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Lesson 25, 12.1-12.3

CHAPTER 12. ITERATION METHOD

12.1. Introduction

· Some engineering problems, as well as mathematical problems, are best solved by an iteration procedure. For example, an iteration method is often used in Fluid Mechanics to solve pipe flow problems. In Chapter 5, we discussed the Bisection and the Newton-Raphson methods for obtaining the roots of a function. Both methods are iteration methods.
· The Hardy-Cross iteration method may also be used for determining the flow rates and head losses throughout a pipe network, if the pipe sizes, lengths and pipe roughness factors are known. 
· In heat transfer, problems involving Laplace’s equation can also be solved by the Gauss-Seidel iterative method. These methods are discussed in this Chapter.
12.2. Iteration in Pipe Flow Analysis

Example 12.1

Consider the piping system shown in Figure 12.1. 
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Figure 12.1.

The energy equation for the system is [1]:
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( 12.1)

where


p = pressure (in N/m2).

V = average fluid velocity in the pipe (in m/s).
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= specific weight of the fluid (in N/m3).

z = elevation (in m).

g = gravitational constant = 9.81 (in m/s2).
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= sum of head losses (in m).
For this system,
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The sum of head losses consist of a head loss, hf ,in the pipe due to viscous or turbulent effects and minor head losses due to valves, elbows and pipe entrance and exit losses.

The head loss in the pipe due to viscous or turbulent effects is given by the Darcy-Weisbach equation which is:
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 (12.2)

where 


L = pipe length (known)


D = pipe diameter (known)


f = friction factor

The determination of the friction factor, f, for smooth pipes (f for rough pipes is given later in this Chapter) can be approximated by the following formula [1]: 
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(12.3)

where Re is the Reynolds number, which is given by: 
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where Q is the volume flow rate and 
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 is the kinematic viscosity . The expression for V that was used in Equation (12.4) is



V = 
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(12.5) 

where A is the cross-sectional area of the pipe. The minor head losses are expressed by the equation:
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(12.6)

The K values for the minor head losses are: Kentrance = 0.5 and Kvalve = 6.4.
Substituting these relationships into Equation 12.1 and rearranging gives
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(12.7)

Substituting Equation (12.5) into Equation (12.7) and solving for Q2 gives  
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(12.8)

If the unknown in the problem is either the flow rate, Q, or the pipe diameter, D, then an iteration scheme may be used to solve the problem. This is due to the fact that V is related to Q, f is related to the Re, which is related to Q. So, Equation (12.8) is an implicit function of Q. The following iteration scheme may be used to solve for Q.
1. Assume a value for f , say f 1= 0.03. (Experiment indicates that f ranges 

from 0.008 to 0.08).
2. Solve Equation (12.8) for Q.
3. Solve Equation (12.4) for Re.

4. Solve Equation (12.3) for f, say f2.

5. If 
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Example 12.1

Develop a MATLAB program to determine the flow rate, Q, and the friction factor, f, for the pipe system shown in Figure 12.1 by the iteration method described in Section 12.2. 

Use the following values for the problem.
L = 60 m,  D = 1.25 cm and (z1 – z2) = 15 m, 
[image: image18.wmf]62

1.14110/

ms

u

-

=´

, g = 9.81 m/s2, 
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The Program follows:
% Example_12_1.m
% This program determines the flow rate, Q, in a pipe flow 
% system. An iteration scheme is used to solve the problem.
clear; clc;
L=60.0; D=0.0125; z1=15.0; z2=0; % units are in meters.
g=9.81; % units are m/s^2
nu=1.141e-06; % units are m^2/s
Kent=0.5; Kvalve=6.4
eps=1.0e-4;
f1=0.03;
fprintf('  f1       Q(m^3/s)         Re         f2 \n');
fprintf('---------------------------------------- \n');
for i=1:10
    Qsq=g/8*pi^2*D^4*(z1-z2)/(L/D*f1+Kent+Kvalve);
    Q=sqrt(Qsq);
    Re=4*Q/(pi*D*nu);
    f2=1/(1.82*log10(Re)-1.64)^2;
    fprintf(' %6.4f  %10.4e    %10.4e    %6.4f \n',f1,Q,Re,f2);
    if abs(f2-f1)< eps
        break;
    else
        f1=f2;
    end
end    
fprintf('Final answer \n');
fprintf(' %6.4f  %10.4e    %10.4e    %6.4f \n',f1,Q,Re,f2);
-----------------------------------------------------------------

Program Results:

   f1    Q(m^3/s)       Re         f2 

----------------------------------------------- 

 0.0300   1.7138e-04    1.5299e+04    0.0280 

 0.0280   1.7711e-04    1.5811e+04    0.0278 

 0.0278   1.7784e-04    1.5876e+04    0.0277 

 0.0277   1.7793e-04    1.5884e+04    0.0277 

Final answer 

 0.0277   1.7793e-04    1.5884e+04    0.0277 

>>
-------------------------------------------------------------------------
Example 12.2.

Consider the piping system shown in Figure 12.2.           
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                                                                    Figure 12.2   

                  


The energy equation must now include the head developed by the pump, 
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 as shown in Equation (12.9).  The energy equation for this system is [1]:
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              (12.9)

To determine the flow rate, Q, we need to know the pump characteristics, which is usually given as an (hpc) vs. Q curve. A valid solution occurs when 

                               (hp)sys = (hpc)                                                               (12.10)

Suppose 

                       
[image: image23.wmf](

)

2

120500

pc

hQ

=-

                                                                   (12.11)

For this configuration, 
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. Substituting Equations (12.2), (12.5), (12.6), (12.10) and (12.11) into Equation (12.9) gives

                        
[image: image25.wmf]2

21

24

8

500120()

i

i

L

QfKzz

DgD

p

æö

æö

++=--

ç÷

ç÷

èø

èø

å

                (12.12) 

Using Equations (12.3) and (12.4) and the iterative procedure described in Example 12.1, the flow rate can be determined. See Project 12.2.




12.3. The Hardy-Cross Method

The Hardy-Cross method, which is an iterative method, provides the means for determining the flow rates and head losses throughout a pipe network, if the pipe sizes, lengths and pipe roughnesses are known. The description of the method is taken from references [1], [2] and [3].

The following two definitions are used in describing the method:

1.  A loop is a series of pipes forming a closed path (see Figure 12.3).  
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                            Figure 12.3
2.  In Figure 12.3, the numbers inside the circles identifies the line number in the loop. In the Qi j expression, the i represents the loop number and the j represents the line number in that loop. A sign convention is used in describing the loop rules. The flow rate, Q, and the head loss, hf  , are considered positive if the flow is in the counterclockwise  direction around the loop. It should be realized that two loops with a common pipe may have a positive Q in one loop and a negative Q in the other loop.
3.   A node is a point where two or more lines are joined. A sign convention is also used for node rules (see Figure 12.4). 

                 A flow is considered as positive if the flow direction is towards the node.
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                       Figure 12.4


It should be realized that Q may be positive when the loop rule is applied and 


negative when the node rule is applied.

The Hardy-Cross method is based on two concepts:

1.  The law of mass conservation.

     The fact that the total head at a node is single valued.

     Concept (1) leads to the node rule, which is applied at each node in the network. The node rule is:




                             
[image: image28.wmf]0

=

å

b

ab

Q

 
[image: image29.wmf]              

(12.13)     
          


where
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indicates the node under consideration and 
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indicates the node from which the flow is coming from. The sign convention gives the direction of flow. It should be realized that
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2.  The second concept leads to the loop rule, which may be stated as follows: For loop i,
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where hi j is the head loss in the jth line in the ith loop. For the loop rule, 
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i

Q

is the flow rate in the jth line in the ith loop. In Equation (12.14) the subscript,  f , which is usually written with h to indicate a head loss due to viscous or turbulent effects has been omitted to reduce the number of subscripts. Minor head losses are usually neglected in network analysis. Elevation changes along a loop cancel and therefore need not be included. Finally, it should be noted that these rules are analogous to Kirchoff’s rules for electrical circuits involving resistances. In the analogy, Q corresponds to electrical current and pressure drop corresponds to voltage drop. A description of the method follows:

1.   Subdivide the network into a number of loops, making sure that all lines are 



included in at least one loop.

2.  Determine the zeroth estimate for the flow rates, 
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, for each line according to the following procedure. Let s equal the total number of nodes in the network and r the total number of lines. Invariably, r will be greater than s. Writing the law of mass conservation at each node gives s equations in r unknowns. Therefore one needs to assume (r – s +1 ) 
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 are to be determined by applying the law of mass conservation at each node. This should give a set of linear equations in s unknowns which can readily be solved for the remaining 
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3.  This initial guess will not satisfy Equation (12.14), as a result one needs to apply a correction to each 
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 value. This is done by applying a Taylor series expansion (using only two terms in the expansion) to the h(Q) equation. 
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Taking  
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(12.16)


[image: image44.wmf]Applying Equation (12.16) to Equation (12.14) gives:


[image: image45.wmf]



[image: image46.wmf]0

)

0

(

)

1

(

=

ú

ú

û

ù

ê

ê

ë

é

D

÷

÷

ø

ö

ç

ç

è

æ

+

=

å

å

j

i

j

i

j

i

j

j

i

Q

dQ

dh

h

h



(12.17)


For each loop, the 
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can be factored out, thus giving a correction factor equation for each loop. That is
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(12.18)
where 
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The Darcy-Weisbach equation relates h to the friction factor f, which is
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(12.19)

The Swamee-Jain formula [3] gives an explicit formula for f, which is
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(12.20)

where 
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 = the kinematic viscosity ( m2/s)



D = the pipe diameter ( m )



e =  pipe roughness
Equation (12.20) is valid for 
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In applying the loop rule, some of the lines will experience a head gain and not a head loss. This occurs when the flow direction is opposite to the positive loop direction. To account for this, take 
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(12.21)

       and 
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       where the (+) sign is used if Q > 0 and the (
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) sign is used if Q < 0. 

       The formula for 
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(12.23)

Lines that are in common in two loops need to be treated as follows. If line j in loop i is in common with line m in loop k, then 
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For example, referring to Figure 12.3, for the first iteration,
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(12.24)

For lines that are not in common with a line in another loop, take
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(12.25)
We can assign an ID number for each line in the network: Use ID(i, j) = 0, if the line is not a common line. Set ID(i, j) = the loop number that the line is in common with, where j is the line number in the i th  loop.
The formulation for the Hardy-Cross method is now complete. The following example illustrates the method and Project P12.3 involves the Hardy-Cross method in determining the flow rate distribution in a 3 loop network.
Example 12.3.
	Loop Number
	Pipe number
	Pipe Length (m)
	pipe diameter (cm)

	 
	1
	4000
	40

	1
	2
	1000
	40

	
	3
	4000
	30

	
	4
	1000
	30

	
	
	 
	 

	
	1
	1000
	30

	2
	2
	4000
	40

	
	3
	1000
	30

	
	4
	4000
	40


Let us consider the network displayed in Figure 12.3. The following table lists the pipe lengths 
and pipe diameters.

The first step is to write the governing equations at each node based on the node rule (see Figures 12.5(a) -12.5(f)). Number of lines, r = 7, number of nodes, s = 6, (r – s +1) = 2. Thus, we need to assume two Q values. Suppose we assume QAB = -0.15 m3/s    and QFB = 0.1 m3/s.    
Initial guess for Q distribution (all unknown Q values are assumed positive): 
Node A:  
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Node B:  
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Node C:  
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Node D:  
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Node E:  
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Node F:  
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From Node F, we see that QFE = 0.1 and QEF = -0.1. From node E, QEA = 0.1 and QAE = -0.1. 

From Node A, QAD = -0.05 and QDA = 0.05. From Node D, QDC = -0.05 and QCD = 0.05.
From Node C, QCB = 0.05 and QBC = -0.05.
We now have all the 
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See Figure 12.6.


The Program Follows:
% Example_12_3.m
% Hardy_Cross.m
% This program uses the Hardy-Cross method to solve for the flow rate
% distribution in a 2 loop network. The pipe lengths and diameters are
% given in the table below.
% Loop         Line     Length     Diameter    Initial Guess
% Number      Number     (m)         (cm)            (m3/s)
% ---------------------------------------------------------------
%               1       4000         40            0.15 
%   1           2       1000         40            0.05 
%               3       4000         30           -0.05
%               4       1000         30           -0.05 
% ----------------------------------------------------------------              
%               1       1000         30             0.10
%   2           2       4000           40             0.10
%               3       1000           30            -0.10
%               4       4000           40            -0.15
% ---------------------------------------------------------------               
clear; clc;
fo=fopen('output.txt','w');
fprintf(fo,'Hardy-Cross method for a two loop network. \n');
% viscosity nu at 20 degree C is 1.005e-6 m^2/s
nu=1.308e-6; g=9.81;
% roughness of cast iron pipe, e=0.026 cm;
e=0.00026;
eps=1.0e-6;
Q=zeros(2,4);
Q2=zeros(2,4);
L=zeros(2,4);
D=zeros(2,4);
h=zeros(2,4);
dhdQ=zeros(2,4);
% Pipe length in m
L(1,1)=4000; L(1,2)=1000; L(1,3)=4000; L(1,4)=1000;
L(2,1)=1000; L(2,2)=4000; L(2,3)=1000; L(2,4)=4000;
%Pipe Diameters in m
D(1,1)=0.40; D(1,2)=0.30; D(1,3)=0.40; D(1,4)=0.30;
D(2,1)=0.30; D(2,2)=0.40; D(2,3)=0.30; D(2,4)=0.40;
ID=zeros(2,4);
ID(1,1)=2; ID(2,4)=1;
Q(1,1)=0.15; Q(1,2)=0.05; Q(1,3)=-0.05; Q(1,4)=-0.05; 
Q(2,1)=0.10; Q(2,2)=0.10; Q(2,3)=-0.10; Q(2,4)=-0.15;
DQ=zeros(1,2);
fprintf(fo,'Initial flow rate distribution in network \n');
fprintf(fo,' Q(i,1)  Q(i,2)  Q(i,3)  Q(i,4)  \n');
fprintf(fo,'------------------------------------------ \n');
for i=1:2
    fprintf(fo,'Loop # %2i \n',i);
    fprintf(fo,'%10.4f   %10.4f %10.4f   %10.4f \n',...
    Q(i,1),Q(i,2),Q(i,3), Q(i,4));
end 
% Iteration for Q 
for k=1:50
% determine f,h, dhdQ for each line in each loop
    for i=1:2
        for j=1:4
            eod=e/D(i,j);
            Re=4*abs(Q(i,j))/(pi*D(i,j)*nu);
            arg=eod/3.7+5.74/Re^0.9;
            f=1.325/(log(arg))^2;
            num=13.69/arg;
            den=Re^0.9*Q(i,j)*(log(arg))^3;
            dfdQ=num/den;
            alpha= 8*L(i,j)/(pi^2*g*D(i,j)^5);
            if Q(i,j) >= 0.0
                h(i,j)=alpha*Q(i,j)^2*f;
                dhdQ(i,j)=2*alpha*f*Q(i,j)+alpha*Q(i,j)^2*dfdQ;
            end
            if Q(i,j) < 0.0
                h(i,j)=-alpha*Q(i,j)^2*f;
                dhdQ(i,j)=-(2*alpha*f*Q(i,j)+alpha*Q(i,j)^2*dfdQ);
            end
        end    
    end
    for i=1:2
        sumh(i)=0.0; sumdhdQ(i)=0.0;
        for j=1:4
            sumh(i)=sumh(i)+h(i,j);
            sumdhdQ(i)=sumdhdQ(i)+dhdQ(i,j);
        end
    end    
    for i=1:2
        dQ(i)=-sumh(i)/sumdhdQ(i);
        %fprintf(fo,'dQ= %10.6f \n',dQ(i));
    end
    for i=1:2
        for j=1:4
            if ID(i,j)==0
                Q2(i,j)=Q(i,j)+dQ(i);
            else
                n=ID(i,j);
                Q2(i,j)=Q(i,j)+dQ(i)-dQ(n);
            end    
        end
    end  
    fprintf(fo,'\nIteration number %4.0f \n',k);
    fprintf(fo,'flow rate distribution in network \n');
    fprintf(fo,'  i    j        Q2            Q  \n');
    fprintf(fo,'--------------------------------------- \n');
    for i=1:2
        for j=1:4
           fprintf(fo,'%3i  %3i  %10.6f   %10.6f \n',... 
           

i,j,Q2(i,j),Q(i,j));
        end 
        fprintf(fo,'\n');
    end
    % test1(i,j) equals the difference between new Q's & old 
    % Q's in each line.
    for i=1:2
       for j=1:4
            testl(i,j)=abs(Q2(i,j)-Q(i,j));
       end     
       testm=max(testl);

 % testm equals the maximum difference in Q's for each loop       
    end 
    testmax=max(testm); 
    % testmax = maximum difference in Q's for entire network
    fprintf(fo,'maximum difference in Q''s in the'); 

    fprintf(fo, network=%10.6f \n', testmax);
    if testmax > eps
        for i=1:2
            for j=1:4
                Q(i,j)=Q2(i,j);
            end    
        end 
    end  
    if testmax < eps
        break;
    end 
end
fprintf(fo,'--------------------------------------------------- \n');
fprintf(fo,'System has converged, ');

fprintf(fo,'number of iterations=%4i \n',k); 
fprintf(fo,'Maximum difference in Q''s=%8.6f \n',testmax);
fprintf(fo,'flow rate distribution in network \n');
fprintf(fo,'   i    j      Q2(i,j)    Q(i,j) \n');
fprintf(fo,'-------------------------------------------------- \n');
for i=1:2
    for j=1:4
        fprintf(fo,'%3i %3i %10.6f  %10.6f \n',...



i,j,Q2(i,j),Q(i,j));
    end       
end 
-----------------------------------------------------------
Program Results:
Hardy-Cross method for a two loop network. 
Initial flow rate distribution in network 
 Q(i,1)  Q(i,2)  Q(i,3)  Q(i,4)  
------------------------------------------ 
Loop #  1 
    0.1500       0.0500    -0.0500      -0.0500 
Loop #  2 
    0.1000       0.1000    -0.1000      -0.1500
Iteration number  1 
Flow rate distribution in network 
  i    j        Q2            Q  
--------------------------------------- 
  1    1    0.104861     0.150000 
  1    2    0.018079     0.050000 
  1    3   -0.081921    -0.050000 
  1    4   -0.081921    -0.050000 
  2    1    0.113218     0.100000 
  2    2    0.113218     0.100000 
  2    3   -0.086782    -0.100000 
  2    4   -0.104861    -0.150000 
Maximum difference in Q's in the network=  0.045139 

Iteration number  2 
Flow rate distribution in network 
  i    j        Q2            Q  
--------------------------------------- 
  1    1    0.118482     0.104861 
  1    2    0.022965     0.018079 
  1    3   -0.077035    -0.081921 
  1    4   -0.077035    -0.081921 
  2    1    0.104483     0.113218 
  2    2    0.104483     0.113218 
  2    3   -0.095517    -0.086782 
  2    4   -0.118482    -0.104861 
Maximum difference in Q's in the network=  0.013621 
Flow rate distribution in network 

.

.

.

Iteration number 14 
Flow rate distribution in network 
  i    j        Q2            Q  
--------------------------------------- 
  1    1    0.114970     0.114970 
  1    2    0.019934     0.019934 
  1    3   -0.080066    -0.080066 
  1    4   -0.080066    -0.080066 
  2    1    0.104964     0.104964 
  2    2    0.104964     0.104964 
  2    3   -0.095036    -0.095036 
  2    4   -0.114970    -0.114970 
maximum difference in Q's in the network=  0.000000 
--------------------------------------------------- 
System has converged, number of iterations=  11 
Maximum difference in Q's=0.000000 
Flow rate distribution in network 
   i    j    Q2(i,j)    Q(i,j) 
-------------------------------------------------- 
  1   1   0.114970    0.114970 
  1   2   0.019934    0.019934 
  1   3  -0.080066   -0.080066 
  1   4  -0.080066   -0.080066 
  2   1   0.104964    0.104964 
  2   2   0.104964    0.104964 
  2   3  -0.095036   -0.095036 
  2   4  -0.114970   -0.114970 
-------------------------------------------------------------------------------------------------------

12.4. The Gauss-Seidel Method 

The Gauss-Seidel iteration method may be used to solve Laplace’s Equation. Consider the steady 

state heat conduction problem of the slab shown in Figure 12.7. 

For the derivation of the heat conduction equation, see Appendix B.

 The governing partial differential equation for the temperature distribution is:
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The boundary conditions are:
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The finite difference form of the partial differential equation is:
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Now subdivide the x domain into N subdivisions and the y domain into M subdivisions
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The above equation is valid at all interior points. Thus, it is valid for n = 2,3,…, N  and 
m =2,3,...., M. There are (N -1)(M-1) such equations.

The finite difference form for the boundary conditions are:
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Using the forward difference formula for 
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Using the backward difference formula for 
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Equations (12.31) through (12.36) represent the finite difference equations describing the 



temperature distribution in the slab.

Method of solution:

1. Assume a set of values for 
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where 
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 A similar procedure is carried out for Equations (12.35) and (12.36) giving
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and
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The method of solution described earlier is still valid, except Equations (12.37), (12.38) and 

(12.39) are substituted for Equations (12.32), (12.35) and (12.36) respectively. 

Sometimes in order to get convergence, one might have to under-relax; i.e., take 
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