Lesson 7.

2.8. Conditional Operators and alternate paths

· The if statement
Syntax:

if logical expression

statement;

[image: image9.png]

statement;

else

statement;

[image: image2.wmf]M

statement;

end
If the logical expression is true, then only the upper set of statements are executed. If the logical expression is false, then only the bottom set of statements are executed.

· Logical expressions are of the form

a == b;
a < = b;

a < b;
a >= b;

a > b;
a ~= b; (a not equal to b)

· Compound logical expressions

a > b && a ~= c
(
[image: image3.wmf]ab

>

 and
[image: image4.wmf]ac

¹

)

a > b ||
 a < c
(
[image: image5.wmf]ab

>

 or
[image: image6.wmf]ac

<

)

The following example illustrates the use of the if statement.

Example 2.10.

% Example_2_10.m
% This program uses an input and an if statement to determine if
% the output is to go to the screen or to a file. The variables y1 and

% y2 are made vectors so that these variables can be printed outside

% the for loop that created them. As vectors, they can also be plotted.
clear; clc;
t=0:0.5:5
for j=1:length(t)

y1(j)=t(j)^2/10;

y2(j)=t(j)^3/100;
end
fprintf('Do you wish to print the output to \n');

fprintf('the screen or to a file? \n');
response=input('enter S for screen or F for file \n','s');
% Note, since we entered 's' in the input statement, do not
 % enclose your answer in single quotation marks.
if response=='S'
% Table headings:

fprintf(' t y1 y2 \n');

fprintf(' -----------------------------------\n');

for j=1:length(t)

fprintf(' %5.1f %10.3f %10.3f \n', ...

t(j),y1(j),y2(j));

end
end
if response=='F'

fo=fopen('output.txt','w');

% Table headings:

fprintf(fo,' t y1 y2 \n');

fprintf(fo,' -----------------------------------\n');

for j=1:length(t)

fprintf(fo,' %5.1f %10.3f %10.3f \n',...

t(j),y1(j),y2(j));

end
end
--

Program Results (either from the screen or from the file “output.txt”):

t y1 y2

--

0.0 0.000 0.000

0.5 0.025 0.001

1.0 0.100 0.010

1.5 0.225 0.034

2.0 0.400 0.080

2.5 0.625 0.156

3.0 0.900 0.270

3.5 1.225 0.429

4.0 1.600 0.640

4.5 2.025 0.911

5.0 2.500 1.250

· The if-elseif ladder
Syntax:

if logical expression 1

statement(s);

elseif logical expression 2

statements(s);

elseif logical expression 3

statement(s);

else

statement(s);

end
The if-elseif ladder works from top down. If the top logical expression is true, the statements related to that logical expression are executed and the program will leave the ladder. If the top logical expression is not true, the program moves to the next logical expression. If that logical expression is true, the program will execute the group of statements associated with that logical expression and leave the ladder. If that logical expression is not true, the program moves to the next logical expression and continues the process. If none of the logical expressions are true the program will execute the statements associated with the else statement. The else statement is not required. In that case, if none of the logical expressions are true, no statements within the ladder will be executed.

· The break command may be used with an if statement to end a loop; example:

for m = 1:20

statement(s);

if m > 10

break;

end

end

In the above example, when m becomes greater than 10, the program leaves the for loop and moves on to the next statement outside the for loop.

Suppose in the atmospheric model described in Example 2.5, we did not have the governing equations that produced the atmospheric property table, but just had the table itself and we wished to determine atmospheric properties at altitudes not in the table. This situation occurs, for example, in Thermodynamics, where thermodynamic properties of various substances are tabulated. The simplest way to determine the atmospheric properties would be to interpolate between table values. If we assume that the atmospheric properties vary linearly with altitude between table values, then we can use linear interpolation. In this case, we should use table values that are closest to the altitude of interest. One way to accomplish this (although not the most efficient way) would be to use the if-elseif ladder. The following example illustrates this concept.

The general linear interpolation formula, based on similar triangles, in terms of y and x are as follows:

[image: image7.wmf]211

1

21

()()

yyxx

yy

xx

-´-

=+

-

(2.43)

where x1 and x2 are the values of x that enclose x and y1 and y2 are the values of y at x1 and x2 respectively. First we need to either rerun Example 2.2 eliminating table headings statements from the program or to edit the produced table and eliminate the table headings, leaving only a table of numbers. To reduce the size of the following program we will operate at altitudes between 0 and 5000 m as shown below. This table is to be saved as a file named atm_properties.txt and will be loaded into the following program.

 0 288.15 1.0133e+005 1.2252

 1000 281.65 8.9869e+004 1.1118

 2000 275.15 7.9485e+004 1.0065

 3000 268.65 7.0095e+004 0.9091

 4000 262.15 6.1624e+004 0.8191

 5000 255.65 5.4002e+004 0.7360

Example 2.11.

% Example_2_11.m
% This program loads data from a file named atm_propeties.txt
% The program asks the user to enter an elevation at which atmospheric
% properties are to be determined by linear interpolation.
% The altitude range is from 0 to 5000 m.
% Then the atmospheric properties are printed to the screen.
% The program uses the if-elseif ladder to select the closest interval
% to the entered altitude. The properties in this interval will be used
% in the interpolation formula.
% Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and

% density is in kg/m^3.
clear; clc;
load atm_properties.txt
% establishing variable names to loaded data.
zt=atm_properties(:,1);
Tt=atm_properties(:,2);
pt=atm_properties(:,3);
rhot=atm_properties(:,4);
fprintf('Enter the altitude at which atmospheric properties \n');
z=input('are to be determined. Altitude range is from 0 to 5000 m \n');
if z>=zt(1)&& z<zt(2)

z1=zt(1); z2=zt(2); T1=Tt(1); T2=Tt(2); p1=pt(1); p2=pt(2);

rho1=rhot(1); rho2=rhot(2);
elseif z>=zt(2)&& z<zt(3)

z1=zt(2); z2=zt(3); T1=Tt(2); T2=Tt(3); p1=pt(2); p2=pt(3);

rho1=rhot(2); rho2=rhot(3);
elseif z>=zt(3)&& z<zt(4)

z1=zt(3); z2=zt(4); T1=Tt(3); T2=Tt(4); p1=pt(3); p2=pt(4);

rho1=rhot(3); rho2=rhot(4);
elseif z>=zt(4)&& z<zt(5)

z1=zt(4); z2=zt(5); T1=Tt(4); T2=Tt(5); p1=pt(4); p2=pt(5);

rho1=rhot(4); rho2=rhot(5);
elseif z>=zt(5)&& z<zt(6)

z1=zt(5); z2=zt(6); T1=Tt(5); T2=Tt(6); p1=pt(5); p2=pt(6);

rho1=rhot(5); rho2=rhot(6);
end
T=T1+(T2-T1)*(z-z1)/(z2-z1);
p=p1+(p2-p1)*(z-z1)/(z2-z1);
rho=rho1+(rho2-rho1)*(z-z1)/(z2-z1);
fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',...

T,p,rho);

Program results:
Enter the altitude at which atmospheric properties

are to be determined. Altitude range is from 0 to 5000 m

4380

T=259.68(K), p=5.8728e+04(Pa) rho=0.7875(kg/m^3)
>>

Whenever one gets the results of a program, it is prudent to examine the results to see if they make sense. In this case, do the obtained properties lie within the proper interval?

An alternative to loading the data in the file atm_properties.txt into the above script, is to enter the data directly into the program as vectors. To accomplish this, replace the following lines in Example 2.11

load atm_properties.txt

% establishing variable names to loaded data.

zt=atm_properties(:,1);

Tt=atm_properties(:,2);

pt=atm_properties(:,3);

rhot=atm_properties(:,4);
with

zt=[0 1000 2000 3000 4000 5000];

Tt=[288.15 281.65 275.15 268.65 262.15 255.65];

pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;

rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
One additional thought, it is possible to develop the program containing the if-elseif ladder using non-compound logical expressions. This is demonstrated in Example 2.11c

% Example_2_11c.m

% This program enters the data shown in atm_properties.txt directly

% into the program as vectors.

% The program asks the user to enter an elevation at which

% atmospheric properties are to be determined by linear interpolation.

% The altitude range is from 0 to 5000 m.

% Then the requested atmospheric properties are printed to the screen.

% The program uses the if-elseif ladder to select the closest interval

% to the entered altitude. The properties in this interval will be used

% in the interpolation formula.

% Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and

% density is in kg/m^3.

clear; clc;

zt=[0 1000 2000 3000 4000 5000];

Tt=[288.15 281.65 275.15 268.65 262.15 255.65];

pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;

rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];

fprintf('Enter the altitude at which atmospheric properties \n');

z=input('are to be determined. Altitude range is from 0 to 5000 m \n');

if z<zt(2)

 % if true, z lies between 0 & 1000 m.

 z1=zt(1); z2=zt(2); T1=Tt(1); T2=Tt(2); p1=pt(1); p2=pt(2);

 rho1=rhot(1); rho2=rhot(2);

elseif z<zt(3)

 % if this condition is tested and found true, then the first

% condition was false so z lies between 1000 & 2000 m.

 z1=zt(2); z2=zt(3); T1=Tt(2); T2=Tt(3); p1=pt(2); p2=pt(3);

 rho1=rhot(2); rho2=rhot(3);

elseif z<zt(4)

 % if this condition is tested and found true, then the first

 % & second conditions were false so z lies between 2000 & 3000 m.

z1=zt(3); z2=zt(4); T1=Tt(3); T2=Tt(4); p1=pt(3); p2=pt(4);

 rho1=rhot(3); rho2=rhot(4);

elseif z<zt(5)

% if this condition is tested and found true, then the first,

 % second & third conditions were false so z lies between

% 3000 & 4000 m.

z1=zt(4); z2=zt(5); T1=Tt(4); T2=Tt(5); p1=pt(4); p2=pt(5);

rho1=rhot(4); rho2=rhot(5);

elseif z<zt(6)

% if this condition is tested and found true, then the first,

 % second, third & fourth conditions were false so z lies between

 % 4000 & 5000 m.

z1=zt(5); z2=zt(6); T1=Tt(5); T2=Tt(6); p1=pt(5); p2=pt(6);

rho1=rhot(5); rho2=rhot(6);

end

T=T1+(T2-T1)*(z-z1)/(z2-z1);

p=p1+(p2-p1)*(z-z1)/(z2-z1);

rho=rho1+(rho2-rho1)*(z-z1)/(z2-z1);

fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',T,p,rho);

Run Example 2.11c and enter the same altitude that was entered in Example 2.11

(z = 4380) and see that you obtain the same answer as in Example 2.11.

Example 2.12.
An uninterruptible power supply (UPS) is used to prevent a computer from crashing during a temporary power outage. A UPS contains a battery which is normally charged by house current. During a power outage, the battery is used to generate substitute line power.

Although electricity delivered by a power company is usually sinusoidal (as shown in Figure 2.25a), some low-cost UPS models generate an approximated sinusoid by taking the UPS voltage to be zero for the first eighth of the period, then a high for the next one-fourth , then zero for the next fourth, and then a low for the next fourth as shown in Figure 2.25b.
[image: image1.wmf]M

[image: image8]

Figure 2.25a and 2.25b. Sinusoidal voltage and UPS model.
(Note: a 50Hz waveform is used in some regions of Japan.). We wish to construct a MATLAB program that demonstrates that both waveforms have nearly the same root-mean-square (RMS) voltage.
The RMS is obtained by the following procedure:

a. Squaring the voltage.

b. Computing the mean value of the squared waveform by averaging it over one cycle.
 c. Taking the square root of the average

The Program Follows:

% Example_2_12.m
% This program determines the root-mean-square of two different

% waveforms as shown in Figures 2.25a and 2.25b. One waveform is a

% sinusoidal Signal. The period and amplitude are read off Figure
% 25a: T is in second(s) and A is in volt(V).
T = 0.02;

A = 142;

% choose an arbitrary step size which is much less than

% the signal period:

step = 0.0001;

% Define timepoints over a single period of the waveform:

t = 0:step:T;

% Calculate V1

for i=1:length(t)

 V1(i) = A * sin(2*pi * (1/T) * t(i));

end

% Define V2 piece-by-piece. V2 will be zero for the first

% eighth of the period, region 1, (0 <= t < (1/8)*T), then high for the
% next one fourth of a period, region 2, ((1/8)*T <= t < (3/8)*T), then
% zero for the next fourth, region 3, ((3/8)*T <= t < (5/8)*T), and

% then high for the next fourth, region 4, ((5/8)*T <= t < (7/8)*T),

% then zero for the next eight, region 5, ((7/8)*T <= t <= 1*T).
for i=1:length(t)

if t(i) < (1/8)*T

V2(i) = 0;

elseif t(i) < (3/8)*T

V2(i) = A;

elseif t(i) < (5/8)*T

V2(i) = 0;

elseif t(i) < (7/8)*T

V2(i) = -A;

else

V2(i)=0;

end

end
% V1 and V2 are vectors and vector multiplication requires

% element by element multiplication.
V1rms = sqrt(mean(V1.*V1));
V2rms = sqrt(mean(V2.*V2));

fprintf('V1rms=%9.4f volt V2rms=%9.2f volt \n',V1rms,V2rms);

Program Results:

>> EE_Example_RMS

 V1rms = 100.16 volt V2rms = 100.16 volt
>>

The way this program works is as follows. Suppose t = (1/2)*T. The

if-elseif ladder works from top of the ladder down. For the first logical expression, is t < (1/8)*T? No, so the first region is eliminated. Next logical expression, is
t < (3/8)*T? No, so the second region is eliminated. Next logical expression, is
t < (5/8)*T? Yes. Since we have already eliminated regions 1 and 2, t is in
region 3.

As mentioned earlier, the programs in Examples 2.11, 2.11c and 2.12 are not the most efficient way to solve the problem. We can use a for loop to determine the closest interval to the entered altitude in Examples 2.11 and 2.11c, thus, reducing the number of lines in the program. This is demonstrated in the following example. This becomes important when the number of intervals in the program is large.

Example 2.13.

% Example_2_13.m
% This program enters the data shown in atm_properties.txt directly

% into the program as vectors.

% The program then asks the user to enter an elevation at which the

% atmospheric properties are to be determined by linear interpolation.
% The atmospheric properties are then printed to the screen.
% The program uses a for loop and a compound if statement to determine
% the closest interval to the entered altitude. The properties in
% this interval will be used in the interpolation formula.
% Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and

% density is in kg/m^3.
clear; clc;
zt=[0 1000 2000 3000 4000 5000];

Tt=[288.15 281.65 275.15 268.65 262.15 255.65];

pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;

rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
fprintf('Enter the altitude at which atmospheric properties \n');
z=input('are to be determined. Altitude range is from 0 to 5000 m \n');
for i=1:length(zt)-1

if z>=zt(i)&& z<zt(i+1)

z1=zt(i); z2=zt(i+1); T1=Tt(i); T2=Tt(i+1);

p1=pt(i); p2=pt(i+1); rho1=rhot(i); rho2=rhot(i+1);

break;

end
end
T=T1+(T2-T1)*(z-z1)/(z2-z1);
p=p1+(p2-p1)*(z-z1)/(z2-z1);
rho=rho1+(rho2-rho1)*(z-z1)/(z2-z1);
fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',T,p,rho);

Program Results.
Enter the altitude at which atmospheric properties

are to be determined. Altitude range is from 0 to 5000 m

1350

T=279.38(K), p=8.6235e+04(Pa) rho=1.0749(kg/m^3)

>>

--
An alternative to the load command is the dlmread command. This command will read an ASCII delimited file. All data in the file must be numeric. In Example 2.11, we could replace the lines starting with

load atm_properties.txt;)
and ending with

rhot = atm_properties(:,4);)
with

Y=dlmread('atm_properties.txt');

zt=Y(:,1);

Tt=Y(:,2);

pt=Y(:,3);

rhot=Y(:,4);
 --
· The switch group

In some cases, the Switch group may be used as an alternative to the if-elseif ladder.
Syntax:

switch(var)

case var1

statement(s);

case var2

statement(s);

case var3

statement(s);

otherwise

statement(s);

end
where var takes on the possible values var1, var2, var3, etc.
If var equals var1, those statements associated with var1 are executed and the program leaves the switch group. If var does not equal var1, the program tests if var equals var2, and if yes, the program executes those statements associated with var2 and leaves the switch group. If var does not equal any of var1,var2, etc, the program executes the statements associated with the otherwise statement. If var1, var2, etc are strings, they need to be enclosed by single quotation marks. It should be noted that var cannot be a logical expression, such as var1 > = 80.

The following example illustrates the use of the switch group in a MATLAB program.

Example 2.14.
% Example_2_14.m
% This program is a test of the switch statement.
clear; clc;
var = 'a';
x = 5;
switch(var)

case 'b'

z = x^2;

case 'a'

z = x^3;

otherwise

z=0;
end
fprintf(' z = %6.1f \n',z);

--
Program results:

z = 125.0

>>

--

Review 2.6.
1. What statement is frequently used to establish two conditional paths?

2. What series of statements is used to establish several conditional paths?

3. List the various types of logic statements that can be are used with the if-else and

if-elseif-else ladder.

4. Is the else statement required with the if-else and the if-elseif-else ladder?

5. What statement group is an alternative to the if-elseif-else ladder?

(a)

(b)

PAGE
1

_1387720824.unknown

_1387720825.unknown

_1401090298.unknown

_1387720803.unknown

_1387720823.unknown

_1343286797.unknown

