Chapter 8. . Boundary Value Problems of Ordinary Differential Equations

8.1. Introduction

· When an ordinary differential equation involves boundary conditions instead of initial

conditions, then a numerical approach is most often used to solve the problem. 

· In a boundary value problem, we essentially need to “fit” a solution into the known

boundary conditions as opposed to simply integrating from the initial conditions. 

· An  example of this type of  problem is the deflection of a beam where boundary

conditions at both ends of the beam are specified. 
· Another example of this type of problem is to determine the electric field between the plates of a capacitor with a known charge density between the plates and a fixed voltage across the plates. 

· In both cases, a solution is found by numerically solving a second order, non-homogeneous ordinary differential equation using finite difference methods.

8.2. Difference Formulas

To numerically solve a boundary value problem involving an ordinary, linear differential equation, we will need the difference formulas obtained by Taylor series expansion. This will enable us to reduce differential equations to a set of algebraic equations. As we saw in Section 3.1, we can expand 
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We define the step size 
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Let 
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, etc. Then, the Taylor series expansion equation can be written as:
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We will now rewrite Equation (8.2) for the point 
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or
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Using only two terms on the right side of Equations (8.3) and (8.4) and solving for 
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(forward difference formula)
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 (backward difference formula)
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Now, let us just keep three terms in Equations (8.3) and Equation (8.4) and subtract the latter from the first , giving,  





[image: image18.wmf]11

2

iii

yyyh

+-

¢

-=


Solving for 
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(8.7)  This is the central difference formula for 
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 because three terms in the Taylor series were used to obtain the formula). Now, let us again keep just three terms in Equations (8.3) and Equation (8.4) and add the resulting equations, we obtain  
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Solving for 
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(8.8) 

This is the central difference formula for 
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The four difference formulas derived above are summarized in Table 8.1. We will now show how they are applied in order to model a boundary value problem that leads to a tri-diagonal system of linear equations. The formulas used in the example are tabulated below.

Table 8.1. Summary of finite difference formulas for boundary value problems.
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	First-order forward difference formula. Used for 
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  boundary condition at beginning of interval
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	First-order backward difference formula. Used for 
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 boundary condition at end of interval
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	First-order central difference formula. Used for first-order differential equation in middle of interval
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	Second-order central difference formula. Used for second-order differential equation in middle of interval


Example 8.1

In this example, we consider the deflection of a beam subjected to both a uniform load, w/m and a concentrated load P. Consider the beam shown in Figure 8.1(a).
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Figure 8.1a Loaded beam
The governing equation for the deflection of a beam is (for a derivation of this equation see Appendix C):
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(8.9)

where 



  y = deflection of beam



M = Internal bending moment



E = Modulus of elasticity of beam material



I = Moment of inertia of an area






To obtain the finite difference form of the governing equation, sub-divide the x-axis into N sub-divisions, giving x1, x2, x3, …, xN+1.
Let the deflections at these points be: y1, y2, y3, …, yN+1
The finite difference form for 
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(8.10)

Thus, the governing differential equation becomes:
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or
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(8.11)

The boundary conditions are:
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Equations 8.11-8.12 represent a system of algebraic, linear equations which can be solved by MATLAB’s inv function or Gauss Elimination.  In matrix notation, the system can be represented as AY = C

As a matrix set of equations, Equations 8.11 and 8.12 can be expressed as
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As in the statics problem, the first index in the matrix coefficient, 
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 is the equation number and the second index represents the y variable that is multiplied by that coefficient. 
But before we can obtain an expression for 
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, we need to obtain expressions for the bending moments, Mn.  First solve for the reactions (see Figure 8.1b). 
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Figure 8.1b Beam reactions
Taking the moment about point A will enable us to determine R2, i.e.,
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Solving for R2 gives:
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Taking the moments about point B will enable us to determine R1, i.e.,
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Solving for R1 gives:
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The internal bending moments are taken about the neutral axis of the section at x. 
For  
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. See Figures 8.2 (a) and 8.2 (b).
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 Figures 8.2a and 8.2b.
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Solving for M(x) and expressing the equation in finite difference form gives:
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For 
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Figure 8.3.
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Solving for M (x) and expressing the equation in finite difference form gives:
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For 
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Figure 8.4a and 8.4b.
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Solving for M(x) and expressing the equation in finite difference form gives:
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For this section, it is more convenient to select the section from the right side of the beam (See Figure 8.4 (b)) giving  
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Solving for M(x) and expressing the equation in finite difference form gives:
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Equation (8.19) is equivalent to Equation (8.18) for Mn for the region 
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Before we can write a computer program to solve the problem, we need to determine the coefficient matrices 
[image: image67.wmf],

nj

a

 and 
[image: image68.wmf]n

c

 .  To do this, let us set up several of the algebraic equations utilizing equations 8.11-8.13.
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Eq #      Equation
     1
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----------------------------------------------------

We will use the following parameters for the problem:
w = 4.0 kN/m, 
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 kN-m2 , P = 35 kN, L = 3 m, L1 = 1 m, L2 = 2 m and 30 sub-divisions on the x domain.
The program follows:
% Example_8_1.m
% This program calculates the deflection of a beam which is a
% boundary value problem. Finite difference method is used
% to solve the problem. This method results in a set of
% linear equations which is solved by the inv matrix method.
% The governing equations are: y(n-1)-2y(n)+y(n+1)=M(n)*dx^2/EI
% THE set of equations can be written as a matrix equation AY=C
% w=4.0 kN/m, EI=1.5e3 kN-m^2, P=35 kN, L=3 m  
clear; clc;
w = 4.0; EI = 1.5e3; P = 35; L = 3; L1 = 1; L2 = 2;
N1 = 11; N2 = 21; N = 30; dx = L/N;
R1 = P*(1-L2/L)+w*L1*(1-L1/(2*L));
R2 = w/(2*L)*L1^2 + P*L2/L;
M(1) = 0; M(N+1) = 0; 
% y(1) = 0.0; y(N+1) = 0.0; 
x = 0:dx:L;
% determining M(i) values
for i = 2:N1
    M(i) = R1*x(i)-w/2*x(i)^2;
end
for i = N1+1:N2
    M(i) = R1*x(i)-w*L1*(x(i)-L1/2);
end
for i = N2+1:N
    M(i) = R2*(L-x(i));
end
% Establing the coefficient matrix
a = zeros(N+1,N+1); c = zeros(N+1,1);
% overwrite the non-zero coefficients 
a(1,1) = 1; a(N+1,N+1) = 1; c(1)=0; c(N+1)=0;
for i = 2:N
    a(i,i-1) = 1;
    a(i,i) = -2;
    a(i,i+1) = 1;
    c(i) = M(i)/(EI)*dx^2;
end
y = inv(a)*c;
y=y*100;
fprintf('x(m)         y(cm) \n');
fprintf('------------------------\n');
for i = 1:length(x)
    fprintf('%5.2f   %12.4e \n',x(i),y(i));
end
plot(x,y), xlabel('x(m)'), ylabel('y(cm)'),
title('Deflection vs. position'), grid;
------------------------------------------------------------- 
Program Results:

 x(m)        y(cm) 

------------------------

 0.00     0.0000e+00 

 0.10    -1.1294e-01 

 0.20    -2.2490e-01 

 0.30    -3.3491e-01 

 0.40    -4.4204e-01 

 0.50    -5.4539e-01
  .        .

  .        .

 1.30    -1.1357e+00 

 1.40    -1.1684e+00 

 1.50    -1.1895e+00 

 1.60    -1.1982e+00 

 1.70    -1.1939e+00 

 1.80    -1.1758e+00 
  .        .

  .        .
>>
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Figure 8.5 Deflection of a beam
----------------------------------------------------------------------------------------
We see that the maximum deflection occurs at approximately 1.6 m.
Example 8.2

Figure 8.6 shows a parallel plate capacitor with constant applied voltage 
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 and a fixed charge density 
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 between the plates. For cases with planar symmetry such as the parallel plate capacitor where the charge density only changes in the x direction (i.e. there is no y nor z dependency), then Poisson’s equation describing the electric potential 
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 reduces to an ordinary differential equation:
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where 
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 is the electric potential (in volts), 
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We wish to solve for 
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Figure 8.6.
Substituting the expression for 
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(8.21)

Since Equation (8.21) can readily be solved analytically, we will solve Equation (8.21)  both analytically and numerically and then compare the results. We can solve this simple differential equation by integrating twice on both sides, giving
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where 
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 and 
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 are constants of integration which are determined by applying the boundary conditions. Applying the first boundary condition 
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Solving for 
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Thus, the exact solution to Equation (8.22) is
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To solve Equation (8.21) numerically, we subdivide the region between the plates into N intervals and apply the finite difference formulas of Table 8.1. Dividing the region 
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We begin by applying the second-order central difference formula from Table 8.1 to Equation (8.21), giving




[image: image112.wmf](

)

22

11

2

2

2

iiio

iii

xDxD

h

r

e

+-

F+F-F

¢¢

F==--+


Rearranging gives
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(8.24)

The above equation is valid for i = 2, 3, 4, ..., N
We now use the boundary conditions to determine the values for the upper-left and lower-right corners of the coefficient matrix. First, we rewrite the boundary conditions as
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The system is a set of linear algebraic equations and can be solved by MATLAB’s inv function.

The Program Follows:

% Example_8_2.m
% Find the electric potential between a parallel plate capacitor with
% fixed charge density between the plates and known boundary 

% conditions.
clear; clc;
N=40;                 % step count
D=.0004;              % plate separation (meters)
h=D/N;                % step size
rho=1e4;              % coulomb/m^3
epsilon = 1.04e-12;   % dielectric between the plates
Vo=5;                 % voltage across plates
% First, calculate all values of x. 
x = 0:h:D;
% Determine matrix coefficients, a*phi=c:
a(1,1)=1; C(1)=0;
a(N+1,N+1)=1; c(N+1)=Vo;
for i=2:N
    a(i,i-1)=1; a(i,i)=-2; a(i,i+1)=1;
    c(i)=-rho/epsilon*h^2*(x(i)^2-2*D*x(i)+D^2);
    % Calculate exact solution (Equation 7.54)
    phi_exact(i) = (-rho/epsilon)* (1.0/12*x(i)^4 - (D/3)*x(i)^3 + ...
    (D^2/2)*x(i)^2 - (epsilon*Vo/(D*rho)+D^3/4)*x(i));
end
phi_exact(1)=0; phi_exact(N+1)=Vo;
phi=inv(a)*c';
% Plot numerical and exact solutions for phi:
plot(x,phi,x,phi_exact,'x'), xlabel('x (meters)'), 
ylabel('Phi (volts)'),grid, legend('phi','phi-exact');

---------------------------------------------------------------------------------------------
Program Results: 
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Figure 8.7.
-----------------------------------------------------------------------------------------------

In both Examples, the system of linear equations are “tri-diagonal”. This designation  refers to the fact that coefficient matrix defined by the system of linear algebraic 

Equations (8.11)-(8-13) and Equations (8.24-(8.26) contain non-zero values for the main diagonal elements and the diagonal elements immediately above and below the main diagonal. Except for these three diagonals, the rest of the elements in the coefficient matrix are all zero. A tri-diagonal system of linear equations can be treated in a more efficient way than by taking the inverse of the coefficient matrix or by using the Gauss Elimination method for solving a system of linear algebraic equations. This becomes important only for very large systems. The treatment of a Tri-Diagonal System of Linear Equations follows.

8.3.  Solution of a Tri-Diagonal System of Linear Equations 

A tri-diagonal system of equations has the following form:
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(8.27)

where 
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 are the unknowns. By multiplying out the matrices in Equation (8.27), the set of equations become:
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The general concept for solving a tri-diagonal system follows: 

We can solve Equation (8.28) for 
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 and substitute the result into Equation (8.29), giving an equation that only involves 
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 , which we designate as Equation (8.29().

We can then solve Equation (8.29() for the 
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 and substitute the result into Equation  (8.30).  This gives an equation that only involves 
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, which we designate as Equation (8.30(). This process is continued until the last equation. When 
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Then, by back substitution, we can obtain all the other 
[image: image139.wmf]i

x

 values.

Method Summary for m equations:

Arrange the set of equations into the general form:
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Note: for the first and last equations (corresponding to the upper-left and lower-right coefficients in the tri-diagonal matrix), 
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By the substitution procedure outlined above, we can obtain a set of equations of the form
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where 
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Then,
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If general expressions for 
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 can be obtained, then we can solve the system for all 
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. We start by rewriting Equation (8.34) to put the (i–1)th equation into the form:
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Substituting Equation (8.36) in to (8.33) gives
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Solving for 
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Matching terms between Equations (8.37) and (8.34), we obtain
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which is valid for 
[image: image156.wmf]m

i

,

,

3

,

2

K

=

.

The very first equation in the system is already in the form 
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, and thus matching terms between Equations (8.28) and (8.34), we obtain
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We can now successively apply Equation (8.38) to find 
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Then, 
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Example 8.3

Solve the following system of equations for all 
[image: image163.wmf]i

x

:
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First we need to put the equations in the form of Equation (8.33), which is
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This gives
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We see that 
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A MATLAB program to solve Equations (7.40)-(7.45) for all 
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x

 follows.

% Example_8_3.m

% Example of solving a tri-diagonal system of equations

a = [-2  -14/3  6  -31/2  8    0];

b = [0   -4/3  -11  3/2  -4  -20];

c = [7    -3    3   1/2  -19  11];

m = length(a);

% compute d and e coefficients

d(1)=c(1);

e(1)=a(1);
for i=2:m
    d(i) = (c(i) + b(i)*d(i-1)) / (1 - b(i)*e(i-1));
    e(i) = a(i) / (1 - b(i)*e(i-1));
end
% compute x
x(m)=d(m);
for i=(m-1):-1:1
    x(i) = d(i) + e(i)*x(i+1);
end
% display the solution:
x
------------------------------------------------------------------------------------------
Program Results:
x =

   37.3362  -15.1681   -8.0600  -29.6515    1.1653  -12.3051
---------------------------------------------------------------------

Note that the above example contains only arithmetic operations and no expensive matrix operations (e.g. solving by Gauss Elimination or finding an inverse matrix ). Thus the algorithm will be extremely fast, even for systems with many equations (e.g. order of  m =1000 or more).
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