and groupadd. Both programs are in /usr/sbin, which should be in your PATH; if not, you will have to specify the full path in the commands.
a. Type useradd. This displays the instruction options. It requires at least the username. Add –m to create a home directory. Under what circumstance might you not want to create a home directory for a user?
b. Other useful useradd options are –c, -d, -e, -G, and –s. What do each of these options do?
c. Under what circumstance(s) might you want to use the option –M?
d. Under what circumstance(s) might you want to use the option –u? Under what circumstance(s) might you want to use the options –u –o?
e. Create an account for Ruth Underwood giving her name as a comment, add her to the group cit371, and give her an username of underwoodr. What command did you enter? Use the passwd command to give her an initial password of xylophone. What warning message did you get because of the password?
f. Use groupadd to create two groups: students and minjas. What commands did you enter? Now create the group dummies and give the group the GID of 2000. What command did you enter?
g. Create the following users with the given names and usernames and use the defaults for everything else except as noted. Place the instruction used into your answers.
i. Suzie Creamcheese, creamcheeses (username), default login shell /bin/tcsh
ii. Eric Cartman, cartmane (username), groups cit371 and informatics, UID of 1001
iii. CIT 371 Student, cit371 (username), no directory. What error dig this give you? To fix the problem, create the account with no private group.
h. Use the passwd program (3 times) to give the three users from g initial passwords of xyz12abc, cheesypoofs and a password of your own making respectively. What warnings did each give you if any?
i. Write the shell script from chapter 9 page 8 with the password code from the top of page 17. Download the file www.nku.edu/~foxr/CIT371/accounts1.txt using wget. Run your script, redirecting accounts1.txt as input. Inspect /etc/passwd to make sure it worked. If not, delete any accounts created (using userdel), fix your script and run it again. Using tail /etc/passwd, copy the last 10 lines into your answer file.
j. Create the directory /home/temp. Download the file accounts2.txt from the same location. Modify your script from 7i to also input the major as a third datum per line. Using if-then-elif-else logic, alter the script so that it tests the major and based on the major, calls useradd in different ways as follows:
i. If major is CIT, use all of the defaults but add the student to the groups cit371 and informatics
ii. If major is CSC, use login shell of /bin/csh and add to group informatics
iii. If major is MIN, the home directory is placed under /home/temp, add to the minjas group
iv. All other entries should have an account created using the defaults
Run your modified script redirecting accounts2.txt as input. Did it work? When done, copy your modified script into your answer file as the answer to 7j.
k. Use userdel to delete doos1. What command did you enter? Use userdel to delete bearc2 but leave bearc2’s home directory. What command did you enter? Type ls /home, of doos1 and bearc2, do either still have a directory?
[bookmark: _Toc386026133]Lab 15: User and Group Accounts (part II)

1. Examine the files /etc/passwd, /etc/group and /etc/shadow.
a. Use a Linux instruction to count the number of accounts in /etc/passwd. What command did you use? How many did you find and how?
b. In looking at the entries in /etc/passwd, you should notice that UIDs change after Eric Cartman. Why? (hint: look at lab 14 step 2g)
a. Inspect some of the pre-existing accounts (these appear in the file prior to your user account). What is the home directory for root? For bin? For lp? For mail? Most software accounts have the login /sbin/nologin, but root has the login of /bin/bash. Why?
b. Examine /etc/group. What entry do you find for your own user group? For informatics? Who is in bin? adm?
c. Look at the contents of the file /etc/shadow (the passwords file). What information do you find in marst’s entry that is not present in your own?

2. The chage and passwd commands control when users must modify their passwords. Examine their man pages.
a. Type chage –l jacksons1. When does jacksons1’s password expire? When was jacksons1’s password last changed? Set the maximum number of days for jacksons1 to 60 and warning to 5. What commands did you enter? Redo the chage –l command to make sure the password expiration has changed (it should have).
b. Using the expiration date option of chage, change cartmane’s password to expire on May 14, 2016 with an inactivity of 7 days (that is, the account will be locked if the password is not changed within 7 days of the password’s expiration). What command did you enter?
c. Without options, chage is interactive. Type chage cit371. Set the minimum password age from 0 to 100, leave maximum password age and last password change as is, set the password expiration warning to 14, password inactive value to 7, and account expiration as June 1, 2018. How can you confirm (view) the changed values?
d. Use passwd to lock zappaf’s account. su to your user account, then su to zappaf (passwd is linuxiscool). What happened? Why? Exit your user account to root, su to zappaf. Were you successful? Now, as zappaf (from root), attempt to change zappaf’s password to fzmoi33 (you will first be asked for the original password, linuxiscool). What message did you receive? Return to root and unlock zappaf’s password. How did you do this?

3. New users are given some initial files. Go to /etc/skel. Use ls –a to view the files (they all start with a . so they are all hidden). These files get copied into the home directory of all new users (who have their own directories).
a. Of the items listed, there are two directories. Why are these being created and what will these directories store? There are three files present, .bash_logout, .bash_profile and .bashrc. What are the roles of these three files? Are all three of them needed?
b. Other files can be established automatically. In particular, a mail “spool” file is created. Type cd /var/mail. Type ls -l. What do you find and what do you notice about these files’ sizes? Which, if any, already contain mail? Who is the group owner of each of these files? Why is the group owner not the same as the user owner?

4. Defaults for useradd (such as using /home/username or /bin/bash by default) are stored in the file /etc/login.defs, which also stores defaults for other programs. View this file.
a. Read the comment about the mail directory. What directory is the default location for mail directories? How does this differ from what you thought in step 2?
b. What is the default information for passwords? Why is PASS_MIN_DAYS set to 0? What is the minimum allowable length for a password? Should this be changed? (In fact, this value is overridden by the defaults established in the PAM program so in fact changing it would not matter).
c. Type man login.defs. This man page shows you the configuration directives available for this file (the file does not contain all of the available directives). You might notice for instance that DEFAULT_HOME is not defined in the file. While you might think DEFAULT_HOME means “create by default a home directory”, it means something else. What does it mean?
d. You can alter useradd defaults through useradd –D. With no other parameters, this displays the currently set defaults. Type this. What are the established defaults? Now type useradd –D –s /bin/csh. Repeat useradd –D. What is the value shown for SHELL now? Reset this by doing useradd –D –s /bin/bash.

5. sudo lets a user run a program as another user including run root-level programs. To use sudo, you first modify the /etc/sudoers file, adding entries for each user/command. Use visudo to edit this file (rather than using vi directly!) An entry will have the form:
username machine=command
where machine can be ALL or your machine’s hostname or localhost, command is the Linux command (or commands) including any options (or the word ALL for all commands) and username is the user’s username, or %group.
a. su to your own user account and try to issue useradd. You do not have permission. As root, type visudo, move to the bottom of the file and add the entry
username localhost=/usr/sbin/useradd
where username is your user account. Save and exit vi. Upon exiting, if you have an error in your syntax, visudo will inform you. If visudo does not like your command, try to use ALL instead of localhost and place spaces around the equal sign. Exit back to your account and type /usr/sbin/useradd –m dukeg to add a new user. Were you successful? Now repeat by typing sudo in front of the command. Were you successful?
b. As yourself, change dukeg’s password. Were you able to? su to root. Using visudo, add an entry so you can change dukeg’s password (only dukeg’s password, not any other user’s). What entry to did you add? Save and exit the file and as yourself, change dukeg’s passwd to aintitfunky. What command did you enter? What change would you make to the entry to change anyone’s password?
c. Type cat /etc/sudoers. Toward the bottom of the file (prior to the commands that you have added), you will see: # %users localhost=/sbin/shutdown –h now. What do you suppose this sudoers command allows? What would happen if you uncommented it?
d. su to your own account. Type cat /etc/sudoers. You do not have access to view this file. To confirm, type ls –l /etc/sudoers. We could change the permissions to give anyone access, but instead let’s set up a sudoer entry to let you view this file. su to root and again run visudo. Add an entry so that you can cat /etc/sudoers. Save and exit visudo and test this. What entry did you add?

[bookmark: _Toc386026134]Lab 16: The Linux File System Revisited (part I)

Open two terminal windows in your VM and su to root in one of them. Use this window for instructions listed as “As root…”.

1. Inspecting partitions
a. The df command reports the disk file space usage. Enter df and look over the results. You will see several file systems listed. Why do you have these specific file systems? (hint: recall the partitioning step from your installation). Type df –a. What file systems appear that did not appear with your earlier df command?
b. Type df and then type df –h. How do the two instructions differ?
c. The various parts of the file system are made available by mounting them. You can see what is mounted at boot time by looking at the /etc/fstab file, and what is currently mounted by looking at the /etc/mtab file. Look at these. You should be able to compare the list in fstab to the list in mtab. What partition from fstab does not appear in mtab? Why do you suppose this is the case?
d. What do the partitions tmpfs, devpts and sysfs store?
e. One partition in fstab is devpts which has an options of gid=5. What group has a GID of 5? Give a brief explanation for why this partition has a GID of 5 (that is, why is that group the owner of this partition)?
f. /etc/mtab shows all mounted file systems. What does rw refer to? What is the alternate option to rw?

2. Mounting and unmounting partitions
a. The mount and umount commands allow you to mount and unmount partitions. Type umount /home. What happens? As root, retry this. What happens? Save and close any open files before continuing.
b. As root, type telinit 1 to change to runlevel 1. From the command line prompt, type df –k and make a note of the mounted partitions. Now, type umount /home. What happens? Confirm this worked through df –k, viewing /etc/mtab, and by trying to cd or ls to a directory under /home. To mount a partition, use mount device mountpoint. In this case, device is probably /dev/sda5 and mountpoint will be /home. Issue the proper mount command. What command did you enter? Confirm that this worked by doing another df –k. If you cannot get it to work, type mount –a which mounts all partitions as specified in /etc/fstab. Type exit which will return you to runlevel 5 and the login screen. You may again want to open two terminal windows and su to root in one.

3. Examining files’ information: as yourself in ~ type touch file1.txt file2.txt file3.txt
a. Type df –i. How does this output differ from df –k? Type ls –i and look at the inode numbers of these three files. Are these files consecutively numbered? Type rm file2.txt and then touch file4.txt. Compare its inode number to the inode number that file2.txt had. From this, what can you conclude about the use of inodes and their numbers?
b. stat provides more information than ls -l. From ~, type stat file*.txt. This will display the stat output for file1.txt, file3.txt and file4.txt. What information does stat give you? Aside from the filename itself and the inode numbers, are there any differences between the three outputs?
c. Type ps aux >> file1.txt. This will fill file1.txt with some data. Now repeat the stat command. How does file1.txt differ from file3.txt? Aside from the times, you should see three other differences.
d. stat can also provide information about an entire file system (partition). Type df to obtain the device names of the file systems. Type stat –f dev where dev is the device storing /home. What command did you enter? What information are you told?
e. stat can be tailored to output specific information, examine its man page. The option –c is followed by formatting codes such as -c “%n %A” to print the filename and permissions in a human readable format. Write a stat command to output the file*.txt files by name, inode number, file type, total size in bytes, and time of last change since the epoch. What command did you enter?
f. Using the tool of your choice (egrep, awk, a shell script), provide an instruction using stat to obtain all files in /etc that have at least 7 hard links. stat –c “%n %h” gives you the name and hard links. Which files were found? Include in your answers the instruction or script that you wrote.

4. Su to root for this step, we will look at the swap partition. If you examine /etc/fstab, you will find the entry swap. Interestingly, you will not find an entry in /etc/mtab even though it is moutned.
a. Type swapon –s. What is the filename of your swap space? How much of it is used? Type swapoff –a. This disables all swap spaces (we only have one). Now repeat swapon –s. What do you see? To re-enable swap space, type swapon –a. Repeat swapon –s to make sure swap again appears.
b. Type vmstat which reports on virtual memory statistics. How much of your memory is free? What would happen if this value dropped near 0? What values do you get for si and so? What do these two values represent (look this up in vmstat’s man page)? What conclusions can you draw on these results?

[bookmark: _Toc386026135]Lab 17: The Linux File System Revisited (part II)

1. Top level Linux directories
a. As yourself, type cd /root. What happens? Why? Su to root, repeat. Now type ls –al. Compare the contents here from those of a new user. Are they populated with the same files or are there differences? Remain as root.
b. Type cd /boot. What is this directory used for? You will find a file that starts vmlinuz and has a pattern of numbers and letters after it. What is this file? It should appear in green font, what does green represent? A subdirectory of /boot is grub. Change to it. What is grub?
c. Cd to /proc and then cd to a numbered subdirectory. These numbers are running process’ PIDs. Search until you find one whose cmdline file contains something (is not empty). Which PID directory are you in? What is the value in cmdline?
d. Cd into other PID directories selecting some with small PIDs and some with large PIDs. In each directory, examine the content of cmdline. Of those you explored, which of the PIDs have an entry for cmdline and which do not? What does cmdline tell you? What types of processes seem to have a value for cmdline and which do not?
e. The PID directories have a file named status. Select a PID directory and look at this file’s entries for UID and GID. Is this a process that you (the user) started? How can you tell?
f. In a separate terminal window, as yourself (not root), type top and note its PID. In your original window, cd to that proc subdirectory. What is stored in the file cmdline? What are the values of UID and GID in status? You can close this window.
g. Return to the /proc directory (from any subdirectory). One file is key-users. What information do you find here. What users are the entries for?
h. In /proc, look at cmdline. What is this file is storing? Look at uptime, what information is stored here? Summarize what type of information the /proc directory stores.
i. Change directory to /usr. You will find several established subdirectories including bin and sbin. /usr/bin contains many user application programs and /usr/sbin contains many system administration application programs. Attempt to summarize the difference between programs found in /bin versus /usr/bin.
j. Examine /usr/local. You will find subdirectories similar to what you find in /usr. Why does /usr/local exist? In our case, you will find /usr/local to be devoid of any subdirectories or files except for under /usr/local/share. Why should we have a /usr/local that is (mostly) empty? Exit as root.

2. The sticky bit is used to control activities of world-writable directories. The stick bit is indicated by ‘t’ in world’s ‘x’ bit in its permissions.
a. As yourself, go to your home directory and change its permissions to 755 so that other users can cd into it. Create a subdirectory called sub. Change sub’s permissions to 777. su to zappaf (use the password linuxiscool) and cd into the sub subdirectory, type touch file.txt. Normally, another user would not be allowed to write files to one of your directories, but you made this available with world write permissions. Type ls –l. Who owns the file? Return to your user account and to your home directory. Change sub’s execution bit for world from ‘x’ to ‘t’ by either chmod 1777 sub or chmod +t sub. Change directory back to sub and su to underwoodr (password of xylophone). The directory has write access to the world so any user should be able to not only create files here but change files’ names or delete them. As underwoodr, try to rename the file.txt with a mv command. What message do you get? Try to delete the file. What happens?
b. Return to user zappaf and rename the file, are you able to? Return to your user account and try to delete the renamed file. What happens? Change directory to ~. To remove the sticky bit, use permissions without the leading 1, as in 755, or use chmod –t sub. You may delete this directory when done. Why might you want to create a directory with a set sticky bit?

3. tar is used to create archives. Let’s create an archive of everything in /home. Su to root and cd to /root. Type tar –cf home.tar /home. This command will create a new tar file called home.tar consisting of everything in /home. This may take a few seconds. Type tar –tf home.tar. This will display the table of contents of the file. Compare this to the contents of /home and you will find every file and subdirectory is listed here. Type less home.tar and scroll through a small portion of this file. You will find all of the /home directory copied into this one file. Do an ls –l on /root, what is the size of home.tar? What is the file’s size now? Now type tar –czf home2.tar /home. The z option compresses automatically. Compare its size to home.tar. To extract the items of an archive, you would use tar –xf filename.tar (if the archive was not compressed) or tar -xzf filename.tar.gz (if the archive was compressed). We will revisit tar later in the semester. Delete both tar files.

[bookmark: _Toc386026136]Lab 18: The Boot Process

1. Examining the boot process: there is little to see during boot (you can view all of the messages by displaying details during boot). But all of this is captured in a file in …/boot.message or through the dmesg command. As root, type dmesg | less and step through the listing. Answer the following questions as best you can.
a. The first few lines include initialization messages about starting the kernel. What does ro mean? What does root=UUID=… mean? What other information can you determine from the command line?
b. Several screen later, you will find information about memory. You will find a lot of numbers that are hexadecimal entries into that memory (register, cache, BIOS memory, main memory). MTRR stands for Memory Type Range Registers. What does write-back mean? What does uncacheable mean?
c. The ACPI entries deal with the power interface sending power to memory. These entries include information on DMA and DMA32 zones. What is DMA?
d. As we move forward, we see more ACPI signals in this case for IRQs. What is an IRQ?
e. As you continue over the next few screens, you will see more ACPI messages followed by numerous PCI (peripheral control interconnect) messages. Afterward, you find message for vgaarb (VGA graphics card arbiter) and usbcore (the subsystem for supporting USB devices). You will also see message pertaining to IRQs. Next up, you will see many messages regarding pnp. What does pnp stand for? Give an example of a pnp device. Among the messages are several pertaining to pnp irqs being disabled. What does it mean to disable an IRQ and why should this be done during this phase of kernel initialization? This is followed by many more screens worth of PCI messages followed by additional ACPI messages.
f. After this, you will see “Trying to unpack rootfs image as initramfs”. What is rootfs? (see chapter 11)
g. Initialization continues with many pci steps which load a variety of device drivers. You eventually see messages regarding dracut and various block devices: scsi, ata and sd (sda). Dracut sets up initial images for preloading from hard disks to load the initial root file system. This results in the root (/) file system being mounted. Where is the root file system mounted (what physical device)?
h. These messages are followed by many more SELinux initialization messages. Finally, we see the other file systems are mounted. In what order are the remaining file systems mounted?
You may exit from viewing dmesg now.

2. Init: now that the Linux kernel is running, it starts the init process (/sbin/init) which runs many scripts.
a. Init is responsible for establishing the user environment now that the hardware has been tested and initialized and the file system mounted. Init’s primary task initially is to run a series of startup scripts. The first is /etc/inittab. Examine this script’s contents. It will have a single instruction: id:5:initdefault: What does the 5 represent? What does initdefault mean? What would happen if you change the 5 to 3 and reboot the computer? Why should you never change the 5 to 6?
b. Next, the script /etc/init/rcS.conf executes. This script will run /etc/rc.d/rc.sysinit. Summarize what rc.sysinit does.
c. The script rc.conf executes which runs /etc/rc.d/rc passing it the runlevel as a parameter. The /etc/rc.d/rc script’s main task revolves around two for loops:
for i in /etc/rc$runlevel.d/K* ; do
	…
	$i stop
	…
	and
for i in /etc/rc$runlevel.d/S* ; do
	…
	$i start
	…
where runlevel.d is a variable storing the runlevel. Assume runlevel.d is 5. The directory is then /etc/rc5.d. What is stored in this directory? In what directory are these items linked to? Explore that directory, what types of things are stored in that directory? What do K and S represent? What does K* and S* mean? What do each of $i stop and $i start do? In your own words, what does this script do? If we were to change the runlevel to 3, how would the rc script’s execution change?
d. After rc executes, the last script to execute (optionally) is /etc/rc.d/rc.local. This script is available for the system administrator to provide commands that should automatically execute at the end of the system boot/initialization process. What might you, as a system administrator add here?

3. You can alter the runlevels that services are started or stopped on by using chkconfig.
a. As root, type chkconfig. What information does it tell you?
b. Consult the man page for chkconfig. How would you use this to stop a service?
c. How would you use chkconfig to change that sshd should not start in runlevel 2? How would you use chkconfig to start httpd in runlevel 5?

[bookmark: _Toc386026137]Lab 19: Controlling and Configuring Services

We looked at how services are started at initialization time. Here we look at controlling services after initialization. Open a terminal window and su to root for this entire lab.

1. You can start and stop services through the Service Configuration tool and from the command line.
a. Bring up the Service Configuration tool (System > Administration > Services). Some of the services are enabled and running, others are enabled but not running, some are disabled. What do enabled and disabled mean (hint: they do not mean running and stopped). Notice in the listing of services in the lefthand pane, each service name is preceded by two icons, a red or green ball (to indicate enabled or disabled) or the customize icon, and next to it a plug which either is showing plugged in (running) or not plugged in. Find a service which is enabled but not running. Which service did you find? You can confirm that it is enabled but stopped by clicking on it and looking at the information in the right hand pane above the description.
b. Select dnsmasq. What does this service do? Click on Customize and notice that this service is not enabled for any runlevel. Close the Customize window. Click on the Enable button (you will have to verify that you are root). Now click on Customize. What has changed? Click Cancel to close the Customize window. Click on Disable. Click on Customize, how has it changed? Again, close this window. Click on Start. Does the service start? Why do you suppose you can start it while it is disabled? Stop the service.
c. Select httpd. What does this service do? Click on Customize and select level 5 and OK. What happens in the GUI? Click on Enable and then Customize. What has happened? Uncheck all four boxes and click on OK. What has happened now?
d. What status does lvm2-monitor have?

2. Managing services from the command line
a. You can also control services using /sbin/service servicename command where servicename is the name of the service (e.g., dnsmasq, netfs, httpd) and command is start, stop, restart or status, as in /sbin/service network restart. You can also directly control the service using /etc/init.d/servicename command as in /etc/init.d network stop, or from within /etc/init.d as ./network stop. What is the status of network? Restart network from the command line (use start instead of status for the command). What command did you enter? What message(s) appears?
b. Stop the network service. What command did you enter? Type ip addr. What is your IPv4 address now? Restart your network service and make sure you have an IP address.

3. We now explore service configuration files in /etc.
a. Look at anacrontab. What service uses this file? At the bottom of this file it has a schedule for cron.daily, cron.weekly and cron.monthly. Look at these directories as specified at the bottom of this file. What specific processes are scheduled daily? Weekly? Monthly?
b. One of the daily activities is to run cups, which is a script. Examine this script and you will see that it iterates through all files in /var/spool/cups/tmp and executes tmpwatch on them. Review the man page for tmpwatch and then explain what this script is doing (note: since we are not using the printer, we will have no files in /var/spool/cups/tmp, but this directory will typically store waiting print jobs).
c. Cd to /etc/audit. What contents do you find in the directory audit? What is the difference between a configuration file and a rules file?
d. Return to /etc. Look at the file dnsmasq.conf. What service uses this configuration file? Look at the exports file. It should be empty. What service uses this file? Hint: remember the command apropos!
e. Explore the services file. What type of information do you find stored here?
f. Cd to /etc/init.d and examine the script file auditd. You will see chkconfig 2345 11 88. What does 2345 represent? What do 11 and 88 mean?
g. Examine the file rsyslog. Look at the start function, which is invoked if you try to start this service. Explain line-by-line what this function does. HINT: review the examination of the atd script in chapter 11.
h. Imagine we want to add another command to rsyslogd, uptime. This will return the time that the service was last started. We can obtain this from doing an ls –l on the file /var/lock/subsys/rsyslog. How would we enhance this script file to permit this new command? Be complete in your answer.

4. Configuring services
a. From the /etc directory, load rsyslog.conf in vi. This is the configuration file for the rsyslogd daemon. Where do all info messages get logged? Where do cron messages get logged?
b. Add your own entry to log service (daemon) activity:
 daemon.* 	 /var/log/daemons
Explain the rule: what do the two parts specify? Save your rsyslog.conf file. From a terminal window, restart the network service. This should trigger rsyslogd to create the daemons file and store information about the network service. Why didn’t it? Even though we changed the rsyslog.conf file, we did not restart the rsyslogd service. Only when a service starts (or restarts) will it read its configuration file. Enter the command to restart rsyslogd. What command did you enter? Restart the network service. Does the file /var/log/daemons now exist? How many lines are in this file?
c. The rule logs all priority levels which could generate a lot of messages. Let’s alter this. Return to the rsyslog.conf file and change daemon.* to daemon.warn, save and exit the file. Delete /var/log/daemons. Restart both the rsyslog service and the network service in that order. Now examine the /var/log/daemons file. It should be empty. Why did nothing get logged? Stop the network service. Start (or restart if it is already running) the ntpd service. This service requires the network service so it should fail. You will see no error message. Look in /var/log/daemons now, how many messages are there? What service is reporting these messages? Change the daemon line to again be daemon.*. Save the file, restart rsyslogd, and start the network service.

[bookmark: _Toc386026138]Lab 20: Configuring Your Network (part I)

For this lab, open a terminal window and su to root (except as noted in step 5b).

1. We start by examining your network interface devices. Type ip addr to obtain your ip address. Make a note of both your ethernet interface address (probably noted as eth0) and your lo address. We will refer to your Ethernet device as eth0 below but it may be named eth1, eth2, eth3 or something else.
a. Shut down the network service. Type ping addr where addr is the IP address of your eth0 interface. What happens? Ping your lo address. What happens? Restart your network service and retry the ping commands for eth0 and lo. What happens?
b. Type cd /etc/sysconfig/network-scripts. Enter the command ./ifdown lo. Now try to ping both eth0 and lo. What happens? Use ./ifup lo to bring lo back up. Ping both eth0 and lo to make sure they are both responding. Now do ./ifdown eth0. What response did you get? Now use ping for both eth0 and lo. What happens? Bring eth0 back up. How did you do this? What can you conclude about access to the network if lo is down? What can you conclude about access to your own loopback device (lo) if eth0 is down?
c. The configuration of your eth0 device is stored in the file ifcfg-eth0. Examine it. What does BOOTPROTO=dhcp mean? What does ONBOOT=yes mean? What type of information does the HWADDR variable store?
d. The lo configuration file is ifcfg-lo, examine it. It has entries for IPADDR, NETMASK, NETWORK and BROADCAST. Why do these entries not appear in ifcfg-eth0?
e. Open a web browser and go to www.nku.edu. Edit ifcfg-eth0 in vi. Add IPADDR=10.2.56.254 and change BOOTPROTO to be static. Save the file, restart your network service, refresh your browser. What happens? Why? Use ping on your old IP address. What happens? Ping 10.2.56.254. What happens? Re-edit the file, delete the IPADDR entry and change BOOTPROTO back to dhcp. Restart your network service. Explain what you did in this step.

2. Let’s examine your domain name system server(s).
a. Examine /etc/resolv.conf. What type of information is stored here? What does a name server do? What network-based activities would you not be able to do if you did not have access to a name server?
b. Bring eth0 down. Re-examine your resolv.conf file. What has happened to its contents? Bring eth0 back up and make sure that your file is restored to how it was originally.
c. Do we need to access a name server? Type nslookup www.nku.edu to obtain the IP address this computer (this will be listed at the bottom of the response, do not confuse this address with the addres of your name server). Edit /etc/resolv.conf and comment out every line (add a # in front of every line that does not currently have one). Save and exit this file. Redo your nslookup command – it should hang. Why? control+c out of it. Refresh your web browser. You should receive a server not found error. Replace the URL (www.nku.edu) with the IP address from nslookup. This should work. Why does this work while the alias does not?
d. Type vi /etc/hosts. At the bottom of the file, add the entry IPaddr www.nku.edu where IPaddr is the address of www.nku.edu. Refresh your browser. Did it work? Explain as best you can the role of the /etc/hosts file. Return to your /etc/resolv.conf file and uncomment all the lines (or alternative, restart your network service which should redo your resolv.conf file).

3. To use your network you need access to a network broadcast device which connects your computer to the local area network and then to the campus’ LAN and then to the Internet. Our broadcast device is a router although it is sometimes called a gateway. Let’s examine it.
a. You can obtain the IP address of your gateway using the commands route and ip route. Enter both commands. What is the address of your gateway? Both of these operations also provide you your network’s address which will be denoted as a partial IP address ending in .0. What is your network address? The Genmask, as reported by route, tells you the netmask that, when applied to your IP address will give you your network address. What is your genmask?
b. You AND your genmask to your IP address to get your network address. Convert your IP address and your genmask to binary and apply the AND. The resulting binary value should be your network, convert it back and see if it worked out. Place these three binary values in your answer for 3b.
c. Type in some traceroute instructions (e.g., traceroute www.nku.edu and traceroute www.google.com). What is the first IP address listed? This will be the address of your gateway as reported in 3a. Why is it the first item listed when you perform traceroute?
d. The ip route instruction shows you your routing table. In this case, you only have one device listed. Try the command ip route show table local. This shows the entire local routing table. Identify the items listed that you can (several should look familiar). List the items that you cannot identify. Type ip route flush table local. Repeat the previous show command. What does flush do? Send a ping statement to 127.0.0.1. What happens? Why? You can recreate the routing table by restarting the network service (do so). Examine the local table again, are all of the entries back?
e. Type ip neigh show. This will show you your computer’s ARP address. What is an ARP address (look this up)? You can also get this using the arp command. Type arp –e. The entry displayed is your gateway. The HWaddress is your gateway’s MAC address. Type arp –d ipaddr where ipaddr is the IP address of your router. Repeat arp –e. This has cleared HWaddress. Ping www.nku.edu. Redo arp –e. You will see the HWaddress reappears. What has happened here? When communicating with your gateway, you are not communicating at the same level in the TCP/IP protocol as when you are communicating with devices beyond your local subnet. Within your subnet, you use MAC addresses while beyond this you use IP addresses. What is a MAC address?

[bookmark: _Toc386026139]Lab 21: Configuring Your Network (part II)

We look at your firewall in this lab. We will explore its configuration through the GUI and through the files iptables and iptables-config. Use ip addr to obtain your IP address.

1. Select Administration -> Firewall. A popup window will explain the configuration tool and then you will be asked to authenticate as root, do so (linuxiscool). Make sure Enable is selected and if not, select it followed by Apply.
a. Click on Wizard. From the pop-up window, click on Forward. You can select a system with or without network access. The wizard informs us that a system without network access does not need a firewall. Why not?
b. Make sure System with network access is selected and click Forward. What choices do you have here? Try both out, selecting Forward after each choice. What are your possible next choices? When done exploring the wizard, Cancel out of it.
c. The non-wizard aspects of the Firewall tool are far more useful. Explore the Trusted Services listing. What service(s) is(are) selected? Assume you want to add a service. How would you accomplish this (explain all of the steps).
d. What happens if a service isn’t listed or you want to specify an acceptable message that does not correspond to a service? Select Other Ports and then the Add button. From the pop-up window, you can specify a port and protocol. Close this, return to Trusted Services, unselect ssh and click on Apply. You will be asked to confirm that you want to do this, select Yes and you will be asked to authenticate as root again. Ask a fellow student to attempt to ssh into your computer using ssh Student@address, the password is linuxiscool. They should be prevented from doing so because you stopped ssh messages from being accepted through the firewall. Select Other Ports and scroll down until you find port 22, protocol tcp and select it, clicking on OK, and then confirm that you want to add this. Ask your neighbor to try to ssh in again. Does it work this time? If you scroll down the list in Port and Protocol you will find a lot more services than in Trusted Services. What is the difference between “Trusted Services” and entries in this list? Before leaving this step, highlight port 22 from your list of added ports and remove this entry and then reset ssh from Trusted Services to again be open (remembering to select Apply).
e. Under Trusted Interfaces, you can select which interface device(s) should be added. This would permit all messages over that interface to be accepted. Why would you not want to do this with your Eth interface? Would it be more reasonable to do this with a ppp interface if you had one? Explain.
f. Masquerading would be useful if you were implementing some form of network address translation and Port Forwarding if you were establishing a firewall for a router. We will skip these. Select ICMP Filter and read the introduction. What program that you have used would be impacted should you establish rules under ICMP Filter?
g. Finally, Custom Rules allows you to specify a new rule, which we will do using the iptables file. Click on Add so that you can see how rules are specified. What are your choices? So at this point, you can close your Firewall Configuration GUI.

2. Open two terminal windows, su to root in both and cd to /etc/sysconfig in one. In that window, load the file iptables-config in vi. There are only a few directives here.
a. What does IPTABLES_SAVE_ON_STOP do?
b. From your terminal window that is not running vi, type /sbin/service iptables status. Notice that rather than being told if iptables is running or not, you actually get a dump of the iptables rules. In vi, change IPTABLES_STATUS_VERBOSE from yes to no and save the file. Redo the service command. How does the output differ? Change IPTABLES_STATUS_LINENUMBERS from yes to no and save the file. Redo the service command again. How does the output differ again? Reset both of these directives to yes, save and exit the file.

3. Finally, we look at iptables which is the filewall’s rule file. Copy iptables to iptables.old (to preserve a copy in case you make some mistakes).
a. Load iptables into vi. One of the rules reads –A INPUT –i lo –j ACCEPT. Copy and paste this rule immediately below where it appears and edit the second rule changing lo to eth0 and ACCEPT to DROP. Save your file and restart the iptables service. Ping www.nku.edu. Responses should be dropped because they are coming over the Ethernet card from www.nku.edu, but an earlier rule actually is accepting these packages. Can you figure out which rule? Move this eth0 line to before the first –A rule, save the file, restart iptables. Repeat the ping command. What happens this time? Ping your IP address. Does it work? Delete this new line entirely from your file.
b. Find the firewall rule that specifies --state ESTABLISHED,RELATED and comment the line out. Save the file and restart iptables. From your web browser, try to reach any web site. What happens? Why? Try to ping www.google.com. What happens? Uncomment the line, save the file, restart iptables, and retry your web browser. Does it work now? What does this rule do? (hint: this is explained in the textbook)
c. Add this rule before your first –A rule: -A INPUT –d ipaddress –j REJECT where ipaddress is your computer’s IP address. Save your file and restart iptables. Issue ping commands to both your ip address and to 127.0.0.1. Do either work, if so which one(s)? Why do you get the result you did? Remove this rule.
d. Add these two rules prior to the first –A rule:
-A INPUT icmp --icmp-type echo-request –j DROP
-A OUTPUT icmp --icmp-type echo-reply –j DROP
Save your file and restart iptables. Now try to ping kosh.nku.edu. Does it work? Next, try to ping your own computer using either your IP address or 127.0.0.1 (or both). Does it work? As best you can, explain what this rule does. Explain why you should keep these rules in place in your firewall.
Copy iptables.old back over iptables to revert your firewall to how it was before you started and restart iptables.

[bookmark: _Toc386026140]Lab 22: Software Installation

1. We now examine software installation starting with yum and then rpm.
a. gcc is the GNU’s C/C++ compiler needed to install source code. It is not yet installed. We will install it with yum. The format for a yum command is yum [options] [command] packagename. Commands include install, list and erase. List will show you all package names that match. You can use wildcards. Type yum list *gcc*. How many packages matched? Of those listed, which one(s) do you suppose will install when you install gcc? Install gcc by typing yum –y install gcc. How big is the gcc download size? How many packages need to be installed and how many upgraded? Type which gcc. Where is it installed?
b. To download using rpm you need an RPM package. Open your web browser and go to centos.karan.org/el4/extras/stable/i386/RPMS. Scroll down and select SystemEnvironment.Base on the left. Select apg-2.2.3-3 and from the apg page, click on the Download link under Arch i386 for apg-2.2.3-3.i386.rpm. Save the file, do not open it with the Package Installer. Return to the first page, scroll up until you find Applications.Archiving. Click on freeze-2.5.0-2. Download freeze-2.5.0-2.i386.rpm. From a terminal window, cd to your user’s Downloads directory (if not here, they may be on your user’s Desktop). su to your user account and type rpm –i name where name is the name of the apg rpm file. What happened? Return to root and repeat the rpm step. How did the output differ? What output did you get when you installed apg-2.2.3-3? The reason for the errors happens to be that you do not have packages installed that the apg installation depends on. It can be challenging to track down all of the dependencies. We will explore one way to do this shortly.
c. Install freeze using rpm. What instruction did you enter? What output did you get this time? More dependencies!. In your browser, go to rpmfind.net. In the search box, type libc.so.6. This is the set of libraries that caused freeze to not install. Near the top of the response page you will see two links for RedHat Linux. Select the one for 7.2 (x86-compat-libs-7.2-1.i386.rpm). Save this rpm file, which should download to the same directory as your other RPMs. Now use rpm to install it (it should be titled x86-compat-libs-7.2-1.i386.rpm. It should install without a problem. Now try to install freeze again. Did it work? Type which freeze. Where is it stored?
d. Test freeze out as follows. Create a textfile in vi temp-freeze which consists of at least 100 characters. Type ls –l temp-freeze. Now type freeze temp-freeze. This will compress temp-freeze using the freeze program. It also adds a .F to the file name. Test the compressed file’s size against the original file. What are the two sizes? To uncompress your file, type unfreeze temp-freeze.F.
e. Ironically, installing libc.so.6 should solve the problem of installing apg. Try to install apg again. Were you successful? Type apg. What output did you get? Uninstall apg using yum –y remove apg (the –y answers “yes” whenever prompted). Type which apg. Now, did removing apg also remove the library that freeze needed? Issue the freeze command from 1d again to see if freeze is still available. What can you conclude about removing packages with respect to library files that packages share?

2. Read about installing from source code using configure, make and make install from chapter 13.
a. What do each of configure, make and make install do? Let’s explore this approach through an example. Using wget, download the file www.nku.edu/~foxr/CIT371/make-example.tar.gz to your user’s home directory. Uncompress and untar it with the one instruction tar xvfz make-example.tar.gz. What do the x, v, f and z all stand for? Type ls and you will see that tar unpackaged the files into its own directory, make-example. Cd to make-example. Type ls to see the files here. You will see a makefile file and C files (.c and .h). Type less makefile to examine the contents of this file. Type make. What output did you get? What new files have appeared in the directory? To run a program produced by gcc, you type ./name where name is the name of the file. Run both of the new programs. What was the output of each?
b. The makefile install section is run when you type make install. Do so. What does it do? Type which prog1. Where is it located? Do an ls. What happened to the contents of the directory?

3. Type wget www.adel.nursat.kz/apg/download/apg-2.2.3.tar.gz, we will install apg from source.
a. Untar/uncompress the downloaded file (see 2a), cd into the new directory. View the Makefile file. This one is more complicated than the one from step 2 because apg is a more complicated program. In the makefile, you will see that apg can run in several operating systems. Which systems is it set up for? Which operating systems can it run for with making no changes to the makefile? apg can also run either on a standalone computer or on a server. Look at the contents of the directory and you will see numerous .c (C source) and .h (header) files. How many of each are there? You will also see several files whose names are all capital letters. What type of information do you find in these files? Install this program through make and make install. Type which apg. Where has apg been installed?
b. Although the make/make install approach is more involved, it is not too difficult. Still, why might you install software through this approach as opposed to the yum or rpm approach?

[bookmark: _Toc386026141]Lab 23: Backups and Scheduling Tasks

Open a terminal window and su to root for this entire lab except as noted in step 4d.

1. Answer the following questions regarding backups
a. Which backup program is best for quick and easy backups of a partition: tar, cpio or dump?
b. Which backup program is best for quick and easy backups of a specific directory: tar, cpio or dump?
c. Which backup program is best for incremental backups of a partition: tar, cpio or dump?
d. What is the problem with the following instruction (not syntactically but logically)?
tar –xzf /home /root/home.tar.gz?
e. Is the following instruction an improvement over the one from part d? If so, why?
tar –xzf /home /mnt/remote/home.tar.gz

2. Explore RAID as a means of disk storage.
a. If you purchased some form of RAID, should you still back up your system? Explain.
b. What is the difference between RAID 0 and RAID 1?
c. What is the difference between RAID 3 and RAID 5? Which would be better for a networked file server?

3. Assume you are system administrator of between 50-100 Linux workstations. Each workstation has its own /, /var and /usr partitions while they all remotely mount /home from a file server. How often would you back up each of the following of the following directories? How long would you retain each backup?
a. /		b. /var		c. /home		d. /usr

4. The at program schedules 1-time events. Write a script in /root, named myscript.sh with the following instructions, change it to be executable.
#!/bin/bash
			date >> /root/disk-usage-report.txt
			du –sh >> /root/disk-usage-report.txt
The at command is at –f filename time where filename is the name of the executable file and time is a time indicator for when to execute.
a. Issue an at command to execute my_script.sh at midnight tonight. What command did you enter? Once issued, use atq to see if it has been scheduled. What do you see when you do atq? To remove your scheduled job, use atrm. Do so and repeat atq. What do you see now?
b. Issue an at command for my_script.sh for 1 minute from now. What command did you enter? In 1 minute, see if it executed (you should now have a file called disk-usage-report.txt.
c. Open another terminal window and su to yourself. As root type at now + 2 minutes <enter>, at the at> prompt, type echo root control+d. As yourself, type at now + 2 minutes <enter>, at the at> prompt, type echo me control+d. As yourself do atq. What do you see? As root do atq. What do you see? What can you conclude about root and atq? Once root’s at job runs, look at /var/spool/mail/root using tail. What can you conclude about output from an at job if output is not redirected to a file?
d. As root, use vi to edit /etc/at.deny. It should be empty. Add your username, e.g., foxr1. Save and close the file. As yourself, issue at now + 1 minute <enter>. What happens? Provide a reason for why users should not be allowed to use at.
e. What at command would you issue to schedule the execution of my_script.sh at 4 pm on November 30?
f. What at command would you issue to schedule the execution of my_script.sh at 9 pm tomorrow?
g. What at command would you issue to schedule the execution of my_script.sh at midnight on Jan 1, 2015?

5. The crontab program is used for scheduling events that will recur many times, for instance every week or every day at 6 pm. Create a file called /root/mycron.txt. Place in the file the following: * * * * * /root/myscript.sh
a. Issue the command crontab mycron.txt. Type crontab –l. What do you see? Explain this entry.
b. Type crontab –e to edit your cronjob. Change this command to execute every 10 minutes. Save and exit (:wq). Type crontab –l. Copy what is output to your answer file.
c. Type crontab –r. Type crontab –l. What happens? What does the –r option do? Return to the crontab editor. How did you do this? Insert two entries, the first to execute every hour for just today and the second to execute every day at 3:15 pm, both executing /root/myscript.sh. Save and exit. Type crontab –l. Copy what you see into your answer file. Kill your current cron job. Type wc –l /root/disk-usage-report.txt. How many times did your scheduled job execute (divide by 2 since each job outputs 2 lines)?
d. How would you specify: every Sunday at 5:45 pm? every December 31 at 11:59 pm? 9 am on the 1st and 15th of every month? every hour on the hour every day?

6. cd to /etc/cron.d. Examine the three files here.
a. In 0hourly, there are environment variables, why? What will they do (that is, what impact do they have)?
b. What does raid-check do and when? What does sysstat do and when?

[bookmark: _Toc386026142]Lab 24: Monitoring the Linux Operating System

su to root for this entire lab.

1. Open the System Monitor (Applications System Tools), and run ps aux and top.
a. Which of these tools shows you persistent data (that is, data over time)?
b. Which of these tools shows you the current CPU utilization for each process?
c. Which of these tools shows you the CPU utilization as down by system load, user load, idle time, wait time?
d. Which of these tools (if any) can show you the parent-child relationship between processes?
e. Which tool would you use to determine what might be causing slow CPU execution? Why?

2. Run pidstat, ps aux, pidstat –r, vmstat, free, sar –r, sar –R, sar -S
a. How are the two sets of output between pidstat and ps similar? How do the outputs differ?
b. How are the two sets of output between pidstat –r and vmstat similar? How do the outputs differ?
c. How does sar –r differ from vmstat? from sar –R? from sar –S?
d. Of the approaches listed in step 2, which gives you the best indication of your memory system right now? Which gives you the best indication of your memory system over the recent period? Explain.

3. Change directory to /var/log. We will examine several of the log files here.
a. You created a log file called daemons in lab 19. View this (these) file(s). What types of data do you find here?
b. Examine the secure log file. What are the activities that are generally logged in this file? Enter the following command: grep –c failed secure*. What response(s) did you get? What is this information telling you? Now enter the command: grep –c zappaf secure*. What response(s) did you get? What is this information telling you?
c. The cron log files store all logged events from crond (when you run crontab), anacron and those cron jobs tasked under /etc/cron.hourly, /etc/cron.daily, etc/cron.weekly, and /etc/cron.monthly. How many cron files do you have? Notice that the oldest cron log file is dated from before you used cron. Why? Examine its contents, do you find anything submitted by your user account (you will find these entries listed as (username) where username is your username). Issue a command to count the number of cron jobs that were run by run-parts. How many in total were found? What entity uses run-parts to run cronjobs?
d. The messages file contains messages from both rsyslogd and the kernel (mostly kernel). Use grep –c to count the number of occurrences generated by rsyslogd (rsyslogd will appear in the entry rather than kernel). How many did you find among all of your messages file(s)?
e. Look at yum.log. How many entries? Are any update or erase messages? If so, what software packages?
f. sar reads statistics files stored under the /var/log/sa directory. These are not text files, you cannot view them. How many files are there? Collectively, how big are these files? What are the oldest/newest dates?

4. Change to /var/log/audit. Take a brief look at one of the audit files. It is very hard to interpret this information by reading it. We will use aureport and ausearch to provide information from these files.
a. Type aureport. How many of the following do you find? changes in configuration, logins? failed logins? authentications? users? terminals? executables? failed system calls? process IDs?
b. To obtain configuration events, type aureport –c. What is the date and time of the last config event?
c. Type aureport –l (lower case l) for login attempts. What is the date and time of the last entry? Type ssh ipaddress where ipaddress is your ipaddress and log in. You may exit immediately. Redo aureport –l. How does the latest entry differ from the others?
d. Use aureport –n. How many anomalies appear? If any appear, what software caused the anomaly?
e. Options –u and –p allow you to specify a UID or PID. Try aureport –u 500. What is the response?
f. Now we will examine ausearch. One option, -e, lets you see events logged because of error codes generated by programs (programs return error codes when run, 0 means no error). Try ausearch –e 1. What was the response? If you got <no matches>, does this mean that no program ended with an error?
g. Type ausearch –ui 500. This displays entries of your user. There are probably a lot. Repeat this piping the result to grep –c ‘\-\-\-\-’ (entries are separated by ----). How many entries are there for you?

5. As a system administrator, which log file(s) would you look at (if any) if:
a. you suspect a scheduled task did not execute as scheduled
b. you suspect someone is trying to hack into your system
c. you suspect a service is not running properly?

6. As a system administrator, which, if any, of log file(s) would you examine daily? weekly? monthly?

[bookmark: _Toc386026143]Lab 25: Apache Installation and Configuration (part I)

This lab assumes that you are running Linux from a VM. If not, skip step 2b. Open two or more terminal windows and su to root in all of them for convenience. Make sure gcc is installed (otherwise issue the command yum –y install gcc). Make sure that the service httpd is stopped as this may interfere with the version of Apache that we will download.

1. Installing Apache
a. In your web browser, go to httpd.apache.org/download.cgi, and select the version httpd-2.2.24.tar.gz (do not use a more recent release like 2.4.4), and download the Unix source version. It will most likely save to your user’s Desktop or in your user’s Download directory. Change to that directory and untar/uncompress the file. How did you do that? This will create a new subdirectory containing the entire installation content. Change to that directory.
b. Now you will configure, make and make install. Issue the following instruction:
	./configure --prefix=/usr/local/apache2
Configure will probably take a few minutes to run. As it does, a lot of text will scroll by, you can ignore it (unless it ends with an error message in which case ask for help from your instructor). Examine the configure help to see what this command does. What does the prefix statement do? Why should we do this rather than using the default?
c. Next, type make, again this will take a couple of minutes. Finally type make install, again, this will take a couple of minutes. Type which apache. Where is apache installed?

2. Starting Apache
a. Determine your IP address. Cd to /usr/local/apache2/bin. There are executable files and scripts in this directory. apachectl is a script that controls apache much like the scripts in /etc/init.d. Issue the command ./apachectl start to start Apache. If the instruction appears to hang it is because of a problem with one of the system calls. Let it run, you will eventually get apachectl to start. In your browser, change the URL to your computer’s IP address. What gets displayed in the browser? Change the IP address in your browser to 127.0.0.1 and you should get the same page.
b. Using your real (outer) computer, open a web browser and enter as the URL your IP address of your VM. What happens? Why? You did not change your firewall to permit incoming messages to reach your web server. In your VM, in a separate window, cd to /etc/sysconfig and load iptables into vi . Add a new rule to ACCEPT messages whose protocol is tcp and whose destination port is 80. Save iptables and restart iptables. Retry the URL from your real computer. Once you get this to work, place the iptables rule in your answer file.

3. Configuring Apache
a. In one terminal window, cd to /usr/local/apache2/conf and load httpd.conf into vi. This is apache’s main configuration file. Making changes to it will change how apache operates. Search for the entry that lists where the directory of DocumentRoot is located. What directory is it? In a second terminal window, cd to this directory. What file do you find here? What is its contents?
b. Copy this html file to second.html and in vi, edit this file. Change the body to be My Second Page, save and exit vi. Now in your web browser use this URL: ipaddress/second.html where ipaddress is your computer’s ipaddress.
c. Create a subdirectory under your DocumentRoot directory called temp. Move second.html to this directory. Refresh your browser. What happened? Change the URL appropriate to access the file in its location. What is the URL now?

4. Using the <Directory> Container
a. Now we will examine some of the uses of a <Directory> container. In your httpd.conf file, search for the <Directory> container for your DocumentRoot (that is, <Directory /usr/local/apache2/htdocs>). After this, add a container for your temp subdirectory that looks like this:
<Directory /usr/local/apache2/htdocs/temp>
		Order deny,allow
		Deny from all
		Allow from ipaddress
</Directory>
Where ipaddress is your VM’s ipaddress. Save your conf file and restart apachectl. Enter the URL http://ipaddress/temp/second.html in both your VM browser and your real computer’s browser. What did you see in each? Why?
b. In the temp directory container, change Order deny,allow to Order allow,deny, save your conf file and restart apachectl. Refresh both browsers. What happened this time? Explain why the order in the Order directive caused this problem.
c. Change the temp directory container now to read Deny from ipaddress and Allow from all. Save your conf file and restart apachectl. Refresh both browsers. What happened this time? Explain. At this point, delete your directory container for temp, save the conf file and restart apachectl.

[bookmark: _Toc386026144]Lab 26: Apache Installation and Configuration (part II)

Open two terminal windows and su to root in each. cd to /usr/local/apache2/bin in one and /usr/local/apache2/conf in the other. Load the httpd.conf file into vi. In the bin directory, start (or make sure) apache is running using apachectl as you did in lab 25. In this terminal window, cd to /usr/local/apache2/htdocs/temp.

1. Other Configuration Directives
a. Under the temp directory, type echo index.txt > index.txt and echo index.shtml > index.shtml to create two additional files. Notice in the <Directory> container for DocumentRoot, Options include Indexes. Your temp subdirectory will inherit this option. In your browser, enter the URL ipaddress/temp with no file name. What happens? When you entered the URL ipaddress, you received the index.html. Why do you receive the index.html file when looking at one directory but the directory content when looking at the other? Research what Indexes means and explain it.
b. In your conf file, search for the directive DirectoryIndex which should have one item, index.html, listed. Add to the directive (after index.html) index.php index.txt index.shtml in that order, save your conf file and restart apachectl. In your browser, enter the URL ipaddress/temp where ipaddress is your VM’s IP address. A file will have loaded, which one? Why didn’t the other file load that you created in step 1a?
c. In your VM’s terminal window under the temp directory, create a symbolic link to /etc/passwd with the name users.txt. Now enter in your web browser the URL ipaddress/temp/users.txt. What is displayed? In your httpd.conf file, re-create the directory container for the directory temp as you did in lab 25 step 4a but do not include the Order, Allow or Deny directives. Instead add the directive
	Options –FollowSymLinks
Save your file and restart apachectl. Refresh your browser. What happens? What does Options –FollowSymLinks do?
d. Modify your temp directory container from step 1c so that Options instead reads Options –Indexes. Save your file and restart apachectl and refresh your browser. Explain why the symbolic link is available in this case. Change the Options to now be Options Indexes. Save your file and restart apachectl and refresh your browser. What happens this time? Change Options one more time to be Options +ExecCGI, save the file, restart apachectl and refresh your browser. What happens this time? Explain the use of Options +, Options – and Options with neither in terms of how it impacts inheriting from a parent directory.
e. Before the directory container for DocumentRoot is a container for / (the Linux root level). Why is this directory specified to Deny from all? What could potentially happen if this directory was listed as allow from all?

2. Error Handling Directives
a. Enter the URL ipaddress/foo.html. This file does not exist. What do you get in your browser? We can create our own error messages. In your httpd.conf file, outside of any directory container add the following directive: ErrorDocument 404 “Oops, you made a mistake!” Save your conf file, restart apachectl and refresh your browser. What happens? Now copy the index.html file from your DocumentRoot directory and call it error404.html. Change the text in the file’s body section to be This is a 404 error. Save this file (make sure its in /usr/local/apache2/htdocs). Change the ErrorDocument directive to be ErrorDocument 404 /error404.html. Save your conf file, restart apachectl and refresh your browser. What happens this time?
b. Change directory to /usr/local/apache2/error. You will see a variety of html.var files. These are default error files that contain error messages in multiple languages. Look at the HTTP_NOT_FOUND file (for 404 errors). Before each language’s entry, you will see Content-language: abbrev. What is the abbreviation for English? To use these files delete the directive from step 2a and in your conf file that says #Include conf/extra/httpd-multilang-errordoc.conf and uncomment it. Save your conf file, restart apachectl and refresh your browser. You should see the content from the English portion of the HTTP_NOT_FOUND file. We can change the language used by modifying your web browser. Under Edit, choose Preferences and from the pop-up window, the Content tab. Under Languages, click the Choose… button, click on the Select a language to add… button and select French (you will need to scroll down). Once selected, click Add and then Move Up until French is the top language. Click OK and then Close from the Preferences window. Refresh your browser. What happens? Explain what you have done.

3. Log Files
a. Apache maintains two log files under /usr/local/apache2/logs, access_log and error_log. Look in your access_log. What information does each entry record? Approximately how many entries are there? What IP addresses do you find? Under bin is a program called logresolve. Run the command /usr/local/apache2/bin/logresolve –c < /usr/local/apache2/logs/access_log. You should have 2 different IP addresses among the list, your VM’s and your real machine. What are the two?
b. Now look at the error_log. How many entries are there? What is the last entry recorded? As a system administrator (or web site administrator) why might you want to examine these logs? How often would you examine each?

Page | 1

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image1.png

