Lesson 20.
Chapter 7. Numerical Integration of Ordinary Differential Equations

7.1. Introduction

In this chapter, we examine several methods for solving ordinary differential equations (ODEs). ODEs can be broken up into two categories:

· initial value problems in which we know the necessary initial conditions and we wish to determine the conditions at a later time . For example, suppose we wish to determine the position and velocity of a rocket as a function of time. We can obtain a solution if we know the initial position and initial velocity at the time of launch.

· boundary value problems in which we know the solution at specific coordinates in the problem geometry and wish to obtain a solution at other coordinates. For example, suppose we wish to determine the deflection of a beam at various positions knowing the deflection at the end positions. This type of problem is covered in Chapter 8.

· For initial value problems, we will examine several numerical integration methods including the Euler method, the modified Euler method, the Runge-Kutta method, and MATLAB’s built-in ode45 function.
7.2. The Initial Value Problem

In an initial value problem, the values of the dependent variable and the necessary derivatives are known at the point at which the integration begins. We will begin with a first-order differential equation of the general form such that the derivative is a known function of x and y and the initial condition, that is
[image: image1.wmf](0)

I

yY

=

 is known:

[image: image2.wmf]'(,)

(0)

I

yfxy

yY

=

=

 (7.1)

There are several techniques for solving this type of problem, including Euler’s method, which is simple but not used very often, the modified Euler method, the Runge-Kutta method and others. Each technique has pros and cons with respect to simplicity, accuracy and computational efficiency.

7.3. The Modified Euler Method which is a Predictor-Corrector Algorithm
The general approach to solving differential equations numerically is to subdivide the x domain into N subdivisions giving
[image: image3.wmf]1231

,,,...,

N

xxxx

+

 and then “march” in the x direction over the interval while calculating
[image: image4.wmf]2331

,,,...,

N

yyyy

+

. Note
[image: image5.wmf]1

y

 is specified and is equal to the initial condition
[image: image6.wmf]I

Y

. See Figure 7.1.

[image: image7.emf]

Figure 7.1.

The numerical version of the governing differential equation will be written as

[image: image8.wmf](,)

iii

yfxy

¢

=

(7.2)
A Taylor series expansion about an arbitrary point
[image: image9.wmf]i

x

 gives:

[image: image10.wmf](

)

(

)

2

()()

()()

1!2!

ii

iii

yxyx

yxyxxxxx

¢¢¢

=+-+-+

L

If we use only the first two terms of the series, we can approximate the value for
[image: image11.wmf]1

()

i

yx

+

 (which we denote as
[image: image12.wmf]1

i

y

+

) as

[image: image13.wmf](

)

11

'()

()

1

i

iiii

ii

yx

yyxxx

yyh

++

»+-

¢

»+

(7.3)

where
[image: image14.wmf]i

i

x

x

h

-

=

+

1

, which is defined as the step size, and
[image: image15.wmf]i

y

¢

is the slope of the curve of
[image: image16.wmf]()

yx

 at
[image: image17.wmf]i

x

. Substituting Equation (7.1) into (7.3), we obtain

[image: image18.wmf]1

(,)

iiii

yyhfxy

+

=+

(7.4)

As can be seen for the configuration shown in Figure 7.2, the prediction of
[image: image19.wmf]1

i

y

+

by Equation 7.4 (Euler Method) overshoots the true value of
[image: image20.wmf]1

i

y

+

.

[image: image21.emf]

Figure 7.2.
Now, suppose we were able to determine
[image: image22.wmf]1

()

i

yx

+

¢

, which would be the slope to the curve at
[image: image23.wmf]1

.

i

x

+

 If we were to predict
[image: image24.wmf]1

i

y

+

 by using
[image: image25.wmf]1

()

i

yx

+

¢

 in Equation 7.3, i.e.,

[image: image26.wmf]1111

()

iiiiii

yyhyyhfxy

++++

¢

=+=+

then for the configuration shown in Figure 7.3, we would undershoot the true value of
[image: image27.wmf]1

i

y

+

.

[image: image28.emf]

 Figure 7.3.
Here we have constructed a tangent to the curve at
[image: image29.wmf]1

i

y

+

 and drawn a parallel line passing through point
[image: image30.wmf](,)

ii

xy

 to obtain the predicted value for
[image: image31.wmf]1

i

y

+

. Since using
[image: image32.wmf]i

y

¢

 in Equation 7.3 overshoots the true value of
[image: image33.wmf]1

i

y

+

 and using
[image: image34.wmf]1

i

y

+

¢

 in Equation 7.3 undershoots the true value of
[image: image35.wmf]1

i

y

+

, we see that a better estimate for
[image: image36.wmf]1

i

y

+

 would be obtained by using an average of the two derivatives in Equation 7.3, i.e.,

[image: image37.wmf]1

1

2

ii

ii

yy

yyh

+

+

¢¢

+

æö

=+

ç÷

èø

(7.5)
Unfortunately, Equation (7.5) is no longer explicit because we do not know the value of
[image: image38.wmf]1

i

y

+

¢

. The use of Equation (7.5) in solving the differential Equation (7.1) is an example of an implicit method. However, we can approximate a value for
[image: image39.wmf]1

i

y

+

¢

 by using the predictor-corrector method, which is an iterative method.

To apply this method, we rewrite Equation (7.5) as follows:

[image: image40.wmf](

)

1

1

2

P

ii

C

ii

yy

yyh

+

+

æö

¢¢

+

ç÷

=+

ç÷

èø

(7.6)

where

the P superscript indicates the predicted value

the C superscript indicates the corrected value.
Equation (7.6) is called the corrector equation and can be used to iteratively estimate the value for
[image: image41.wmf]1

i

y

+

. Substituting Equation (7.2) into (7.6) gives

[image: image42.wmf]

 EMBED Equation.DSMT4 [image: image43.wmf](

)

111

(,)

P

C

iii

yfxy

+++

¢

=

(7.7)

The predictor-corrector technique proceeds as follows:

1. Use the Euler method to determine a first predicted value for
[image: image44.wmf](

)

1

P

i

y

+

¢

, i.e.,

[image: image45.wmf](

)

1

11

(,)

P

iiii

yfxyyh

++

¢¢

=+

(7.8)

2. Calculate the first corrected value
[image: image46.wmf]1

1

C

i

y

+

 by using Equation (7.8) in Equation (7.6).

3. Use
[image: image47.wmf]1

1

C

i

y

+

 to obtain a new predicted value
[image: image48.wmf](

)

2

1

P

i

y

+

¢

, i.e., in Equation 7.7.

4. Calculate a new corrected value
[image: image49.wmf]2

1

C

i

y

+

 by using
[image: image50.wmf](

)

2

1

P

i

y

+

¢

 in Equation 7.6.

5. Repeat steps 3 and 4 until
[image: image51.wmf]1

11

nn

CC

ii

yy

e

+

++

-<

, where
[image: image52.wmf]e

 is an error tolerance which depends on the desired accuracy and is typically a fraction of a percent of the last corrected value, e.g.
[image: image53.wmf]4

10

i

y

e

-

=´

.

Example 7.1.

In this example, we will use the problem described in Exercise E2.5 to determine the velocity, V, of a spherical ball bearing dropped in a viscous fluid. The governing equation describing the velocity of the ball bearing as it moves through the fluid is:

[image: image54.wmf](

)

1

dV

WBD

dtm

=--

(7.90)

 where

m = the mass of the ball bearing =
[image: image55.wmf]steelsphere

r

"

W = the weight of the ball bearing = mg

D = drag

B = buoyancy =
[image: image56.wmf]oilsphere

r

"

t = time

The drag, D, is governed by Stokes Law, which is:

[image: image57.wmf]6

DRV

pm

=

(7.10)

where

R = radius of the sphere.

[image: image58.wmf]m

=

viscosity of the fluid.

The weight W = mg =
[image: image59.wmf]g

r

"

, where
[image: image60.wmf]"

is the volume of the sphere and
[image: image61.wmf]r

is the mass density of the ball bearing material. The buoyancy, B = the weight of the fluid displaced. Assuming that the material of the ball bearing is steel and that the fluid is oil, Equation (7.10) reduces to:

[image: image62.wmf]6

oil

steelsteelsphere

g

RV

dV

g

dt

r

pm

rr

=--

"

(7.11)

[image: image63.wmf]3

4

3

sphere

R

p

"=

(7.12)

The closed form solution was given in Exercise E2.5, which is:

[image: image64.wmf]6

1

Rg

t

W

T

VVe

pm

-

æö

=-

ç÷

èø

(7.13)

where

VT = the terminal velocity =
[image: image65.wmf]()

6

steeloilsphere

g

R

rr

pm

-"

(7.14)

This following program demonstrates the use of the modified Euler method.
% Example_7_1.m
% This program demonstrates the use of the modified
% Euler method in solving a first order differential equation.
% The problem is to determine the velocity of a ball bearing
% as it moves through a viscous liquid.
% An exact solution is available.
% The units are: rho in kg/m^3, mu in N-s/m^2, g in m/s^2, t in s,
% velocity in m/s, volume in m^3.
clear; clc;
t=0:0.01:1;
rho_steel=7910; rho_oil=888; g=9.81; R=0.01; mu=3.85;
v(1)=0.0;
dt=0.01;
vol=4/3*pi*R^3;
m=rho_steel*vol;
w=m*g;
arg=6*pi*R*mu*g/w;
vt=(rho_steel-rho_oil)*g*vol/(6*pi*R*mu);
f=@ (v) (g-rho_oil/rho_steel*g-6*pi*R*mu/m*v);
% Modified Euler method (iterative scheme)
vmod(1)=0.0;
for i=1:length(t)-1
 vexact(i+1) = vt*(1-exp(-arg*t(i+1)));
 vp(i)=f(vmod(i));
 vp1(i+1)=f(vmod(i)+f(vmod(i))*dt);
 vc1(i+1)=vmod(i)+(vp(i)+vp1(i+1))*dt/2;
 test=vmod(i)*10e-5;
 for j=1:50
 vp2(i+1)=f(vc1(i+1));
 vc2(i+1)=vmod(i)+(vp(i)+vp2(i+1))*dt/2;
 if abs(vc2(i+1)-vc1(i+1)) < test
 break;
 else
 vp1(i+1)=vp2(i+1);
 vc1(i+1)=vc2(i+1);
 end
 end
 vmod(i+1)=vmod(i)+(vp(i)+vp2(i+1))*dt/2;
end
fo=fopen('output.txt','w');
fprintf(fo,'Comparing results of modified Euler method \n');
fprintf(fo,'with exact solution \n\n');
fprintf(fo,' t(s) v(m/s) v(m/s) \n');
fprintf(fo,' Modified Euler exact \n');
fprintf(fo,'--- \n');
for i=1:5:length(t)
 fprintf(fo,'%5.2f %7.4f %7.4f \n',...
 t(i),vmod(i),vexact(i));
end
plot(t,vexact,t,vmod,'x'), xlabel('t'), ylabel('v'), grid,
 title('velocity vs time'), legend('v-exact','v-modied');

 Program results:

[image: image66.emf]
Comparing results of modified Euler method
with exact solution
 t(s) v(m/s) v(m/s)
 Modified Euler exact

 0.00 0.0000 0.0000
 0.05 0.2652 0.2646
 0.10 0.3535 0.3531
 0.15 0.3829 0.3827
 0.20 0.3927 0.3926
 0.25 0.3960 0.3959
 0.30 0.3971 0.3971
 0.35 0.3974 0.3974
 0.40 0.3975 0.3975
 0.45 0.3976 0.3976
 0.50 0.3976 0.3976
 . . .

 . . .

We see that terminal velocity is reached at approximately 0.45 s. We also see that the modified Euler method produced an answer very close to the exact solution.
--

7.5. The Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method uses a weighted average of derivative estimates within the interval of interest in order to calculate a value for
[image: image67.wmf]1

i

y

+

. We again start with the first-order differential equation of Equation (7.1) with known initial condition, i.e.,

[image: image68.wmf]'(,)

(0)

I

yfxy

yY

=

=

(7.20)

 In the modified Euler method, we used

[image: image69.wmf](

)

(

)

11

2

P

C

iiii

h

yyyy

++

¢¢¢

=++

In the Runge-Kutta method, we use

[image: image70.wmf](

)

11234

22

6

ii

h

yykkkk

+

=++++

(7.21)

where

[image: image71.wmf]1

21

32

431

(,)(value of at)

,(estimate of at)

222

,(a second estimate of at)

222

(,)(estimate of at)

iii

iii

iii

iii

kfxyyx

hhh

kfxykyx

hhh

kfxykyx

kfxhyhkyx

+

¢

=

æö

¢

=+++

ç÷

èø

æö

¢

=+++

ç÷

èø

¢

=++

Runge-Kutta is an explicit algorithm and thus is simple to compute with MATLAB.
Example 7.2.

In this example, we will use the problem described in Exercise E2.5 to determine the velocity, V, of a spherical ball bearing dropped in a viscous fluid. The governing equation describing the velocity of the ball bearing as it moves through the fluid is:

[image: image72.wmf](

)

1

dV

WBD

dtm

=--

(7.90)

 where

m = the mass of the ball bearing =
[image: image73.wmf]steelsphere

r

"

W = the weight of the ball bearing = mg

D = drag

B = buoyancy =
[image: image74.wmf]oilsphere

r

"

t = time

The drag, D, is governed by Stokes Law, which is:

[image: image75.wmf]6

DRV

pm

=

(7.10)

where

R = radius of the sphere.

[image: image76.wmf]m

=

viscosity of the fluid.

The weight W = mg =
[image: image77.wmf]g

r

"

, where
[image: image78.wmf]"

is the volume of the sphere and
[image: image79.wmf]r

is the mass density of the ball bearing material. The buoyancy, B = the weight of the fluid displaced. Assuming that the material of the ball bearing is steel and that the fluid is oil, Equation (7.10) reduces to:

[image: image80.wmf]6

oil

steelsteelsphere

g

RV

dV

g

dt

r

pm

rr

=--

"

(7.11)

[image: image81.wmf]3

4

3

sphere

R

p

"=

(7.12)

The closed form solution was given in Exercise E2.5, which is:

[image: image82.wmf]6

1

Rg

t

W

T

VVe

pm

-

æö

=-

ç÷

èø

(7.13)

where

VT = the terminal velocity =
[image: image83.wmf]()

6

steeloilsphere

g

R

rr

pm

-"

(7.14)

The Program follows:
% Example_7_2.m
% This program demonstrates the use of the Runge-Kutta method
% in solving a first order differential equation.
% The problem is to determint the velocity of a ball bearing
% as it is dropped in a viscous liquid.
% An exact solution is available.
clear; clc;
t=0:0.01:1;
rho_steel=7910; rho_oil=888; g=9.81; R=0.01; mu=3.85;
v(1)=0.0;
dt=0.01;
vol=4/3*pi*R^3;
m=rho_steel*vol;
w=m*g;
arg=6*pi*R*mu*g/w;
vt=(rho_steel-rho_oil)*g*vol/(6*pi*R*mu);
f=@ (v) (g-rho_oil/rho_steel*g-6*pi*R*mu/m*v);
for i=1:length(t)-1
 v_exact(i+1)=vt*(1-exp(-arg*t(i+1)));
 k1=f(v(i));
 k2=f(v(i)+dt/2*k1);
 k3=f(v(i)+dt/2*k2);
 k4=f(v(i)+dt*k3);
 v(i+1)=v(i)+dt/6*(k1+2*k2+2*k3+k4);
end
fprintf(' t(s) v(m/s) v(m/s) \n');
fprintf(' Runge-Kutta exact \n');
fprintf('----------------------------------- \n');
for i=1:5:length(t)
 fprintf('%5.2f %7.4f %7.4f \n',t(i),v(i),v_exact(i));
end
plot(t,v_exact,t,v,'x'), xlabel('t)'),ylabel('v,v-exact'), grid,
title('v(m/s) vs. t(s)'), legend('v-exact','v-Runge-Kutta');
--

Program results

t(s) v(m/s) v(m/s)

 Runge-Kutta exact

0.00 0.0000 0.0000

0.05 0.2646 0.2646

0.10 0.3531 0.3531

0.15 0.3827 0.3827

0.20 0.3926 0.3926

0.25 0.3959 0.3959

0.30 0.3971 0.3971

0.35 0.3974 0.3974

0.40 0.3975 0.3975

0.45 0.3976 0.3976

0.50 0.3976 0.3976

0.55 0.3976 0.3976

0.60 0.3976 0.3976

 . . .

 . . .

[image: image84.emf]

Figure 7.6.

--
We see that there is good agreement between the exact solution and the solution obtained by the Runge-Kutter method.
7.6. System of Two First-order Differential Equations

Consider the following two first order ordinary differential equations.

[image: image85.wmf]0

0

(,,);(0)

(,,);(0)

du

ftuvuu

dt

dv

gtuvvv

dt

==

==

(7.22)

To solve a system of two first-order differential equations by the Runge-Kutta method, take

[image: image86.wmf](

)

(

)

11234

11234

22

6

22

6

ii

ii

h

uukkkk

h

vvllll

+

+

=++++

=++++

(7.23)

where

[image: image87.wmf]1

1

211

211

3

(,,)(estimate of at)

(,,)(estimate of at)

(,,)(first estimate of at)

2222

(,,)(first estimate of at)

2222

(,

2

iiii

iiii

iiii

iiii

i

kftyvut

lgtyvvt

hhhh

kftukvlut

hhhh

lgtukvlvt

h

kftu

¢

=

¢

=

¢

=++++

¢

=++++

=+

22

322

433

433

,)(second estimate of at)

222

(,,)(second estimate of at)

2222

(,,)(estimate of at)

(,,)(estimate of at

iii

iiii

iiii

iiii

hhh

kvlut

hhhh

lgtukvlvt

kfthuhkvhluth

lgxhuhkvhlvt

¢

+++

¢

=++++

¢

=++++

¢

=++++

)

h

(7.24)

and
[image: image88.wmf]1

ii

httt

+

=D=-

.
Example 7.3.
In this example we examine the temperature of a small object dropped into a fluid contained within a vertical circular cylinder of radius R. We will assume that the body is a solid aluminum sphere of radius r, and the fluid depth is L. We will neglect any heat transfer to the container walls. The governing equations for this problem are:

[image: image89.wmf]()

sfB

B

dT

mchATT

dt

æö

=-

ç÷

èø

[image: image90.wmf]()

sBf

f

dT

mchATT

dt

æö

=-

ç÷

èø

where

m = mass

c = specific heat

T = temperature

As = surface area

h = convective heat transfer coefficient.

The above equations state that the heat lost by the body equals the heat gained by the fluid. We need to rewrite the equations to put them in the form required by the Runge-Kutta method.

[image: image91.wmf]()(,)

()

Bs

fBBf

B

dThA

TTFTT

dtmc

=-=

(7.25)

[image: image92.wmf]()(,)

()

f

s

fBBf

f

dT

hA

TTGTT

dtmc

=--=

(7.26)

We will use the following parameters for the example.

[image: image93.wmf]33

2707/,880/,896/,2050/,

alfalf

kgmkgmcJkgCcJkgC

rr

===-=-

oo

[image: image94.wmf]2

(0)150,(0)20,0.2,0.5,0.5,890/

alf

TCTCrRmLmhWmC

======-

ooo

t = [0, 1] s and dt = 0.005 s
The program follows:
% Example_7_3.m
% The example illustrates the method for solving a system of first
% order differential equations.
% The problem is to determine the temperature of a sphere that is
% suddenly immerse in a bath whose temperature varies as heat from
% the sphere enters the fluid.
% The units are: rho in kg/m^3, c in kJ/kg-C, t in s,
% volume in m^3, h in W/m^2-C, R,r and L in m, As in m^2
clear; clc;
rho_al=2707; c_al=0.896e3; r=0.2; Talo=150.0;
rho_f=880; c_f=2.05e3; R=0.50; L=0.5; Tfo=20;
T_al(1)=Talo; T_f(1)=Tfo;
vol_al=4/3*pi*r^3;
vol_f=pi*R^2*L-vol_al;
As=4*pi*r^2;
m_al=rho_al*vol_al;
m_f=rho_f*vol_f;
h=890.0;
tau_al=m_al/h*c_al/As;
tau_f=m_f/h*c_f/As;
fprintf('tau_al=%10.5f tau_f=%10.5f \n',tau_al,tau_f);
F=@ (T_al,T_f) ((T_f-T_al)/tau_al);
G=@ (T_al,T_f) (-(T_f-T_al)/tau_f);
t=0:0.01:1;
dt=0.01;
% Runge_Kutta method
for i=1:length(t)-1
 k1=F(T_al(i),T_f(i));
 L1=G(T_al(i),T_f(i));
 k2=F(T_al(i)+dt/2*k1,T_f(i)+dt/2*L1);
 L2=G(T_al(i)+dt/2*k1,T_f(i)+dt/2*L1);
 k3=F(T_al(i)+dt/2*k2,T_f(i)+dt/2*L2);
 L3=G(T_al(i)+dt/2*k2,T_f(i)+dt/2*L2);
 k4=F(T_al(i)+dt*k3,T_f(i)+dt*L3);
 L4=G(T_al(i)+dt*k3,T_f(i)+dt*L3);
 T_al(i+1)=T_al(i)+dt/6*(k1+2*k2+2*k3+k4);
 T_f(i+1)=T_f(i)+dt/6*(L1+2*L2+2*L3+L4);
end
fo=fopen('output.txt','w');
fprintf(fo,'Determining the temperature of the Aluminum sphere \n');
fprintf(fo,'and the temperature of the fluid \n\n');
fprintf(fo,' t(s) T(C) T(C) \n');
fprintf(fo,' sphere fluid \n');
fprintf(fo,'--- \n');
for i=1:length(t)
 fprintf(fo,'%10.2f %10.2f %10.2f \n',...
 t(i),T_al(i),T_f(i));
end
plot(t,T_al,t,T_f,'--'), xlabel('t'), ylabel('T-al,T-f'), grid,
title('T-al(C) and T-f(C) vs. t(s)'), legend('al','f');

Program Results
Determining the temperature of the Aluminum
sphere and the temperature of the fluid
 t(s) T(C) T(C)
 sphere fluid
--
 0.00 150.00 20.00
 10.00 143.06 20.87
 20.00 136.54 21.69
 30.00 130.41 22.46
 40.00 124.65 23.18
 50.00 119.23 23.86
 60.00 114.14 24.50
 70.00 109.36 25.10
 80.00 104.86 25.66
 90.00 100.63 26.19
 100.00 96.66 26.69
 . . .
 . . .
 900.00 34.93 34.43
 910.00 34.90 34.44
 920.00 34.88 34.44
 930.00 34.85 34.44
 940.00 34.83 34.45
 950.00 34.81 34.45
 960.00 34.79 34.45
 970.00 34.77 34.45
 980.00 34.76 34.46
 990.00 34.74 34.46
1000.00 34.72 34.46

See Figure 7.7.

[image: image95.emf]

Figure 7.7.
We see that in approximately 15 minutes, the sphere and the fluid are nearly in thermal equilibrium.

7.7. A Single Second-Order Equation

For a single second-order ordinary differential equation, the method of solution is to reduce the equation to a system of two first-order equations. Given the following second-order differential equation with initial conditions:

[image: image96.wmf]2

2

00

(,,)

(0) and (0)

du

uftuu

dt

uuuu

¢¢¢

==

¢¢

==

(7.28)

Let
[image: image97.wmf]uv

¢

=

, then
[image: image98.wmf](,,)

dv

uvftuv

dt

¢¢¢

===

. Also,
[image: image99.wmf](,,)

ugtuvv

¢

==

, giving

[image: image100.wmf](,,)

uv

vftuv

¢

=

¢

=

(7.29)

Thus we have converted Equations (7.26) into two first order differential equations of the same form as Equations (7.20) and thus the same solution techniques can be applied; i.e.,

[image: image101.wmf]1

1

211

21

322

(,,)(at)

()(at)

(,,)(first estimate of at)

2222

()(first estimate of at)

222

(,,)(second estimate

222

iiii

iii

iiii

iii

iii

kftuvvt

lutvut

hhhh

kftulvkvt

hhh

lutvkut

hhh

kftulvk

¢

=

¢¢

==

¢

=++++

¢¢

=+=++

=+++

32

433

43

 of at)

2

()(second estimate of at)

222

(,,)(estimate of at)

()(estimate of at)

i

iii

iiii

iii

h

vt

hhh

lutvkut

kfthuhlvhkvth

luthvhkuth

¢

+

¢¢

=+=++

¢

=++++

¢¢

=+=++

The values of u and v at the next time step are given by:

[image: image102.wmf](

)

(

)

11234

11234

22

6

22

6

ii

ii

h

uullll

h

vvkkkk

+

+

=++++

=++++

(7.30)

Example 7.4

We will illustrate this method by applying it to the mass-spring-dashpot system described in Project P2.5. Equation (7.31) gives the governing equation for the displacement, y, of the mass from the equilibrium position, i.e.,

[image: image103.wmf]0

'

'

'

=

+

+

y

m

k

y

m

c

y

(7.31)

Let
[image: image104.wmf]',

yv

=

then

[image: image105.wmf]''(,,)

dvck

yvyfyvt

dtmm

==--=

(7.32)

and

[image: image106.wmf]

 EMBED Equation.DSMT4 [image: image107.wmf](,,)

dy

vgyvt

dt

==

(7.33)

We will use the following parameters to illustrate the Runge-Kutter method.
m =25 kg, k = 200 N/m, c = 5
[image: image108.wmf]Ns

m

-

 and initial conditions y(0) = 5 m,
[image: image109.wmf]'(0)0

m

y

s

=

For the under-damped case with no forcing function, the exact solution is

[image: image110.wmf]22

expexpexp

222

exact

cckck

ytAtBt

mmmmm

ìü

æöæö

æö

ïï

æöæö

ç÷ç÷

=--+--

íý

ç÷

ç÷ç÷

ç÷ç÷

èøèø

èø

ïï

èøèø

îþ

 (7.34)

We will use the following parameters for the system:

m =25 kg, k = 200 N/m, c = 5
[image: image111.wmf]Ns

m

-

 and initial conditions y(0) = 5 m,
[image: image112.wmf]'(0)0

m

y

s

=

A = 5 m and
[image: image113.wmf]2

2

2

cA

B

m

kc

mm

=´

æö

-

ç÷

èø

(7.35)

We want to create a MATLAB program that will solve Equation (P2.5c) by the Runge-Kutta method and plot y vs. t and yexact vs. t on the same graph.
The Program follows:

% Example_7_4.m
% This program solves the motion of a mass-spring-dashpot system.
% The governing equation is a Second Order Ordinary Differential (ODE).
% The second order DEQ is reduced to 2 first order ODE.
% Equation (y vs. t) by the Runge Kutta method.
% m=25 kg, k= 200 N/m, c= 5 N-s/m, v=dy/dt
% y(1)= 5, v(1)=0
clear; clc;
m=25; k=200; c=5;
arg1=sqrt(k/m-(c/2/m)^2);
arg2=c/2/m;
A=5;
B=arg2*A/arg1;
y(1)=5; v(1)=0; y_exact(1)=5;
t=0:0.05:20;
dt=0.05;
f=@(y,v) (-c/m*v-k/m*y); %dvdt
g=@(v) (v); %dy/dt
for i=1:length(t)-1
 k1=f(y(i),v(i)); %dv/dt
 L1=g(v(i)); %dy/dt
 k2=f(y(i)+dt/2*L1,v(i)+dt/2*k1);
 L2=g(v(i)+dt/2*k1);
 k3=f(y(i)+dt/2*L2,v(i)+dt/2*k2);
 L3=g(v(i)+dt/2*k2);
 k4=f(y(i)+dt*L3,v(i)+dt*k3);
 L4=g(v(i)+dt*k3);
 y(i+1)=y(i)+dt/6*(L1+2*L2+2*L3+L4);
 v(i+1)=v(i)+dt/6*(k1+2*k2+2*k3+k4);
 y_exact(i+1)=exp(-arg2*t(i))*(A*cos(arg1*t(i))+B*sin(arg1*t(i)));
end
fo=fopen('output','w');
fprintf(fo,' t(s) y(m) v(m/s) \n');
fprintf(fo,'-- \n');
for i=1:10:length(t)
 fprintf(fo,' %10.2f %10.4f %10.4f \n',t(i),y(i),v(i));
end
plot(t,y,t,y_exact,'x'), xlabel('t'), ylabel('y'), grid,
title('y & y_exact vs. t'), legend('y','y_exact') ;
figure;
plot(t,v), xlabel('t'), ylabel('v'), title('v vs. t'), grid;

Program Results:
(see Figure 7.8a and 7.8b)

[image: image114.emf]

Figure 7.8a.

A comparison of the Runge-Kutta solution with the exact solution is shown in

Figure 7.8a.

[image: image115.emf]

Figure 7.8b.

7.8. MATLAB’s ODE Function

MATLAB has several built-in ODE functions that solve a system of first order ordinary differential equations, including ode23 and od45. In this chapter, we will demonstrate ode45, which is based on fourth and fifth order Runge-Kutta methods. A description of the ode45 function follows. The syntax for the function is:

[TOUT,YOUT] = ODE45(ODEFUN,TSPAN,Y0)
Thus, ode45 takes as arguments: a handle to a function describing the differential equations (ODEFUN), a vector describing a time interval (TSPAN), and vector describing the initial conditions (Y0). The function ODEFUN must take two input arguments: a time t and a variables
[image: image116.wmf]12

,,...,

n

yyy

 which describes the system of n differential equations. The system of n differential equations must be in standard form, i.e.;
[image: image117.wmf]12

(,,,...,)

nn

yftyyy

¢

=

. To obtain solutions at specific times T0,T1,...,TFINAL (all increasing or all decreasing), use TSPAN = [T0 T1 TFINAL]. The function ode45 will return two vectors: a list of time-points

TOUT = [T0 T1 TFINAL]

and the solution vector YOUT equal to
YOUT =
[image: image118.wmf]12

12

12

()()...y()

()()...y()

..

.

(()...y()

.

n

n

n

yy

yy

yy

éù

êú

êú

êú

êú

êú

êú

ëû

T0T0T0

T1T1T1

TFINAL)TFINALTFINAL

Example 7.6.

Solve the following system of three first-order differential equations using MATLAB’s ode45 function:

[image: image119.wmf]123

213

312

0.51

yyyt

yyy

yyy

¢

=

¢

=-

¢

=-

(7.39)

Initial conditions:
[image: image120.wmf]1

(0)0

y

=

,
[image: image121.wmf]2

(0)1.0

y

=

, and
[image: image122.wmf]3

()1.0

yt

=

.

% Example_7_6.m

% This program solves a system of 3 ordinary differential equations

% by using MATLAB's ode45 function.

% y1'=y2*y3*t, y2'=-y1*y3, y3'=-0.51*y1*y2

% y1(0)=0, y2(0)=1.0, y3(0)=1.0

clear; clc;

initial=[0.0 1.0 1.0];

tspan=0.0:0.1:10.0;

[t,Y]=ode45(@dydt3,tspan,initial);

y1=Y(:,1);

y2=Y(:,2);

y3=Y(:,3);

fid=fopen('output.txt','w');

fprintf(fid,' t y1 y2 y3 \n');

fprintf(fid,'---\n');

for i=1:2:101

 fprintf(fid,' %7.2f %10.4f %10.4f %10.4f \n', ...

 t(i),y1(i),y2(i),y3(i))

end

fclose(fid);

plot(t,y1,t,y2,'-.',t,y3,'--'), xlabel('t'),

ylabel('y1,y2,y3'),title('(y1, y2, y3) vs. t'), grid,

text(5.2,-0.8,'y1'), text(7.7,-0.25,'y2'), text(4.2,0.85,'y3');
--
% dydt3.m

% This function works with example_6_5.m

% y1'=y2*y3*t, y2'=-y1*y3, y3'=-0.51*y1*y2

% y1=Y(1), y2=Y(2), y3=Y(3).

function Yprime=dydt3(t,Y)

Yprime=zeros(3,1);

Yprime(1)=Y(2)*Y(3)*t;

Yprime(2)=-Y(1)*Y(3);

Yprime(3)=-0.51*Y(1)*Y(2);

Program Results:

The calculated solutions for
[image: image123.wmf]1

y

,
[image: image124.wmf]2

y

, and
[image: image125.wmf]3

y

 are shown in Figure 7.10.

[image: image126.emf]

Figure 7.10.

Example 7.7.
In Exercise E2.5, we described the governing equations for the velocity of a steel ball bearing after being dropped into a fluid of oil. The governing equations are:

[image: image127.wmf](

)

1

dVgBD

WBDg

dtWWW

æö

=--=--

ç÷

èø

[image: image128.wmf]'

yV

=

where

D = drag =
[image: image129.wmf]6

RV

pm

R = radius of the sphere.

[image: image130.wmf]m

=

viscosity of the fluid.

V = the velocity of sphere.

W = weight of sphere =
[image: image131.wmf]steel

g

r

"

B = buoyancy = weight of fluid displaced

[image: image132.wmf]"

= volume of sphere

g = gravitational constant = 9.81 m/s2
We wish to determine the position and velocity of the ball bearing as a function of time, t,
by MATLAB’s ode45 function.
% Example_7_7.m
% This program uses the ode45 function to solve the position
% and velocity of a steel ball bearing that is dropped in a
% vertical cylinder containing oil. The problem was described
% in Exercise 2.5. The governing equations are:
% v=dy/dt and dv/dt= g(1-B/W-D/W) where v=velocity, y=position,
% W=weight of the ball bearing
% B=Bouyancy, D=the drag, g=gavitational constant.
% v(0)=0, y(0) = 0
% Y(1)=y, Y(2)=v
clear; clc;
initial = [0.0 0.0];
tspan = 0.0:0.01:0.2;
[t,Y] = ode45(@fun_ball_bearing,tspan,initial);
y = Y(:,1);
v = Y(:,2);
fo = fopen('output.txt','w');
fprintf(fo,' t(s) y(m) v(m/s) \n');
fprintf(fo,'---\n');
for i = 1:21
 fprintf(fo,'%7.2f %10.4f %10.4f \n',t(i),y(i),v(i));
end
plot(t,v,t,y,'--'), xlabel('t'), ylabel('v,y'),
title('v and y vs. t'), grid,
legend('v','y');
--
% fun_ball_bearing.m
% This function works with example_7_7.m
% v=dy/dt and dv/dt= g(1-B/W-D/W) where v=velocity, y=position,
% W=weight of the ball bearing
% B=Bouyancy, D=the drag, g=gavitational constant.
% y = Y(1), v = Y(2)
% Units for: mu=N-s/m^2, rho=kg/m^3, R=m, g=m/s^2, D=N
function Yprime = fun_ball_bearing(t,Y)
Yprime = zeros(2,1);
R=0.01; mu=3.85; rho_steel=7910; rho_oil=899; g=9.81;
D=6*pi*R*mu*Y(2);
vol=4*pi/3*R^3;
W=rho_steel*g*vol;
Yprime(1) = Y(2);
Yprime(2) = g*(1-rho_oil/rho_steel-D/W);
--
Program results:
 t(s) y(m) v(m/s)

 0.00 0.0000 0.0000
 0.01 0.0004 0.0781
 0.02 0.0015 0.1408
 0.03 0.0032 0.1912
 0.04 0.0053 0.2317
 0.05 0.0078 0.2642
 0.06 0.0106 0.2903
 0.07 0.0136 0.3113
 0.08 0.0168 0.3282
 0.09 0.0201 0.3417
 0.10 0.0236 0.3526
 0.11 0.0272 0.3613
 0.12 0.0308 0.3683
 0.13 0.0345 0.3740
 0.14 0.0383 0.3785
 0.15 0.0421 0.3821
 0.16 0.0459 0.3851
 0.17 0.0498 0.3874
 0.18 0.0537 0.3893
 0.19 0.0576 0.3908
 0.20 0.0615 0.3920

[image: image133.emf]00.020.040.060.080.10.120.140.160.180.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

v,y

v and y vs. t

v

y

PAGE
28

_1382968644.unknown

_1415036077.unknown

_1454667658.unknown

_1454762579.unknown

_1454762926.unknown

_1454763127.unknown

_1454762947.unknown

_1454762799.unknown

_1454746537.unknown

_1450807023.unknown

_1450845759.unknown

_1450846048.unknown

_1450846102.unknown

_1450845932.unknown

_1450810435.unknown

_1450805539.unknown

_1450806949.unknown

_1426566430.unknown

_1427485146.unknown

_1432047931.unknown

_1415036213.unknown

_1417680579.unknown

_1404026738.unknown

_1405967099.unknown

_1406186496.unknown

_1406281526.unknown

_1406281614.unknown

_1415036055.unknown

_1406288845.unknown

_1406281547.unknown

_1406280716.unknown

_1406281480.unknown

_1406280819.unknown

_1406280613.unknown

_1406185278.unknown

_1406186387.unknown

_1406185167.unknown

_1405877923.unknown

_1405878028.unknown

_1405880665.unknown

_1405877142.unknown

_1382970482.unknown

_1403956207.unknown

_1403956323.unknown

_1403956728.unknown

_1403957302.unknown

_1400313850.unknown

_1400308180.unknown

_1400308689.unknown

_1383030105.unknown

_1382968749.unknown

_1382970318.unknown

_1382970384.unknown

_1382970290.unknown

_1382968735.unknown

_1382024384.unknown

_1382368676.unknown

_1382510605.unknown

_1382512146.unknown

_1382515675.unknown

_1382518705.unknown

_1382600345.unknown

_1382512597.unknown

_1382512085.unknown

_1382430109.unknown

_1382509301.unknown

_1382430043.unknown

_1382346774.unknown

_1382353357.unknown

_1382368674.unknown

_1382368675.unknown

_1382355461.unknown

_1382352965.unknown

_1382346681.unknown

_1382346735.unknown

_1382024394.unknown

_1369460076.unknown

_1371651339.unknown

_1372325612.unknown

_1372327225.unknown

_1372332357.unknown

_1372325469.unknown

_1369667506.unknown

_1369667921.unknown

_1370100782.unknown

_1370271283.unknown

_1370100791.unknown

_1370100774.unknown

_1369667550.unknown

_1369667399.unknown

_1369667489.unknown

_1369667366.unknown

_1368957206.unknown

_1368972805.unknown

_1368972850.unknown

_1368968837.unknown

_1368956713.unknown

_1368957146.unknown

_1352540559.unknown

_1273125553.unknown

