Lesson 22, 9.1-9.6
CHAPTER 9. CURVE FITTING

9.1. Introduction

· There are many occasions in engineering that require experiment to determine the behavior of a particular phenomenon.

· The experiment may produce a set of data points which represents a relationship between the variables involved in the phenomenon.

· We may then wish to express this relationship analytically.

· A mathematical expression which describes the data is called an approximating function.

· There are two approaches to determining an approximating function:

1. The approximating function graphs as a smooth curve. The approximating curve will generally not pass through all the data points, but we seek to minimize the resulting error in order to get the best fit. A plot of the data on linear, semi-log or log-log coordinates can often suggest an appropriate form for the approximating function.

2. The approximating function passes through all data points (as described in Section 9.5). However, if there is some scatter in the data points, this approximating function may not be satisfactory.

9.2. Method of Least Squares

a. Best-fit straight line

In the method of least squares, we seek to find the best fit straight line given a set of n data points
[image: image1.wmf]1122

(,),(,),,(,)

nn

xyxyxy

K

.

We wish to represent the approximating curve,
[image: image2.wmf]c

y

, as a straight line of the form

[image: image3.wmf]12

c

yccx

=+

(9.1)

where
[image: image4.wmf]1

c

 and
[image: image5.wmf]2

c

 are unknown constants to be determined. Let D be the sum of the square of the errors between the approximating line and the actual points. Then,

[image: image6.wmf][

]

2

1

()

n

ici

i

Dyyx

=

=-

å

 EMBED Equation.DSMT4 [image: image7.wmf][

]

2

12

1

()

n

ii

i

yccx

=

=-+

å

(9.2)

 or

[image: image8.wmf]222

1121212212

[()][()][()]

nn

Dyccxyccxyccx

=-++-+++-+

L

(9.3)

To obtain the best fit straight line approximating function, minimize D by taking
[image: image9.wmf]1

0

D

c

¶

=

¶

 and
[image: image10.wmf]2

0

D

c

¶

=

¶

. Taking the partial derivative of Equation (9.2) with respect to
[image: image11.wmf]1

c

 gives

[image: image12.wmf](

)

[

]

12

1

1

021

n

ii

i

D

yccx

c

=

¶

éù

==-+-

ëû

¶

å

[image: image13.wmf]21

11

0

nn

ii

ii

ycxnc

==

=--

åå

or

[image: image14.wmf]12

11

nn

ii

ii

ncxcy

==

æö

+=

ç÷

èø

åå

(9.4)

Taking the partial derivative of Equation (9.2) with respect to
[image: image15.wmf]2

c

 gives

[image: image16.wmf][

]

[

]

12

1

2

02()

n

iii

i

D

yccxx

c

=

¶

==-+-

¶

å

[image: image17.wmf]2

112

111

0

nnn

iii

iii

xycxcx

===

=--

ååå

or

[image: image18.wmf]2

12

111

nnn

iiii

iii

xcxcxy

===

æöæö

+=

ç÷ç÷

èøèø

ååå

(9.5)

Equations (9.4) and (9.5) describe a system of two algebraic equations in two unknowns which can be solved by the method of determinants (Cramer’s Rule):

[image: image19.wmf](

)

(

)

(

)

(

)

(

)

(

)

2

2

1

2

2

ii

iiiii

iii

iii

i

ii

yx

yxxxy

xyx

c

nxxx

nx

xx

-

==

-

åå

åååå

åå

ååå

å

åå

(9.6)

[image: image20.wmf](

)

(

)

(

)

(

)

2

2

2

i

iiii

iii

iii

i

ii

ny

nxyxy

xxy

c

nxxx

nx

xx

-

==

-

å

ååå

åå

ååå

å

åå

(9.7)

b. Best-fit mth-degree polynomial

We can generalize the above approach for an mth-degree polynomial fit. In this case, take the approximating curve,
[image: image21.wmf]c

y

, to be:

[image: image22.wmf]23m

c1234m1

y c cx cx cx cx

+

=+++++

L

(9.8)

where
[image: image23.wmf]1

mn

£-

 and n is the number of data points.

The measured values are
[image: image24.wmf](,)

ii

xy

 for
[image: image25.wmf]1,2,

in

=

K

.

Let
[image: image26.wmf],

()

cici

yyx

=

 be the approximated value of
[image: image27.wmf]i

y

 at the point
[image: image28.wmf](,)

ii

xy

. Then,

[image: image29.wmf](

)

2

2

2

,1231

11

nn

m

iciiiimi

ii

Dyyyccxcxcx

+

==

éù

éù

=-=-++++

ëû

ëû

åå

L

(9.9)

To minimize D, take

[image: image30.wmf]121

0,0,,0

m

DDD

ccc

+

¶¶¶

===

¶¶¶

K

Then,

[image: image31.wmf](

)

[

]

(

)

[

]

(

)

(

)

121

1

1

121

1

2

2

121

1

3

121

1

1

02...1

02...

02...

02...

n

m

iimi

i

n

m

iimii

i

n

m

iimii

i

n

mm

iimii

i

m

D

yccxcx

c

D

yccxcxx

c

D

yccxcxx

c

D

yccxcxx

c

+

=

+

=

+

=

+

=

+

¶

éù

==-+++-

ëû

¶

¶

éù

==-+++-

ëû

¶

¶

éù

éù

==-+++-

ëû

ëû

¶

¶

éù

éù

==-+++-

ëû

ëû

¶

å

å

å

å

M

This set of equations reduces to

[image: image32.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

1231

231

1231

12

121

m

iiimi

m

iiiimii

mmmm

iiimii

ncxcxcxcy

xcxcxcxcxy

xcxcxcxy

+

+

+

+

+

++++=

++++=

+++=

åååå

ååååå

åååå

L

L

M

L

(9.10)

Equations (9.10) can be solved by Gauss Elimination (as described in Chapter 4).

However, MATLAB’s polyfit function (discussed in Section 9.4) provides a solution to Equations (9.10), which represents the best-fit polynomial of degree m for the (xi , yi) set of data points.

9.3. Curve Fitting With The Exponential Function
[image: image33.wmf]
Many physical systems can be modeled as exponential functions. If your experimental data appears to fall into this category, it can be fitted with a function of the form

[image: image34.wmf]2

1

x

c

ye

a

a

-

=

(9.11)

where
[image: image35.wmf]1

a

 and
[image: image36.wmf]2

a

 are real constants.

Let us assume that a set of n measured data points
[image: image37.wmf]1122

(,),(,),,(,)

nn

xyxyxy

K

exists. Then, let
[image: image38.wmf]ln

ii

zy

=

 and
[image: image39.wmf]12

lnln

cc

zyx

aa

==-

, and also let
[image: image40.wmf]11

ln

c

a

=

 and
[image: image41.wmf]22

c

a

=-

. Then taking the log of both sides of Equation (9.11) and making the above substitutions, we obtain the linear equation

[image: image42.wmf]12

c

zccx

=+

(9.12)

For the data points
[image: image43.wmf]1122

(,),(,),,(,)

nn

xyxyxy

K

, the new set of data points become
[image: image44.wmf]1122

(,),(,),,(,)

nn

xzxzxz

K

.
As we derived in the previous section, the best-fit approximating straight-line curve by the method of least squares gives:

[image: image45.wmf](

)

(

)

(

)

(

)

(

)

2

1

2

2

iiiii

ii

zxxxz

c

nxx

-

=

-

åååå

åå

(9.13)

and

[image: image46.wmf](

)

(

)

(

)

2

2

2

iiii

ii

nxzxz

c

nxx

-

=

-

ååå

åå

(9.14)

Then,
[image: image47.wmf]1

1

c

e

a

=

 and
[image: image48.wmf]22

c

a

=-

.

The above analysis can be used to determine the damping constant in a mass-spring-dashpot system. This is accomplished by examining the oscilloscope graph of free damped vibration (see Figure 9.1).

[image: image49.emf]

Figure 9.1.
The governing equation of the envelope is

[image: image50.wmf]2

0

e

c

t

m

yy

-

=

(9.15)

where

c = damping constant.

m = the mass.

y = the mass displacement from the equilibrium position.

Comparing Equation (9.15) with Equation (9.11) we see that

[image: image51.wmf]102

andwithreplacing

2

c

ytx

m

aa

==

Therefore,
[image: image52.wmf]2

2

a

m

c

=

(see Project P2.5).

By measuring n coordinates on the envelope, i.e., (t1, y1), (t2,y2) ... (tn,yn) , we can determine the best fit value for
[image: image53.wmf]2

a

 giving our best estimate for the damping factor c.
9.4. MATLAB’S Curve Fitting Functions

MATLAB calls curve fitting with a polynomial by the name “Polynomial Regression”. The function polyfit (x, y, m) returns a vector of (m+1) coefficients, ai, that represent the best-fit polynomial of degree m for the (xi , yi) set of n data points. The coefficient order corresponds to decreasing powers of x; i.e.

[image: image54.wmf]1

2

3

1

2

1

+

-

-

+

+

+

+

=

m

m

m

m

m

c

a

x

a

x

a

x

a

x

a

y

K

(9.18)

To obtain
[image: image55.wmf](

)

n

c

x

x

x

at

y

,

,

,

2

1

K

 use the MATLAB function polyval (a,x), where

the vector
[image: image56.wmf]123

[...].

n

xxxxx

=

The function polyval (a,x) returns a vector of length n giving yc ,i where

[image: image57.wmf]1

2

3

1

2

1

,

+

-

-

+

+

+

+

=

m

i

m

m

i

m

i

m

i

i

c

a

x

a

x

a

x

a

x

a

y

K

(9.19)

MATLAB measures of the precision of the fit with a function named the mse, which is defined as follows:

mse =
[image: image58.wmf]2

,

1

1

()

n

ici

i

yy

n

=

å-

(9.20)

where n is the number of data points

Example 9.1:
% Example_9_1.m
% This program determines the best fit polynomial approximating
% function of orders 2 thru 5 for the data set listed below.
% m is the polynomial degree. n is the number of data points.
% The sprintf command is used in this program to write
% formatted data in the plot title. The sprintf command is
% the same as the fprintf command except that it returns the
% data in a MATLAB string rather than writing to the screen or
% to a file.
clear; clc;
x = -10:2:10;
y = [-980 -620 -70 80 100 90 0 -80 -90 10 220];
x2 = -10:0.5:10;
mse = zeros(4);
for m = 2:5
 fprintf('m = %i \n',m);
 coef = zeros(m+1);
 coef = polyfit(x,y,m);
 yc2 = polyval(coef,x2);
 yc = polyval(coef,x);
 MSE(m) = sum((y-yc).^2)/length(x);
 fprintf(' x y yc \n');
 fprintf('----------------------------\n');
 for i = 1:length(x)
 fprintf('%5.1f %10.1f %10.3f \n',x(i),y(i),yc(i));
 end
 fprintf('\n\n');
 subplot(2,2,m-1),plot(x2,yc2,x,y,'o'),
 xlabel('x'), ylabel('y'), grid, axis([-10 10 -1500 500]);
 title(sprintf('Degree %d polynomial fit',m));
end
fprintf(' m MSE \n')
fprintf('--------------------\n');
for m = 2:5
 fprintf(' %d %8.2f \n',m,MSE(m))
end
--
Program results:
Output for m = 5 is only displayed here.

m= 5

 x y yc

-10.0 -980.0 -999.09

 -8.0 -620.0 -545.31

 -6.0 -70.0 -156.76

 -4.0 80.0 78.39

 -2.0 100.0 148.18

 0.0 90.0 93.80

 2.0 0.0 -13.50

 4.0 -80.0 -95.45

 6.0 -90.0 -89.91

 8.0 10.0 26.15

 10.0 220.0 213.50
 m mse

 2 32842.4

 3 2660.0

 4 2342.1

 5 1502.9

>>

[image: image59.emf]

Figure 9.3
--
As would be expected, the mse decreases as the order of the fitted polynomial is increased.

--
9.5. Cubic Splines

Given a set of n data points. Suppose that an mth degree polynomial is selected as the approximating curve and that this approximating curve produces curve values that are not allowed. For example, suppose it is known that a particular property represented by the approximating curve (such as absolute pressure or absolute temperature) must be positive and the approximating function produces values that are negative. In this case the approximating function produces values that are not allowed and is therefore not satisfactory. The method of cubic splines eliminates this problem..

Given a set of (n +1) data points (xi , yi), i = 1, 2,…, (n+1), the method of cubic splines develops a set of n cubic functions, such that y(x) is represented by a different cubic in each of the n intervals and the set of cubics passes through the (n+1) data points.

This is accomplished by forcing the slopes and curvatures to be the same for each pair of cubics that join at a data point.

[image: image60.wmf]2

/

3

2

2

2

1

,

:

ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

+

±

=

dx

dy

dx

y

d

K

Curvature

Note

(9.23)

 This is accomplished by the following equations:

[image: image61.wmf][

]

[

]

[

]

[

]

[

]

[

]

i

i

i

i

i

i

i

i

i

i

i

i

x

y

x

y

x

y

x

y

x

y

x

y

int

1

int

int

1

int

int

1

int

)

(

)

(

)

(

)

(

)

(

)

(

¢

¢

=

¢

¢

¢

=

¢

=

-

-

-

(9.24)

In interval (i -1),
[image: image62.wmf])

(

1

i

i

x

x

x

£

£

-

 (see Figure 9.6).

[image: image63.emf]

[image: image64.wmf]3

1

1

2

1

1

1

1

1

)

(

)

(

)

(

)

(

-

-

-

-

-

-

-

-

+

-

+

-

+

=

i

i

i

i

i

i

i

x

x

D

x

x

C

x

x

B

A

x

y

(9.25)

In interval i ,
[image: image65.wmf])

(

1

+

£

£

i

i

x

x

x

[image: image66.wmf]3

2

)

(

)

(

)

(

)

(

i

i

i

i

i

i

i

x

x

D

x

x

C

x

x

B

A

x

y

-

+

-

+

-

+

=

(9.26)

This gives fewer equations than the number of unknowns and as a result additional assumptions must be made. Values for
[image: image67.wmf]2

2

dx

y

d

 at x1 and xn+1 must be assumed.

Several alternatives exists:

(1) Assume
[image: image68.wmf]0

)

(

)

(

1

1

=

¢

¢

=

¢

¢

+

n

x

y

x

y

Widely used – forces splines to approach straight lines at end points

(2) Assume
[image: image69.wmf])

(

)

(

)

(

(

2

1

)

1

x

y

x

y

and

x

y

x

y

n

n

¢

¢

=

¢

¢

¢

¢

=

¢

¢

+

This forces the splines to approach parabolas at the end points.

9.6. MATLAB’s Cubic Spline Curve Fitting Function

The syntax for MATLAB’s cubic spline function is

[image: image70.wmf]spline(,,)

ii

yyxyxx

=

where (xi, yi) is a given set of data points and yy is the value of y at xx. The spline function determines the four cubic coefficients for each section in the given data and will evaluate yy by the cubic spline method. The same result can be obtained by using MATLAB’s interp1 function and specifying the use of the spline method of interpolation. The syntax for interpolating by the spline method is

 yi = interp1
[image: image71.wmf](,,,'spline')

i

xyx

Example 9.3:
Eample 9.3
The following example involves a measured increase in air pressure at distances from

a blast. The data specifies the pressure above normal atmospheric pressure and is designated as over-pressure. The program demonstrates the use of the MATLAB’s spline function as well as MATLAB’s interp1 function with the spline option to determine the pressure at distances not in the data. We see that the two methods produce the same results. The program follows:
% Example_9_3.m
% This program uses both MATLAB's spline function and MATLAB's
% interp1 function with the cubic spline option to determine the
% over-pressure resulting from a blast. The over-pressure is in kPa
% and the distance from the blast in km.
clear; clc;
dist=0.52:0.3:4.12;
press1=[165.5 96.5 69.0 52.4 37.2 27.6 21.4 17.2 13.8 11.7];

press2=[10.3 9.0 7.2];
press=[press1 press2];
d=0.52:0.1:4.12;
p1=spline(dist,press,d);
p2=interp1(dist,press,d,'spline');
fo=fopen('output.txt','w');
fprintf(fo,'PEAK OVERPRESSURE VS. DISTANCE FROM BLAST \n');
fprintf(fo,'CUBIC SPLINE FIT \n');
fprintf(fo,' dist(km) over-press(kPa) over-press(kPa)\n');
fprintf(fo,' by spline function by interp1 \n');
fprintf(fo,'--- \n');
for n=1:length(d)
 fprintf(fo,' %5.2f %10.2f %10.2f \n',d(n),p1(n),p2(n));
end
plot(d,p1,d,p2,'o'), xlabel('km from ground zero'),
ylabel('overpressure(kPa)'), grid,
title('peak over-pressure vs. distance from blast')
fclose(fo);

Program Results
PEAK OVERPRESSURE VS. DISTANCE FROM BLAST
CUBIC SPLINE FIT
 dist(km) over-press(kPa) over-press(kPa)
 by spline function by interp1

 0.52 165.50 165.50
 0.62 135.72 135.72
 0.72 113.15 113.15
 0.82 96.50 96.50
 0.92 84.46 84.46
 1.02 75.72 75.72
 1.12 69.00 69.00
 1.22 63.15 63.15
 1.32 57.71 57.71
 1.42 52.40 52.40
 1.52 47.02 47.02
 . . .

 3.12 12.28 12.28
 3.22 11.70 11.70
 3.32 11.19 11.19
 3.42 10.73 10.73
 3.52 10.30 10.30
 3.62 9.88 9.88
 3.72 9.46 9.46
 3.82 9.00 9.00
 3.92 8.49 8.49
 4.02 7.89 7.89
 4.12 7.20 7.20

[image: image72.emf]

Figure 9.7.

9.7. Curve Fitting With Fourier Series

Example 9.5.

The following example involves measured turbulent wind velocity as a function of time at a fixed point as a helicopter approaches and leaves the region of interest.

The experimental data set produced a plot as shown in Figure 9.9.

[image: image73.emf]-6 -4 -2 0 2 4 6

0

2000

4000

6000

8000

10000

12000

14000

u(cm/s) vs t(s)

t

u

Figure 9.9.
 We wish to obtain an analytical expression (approximating curve) that comes close to fitting the data. An attempt to fit a polynomial approximating curve to this data was not be successful. However, we found that the use of a Fourier series gave a reasonable analytical expression approximating the data. The original time domain, t’, ranged from 0 to 10.5 s.

However, to use the Fourier series method, we needed to shift the time domain by letting
[image: image74.wmf]'5.25

tt

=-

. Thus, our new time domain is from -5.25 to 5.25 s. The time domain, t , was subdivided into 70 equal spaces, with
[image: image75.wmf]10.5/700.15.

ts

D==

 Thus,

(ti+1 - ti) was uniform over the entire time domain.

The measured data that is shown in Table 9.2 represents turbulent wind velocity as a function of time at a specific point as a helicopter approaches and leaves the region of interest.

Table 9.2. Shifted velocity data as a function of time.

	t
	u
	t
	u
	t
	u
	t
	u

	-5.25
	557.78
	-2.55
	8778.24
	0.15
	233.17
	2.85
	3.35

	-5.1
	1557.53
	-2.4
	6644.64
	0.3
	112.47
	3
	6.71

	-4.95
	1737.36
	-2.25
	4511.04
	0.45
	34.75
	3.15
	2.74

	-4.8
	880.87
	-2.1
	1679.45
	0.6
	45.42
	3.3
	1.83

	-4.65
	144.48
	-1.95
	2493.26
	0.75
	69.49
	3.45
	2.74

	-4.5
	272.80
	-1.8
	1972.06
	0.9
	44.81
	3.6
	2.74

	-4.35
	338.33
	-1.65
	847.34
	1.05
	26.82
	3.75
	7.92

	-4.2
	408.43
	-1.5
	649.22
	1.2
	25.60
	3.9
	7.62

	-4.05
	984.50
	-1.35
	1097.28
	1.35
	26.82
	4.05
	6.40

	-3.9
	1792.22
	-1.2
	1024.13
	1.5
	16.46
	4.2
	3.05

	-3.75
	3200.40
	-1.05
	448.06
	1.65
	19.20
	4.35
	1.22

	-3.6
	5090.16
	-0.9
	316.99
	1.8
	28.04
	4.5
	2.44

	-3.45
	3901.44
	-0.75
	217.02
	1.95
	22.25
	4.65
	4.27

	-3.3
	637.03
	-0.6
	109.12
	2.1
	3.66
	4.8
	2.74

	-3.15
	987.55
	-0.45
	126.49
	2.25
	5.79
	4.95
	4.27

	-3
	3596.64
	-0.3
	224.33
	2.4
	7.92
	5.1
	3.05

	-2.85
	11460.48
	-0.15
	106.07
	2.55
	8.53
	5.25
	1.52

	-2.7
	12954.00
	0
	194.46
	2.7
	8.23
	
	

If uc is the approximating curve, then by a Fourier series,

[image: image76.wmf]0

1

()cossin

cmm

m

mtmt

utaab

LL

pp

¥

=

æö

æöæö

=++

ç÷

ç÷ç÷

èøèø

èø

å

(9.27)

where

[image: image77.wmf]0

1

()

2

L

L

autdt

L

-

=

ò

(9.28)

[image: image78.wmf]1

()cos

L

m

L

mt

autdx

LL

p

-

æö

÷

ç

=

÷

ç

÷

ç

èø

ò

(9.29)

[image: image79.wmf]1

()sin

L

m

L

mt

butdt

LL

p

-

æö

÷

ç

=

÷

ç

÷

ç

èø

ò

(9.30)

Using 30 terms in the series and Simpson’s rule on integration and replacing t' with t the approximating curve as shown in Figure 9.10 was obtained. The data in Table 9.2 was entered into the program as two column vectors.

The
[image: image80.wmf]cossin

mm

mtmt

ab

LL

pp

æöæö

÷÷

çç

+

÷÷

çç

÷÷

çç

èøèø

 terms can be put into the following form by the trigonometric identity
[image: image81.wmf]),

(

sin

sin

cos

f

b

b

b

-

=

+

c

b

a

where c represents the amplitude. The amplitude, cm, as a function of
[image: image82.wmf]m

L

p

 is given by

[image: image83.wmf](

)

22

mmm

cab

=+

The program follows:
% Example_9_5.m
% This program determines an approximating curve to the data in
% in awake3.txt by Fourier series.
clear; clc;
load awake3.txt
dt=0.15;
t=awake3(:,1);
u=awake3(:,2);
plot(t,u), title('u(cm/s) vs t(s)'), xlabel('t'), ylabel('u'),grid;
figure;
L=5.25;
for n=1:30
 i=1;
 for j=1:35
 arg1=n*pi*t(i)/L;
 arg2=n*pi*t(i+1)/L;
 arg3=n*pi*t(i+2)/L;
 f(i)=u(i)*cos(arg1);
 f(i+1)=u(i+1)*cos(arg2);
 f(i+2)=u(i+2)*cos(arg3);
 A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
 i=i+2;
 end
 a(n)=1.0/L*sum(A);
end
 for n=1:30
 i=1;
 for j=1:35
 arg1=n*pi*t(i)/L;
 arg2=n*pi*t(i+1)/L;
 arg3=n*pi*t(i+2)/L;
 f(i)=u(i)*sin(arg1);
 f(i+1)=u(i+1)*sin(arg2);
 f(i+2)=u(i+2)*sin(arg3);
 A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
 i=i+2;
 end
 b(n)=1.0/L*sum(A);
end
i=1;
for j=1:35
 f(i)=u(i);
 f(i+1)=u(i+1);
 f(i+2)=u(i+2);
 A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
 i=i+2;
end
a0=0.5/L*sum(A);
for i=1:71
 for n=1:30
 arg=n*pi*t(i)/L;
 term(n)=a(n)*cos(arg)+b(n)*sin(arg);
 end
uc(i)=a0+sum(term);
end
uc=uc';
plot(t,uc,t,u,'.'),xlabel('t'), ylabel('u,uc)'), grid,
title('uc(cm/s) and u(cm/s) vs. t(s)'), legend('uc','u');
figure;
for m=1:30
 c(m)=sqrt(a(m)^2+b(m)^2);
 x(m)=m*pi/L;
end
plot(x,c), xlabel('m*\pi/L'), ylabel('c'), title('c(cm/s) vs. m*\pi/L'),grid;

Program results:

[image: image84.emf]-6 -4 -2 0 2 4 6

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

t

u,uc

uc(cm/s) and u(cm/s) vs. t(s)

uc

u

Figure 9.10.
[image: image85.emf]0 2 4 6 8 10 12 14 16 18

0

500

1000

1500

2000

2500

m



 / L

c

c(cm/s) vs. m



 / L

Figure 9.11.
PAGE
21

_1383281551.unknown

_1383282041.unknown

_1408175759.unknown

_1416079462.unknown

_1416117953.unknown

_1451022026.unknown

_1476269121.unknown

_1416118059.unknown

_1416118653.unknown

_1416118689.unknown

_1416118090.unknown

_1416117976.unknown

_1416117877.unknown

_1416117928.unknown

_1416117812.unknown

_1415868115.unknown

_1415997038.unknown

_1408175938.unknown

_1383536211.unknown

_1387293689.unknown

_1387293723.unknown

_1400574121.unknown

_1383908182.unknown

_1383331295.unknown

_1383331348.unknown

_1383536115.unknown

_1383331324.unknown

_1383330892.unknown

_1383330938.unknown

_1383330947.unknown

_1383330879.unknown

_1383281800.unknown

_1383282039.unknown

_1383282040.unknown

_1383281882.unknown

_1383281914.unknown

_1383281763.unknown

_1383281774.unknown

_1383281623.unknown

_1383281758.unknown

_1383281603.unknown

_1356522742.unknown

_1383280436.unknown

_1383281314.unknown

_1383281523.unknown

_1383281251.unknown

_1356540744.unknown

_1356540799.unknown

_1356541020.unknown

_1359808878.unknown

_1356540823.unknown

_1356523421.unknown

_1356522807.unknown

_1284583582.unknown

_1356519870.unknown

_1356522610.unknown

_1356522659.unknown

_1356522590.unknown

_1356519424.unknown

_1356519854.unknown

_1356519354.unknown

_1286562625.unknown

_1108368627.unknown

_1151999229.unknown

_1270720201.unknown

_1284558866.unknown

_1152015055.unknown

_1108368696.unknown

_1121515916.unknown

_1108368673.unknown

_1102753740.unknown

_1107777679.unknown

_1107777819.unknown

_1107778060.unknown

_1107776208.unknown

_1026118425.unknown

_1026118416.unknown

