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ABSTRACT: Darcy’s law controls laminar groundwater flow. Empirically this fact represents “firm 
ground.” Stress and strain relations control ground deformation. This complicated truth also stands 
empirically on “firm ground.” Unfortunately, an allegorical “river” separates these two disciplines. The 
equation that bridges these two and establishes a common or shared “terra firma” is Gauss’ divergence 
theorem. Ever since Biot’s pioneering work, the problem has been that this mathematical “bridge” has 
been placed at perhaps the most inconvenient location along the “river”—along the stream of logical 
development. Flow and strain had already become distinct academic disciplines before Biot’s attempt to 
merge them into a unified hydro-geotechnical discipline. Four locations exist for a mathematical cross-
ing, one being the traditional geotechnical location. All are investigated from the perspective of phys-
ics and mathematical rigor. The present paper crosses at a more geohydrological location. The resulting 
flow equations of this new unified theory of aquifer mechanics have many practical implications for 
engineering geologists and hydrogeologists. For example, with a small increase in CPU time any reliable 
computer code for transient three-dimensional groundwater flow, which like MODFLOW already com-
putes Darcian specific discharge rates across each face of every cell, can be transformed directly into an 
equally reliable code for three-dimensional transient deformation of saturated sedimentary material.

the traditional geotechnical location. The present 
paper crosses at a more geohydrological location. 
All are investigated from the perspective of physics 
and mathematical rigor.

The guiding conceptual equation for this new 
unified theory of aquifer mechanics is a bulk flow 
equation. One practical implication is that any reli-
able computer code of transient three-dimensional 
groundwater flow, which like MODFLOW already 
computes Darcian specific discharge across each 
face of every cell, can be transformed directly 
into an equally reliable code for three-dimensional 
transient deformation of saturated sedimentary 
material.

2 GROUNDWATER FLOW AND INDUCED 
AQUIFER DEFORMATION

When stressed, an aquifer of saturated sedimen-
tary material tends itself  to flow as a deforming 
particulate structure. Though the grains behave 
somewhat like a rigid skeletal frame, they actu-
ally move not only in response to the motion of 
the surrounding water but also to a critical extent 
they move relative to one another. Flowing water 
passes through pore spaces. This water flows past 

1 INTRODUCTION

Groundwater flow through sedimentary material 
has a more intimate relation with the deformation 
of this sedimentary material than most engineering 
geologists realize. How precise can we become in 
quantifying this intimate connection? The answer 
is: Very precise.

Darcy’s law controls laminar groundwater flow. 
Empirically this fact represents “firm ground.” 
Stress and strain relations control ground deforma-
tion. This complicated truth also stands empirically 
on “firm ground.” Unfortunately, a treacherous 
allegorical “river” separates these two disciplines 
of groundwater flow and ground deformation. 
Fortunately, a fundamental equation bridges this 
divide. Gauss’ divergence theorem establishes a 
commonality between flow and strain. Ever since 
Biot’s (1941) pioneering work on flow and strain, 
geotechnical engineers have tried to cross this 
allegorical river at perhaps the most inconvenient 
location (actually, at the most difficult place along 
the stream of logical development). Flow and 
strain had already become distinct academic dis-
ciplines before Biot’s attempt to merge them into 
a unified hydro-geotechnical discipline. Four loca-
tions exist for a mathematical crossing, one being 
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a granular structure that frames the pore spaces. 
Nonlinear water-to-grain viscosity tends to impel 
the granular structure to move whereas nonlinear 
grain-to-grain friction tends to constrain move-
ment. Relative flow occurs along the boundary of 
a given pore space and defines specific discharge 
q (Gersevanov, 1934; Biot, 1941; DeWiest, 1965; 
Bear, 1972; Helm, 1979), namely

q n� ( )v vw sv  (1)

where n ( Vv/V) is the porosity of bulk volume 
V, vw is the averaged velocity field of water within 
the saturated pore volume Vv, and vs is the aver-
aged velocity field of the skeletal structure that 
frames the pore spaces that comprise Vv. Specific 
discharge is further controlled mathematically by 
Darcy’s law,

q = −K∇h (2)

where K is hydraulic conductivity. In a nutshell: the 
gradient of hydraulic head h is the dimensionless 
driving force that impels Darcy’s specific discharge 
(Hubbert, 1940).

Helm (1979) introduced a straightforward defi-
nition of bulk flux qb of  aggregate material within 
V, which when saturated holds volumetrically a 
mixture of both sedimentary material and water,

q v vb wv svwv� + ( )n  (3)

The resulting theory of aquifer movement (Helm 
1979, 1984) has been corroborated empirically in 
the laboratory (Helm, 1987, 1998) and indirectly in 
the field (Helm, 1994a; Burbey, 2002, 2006).

As used here, the equality symbol “ ” can be 
translated to mean “The variable on the left is 
defined by the expression on the right.” It should, 
however, not be confused with the equality sym-
bol “≡” that appears first in equation 6. The latter 
is used in this paper to link two expressions that 
are essentially identical, in that they simply indi-
cate alternative ways to portray mathematically the 
same physical event.

3 THE DIVERGENCE THEOREM

The classic equation for transient groundwater flow 
(Jacob, 1950) stems from the continuity equation. 
In turn, the roots of any continuity equation grow 
from within the divergence theorem of Gauss.

Let us clarify the above two statements. MOD-
FLOW is an example of an internationally 
respected computer code for three-dimensional 
groundwater flow. Like other models, it is based on 
Jacob’s development of the continuity equation. 

As used in MODFLOW, McDonald and Har-
baugh’s (1988) algebraic formulation of the conti-
nuity equation is

Q S Vi sQ SQ SSsS ( )h tΔ∑  
(4)

where the sum Qi is the volume rate of water flow-
ing into a cell orthogonally across the total surface 
of the cell, V is the volume of the cell, and Δh is 
the change in head (averaged within V) over a time 
interval of duration Δt. Ss is called specific stor-
age and functions as a compressibility type of 
coefficient.

The basis for all computer models that link 
groundwater flow to strain through a continuity 
equation similar to (4) is Gauss’ theorem. Gauss’ 
theorem features a purely mathematical truth. 
It states (Kreyszig, 1983) that for any vector, v

( )v n = ( )v⋅∫∫ ∫∫∫dS dV
S V

( )∫∫ ∫∫∫∫  (5)

where ∇ ⋅ v indicates the divergence of v, S is the 
closed surface that bounds a specified bulk vol-
ume V, and n is the outer unit normal vector of 
S. The vector n (unit normal vector) should not 
be confused with the scalar n (porosity). What the 
divergence theorem says is essentially that when 
the outward normal components of any specified 
vector v are summed over an entire closed surface 
S, the result can be transformed into the sum of 
all the divergences of the field generated by vec-
tor v within the interior of the enclosed volume V 
of  interest. The reverse transformation is also true. 
This is a mathematical theorem and hence is valid 
for each and every vector v so long as both it and 
its first partial derivatives can be shown to express 
continuous mathematical functions.

In other words, one can substitute any physically 
meaningful vector, whether vs, q, qb, or any other, 
for mathematical vector v in equation (5) so long 
as the differentiability requirements are satisfied. 
In doing so, equation (5) immediately reveals an 
unarguable relationship between such a physically 
meaningful vector and its divergence.

4 BASIC EQUATIONS THAT LINK 
GROUND-WATER FLOW TO AQUIFER 
DEFORMATION

4.1 Physical expressions of the divergence 
theorem

Physical expressions of Gaussian equation (5) that 
are of interest to engineering geologists, hydroge-
ologists, subsidence modelers, and others are given 
below by equations (6), (8), (11), and (13).
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First we write

S V

V

dS dV

dV

( )u ns = ( )us⋅

≡
∫∫S ∫∫∫V

∫∫∫V εdd  (6)

as a physical application of Gauss’ divergence theo-
rem, where the bulk volume V of a cell of interest 
has a surrounding surface S that is fixed within the 
deforming skeletal frame in accordance with Coop-
er’s (1966) fundamental analysis of groundwater 
flow. The vector us represents the transient displace-
ment field of saturated sedimentary material and ε 
is defined as being the divergence of us, namely

ε � ∇∇∇∇ ⋅us  (7)

Definition (7) has been invoked within the paren-
theses that extend the right hand side of equation 
(6). Divergence ε represents the trace (first invari-
ant) of the transient total strain tensor of the porous 
granular structure. It signifies a change in volume 
of this saturated porous structure. This contrasts 
to the deviatoric component of the total structural 
strain tensor, which signifies a change in shape.

Second, in terms of the velocity field of the 
granular structure, the Gaussian divergence theo-
rem becomes

( )

v

sS V

p
Eulerian

V

dS dV

t
dV

=)dS ( )vs⋅

≡
∂
∂

+ ⋅vp
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

≡
∂

∫∫S ∫∫∫V
∫∫∫V ∇∇∇∇ε ε⎞⎞

ε
∂∂

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠∫∫∫ t

dV
Lagrangian

V∫∫  (8)

where vs is defined by

v
u u

us
s su

p su
D
Dt t

� ≡
∂
∂

+ ( )vp ⋅v ∇∇∇∇  (9)

Hence from the two definitions, (7) and (9), one 
can write

D
Dt s

ε
≡ ⋅∇∇∇∇ v  (10)

which is invoked within parentheses on the right-
hand side of equation (8).

4.2 Eulerian and Lagrangian perspectives 

The term vp in equation (8) indicates the rate of 
movement of a specified bulk volume’s centroid—
where averaged interior values of scalars, vectors, 
or divergences become focused in a smeared sort 

of way. The moving surface S deforms relative 
to a moving centroid. Movement is expressed in 
terms of a selected coordinate system. The term 
“Eulerian” depicts deformation from the perspec-
tive of a coordinate system fixed by a specified “ini-
tial” distribution of matter, which is usually called 
being fixed in “space.” When one describes motion 
in terms of such a non-deforming or Eulerian coor-
dinate system, vp in equation (8) is set equal to vs for 
a volume element that moves and deforms with the 
skeletal frame. An Eulerian perspective contrasts to 
a “Lagrangian” perspective. The latter depicts the 
deformation of S from the perspective of a co-de-
forming and co-moving coordinate system that is 
itself  fixed in, say, the skeletal frame (Cooper, 1966). 
In terms of such a co-moving frame, vp inherently 
cannot be expressed. As a result, Lagrangian vp is 
universally set equal to zero (Li and Helm, 1998).

In a nutshell: Jacob’s (1950) standard transient 
groundwater flow equation to be valid, a Lagrangian 
coordinate system must be invoked that is fixed 
within the deforming skeletal frame (Cooper, 1966). 
Such a coordinate system is inherently presumed 
within all standard groundwater-flow models, such as 
MODFLOW, that make use of the standard transient 
groundwater flow equation. Accordingly, it is also 
tacitly assumed by every user of all such models.

4.3 Additional groundwater manifestations 
of Gauss’ divergence theorem

In terms of specific discharge, Gauss’ theorem (5) 
becomes

( )q n = ( )q⋅

= ( )q v
∫∫ ∫∫∫

∫∫∫
dS dV

dV
S V

( )q∫∫ ∫∫∫∫
v

V∫∫ q⋅  (11)

The all-important flow relation

q q v−qb sv−  (12)

and its two alternative expressions

v q qs bq −qbq  (12a)

q vb sq v≡ +qq  (12b)

follow directly from definitions (1) and (3). Rela-
tion (12) is used to extend the right-hand side of 
equation (11).

Finally, for bulk flux, Gauss’ divergence theo-
rem (5) becomes

( ) ( )bS bV
dS dV=)dS∫∫S ∫∫∫V ∇∇∇∇  (13)

where based on mass conservation (Helm, 1987)
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∂
∂

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ ∂
∂

+ ⋅⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
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∂⎝⎝⎝
q

v
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s
s

s s∇∇∇∇

t

t
( )− n /

ρ ρ∇∇

ρs/ ρs ρs∇  (14)

ρw is the density of water, and ρs is the density of 
individual solid grains. The divergence ∇ ⋅ qb is given 
rigorously by equation (14) in terms of material 
derivatives of a mixture of moving water parti-
cles and solid grains. When one incorporates the 
standard simplifying assumption made by geo-
hydrologists that individual grains are much less 
compressible than the interstitial water, the diver-
gence of bulk flux reduces to

∇∇ ∇∇∇ ∇∇∇⎛
⎝⎝⎝

⎞
⎠⎠⎠

∂
∂

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

q
⎝⎝⎝ ⎠⎠⎠ ∂⎝⎝⎝b

w
w w∇∇∇∇n

tρ
ρ ρ∇∇  (15)

When equations (10) and (15) are substituted 
into the right-hand extension of equation (11), 
namely when

( )

v

=)

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

∂
∂

+ ⋅v⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

∫∫
∫∫∫

dS

n
t t⎠⎠⎠ ∂

dV

S∫∫

w

w
w wV∫∫ ρ

ρ ρ ε∇∇∇∇  (16)

then two strain and compressibility conditions that 
underlie MODFLOW and other groundwater flow 
equations have been incorporated into the more 
general divergence equation (11). A third condi-
tion or assumption is that change in the density 
of water ρw and change in the bulk volume strain 
ε of  the porous granular structure can both be 
expressed in terms of a corresponding change in 
hydraulic head, namely that ρw = ρw(h) and ε = ε(h) 
Including this third condition yields

( ) =) −
∂
∂∫∫ ∫∫∫dS S
h
t

dV
S∫∫ sS

V∫∫  (17)

Hydrogeology’s specific storage Ss can accord-
ingly be defined as

S

n

p

p

h

sS

w

w

n
h hw

w�
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ρ ε

ρ
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 (18)

where p is pore-water pressure, σe is Terzaghi’s 
(1925) effective stress (namely, σe  σΤ – p), and 

it is presumed that ∂p/∂h ≅ ρwg where g is gravi-
tational acceleration. The rightmost approximate 
equality in equation (18) tacitly requires there to 
be no change in total load σΤ within or along the 
boundary of the geohydrologic region of interest. 
This latter restriction separates geohydrology from 
geotechnical engineering.

When an additional simplifying assumption 
that water is significantly less compressible than 
the porous granular structure, equations (14) and 
(15) further simplify to

∇∇∇∇ ⋅ =qb 0  (19)

This assumption is universally made by 
geotechnical engineers. When equations (10) and 
(19) are substituted into the right-hand side of 
equation (11), namely when

( ) =) −
∂
∂∫∫ ∫∫∫dS
t

dV
S V

( )∫∫ ∫∫∫∫
ε  (20)

then two geotechnical strain and compressibility 
requirements that undergird soil consolidation 
equations have been incorporated into divergence 
theorem (11).

Equation (17) can be considered geohydrology’s 
interpretation of Gauss’ divergence theorem (11). 
Contrastingly, equation (20) can be considered 
geotechnical engineering’s interpretation of Gauss’ 
divergence theorem (11). The right-hand sides of 
all divergence theorem applications in this paper 
pertain to strain whereas the left-hand sides per-
tain to Darcian flow in accordance with equations 
(2) and (12).

5 TWO SIGNIFICANT POINTS 
TO NOTICE ARE

 i. The left-hand side of MacDonald and 
Harbaugh’s (1988) algebraic continuity 
equation (4) is similar to the left-hand side of 
Gaussian equation (11) and its geohydrologic 
special case (17).

 ii. The right-hand side of algebraic continu-
ity equation (4) can be expressed rigorously 
and more generally by the right-hand side of 
Gaussian equation (11) and its geohydrologic 
special case (17).

Points i and ii indicate that geohydrologic diver-
gence equation (11) can be employed as a “bridge” 
across the allegorical river described in the Intro-
duction that separates Darcian “flow” interrela-
tions on the left from Biot’s “strain” interrelations 
on the right. The strategy introduced in the present 
paper is to cross the “river” at equation (11). From 

pp0027-pp0034.indd   30pp0027-pp0034.indd   30 9/18/2014   3:58:56 PM9/18/2014   3:58:56 PM



31

thence one can leave behind much of the complex-
ity and ambiguity associated with strain.

Up to this point we have considered the com-
plexity and ambiguity associated with strain in 
some detail. The purpose for doing so is twofold. 
First, it demonstrate that either side of the diver-
gence equation yields an identical physical result 
on the opposite side wherever and whenever real 
world events can be applied to the divergence 
theorem. One can cross over from one side to the 
other with impunity at any convenient Gaussian 
“bridge,” namely at equations (6), (8), (11), and 
even at equation (13). Second, it demonstrates 
that if  one chooses to cross at geohydrologic equa-
tion (11) what is important is to examine the con-
fidence one has in the calculated flow values of 
specific discharge q that appear on the left-hand 
side. Whether one assumes the traditional linear 
poroelastic constitutive law (Biot, 1941) to express 
stress and structural strain on the right hand side 
of equation (11) or one chooses a nonlinear poro-
viscous constitutive law (Helm, 1998) that more 
closely matches empirical behavior, whenever 
the calculated values for specific discharge q are 
deemed sufficiently acceptable for the real-world 
problem at hand, one has successfully crossed to 
the left-hand side.

6 THE GOAL OF SUBSIDENCE 
MODELERS

The goal of subsidence modelers is to reach accu-
rately and with computational speed the left-hand 
side of Gaussian equation (6), namely to evalu-
ate the displacement field of the skeletal frame us. 
Groundwater subsidence modelers have appropri-
ately attempted to reach their goal by starting from 
continuity equation (11), or its algebraic counter-
part (4). They must choose, however, which side of 
the river to trek on their way towards the left-hand 
side of equation (6).

Flow equation (12) is the equation that directly 
couples together the left-hand sides of equations 
(8), (11), and (13). Indirectly, it also couples together 
the right-hand sides of equations (8), (11), and (13). 
The all-important left-hand side of equation (6) can 
be reached from the left-hand side of equation (8) 
simply by integrating definition (9). This yields

u us sv s
t

dt= +vsv dt∫ 00∫∫  (21)

where us0 is the cumulative displacement field that 
has occurred prior to when a proverbial “stop-
watch” is started at time t = 0. In MODFLOW, this 
initial moment would coincide with the beginning 
of a new “stress event.”

7 A NEW STRATEGY FOR 
CALCULATING THE MOVEMENT 
OF GEOLOGIC MATERIAL

Nearly all solution strategies for calculating both 
transient groundwater flow q and transient dis-
placements us of saturated geologic material begin 
from Gaussian equation (11), which is a rigorous 
expression of groundwater continuity equation (4).

7.1 The traditional strategy

To find the displacement field, the traditional 
geotechnical strategy is to remain conceptually 
on the strain side of equation (11) and eventually 
to find the transient value of ε on the right-hand 
side of equation (6). Following such a strategy, 
one is forced as a final step to cross over at equa-
tion (6) from the right-hand side to the left-hand 
side. Such a final step requires the Herculean task 
of integrating strain thrice (once over each of 
the three dimensions of space) from a known or 
“anchored” location (say, a three-dimensionally 
fixed benchmark).

Such Herculean calculations can, of course, be 
done by a computer. However, to model ground 
movement even for a small sedimentary basin 
a great many CPUs are required for calculating 
afresh at every time step each direction of the 
three-dimensional displacement field for every 
specified node or cell.

The GDM model for transient three-dimensional 
land subsidence (Burbey, 1994; Burbey and Helm, 
1999) is an example of this “right-hand” or strain-
based strategy of reaching both sides of equa-
tion (6) starting essentially from MacDonald and 
Harbaugh’s continuity equation (4). Unfortunately, 
the process within the computer of going from tran-
sient volume strains ε to transient displacements us 
in three dimensions for each cell at every time step, 
though accurate, takes so much computer time that 
GDM becomes rendered less than a practical com-
putational tool when applied at the field scale.

Burbey (1994) accounted in three dimensions for 
another major consideration, which is beyond the 
scope of the present paper to discuss, and helped 
Zhang (2009) do the same. This is the well-known 
distinction in soil mechanics between the behav-
ior of material within a cell when the cell changes 
from being in a condition of overconsolidation to 
becoming normally consolidated (and vice versa) 
as local water levels fluctuate. These two behavio-
ral conditions are controlled by each cell’s ongoing 
history of effective stress. The challenge in simu-
lating this fundamental and characteristic non-
linear stress-dependent behavior of granular and 
platelet structures was solved decades ago (Helm, 
1972, 1975, 1976). Empirically corroborated stress 
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dependency (Helm, 1976) of both hydraulic con-
ductivity K and the grain-to-grain structural com-
ponent of specific storage Ss has been refined to 
include creep (Helm, 1998). The curious reader is 
referred to these publications.

7.2 The new strategy

The present paper “cuts the Gordian knot.” It 
crosses from the right-hand side of Gauss’ equa-
tions to the left-hand side immediately and com-
pletely at equation (11) rather than at equation (6), 
the traditional location. The new strategy is simply 
to remain on the flow side (the left-hand side) of all 
the Gaussian equations (6), (8), (11), and (13) with 
the help of equations (12) and (21). The break-
through that allows one to remain entirely on the 
flow or Darcian side of the allegorical river is equa-
tion (12). This strategy represents conceptually the 
most direct and computationally the quickest and 
most efficient way to reach the goal of all subsid-
ence modelers, which is to solve accurately in three-
dimensions the transient displacement field us.

8 CONCLUSION

8.1 An outline for writing an aquifer mechanics 
computer code

How would one construct a computer code for 
calculating structural deformation that is based on 
Strategy 7.2 described above? Zhang (2009) has 
done so as a module within MODFLOW. The prac-
tical procedure followed by Zhang is outlined here.

From equation (12), it is evident that when any 
two of the three vectors q, vs, and qb are known, the 
third can be calculated.

8.2 Consider vector q

At every time step, MODFLOW already calculates 
the directional components of specific discharge qx, 
qy, qz across every cell’s six faces (See equation (4)). 
Subscripts x, y, and z indicate mutually orthogonal 
Cartesian coordinates, which are specified at t = 0 
whether one chooses a Lagrangian or an Eulerian 
approach. These components of specific discharge 
q can be retrieved from within the current calcula-
tions of MODFLOW. This means that one of the 
three vectors that appear in equation (12) is already 
available. One more of the three flow vectors is 
required in order for all three to become known.

8.3 Consider vector qb

In a region where either three-dimensional move-
ment along the land surface or critical deformation 

at depth has already become or may yet become a 
hazard, the programmer can reasonably assert the 
standard geotechnical assumption that

∂ ∂ ( )( )∂ ∂ ( )( )∂ ∂ε ∂ ( )∂ (∂ (∂ ( )∂ ()∂ ( .)∂∂>> (>> ( )(∂)(∂ )(∂)(∂ )∂ >> () >> ()(∂ ∂∂)(∂  
(22)

Another way to write condition (22) is

∂ ∂ ∂ ( ) ∂ ∂ ( ) ∂ε ∂ ∂ (l∂ ∂∂ ∂ (( / l∂ >> ∂>>>> ∂>> (( /))l>> ∂>> ∂ (( / ∂∂ t) () ∂ ∂ (∂ >> ∂>> () ∂
 
(23)

where ln (X) is the Naperian logarithm of X. When 
condition (23) is physically valid for a region of 
interest, equation (19) can correspondingly be 
assumed.

For steady boundary conditions and steady-
flow sinks and sources, equation (19) indicates 
steady incompressible flow that is in equilibrium 
with such conditions. These conditions corre-
spond to a “stress event” in MODFLOW. MOD-
FLOW already can or does calculate steady flow 
across each face of every cell for any stress event. 
The programmer needs merely re-label and re-in-
terpret these steady flow solutions as qbx, qby, and 
qbz. Together they express qb, which is the steady-
flow (equilibrium) asymptote that transient (non-
equilibrium) specific discharge q is approaching 
with time until the model user designates another 
stress event, which changes the asymptote. Bulk 
flux qb can be considered to be that step-wise 
changing asymptote. In most real world situa-
tions that are usually being modeled, transient q 
does not reach its current asymptote qb before this 
asymptote is changed by a new stress event.

8.4 Consider vector vs

Knowing the Cartesian directional components of 
these two vectors (q and qb), one can immediately 
calculate vsx, vsy, and vsz from

v q q i x y zsi bi i−qbi =i x , .z  (24)

where equation (24) follows directly from equation 
(12a) and vice versa.

Equation (21) furnishes the final step in com-
puting the cumulative displacement field us of  the 
aquifer system. A practical method for calculating 
reliably and swiftly in three dimensions the tran-
sient deformation of saturated sedimentary mate-
rial has been outlined. It is based on Darcian flow 
conditions.
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