Lesson 17.

4.6  Gauss Elimination 

As previously discussed, the Gauss Elimination method is computationally more efficient than  the inverse matrix method or the method of determinants with Cramer’s rule. We wish use the Gauss elimination method to solve the system of linear equations described by Equation (4.1) and represented in matrix form by Equation (4.2). In the Gauss Elimination method, the original system is reduced to an equivalent triangular set which can readily be solved by back substitution. The reduced equivalent set would appear like the following set of equations,
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(4.18)

where the tilde (~) variables are a new set of coefficients (to be determined) and where the new coefficient matrix 
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 is diagonal (i.e. all of the coefficients left of the main diagonal are zero. Then,
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To determine the reduced equivalent set 
[image: image4.wmf]A

%

 and 
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,  it is convenient to augment the original coefficient matrix A with the C matrix as shown in Equation (4.19) 
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(4.19)

The following procedure is used to obtain the reduced equivalent set.

1. Multiply the first row of Equations (4.1) by 
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 and subtract from the second row, giving
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and
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This gives 
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2. For the third row: multiply the first row of Equations (4.1) by 
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 and subtract from row three, giving
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and
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This gives 
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3. This process is repeated for the remaining rows 4, 5, 6,…, n. The original row one is kept in its original form. All other rows have been modified and the new coefficients are designated by a ( ′ ). Except for the first row , the resulting set will not contain 
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4. For the preceding steps, the first row of Equations (4.1) was used as the pivot row and 
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 was the pivot element. We now use the new row two as the pivot row and repeat steps 1–3 for the remaining rows below row two. Thus, multiply the new row two by 
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 and subtract from row three giving
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This gives 
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Similarly, multiply the new row two by  
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 and subtract from row four, giving
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This gives 
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This process is continued for the remaining rows 5,6,...,n. Except for the new row two, the set does not contain 
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5. The next row is now used as a pivot row and the process is continued until the (n–1)th row is used as the pivot row. When this is complete, the new system is triangular and can be solved by back substitution.

The general expression for the new coefficients is
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where k is the pivot row.

These operations only affect the 
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 and 
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. Thus, we need only operate on the A and C matrices. 
Example 4.5

Given:
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The augmented coefficient matrix is:
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      multiply row 1 by 
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Row 2 becomes: 
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New matrix is:
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    multiply row 1 by 
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Row 3 becomes: 
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New matrix is:
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We now use row 2 as the pivot row.
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   multiply row 2 by 
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Row 3 becomes: 
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New matrix is:
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The system is now triangular and the system can be rewritten as
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Solving:
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Two important considerations: 

1. If 
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 is zero, where k is the pivot row, then the process cannot be carried out.

2. Greater accuracy in the solution is obtained if the pivot element is the absolute maximum available from the set. That is; if the pivot row is k, one compares the 
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 (see Figure 4.9). If 
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 is interchanged with the kth row. This only affects the ordering of the equations and does not affect the solution.

 If after row interchange is carried out and one of the 
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’s  remains zero, then the system is singular and no solution can be obtained.

One last consideration: it can be shown that if the magnitude of the pivot element is much smaller than other elements in the matrix, the use of the small pivot element will cause a decrease in the accuracy of the solution. To check if this is the case, you can first scale the equations; i.e, divide each equation by the absolute maximum coefficient in that equation. This makes the absolute maximum coefficient in that equation equal to 1.0. If 
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 << 1, then the solution is likely to be inaccurate.
4.7.  Number of Solutions

Suppose a Gauss Elimination program is carried out and the following results are obtained:
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(4.20)

where 
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 are not zero. There are two possible cases:

(1) No solution exits if any one of the 
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 is not zero

(2) Infinitely many solutions exits if 
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 are not zero, then the system would appear as follows:
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For this case there is only one solution.
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