Lesson 20.
Chapter 7. Numerical Integration of Ordinary Differential Equations

7.1. Introduction

In this chapter, we examine several methods for solving ordinary differential equations (ODEs).  ODEs can be broken up into two categories:

· initial value problems in which we know the necessary initial conditions and we wish to determine the conditions at a later time . For example, suppose we wish to determine the position and velocity of a rocket as a function of time. We can obtain a solution if we know the initial position and initial velocity at the time of launch.

· boundary value problems in which we know the solution at specific coordinates in the problem geometry and wish to obtain a solution at other coordinates. For example, suppose we wish to determine the deflection of a beam at various positions knowing the deflection at the end positions. This type of problem is covered in Chapter 8.

· For initial value problems, we will examine several numerical integration methods including the Euler method, the modified Euler method, the Runge-Kutta method, and MATLAB’s built-in ode45 function. 
7.2. The Initial Value Problem

In an initial value problem, the values of the dependent variable and the necessary derivatives are known at the point at which the integration begins. We will begin with a first-order differential equation of the general form such that the derivative is a known function of x and y and the initial condition, that is 
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There are several techniques for solving this type of problem, including Euler’s method, which is simple but not used very often, the modified Euler method, the Runge-Kutta method and others. Each technique has pros and cons with respect to simplicity, accuracy and computational efficiency.

7.3. The Modified Euler Method which is a Predictor-Corrector Algorithm
The general approach to solving differential equations numerically is to subdivide the x domain into N subdivisions giving 
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 and then “march” in the x direction over the interval while calculating 
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 is specified and is equal to the initial condition 
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Figure 7.1.

The numerical version of the governing differential equation will be written as
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(7.2)
A Taylor series expansion about an arbitrary point
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If we use only the first two terms of the series, we can approximate the value for 
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(7.3)

where  
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, which is defined as the step size, and 
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is the slope of the curve of 
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. Substituting Equation (7.1) into (7.3), we obtain
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As can be seen for the configuration shown in Figure 7.2, the prediction of 
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by Equation 7.4 (Euler Method) overshoots the true value of 
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Figure 7.2.
Now, suppose we were able to determine 
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 If we were to predict 
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 in Equation 7.3, i.e., 
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then for the configuration shown in Figure 7.3, we would undershoot the true value of 
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      Figure 7.3.
Here we have constructed a tangent to the curve at 
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 and drawn a parallel line passing through point
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, we see that a better estimate for 
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 would be obtained by using an average of the two derivatives in Equation 7.3, i.e., 
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(7.5)
Unfortunately, Equation (7.5) is no longer explicit because we do not know the value of 
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. The use of Equation (7.5) in solving the differential Equation (7.1) is an example of an implicit method. However, we can approximate a value for 
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 by using the predictor-corrector method, which is an iterative method.

-------------------------------------------------------------------------------------------------

To apply this method, we rewrite Equation (7.5) as follows:
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(7.6)

where 

the P superscript indicates the predicted value

the C superscript indicates the corrected value. 
Equation (7.6) is called the corrector equation and can be used to iteratively estimate the value for 
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. Substituting Equation (7.2) into (7.6) gives
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The predictor-corrector technique proceeds as follows:

1. Use the Euler method to determine a first predicted value for 
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2.   Calculate the first corrected value 
[image: image46.wmf]1

1

C

i

y

+

 by using Equation (7.8) in Equation (7.6).

3. Use 
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4. Calculate a new corrected value 
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5. Repeat steps 3 and 4 until 
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 is an error tolerance which depends on the desired accuracy and is typically a fraction of a percent of the last corrected value, e.g. 
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Example 7.1.

In this example, we will use the problem described in Exercise E2.5 to determine the velocity, V,  of a spherical ball bearing dropped in a viscous fluid. The governing equation describing the velocity of the ball bearing as it moves through the fluid is:
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  where

m = the mass of the ball bearing = 
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W = the weight of the ball bearing = mg

D = drag


B = buoyancy = 
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t = time

The drag, D, is governed by Stokes Law, which is:
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where

R = radius of the sphere.
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The weight W = mg = 
[image: image59.wmf]g

r

"

, where 
[image: image60.wmf]"

is the volume of the sphere and 
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is the mass density of the ball bearing material. The buoyancy, B = the weight of the fluid displaced. Assuming that the material of the ball bearing is steel and that the fluid is oil, Equation (7.10) reduces to:
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The closed form solution was given in Exercise E2.5, which is:
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(7.13)

where 



VT = the terminal velocity = 
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This following program demonstrates the use of the modified Euler method.
% Example_7_1.m
% This program demonstrates the use of the modified 
% Euler method in solving a first order differential equation.
% The problem is to determine the velocity of a ball bearing 
% as it moves through a viscous liquid.
% An exact solution is available.
% The units are: rho in kg/m^3, mu in N-s/m^2, g in m/s^2, t in s,
% velocity in m/s, volume in m^3.
clear; clc;
t=0:0.01:1;
rho_steel=7910; rho_oil=888; g=9.81; R=0.01; mu=3.85;
v(1)=0.0;
dt=0.01;
vol=4/3*pi*R^3;
m=rho_steel*vol;
w=m*g;
arg=6*pi*R*mu*g/w;
vt=(rho_steel-rho_oil)*g*vol/(6*pi*R*mu);
f=@ (v) (g-rho_oil/rho_steel*g-6*pi*R*mu/m*v);
% Modified Euler method (iterative scheme)
vmod(1)=0.0;
for i=1:length(t)-1
    vexact(i+1) = vt*(1-exp(-arg*t(i+1)));
    vp(i)=f(vmod(i));
    vp1(i+1)=f(vmod(i)+f(vmod(i))*dt);
    vc1(i+1)=vmod(i)+(vp(i)+vp1(i+1))*dt/2;
    test=vmod(i)*10e-5;
    for j=1:50
        vp2(i+1)=f(vc1(i+1));
        vc2(i+1)=vmod(i)+(vp(i)+vp2(i+1))*dt/2;
        if abs(vc2(i+1)-vc1(i+1)) < test
            break;
        else
            vp1(i+1)=vp2(i+1);
            vc1(i+1)=vc2(i+1);
        end
    end
    vmod(i+1)=vmod(i)+(vp(i)+vp2(i+1))*dt/2;
end 
fo=fopen('output.txt','w');
fprintf(fo,'Comparing results of modified Euler method \n');
fprintf(fo,'with exact solution \n\n');
fprintf(fo,' t(s)        v(m/s)               v(m/s) \n');
fprintf(fo,'          Modified Euler          exact   \n');
fprintf(fo,'----------------------------------------------------- \n');
for i=1:5:length(t)
    fprintf(fo,'%5.2f    %7.4f             %7.4f \n',...
        t(i),vmod(i),vexact(i)); 
end
plot(t,vexact,t,vmod,'x'), xlabel('t'), ylabel('v'), grid,
        title('velocity vs time'), legend('v-exact','v-modied');
-----------------------------------------------------------------
 Program results:  
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Comparing results of modified Euler method 
with exact solution 
 t(s)     v(m/s)               v(m/s) 
       Modified Euler          exact   
------------------------------------------------------- 
 0.00     0.0000              0.0000 
 0.05     0.2652              0.2646 
 0.10     0.3535              0.3531 
 0.15     0.3829              0.3827 
 0.20     0.3927              0.3926 
 0.25     0.3960              0.3959 
 0.30     0.3971              0.3971 
 0.35     0.3974              0.3974 
 0.40     0.3975              0.3975 
 0.45     0.3976              0.3976 
 0.50     0.3976              0.3976 
  .        .                   .

  .        .                   .
-------------------------------------------------
We see that terminal velocity is reached at approximately 0.45 s. We also see that the modified Euler method produced an answer very close to the exact solution.
----------------------------------------------------------------------------------------------

7.5. The Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method uses a weighted average of derivative estimates within the interval of interest in order to calculate a value for 
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 In the modified Euler method, we used 
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In the Runge-Kutta method,  we use
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where
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Runge-Kutta is an explicit algorithm and thus is simple to compute with MATLAB.
Example 7.2.

In this example, we will use the problem described in Exercise E2.5 to determine the velocity, V,  of a spherical ball bearing dropped in a viscous fluid. The governing equation describing the velocity of the ball bearing as it moves through the fluid is:
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  where

m = the mass of the ball bearing = 
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W = the weight of the ball bearing = mg

D = drag


B = buoyancy = 
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t = time

The drag, D, is governed by Stokes Law, which is:
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where

R = radius of the sphere.
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is the mass density of the ball bearing material. The buoyancy, B = the weight of the fluid displaced. Assuming that the material of the ball bearing is steel and that the fluid is oil, Equation (7.10) reduces to:
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The closed form solution was given in Exercise E2.5, which is:
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where 



VT = the terminal velocity = 
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The Program follows:
% Example_7_2.m
% This program demonstrates the use of the Runge-Kutta method 
% in solving a first order differential equation.
% The problem is to determint the velocity of a ball bearing 
% as it is dropped in a viscous liquid.
% An exact solution is available.
clear; clc;
t=0:0.01:1;
rho_steel=7910; rho_oil=888; g=9.81; R=0.01; mu=3.85;
v(1)=0.0;
dt=0.01;
vol=4/3*pi*R^3;
m=rho_steel*vol;
w=m*g;
arg=6*pi*R*mu*g/w;
vt=(rho_steel-rho_oil)*g*vol/(6*pi*R*mu);
f=@ (v) (g-rho_oil/rho_steel*g-6*pi*R*mu/m*v);
for i=1:length(t)-1
    v_exact(i+1)=vt*(1-exp(-arg*t(i+1)));
    k1=f(v(i));
    k2=f(v(i)+dt/2*k1);
    k3=f(v(i)+dt/2*k2);
    k4=f(v(i)+dt*k3);
    v(i+1)=v(i)+dt/6*(k1+2*k2+2*k3+k4);
end
fprintf(' t(s)        v(m/s)      v(m/s) \n');
fprintf('         Runge-Kutta     exact            \n');
fprintf('----------------------------------- \n');
for i=1:5:length(t)
     fprintf('%5.2f     %7.4f       %7.4f \n',t(i),v(i),v_exact(i));
end
plot(t,v_exact,t,v,'x'), xlabel('t)'),ylabel('v,v-exact'), grid,
title('v(m/s) vs. t(s)'), legend('v-exact','v-Runge-Kutta');
----------------------------------------------------------

Program results


t(s)      v(m/s)          v(m/s) 

         
   Runge-Kutta      exact             


-------------------------------------- 

 
0.00      0.0000           0.0000 

 
0.05      0.2646           0.2646 

 
0.10      0.3531           0.3531 

 
0.15      0.3827           0.3827 

 
0.20      0.3926           0.3926 

 
0.25      0.3959           0.3959 

 
0.30      0.3971           0.3971 

 
0.35      0.3974           0.3974 

 
0.40      0.3975           0.3975 

 
0.45      0.3976           0.3976 

 
0.50      0.3976           0.3976 

 
0.55      0.3976           0.3976 

 
0.60      0.3976           0.3976

 .         .                .

       .         .                .  
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Figure 7.6.

------------------------------------------------------------------------------------------------------------
We see that there is good agreement between the exact solution and the solution obtained by the Runge-Kutter method. 
7.6.  System of Two First-order Differential Equations

Consider the following two first order ordinary differential equations.
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To solve a system of two first-order differential equations by the Runge-Kutta method, take
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where
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and 
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Example 7.3.
In this example we examine the temperature of a small object dropped into a fluid contained within a vertical circular cylinder of radius R. We will assume that the body is a solid aluminum sphere of radius r, and the fluid depth is L. We will neglect any heat transfer to the container walls. The governing equations for this problem are:
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where

m = mass 


c = specific heat


T = temperature


As = surface area


h = convective heat transfer coefficient.


The above equations state that the heat lost by the body equals the heat gained by the fluid. We need to rewrite the equations to put them in the form required by the Runge-Kutta method.
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We will use the following parameters for the example.
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t = [0, 1] s and dt = 0.005 s
The program follows:
% Example_7_3.m
% The example illustrates the method for solving a system of first 
% order differential equations.
% The problem is to determine the temperature of a sphere that is  
% suddenly immerse in a bath whose temperature varies as heat from 
% the sphere enters the fluid.
% The units are: rho in kg/m^3, c in kJ/kg-C, t in s,
% volume in m^3, h in W/m^2-C, R,r and L in m, As in m^2
clear; clc;
rho_al=2707; c_al=0.896e3; r=0.2; Talo=150.0; 
rho_f=880; c_f=2.05e3; R=0.50; L=0.5; Tfo=20;
T_al(1)=Talo; T_f(1)=Tfo;
vol_al=4/3*pi*r^3;
vol_f=pi*R^2*L-vol_al;
As=4*pi*r^2; 
m_al=rho_al*vol_al;
m_f=rho_f*vol_f;
h=890.0;
tau_al=m_al/h*c_al/As;
tau_f=m_f/h*c_f/As;
fprintf('tau_al=%10.5f  tau_f=%10.5f \n',tau_al,tau_f);
F=@ (T_al,T_f) ((T_f-T_al)/tau_al);
G=@ (T_al,T_f) (-(T_f-T_al)/tau_f);
t=0:0.01:1;
dt=0.01;
% Runge_Kutta method
for i=1:length(t)-1
    k1=F(T_al(i),T_f(i));
    L1=G(T_al(i),T_f(i));
    k2=F(T_al(i)+dt/2*k1,T_f(i)+dt/2*L1);
    L2=G(T_al(i)+dt/2*k1,T_f(i)+dt/2*L1);
    k3=F(T_al(i)+dt/2*k2,T_f(i)+dt/2*L2);
    L3=G(T_al(i)+dt/2*k2,T_f(i)+dt/2*L2);
    k4=F(T_al(i)+dt*k3,T_f(i)+dt*L3);
    L4=G(T_al(i)+dt*k3,T_f(i)+dt*L3);
    T_al(i+1)=T_al(i)+dt/6*(k1+2*k2+2*k3+k4);
    T_f(i+1)=T_f(i)+dt/6*(L1+2*L2+2*L3+L4);
end
fo=fopen('output.txt','w');
fprintf(fo,'Determining the temperature of the Aluminum sphere \n');
fprintf(fo,'and the temperature of the fluid \n\n');
fprintf(fo,' t(s)      T(C)           T(C)      \n');
fprintf(fo,'          sphere         fluid      \n');
fprintf(fo,'--------------------------------------------------- \n');
for i=1:length(t)
    fprintf(fo,'%10.2f    %10.2f        %10.2f       \n',...
        t(i),T_al(i),T_f(i)); 
end
plot(t,T_al,t,T_f,'--'), xlabel('t'), ylabel('T-al,T-f'), grid,
title('T-al(C) and T-f(C) vs. t(s)'), legend('al','f');
---------------------------------------------------------------

Program Results    
Determining the temperature of the Aluminum 
sphere and the temperature of the fluid 
   t(s)     T(C)       T(C) 
          sphere      fluid 
----------------------------------------
   0.00     150.00      20.00 
  10.00     143.06      20.87 
  20.00     136.54      21.69 
  30.00     130.41      22.46 
  40.00     124.65      23.18 
  50.00     119.23      23.86 
  60.00     114.14      24.50 
  70.00     109.36      25.10 
  80.00     104.86      25.66 
  90.00     100.63      26.19 
 100.00      96.66      26.69 
    .          .          .
    .          .          .
 900.00      34.93      34.43 
 910.00      34.90      34.44 
 920.00      34.88      34.44 
 930.00      34.85      34.44 
 940.00      34.83      34.45 
 950.00      34.81      34.45 
 960.00      34.79      34.45 
 970.00      34.77      34.45 
 980.00      34.76      34.46 
 990.00      34.74      34.46 
1000.00      34.72      34.46 
---------------------------------------------------------

See Figure 7.7.
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Figure 7.7.
We see that in approximately 15 minutes, the sphere and the fluid are nearly in thermal equilibrium. 

7.7. A Single Second-Order Equation

For a single second-order ordinary differential equation, the method of solution is to reduce the equation to a system of two first-order equations. Given the following second-order differential equation with initial conditions:
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Let 
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Thus we have converted Equations (7.26) into two first order differential equations of the same form as Equations (7.20) and thus the same solution techniques can be applied; i.e.,
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The values of u and v at the next time step are given by:
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Example 7.4

We will illustrate this method by applying it to the mass-spring-dashpot system described in Project P2.5. Equation (7.31) gives the governing equation for the displacement, y, of the mass from the equilibrium position, i.e.,
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Let 
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and 
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We will use the following parameters to illustrate the Runge-Kutter method.
m =25 kg, k = 200 N/m, c = 5 
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For the under-damped case with no forcing function, the exact solution is 
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We will use the following parameters for the system:

m =25 kg, k = 200 N/m, c = 5 
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A = 5 m and 
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We want to create a MATLAB program that will solve Equation (P2.5c) by the Runge-Kutta method and plot y vs. t and yexact  vs. t on the same graph.
The Program follows:

% Example_7_4.m
% This program solves the motion of a mass-spring-dashpot system. 
% The governing equation is a Second Order Ordinary Differential (ODE).
% The second order DEQ is reduced to 2 first order ODE.
% Equation (y vs. t) by the Runge Kutta method.
% m=25 kg, k= 200 N/m, c= 5 N-s/m, v=dy/dt
% y(1)= 5, v(1)=0  
clear; clc;
m=25; k=200; c=5; 
arg1=sqrt(k/m-(c/2/m)^2);
arg2=c/2/m;
A=5;
B=arg2*A/arg1;
y(1)=5; v(1)=0; y_exact(1)=5;
t=0:0.05:20;
dt=0.05;
f=@(y,v) (-c/m*v-k/m*y); %dvdt
g=@(v) (v);              %dy/dt
for i=1:length(t)-1 
    k1=f(y(i),v(i));  %dv/dt
    L1=g(v(i));       %dy/dt
    k2=f(y(i)+dt/2*L1,v(i)+dt/2*k1);
    L2=g(v(i)+dt/2*k1);
    k3=f(y(i)+dt/2*L2,v(i)+dt/2*k2);
    L3=g(v(i)+dt/2*k2);
    k4=f(y(i)+dt*L3,v(i)+dt*k3);
    L4=g(v(i)+dt*k3);
    y(i+1)=y(i)+dt/6*(L1+2*L2+2*L3+L4);
    v(i+1)=v(i)+dt/6*(k1+2*k2+2*k3+k4);
    y_exact(i+1)=exp(-arg2*t(i))*(A*cos(arg1*t(i))+B*sin(arg1*t(i)));
end 
fo=fopen('output','w');
fprintf(fo,'     t(s)      y(m)        v(m/s)   \n');
fprintf(fo,'-------------------------------------------- \n');
for i=1:10:length(t)
    fprintf(fo,' %10.2f   %10.4f   %10.4f  \n',t(i),y(i),v(i));
end    
plot(t,y,t,y_exact,'x'), xlabel('t'), ylabel('y'), grid,
title('y & y_exact vs. t'), legend('y','y_exact') ;
figure;
plot(t,v), xlabel('t'), ylabel('v'), title('v vs. t'), grid;
-------------------------------------------------------
Program Results:
(see Figure 7.8a and 7.8b) 
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Figure 7.8a.

A comparison of the Runge-Kutta solution with the exact solution is shown in 

Figure 7.8a.
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Figure 7.8b.
---------------------------------------------------------------------------------------------------------
7.8. MATLAB’s ODE Function

MATLAB has several built-in ODE functions that solve a system of first order ordinary differential equations, including ode23 and od45.  In this chapter, we will demonstrate ode45, which is based on fourth and fifth order Runge-Kutta methods. A description of the ode45 function follows. The syntax for the function is:



[TOUT,YOUT] = ODE45(ODEFUN,TSPAN,Y0)
Thus, ode45 takes as arguments: a handle to a function describing the differential equations (ODEFUN), a vector describing a time interval (TSPAN), and vector describing the initial conditions (Y0). The function ODEFUN must take two input arguments: a time t and a variables 
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 which describes the system of n differential equations. The system of n differential equations must be in standard form, i.e.; 
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TOUT = [T0 T1 . ... TFINAL] 

and the solution vector YOUT equal to
YOUT = 
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Example 7.6.

Solve the following system of three first-order differential equations using MATLAB’s ode45 function:
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Initial conditions: 
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% Example_7_6.m

% This program solves a system of 3 ordinary differential equations

% by using MATLAB's ode45 function.

% y1'=y2*y3*t, y2'=-y1*y3, y3'=-0.51*y1*y2

% y1(0)=0, y2(0)=1.0, y3(0)=1.0

clear; clc;

initial=[0.0 1.0 1.0];

tspan=0.0:0.1:10.0;

[t,Y]=ode45(@dydt3,tspan,initial);

y1=Y(:,1);

y2=Y(:,2);

y3=Y(:,3);

fid=fopen('output.txt','w'); 

fprintf(fid,'     t          y1          y2           y3 \n');

fprintf(fid,'---------------------------------------------------\n');

for i=1:2:101

    fprintf(fid,' %7.2f    %10.4f    %10.4f    %10.4f \n', ... 

        t(i),y1(i),y2(i),y3(i))

end   

fclose(fid);

plot(t,y1,t,y2,'-.',t,y3,'--'), xlabel('t'),

ylabel('y1,y2,y3'),title('(y1, y2, y3) vs. t'), grid,

text(5.2,-0.8,'y1'), text(7.7,-0.25,'y2'), text(4.2,0.85,'y3');
----------------------------------------------------------------------
% dydt3.m

% This function works with example_6_5.m

% y1'=y2*y3*t, y2'=-y1*y3, y3'=-0.51*y1*y2

% y1=Y(1), y2=Y(2), y3=Y(3).

function Yprime=dydt3(t,Y)

Yprime=zeros(3,1);

Yprime(1)=Y(2)*Y(3)*t;

Yprime(2)=-Y(1)*Y(3);

Yprime(3)=-0.51*Y(1)*Y(2);

Program Results:

The calculated solutions for 
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 are shown in Figure 7.10.
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Figure 7.10.

Example 7.7.
In Exercise E2.5, we described the governing equations for the velocity of a steel ball bearing after being dropped into a fluid of oil. The governing equations are:
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where



D = drag = 
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R = radius of the sphere.
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viscosity of the fluid.




V = the velocity of sphere.




W = weight of sphere = 
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B = buoyancy = weight of fluid displaced
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g = gravitational constant = 9.81 m/s2
We wish to determine the position and velocity of the ball bearing as a function of time, t, 
by MATLAB’s ode45 function.
% Example_7_7.m
% This program uses the ode45 function to solve the position 
% and velocity of a steel ball bearing that is dropped in a
% vertical cylinder containing oil. The problem was described 
% in Exercise 2.5. The governing equations are: 
% v=dy/dt and dv/dt= g(1-B/W-D/W) where v=velocity, y=position,
% W=weight of the ball bearing
% B=Bouyancy, D=the drag, g=gavitational constant. 
% v(0)=0, y(0) = 0
% Y(1)=y, Y(2)=v
clear; clc;
initial = [0.0 0.0];
tspan = 0.0:0.01:0.2;
[t,Y] = ode45(@fun_ball_bearing,tspan,initial);
y = Y(:,1);
v = Y(:,2);
fo = fopen('output.txt','w');
fprintf(fo,'    t(s)      y(m)       v(m/s)        \n');
fprintf(fo,'-------------------------------------------\n');
for i = 1:21
    fprintf(fo,'%7.2f %10.4f %10.4f  \n',t(i),y(i),v(i));
end
plot(t,v,t,y,'--'), xlabel('t'), ylabel('v,y'),
title('v and y vs. t'), grid,
legend('v','y');
--------------------------------------------------------------
% fun_ball_bearing.m
% This function works with example_7_7.m
% v=dy/dt and dv/dt= g(1-B/W-D/W) where v=velocity, y=position,
% W=weight of the ball bearing
% B=Bouyancy, D=the drag, g=gavitational constant. 
% y = Y(1), v = Y(2)
% Units for: mu=N-s/m^2, rho=kg/m^3, R=m, g=m/s^2, D=N 
function Yprime = fun_ball_bearing(t,Y)
Yprime = zeros(2,1);
R=0.01; mu=3.85; rho_steel=7910; rho_oil=899; g=9.81;
D=6*pi*R*mu*Y(2);
vol=4*pi/3*R^3;
W=rho_steel*g*vol;
Yprime(1) = Y(2);
Yprime(2) = g*(1-rho_oil/rho_steel-D/W); 
------------------------------------------------------
Program results:
    t(s)     y(m)      v(m/s)        
-------------------------------------------
   0.00     0.0000     0.0000  
   0.01     0.0004     0.0781  
   0.02     0.0015     0.1408  
   0.03     0.0032     0.1912  
   0.04     0.0053     0.2317  
   0.05     0.0078     0.2642  
   0.06     0.0106     0.2903  
   0.07     0.0136     0.3113  
   0.08     0.0168     0.3282  
   0.09     0.0201     0.3417  
   0.10     0.0236     0.3526  
   0.11     0.0272     0.3613  
   0.12     0.0308     0.3683  
   0.13     0.0345     0.3740  
   0.14     0.0383     0.3785  
   0.15     0.0421     0.3821  
   0.16     0.0459     0.3851  
   0.17     0.0498     0.3874  
   0.18     0.0537     0.3893  
   0.19     0.0576     0.3908  
   0.20     0.0615     0.3920  
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