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Lesson 18.

5.1. Introduction

· In the analysis of various engineering problems, we often are faced with a need to find roots of equations whose solution is not easily found analytically. 

· Given a function f(x), the roots of the function are the values of x that makes f(x) = 0. 

· Typical examples include nth degree polynomials and transcendental equations containing trigonometric functions, exponentials or logarithms. 

· In this chapter, we review several methods for solving such equations numerically. 

· Also included is a section on MATLAB's fzero and roots functions, which may be used to obtain the roots of equations of the type just stated.
5.2. The search method

· In the search method, we seek a small interval that contains a real root. This only gives an approximate value for the real root. We will then follow with one of several other methods to obtain a more accurate value for the root. 

· This method is especially useful if there is more than one real root. The equation whose roots are to be determined should be put into the following standard form:
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· We proceed as follows: first we subdivide the x domain into N equal subdivisions of width 
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· Then, determine where 
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 changes sign (see Figure 5.1). 
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Figure 5.1.



This occurs when the signs of two consecutive values of 
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 are different, i.e. 
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The sign change usually indicates that a real root has been passed. However, it may also indicate a discontinuity in the function. (Example: tan x is discontinuous at 
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Once an interval in which a real root lies has been established, we can use several different methods for obtaining the real roots, as described in the following sections.
Example 5.1
% Example_5_1
% search.m
% This program determines the small intervals in which a real root 
% lies. We do this for a third degree polynomial.
% The program produces a plot of the function. 
% Next the program searches for intervals where there are sign 
% changes. It then prints out the interval values.
clear; clc;
func=@(x)(x^3-4.7*x^2-35.1*x+85.176);
xt=-10.0:0.1:10.0;
nr=0; 
fprintf('This program searches for intervals containing the roots \n'); 
for n=1:length(xt)
   x=xt(n);
   fx(n)=func(x);
end
plot(xt,fx), title('f(x) vs. x'), xlabel('x'), ylabel('f(x)'),
grid;
for n=1:length(xt)-1
   p=fx(n)*fx(n+1);
   if p <= 0.0
      nr=nr+1;
      xr1(nr)=xt(n);
      xr2(nr)=xt(n+1);
   end
end
if nr ~= 0
    fprintf('\n Intervals containing the Roots of f(x)=0 are: \n');
    fprintf('  nr       xr1           xr2 \n');
    fprintf('--------------------------------------- \n');
    for n=1:nr
         fprintf('  %i  %10.4f    %10.4f \n',n,xr1(n),xr2(n));
    end 
else 
    fprintf('\n\n No roots lie within  x(1) <= x <= x(end)');
end   
-------------------------------------------------- 

Program Results:
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This program searches for intervals containing the roots. 

Intervals containing the Roots of f(x)=0 are:
  nr       xr1           xr2 

--------------------------------------- 

  1     -5.3000       -5.2000 

  2      2.1000        2.2000 

  3      7.8000        7.9000 

>>

-----------------------------------------------------------------------------------
5.3. Bisection Method

Suppose it has been established that a root lies between 
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. Then, cut the interval in half (see Figure 5.2), and thus
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       Figure 5.2.
Now compute 
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Case 1:    If 
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Case 2:    If 
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Case 3:    If 
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For cases 1 and 2, select the interval containing the root and repeat the process. Continue repeating the process, say r times, then 
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is the initial size of the interval containing the root before the start of the bisection process (
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is the size of the interval containing the root after r bisections. If 
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 is sufficiently small, then a very good approximation for the root is anywhere within the last bisected interval, say the midpoint of the interval.

Example: For 20 bisections,
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Program method:
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If 
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 (indicating that the root lies between 
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and repeat the process. 

Otherwise, if 
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and repeat the process. 

If 
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5.4 Newton-Raphson Method

The Newton-Raphson method uses an iterative procedure and the tangent to the curve 
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 to estimate the root. The root of the function is the x value that makes 
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, which is the x value where the curve crosses the x axis (see Figure 5.3). 
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Figure 5.3.

The procedure is as follows:

1.  Make an initial guess for the root, say
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. The functional value at
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 most likely will not be zero. 

2.  Determine  
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which is the slope of the tangent to the curve at
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3.  Now determine 
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 which is where the tangent line crosses the x axis. On the tangent 


line the slope 
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4.  Set 
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5. Now evaluate 
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 is the error tolerance. 
If true, then quit. 
[image: image59.wmf]2

x

 is the root, so print 
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Continue repeating the process until 
[image: image62.wmf]e

<

)

(

n

x

f

, where n is the number of iterations.

An alternate condition for convergence is
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(5.4)

Usually, 
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 should be a very small number, such as 10-4, but it can be either larger or smaller depending on how close you wish to get to be to the real root. You can always test the accuracy of the obtained root, by substituting the obtained root into the function 
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to see if it is sufficiently close to zero.
The Newton-Raphson method is widely used for its rapid convergence. However, there are cases where convergence will not occur. This can happen if:

a. 
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 changes sign near the root

b. The initial guess for the root is too far from the true root.

If we combine the Newton-Raphson method with the search method for obtaining a small interval in which the real root lies, convergence is generally not a problem.

Review 5.1.

1. What is meant by the term root of function 
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2. What is the objective in the search method for determining a root of the equation 
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3. Describe the concept in the bisection method for obtaining a more accurate value for a root than what would normally be obtained by the search method alone.

5. . Describe the concept in the Newton-Raphson method for obtaining a more accurate value for a root than what would normally be obtained by the search method alone.

5.5.  MATLAB’s fzero and roots Functions

MATLAB has built-in functions to determine the real roots of a function of one variable, such as a transcendental equation or an nth degree polynomial. The fzero function is used for transcendental equations and the roots function is used for polynomial equations. First we will discuss the fzero function. 
5.5.1. The fzero Function

The syntax for one form of the fzero function is:



 X = fzero(fun,X0)

where fun is a function handle for the function whose root is to be determined and can be the name of a function file (with the .m extension) or can be an anonymous function (as described in Section 3.3).  X0 is the initial guess (a scalar) for the root, and X is the solution determined  by MATLAB’s fzero function. Thus, suppose the name of the function file whose root is to be obtained is myfun.m and our guess for the root is 3.0. Then, we would write


X = fzero('myfun', 3.0)

An alternative and equivalent way to run the command is


X = fzero(@myfun, 3.0)  (no single quotation marks needed)

If no root is found, fzero returns NaN (“not a number”).

A second form for the fzero function is:




X = fzero(fun,X0)

where again fun is a function handle for the function whose root is to be determined
and X0 is a vector of length 2,  such that the sign of fun(X0(1)) differs from the 
sign of fUN(X0(2)). An error occurs if this is not true.  

The first usage (X0 is a scalar) is appropriate if you have some idea of where the root lies. This can be accomplished by plotting the function and noting where the function crosses the x axis. The second usage (X0 is a vector of length 2) is more appropriate when there is more than one root and all roots need to be obtained. The second usage should be used in combination with the search method described earlier.

In some instances, we would like to find the zero of a function of two arguments, say  X and P,where P is a parameter and is fixed. In order to solve with fzero, P must be defined in the calling program. For example, suppose myfun is defined in an M-file as a function of two arguments:  


function f = myfun(X,P)


f = cos(P*X);
The fzero statement would need to be invoked as follows:


P = 1000;

 
root_example = fzero(@(X) myfun(X,P),X0)

where root_example is the zero of function myfun when P=1000. Note that P needs to be defined before the fzero function is called.  

An alternative to adding parameter P as an argument to myfun is to use  MATLAB’s global statement to define parameter P in function myfun as an externally-assigned variable. The global statement needs to be used in both in the calling program and in the function myfun. Variables in the global statement will have the same memory location in the calling program and the called function.
Example: 

Calling program:
global P;

P=1000;
X0=10.0;
root_example = fzero(@myfun, X0);

-----------------------------------------------------

The file myfun.m:

function f = myfun(x)

global P;

f = cos(P*x);
--------------------------------------------------------------------------------------------
Example 5.2.
The equation of state for a substance is a relationship between pressure, p, temperature, 

T, and specific volume, 
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.  Many gases at low pressures and moderate temperatures behave approximately as an ideal gas.  The ideal gas equation of state with p in N/m2, 
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where 
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is the universal gas constant.  As temperature decreases and pressure increases, gas behavior deviates from ideal gas behavior.  The Redlich-Kwong’s equation of state is often used to approximate non-ideal gas behavior.  Redlich-Kwong’s equation of state is [1]:
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(5.6)

The values for 
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, a, and b  for Carbon Dioxide is tabulated in Table 5.1.

Table 5.1. Values of  a, b and 
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 for carbon dioxide in Redlich-Kwong’s equation of state (from Reference [1]).
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	Carbon Dioxide
	65.43 x 105
	0.02963
	8314


We wish to determine the % error in the specific volume by using the ideal gas relationship while assuming that Redlich-Kwong’s equation of state is the correct equation of state for Carbon Dioxide. Vary the temperature from 350 K to 700 K in steps of 50 K, while holding the pressure constant at 1.0132 x 107 N/m2 (100 atm).  Using the specified temperatures and pressure determine the specific volumes, 
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, by both the ideal gas equation and the Redlich-Kwong’s equation and determine the % error in the specific volume resulting from the use of the ideal gas equation. Take the percent error in the specific volume to be

              
% error  =  
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(5.7)                                     

Write a MATLAB program utilizing the fzero function to calculate the specific volume by Redlich-Kwong’s equation.  Assume that 
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 varies between 0.1 and 2.1 m3/kmol. Plot 
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  for T = 350 K and 700 K using  40 sub-divisions on the 
[image: image85.wmf]v

 domain. Construct a table as shown in Table 5.2.


Table 5.2. 
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 determined by Redlich-Kwong Equation 




      and by ideal gas law for CO2
	        |    Ideal Gas
	Redlich-Kwong Equation
	% error in 
[image: image87.wmf]v

 

	T(°K)
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(m3/kmol)
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(m3/kmol)
	

	350
	---------
	----------
	---------

	400
	---------
	----------
	---------

	-----
	---------
	----------
	---------

	-----
	---------
	----------
	---------

	700
	---------
	----------
	---------


% Example_5_2.m
% This program compares ideal gas equation of state with
% Redlich–Kwong's equation of state for Carbon Dioxide.
% The pressure, p, is held constant at 100 atmosheres.
% The fzero function is used to obtain the value of v that
% satisfies the Redlich–Kwong equation of state.
% We expect one root so we do not have to use the search method
% for obtaining a small interval containing the root.
% We will use v obtained from the ideal gas law as our guess
% for the root of the Redlich–Kwong equation for v.
clear; clc;
global p R a b T;
p=1.0132e+07; R=8314; a=65.43e+5; b=0.02963;
Tt=350:50:700;
fprintf('This program compares ideal vs. real gas \n');
fprintf('behavior. Real gas behavior is determined by the \n');
fprintf('Redlich–Kwong equation of state \n');
fprintf('Pressure is held constant at 100 atmospheres \n\n');
% Tablr headings
fprintf('   T    v(m^3/kmol)    v(m^3/kmol)    error \n');
fprintf('  (K)     ideal      Redlich_Kwong   percent) \n');
fprintf('---------------------------------------------\n');
for k=1:length(Tt)
T=Tt(k);
v_ideal=R*T/p;
v_RK=fzero(@func_Redlich-Kwong,v_ideal);
err=abs((v_RK-v_ideal)/v_RK)*100;
fprintf('%5.0     %10.5f      %15.5f     %10.2f \n',...

T,v_ideal,v_RK,err);
fprintf('---------------------------------------------\n');
end
----------------------------------------------------------------- 
% func_Redlich_Kwong.m
% This function works with example 5.1
function f=func_Redlich_Kwong(v)
global p R a b T;
f=(R*T/(v-b)-a/(v*(v+b)*T^0.5)-p);
--------------------------------------------------------
Program Results:
This program compares ideal vs. real gas behavior 
behavior. Real gas behavior is determined by the 
Redlich-KWong equation of state. 
Pressure is held constant at 100 atmosheres. 
    T      v(m^3/kmol)    v(m^3/kmol)    error   
   (K)       ideal       Redlich_Kwong   percent 
-------------------------------------------------
  350      0.28720          0.17852       60.88   
-------------------------------------------------
  400      0.32823          0.25870       26.88   
-------------------------------------------------
  450      0.36926          0.31985       15.45   
-------------------------------------------------
  500      0.41028          0.37404        9.69   
-------------------------------------------------
  550      0.45131          0.42455        6.30   
-------------------------------------------------
  600      0.49234          0.47279        4.14   
-------------------------------------------------
  650      0.53337          0.51950        2.67   
-------------------------------------------------
  700      0.57440          0.56514        1.64   
-------------------------------------------------
Note: We could have eliminated the external func_Redlich_Kwong function and replaced the fzero statement with the following statement: 

v_RK=fzero(@(v) (R*T/(v-b)-a/(v*(v+b)*T^0.5)-p),v_ideal);

Try running Example 5.1 by eliminating the func_Redlich_Kwong function and 

replacing the fzero statement with the above statement.

Example 5.3.

In this example, we use MATLAB’s fzero function to find the roots of the governing equation for the voltage, 
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We wish to determine the first 3 zero crossings of 
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The Program follows:
% Example_5_3.m
% This script determines the first 3 zero crossings of the underdamped
% voltage of a parallel RLC circuit. The underdamped voltage is:
% v(t)=exp(-t/(2RC))*(A*cos(sqrt(1/LC-(1/2RC)^2)t)
%                     + B*sin(sqrt(1/LC-(1/2RC)^2)t))
% The circuit component values and initial conditions are:
% R=100 ohms; L=1.0e-3 henry; C=1.0e-6 farads;
% A= 6.0 volt, B=-9.0 volt
% Solve over the interval 0 <= t <= 0.5e-3 sec
clear; clc;
global R L C A B;
R=100; L=1.0e-3; C=1.0e-6;  A=6.0; B=-9;
fprintf('Example 5.3: Find the first 3 zero voltage crossings of \n'); 
fprintf('the underdampled RLC circuit\n');
tmin=0.0; tmax=0.5e-3;
% split up timespan into 50 intervals:
N=50;
dt=(tmax-tmin)/N;
% First, calculate t and v(t) at each timestep
for n=1:N+1
   t(n) = tmin+(n-1)*dt;
   v(n) = func_RLC(t(n));
end
plot(t,v), xlabel('t'), ylabel('v'), 
title('v vs  t for a RLC circuit'), grid;
% Next, use the search method to find the first 3 times intervals 
% where the sign of v(t) changes. When found, 
% use the fzero function to determine the root.
nr=0;
for n=1:N
   sign = v(n)*v(n+1);
   if sign <= 0.0
        nr=nr+1;
        tr(1)=t(n);
        tr(2)=t(n+1);
        troot(nr)=fzero('func_RLC',tr);
        if nr >= 3 
            break;
        end
   end
end    
if nr > 0
   fprintf('root number     troot         v(troot)  \n');
   fprintf('------------------------------------------- \n');
   for n=1:nr
       % Check solution
       v(n)=func_RLC(troot(n));
       fprintf('%3i      %10.4e     %10.6e \n',n,troot(n),v(n));
   end     
else 
   fprintf('\n\n No roots lie within  %g <= t <= %g s\n',tmin,tmax);
end
%----------------------------------------------------------------------
% func_RLC.m
% This function works with Example_5_2.m
 function v=func_RLC(t)
 global R L C A B;
 arg1=1/(2*R*C);
 arg3=sqrt(1/(L*C)-1/(2*R*C)^2);
 v=exp(-arg1*t)*(A*cos(arg3*t)+B*sin(arg3*t));

--------------------------------------------------------------
Program Results
Example 5.3: Find the first 3 zero voltage crossings of 

the underdampled RLC circuit.
root number     troot         v(troot)  

------------------------------------------- 

  1          1.8831e-05     -3.233470e-15 

  2          1.1944e-04      9.776059e-16 

  3          2.2005e-04      3.251258e-15 

>>
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----------------------------------------------------------------
5.5.2. The roots function


MATLAB has a function to obtain the roots of a polynomial. The function is: roots. To obtain the usage of the function, in the Command Window type in:  

>> help roots

This gives (from MATLAB with permission):

ROOTS  Find polynomial roots.

    ROOTS(C) computes the roots of the polynomial whose coefficients

    are the elements of the vector C. If C has N+1 components,

    the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).
Thus, to find the roots of the polynomial 
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, run
roots([A B C D E]). The roots function will give both real and imaginary roots of the polynomial.

Some additional useful MATLAB functions are:

poly(V) 
finds the coefficients of the polynomial whose roots are V
real(X)
gives the real part of X
imag(X)
gives the imaginary part of X.

Example 5.4.
In this example, MATLAB’s roots function is used to find the zeros of a polynomial.

% Example_5_4.m
% This program determines the roots of a polynomial using
% the built in function 'roots'.
% The first polynomial is: f=x^3-5.7*x^2-35.1*x+85.176. The
% roots of this polynomial are all real.
% The second polynomial is: f=x^3-9*x^2+23*x-65. The roots of
% this polynomial are both real and complex. Complex roots must 
% be complex conjugates. 
% To obtain more info on complex numbers in MATLAB, run 
% "help complex" in the Command Window.
clear; clc;
% Define coefficients of first polynomial (real roots)
C=[1.0 -5.7 -35.1 85.176];
fprintf('The first polynomial coefficients are:\n');
C
fprintf('The roots are: \n');
V=roots(C)
fprintf('Polynomial coefficients determined from poly(V) are:\n');
C_recalc=poly(V)
fprintf('----------------------------------------\n');
% Define the coefficients of second polynomial 
% whose roots are real and complex)
D=[1.0 -9.0 23.0 -65.0];
fprintf('The second polynomial coefficients are:\n');
D
fprintf('The roots are: \n');
W=roots(D)
fprintf('The real and imaginary parts of the roots are:\n');
re=real(W)
im=imag(W)
fprintf('Polynomial coefficients determined from poly(W) are:\n');
W_recalc = poly(W)

-------------------------------------------------------------------------------------------------
Program Results:

The first polynomial coefficients are:

C =

    
1.0000   -5.7000  -35.1000   85.1760
The roots are: 

V =

   
 8.6247

  
 -4.9285

   
 2.0038
Polynomial coefficients determined from poly(V) are:

C_recalc =

   
 1.0000   -5.7000  -35.1000   85.1760

------------------------------------------------------------

The second polynomial coefficients are:

D =

    
 1    -9    23   -65
The roots are: 

W =

   
7.0449          

  
 0.9775 + 2.8759i

  
 0.9775 - 2.8759i
The real and imaginary parts of the roots are:

re =

    
7.0449

    
0.9775

   
0.9775
im =

         
0

   
 2.8759

   
-2.8759
Polynomial coefficients determined from poly(W) are:

W_recalc =

    
1.0000   -9.0000   23.0000  -65.0000

>>

Review 5.2.

1 What is the name of the MATLAB function for determining the roots of a transcendental equation of the form f(x) = 0?

2. In MATLAB’s function for determining the roots of a transcendental equation, how does one define the function whose roots are to be determined?

3. If you suspect that there is more than one real root, what method should be used in combination with the MATLAB’s function to obtain the roots.

4. For the case described in item 3, what can you say about the second argument in MATLAB’s function to obtain the roots.

5. What is the purpose of the global statement?

6. If the function f(x) is a polynomial, what MATLAB function should you use to obtain its roots?
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