Review 1:
In starting a second course in Computer Applications in Engineering, it might be beneficial to have a review of the first course. I have included a series of 5 review lessons covering the basic building blocks listed below in writing a computer program. Example programs are included.

· The principal objective of the textbook is to teach students to write computer programs on the MATLAB platform to solve Engineering type problems.

· Most Engineering programs will include some or all of the following building blocks in program development:

a. Arithmetic statements (assignments).

b. Input/output statements.

c. Loop statements (for loop and while loop).

 d. Alternative path statements (if, elseif).

 e. Functions (built in and self written).

Building blocks (a)-(d) are introduced in Chapter 2. Building block (e) is introduced in Chapter 3. Example programs containing these program building blocks are given throughout the book.

· Arithmetic statement (assignment):
The arithmetic statement assigns a value to a variable, say, X, in a statement consisting of numbers, variables and arithmetic operators.
Example: X=2.0*y/c+30.2

Note: All terms on the right hand side of the equal sign must be previously defined in the program.
· Arithmetic Operators

+
addition

-
subtraction

*
multiplication

/
division

^
exponentiation
· For arithmetic statements (assignments) containing several of these Arithmetic Operators, most, if not all, have a specific order in carrying out the operations.

· First all expressions within parentheses will carried out first in the following order, exponentiation, multiplication and division, addition and subtraction.

Expressions outside parentheses will be carried out in the same
order.
· The basic data structure in MATLAB is a matrix.

· A matrix is surrounded by brackets and may have an arbitrary number of rows and columns
· A matrix consisting of 1 row and several columns, or 1 column and several rows is considered a vector; example:

>> A = [2 3 6 5] (row vector)

>> A = [2

 3

 6

 5] (column vector)

· The colon operator (:) may be used to:

1. Create a new matrix from an existing matrix; examples:

if
[image: image1.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

1

3

1

2

5

2

10

7

5

=

A

then x = A(:,1) gives
[image: image2.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

2

5

x

The colon in the expression A(:,1) implies all the rows in matrix A, and the 1 implies column 1.

x = A(:,2:3) gives
[image: image3.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

1

3

2

5

10

7

=

x

The first colon in the expression A(:,2:3) implies all the rows in A, and the 2:3 implies columns 2 and 3.
We can also write

y = A(1,:) which gives
[image: image4.wmf]]

10

7

5

[

=

y

The 1 implies the first row and the colon implies all the columns.

2. Colon can also be used to generate a series of numbers. The format is:

n = starting value : step size: final value. If the step size is omitted, the default
step size is one. Example:

n = 1:8 gives
[image: image5.wmf][

]

12345678

n

=

.
To increment in steps of 2 use
 n = 1:2:7 gives
[image: image6.wmf][

]

1357

n

=

These type of expressions are often used in a for loop, which is discussed later.

· Input/output statements:
Output:

· The fprintf command prints formatted text to the screen or to a file; example:
>> V = 2.2;
>> fprintf('The velocity is %f m/s \n', V);
The following will appear on the screen:

The velocity is 2.200000 m/s
· The \n (newline) tells MATLAB to move the cursor to the next line.

· MATLAB also has a tab command. It is \t , this command tells MATLAB to move the cursor several spaces along the same line.

· The %f refers to a formatted floating point number that is assigned to variable V, and the default is 6 decimal places.

· The command fprintf uses format strings based on the C programming language.

· You can specify the minimum number of spaces for the printed variable as well as the number of decimal places by using %8.2f.This will allow 8 spaces for the variable, to 2 decimal places.

· You can also just specify the number of decimal places, for example say 3 decimal places, then let MATLAB decide the number of spaces for the variable by using %.3f.
· However, to create neat looking tables, it is best to specify the number of spaces in the format statement that allows for several spaces between variables in adjacent
Other formats:

%i or %d
used for integers.

%e

scientific notation (e.g. 6.02e23), default is 6 decimal

places

%g

automatically uses the briefest of %f or %e format

%s

used for a string of characters.

%c

used for a single character.

· Printing to a file: it is often useful to print the results of a MATLAB program to a file, possibly for inclusion in a report. In addition, program output which is printed to a file can be subsequently edited within the file; such as aligning or editing column headings in a table.

· Before you can print to a file, you need to open a file for printing with the command, fopen. The syntax for fopen is:

fo = fopen('filename','w')

Thus, fo is a pointer to the file named filename, and the w indicates writing to the file.

· To print to filename use

fprintf(fo,'format',var1,var2,..);

where the format string contains the text format for var1, var2, etc.

· The following example illustrates printing to a file.

Example2.1.

% Example_2_1.m

% This program is an example for printing to a file.

clear; clc;

V=12; % velocity

F=50.2; % force

fo=fopen('output.txt','w');

fprintf(fo,'V=%4i m/s , F = %5.2f N \n',V,F);

fclose(fo);

Program Results:

V= 12 m/s , F = 50.20 N

--

· The extension on the output file should be .txt (otherwise when you try to open the file, MATLAB will start the import wizard). The resulting output file can be opened from either the Script Window or the Command Window.
· To access the output file, click on the Open icon in the Toolstrip which brings up the screen shown in Figure 2.8.

· In the box labeled File name, type in *.txt.

· This will bring up all the files with the extension .txt. To open the file of interest, double click on the name of the output file (in this example, the file name is output.txt).
[image: image7.emf]

Figure 2.8. List of files with .txt extension.

Example2.1.

Printing to a file is illustrated in this example.
 % Example_2_1.m
 % This program is an example for printing to a file.

clear; clc;
V=12; % velocity
F=50.2; % force
fo=fopen('output.txt','w');
fprintf(fo,'V=%4i m/s , F = %5.2f N \n',V,F);
fclose(fo);

Program Results:

V= 12 m/s , F = 50.20 N

--

Input:
· If you wish to have your program pause to accept input from the keyboard, use the input function; for example, to enter a 2 by 3 matrix, use

Z = input('Enter matrix Z enclosed by brackets \n');
You will see the following on the screen.

Enter matrix Z enclosed by brackets
As an example, type in:

[5.1 6.3 2.5; 3.1 4.2 1.3]
Thus,
[image: image8.wmf]ú

û

ù

ê

ë

é

=

3

.

1

2

.

4

1

.

3

5

.

2

3

.

6

1

.

5

Z

.
Note that the argument to input() is a character string enclosed by the single quotation marks. The character string will be printed to the screen as shown above.

· If the response to the input statement is a character or a string, you need to enclose the character or the string with single quotation marks.

· However, you can avoid this requirement by entering a second argument of 's' to the input statement as shown in the following statement:

response = input('Print Z to a file? (y/n):\n', 's');
In this case, the user can respond with either a y or n (without single quotation marks).
An example using this concept will be given later in this chapter
· An existing data file can also be entered into a program by the load command. The load command, unlike the fscanf command, leaves rows as rows and columns as columns.
Example:

load filename.txt

x = filename(:,1);

y = filename(:,2);
The input file must have the same number of rows in each column. (See Examples 2.11 in the textbook).
PAGE
1

_1343074534.unknown

_1377430165.unknown

_1377430176.unknown

_1343074731.unknown

_1343284993.unknown

_1326955027.unknown

_1337669071.unknown

