Review 2.

Loops:

· Loops provides the means to repeat a series of statements with just a few lines of code. For example, suppose we had an equation for the x position of a vehicle as a function of time, such as

x = xo - v cos (
[image: image1.wmf]q

) t
where

x = the x position at time t.

xo = the initial position of the vehicle.

v = the vehicle’s speed

and we wish to create a table or a plot of the x position of the vehicle at

various times. In our program we create a loop, and within the loop, we assign or calculate a time, calculate the x position based on the assigned or calculated time, print the time and the position, return to the top of the loop, calculate a different time, calculate the x position based on the new time, print the new time and the new position. Continue the process until you have reached the last time that you wish to determine the x position. Since xo, v and
[image: image2.wmf]q

 are constants, you would not want those variables to be inside the loop.

Syntax for the for loop:

for index variable = starting value: step size: final value
The step size may be omitted, then MATLAB will take the step size to be 1.
As an example, we will take the index variable as m, the starting value as 1, omit the step size and take the final value as 20, then our for loop will be

for m = 1:20

statement;

.

.

.

statement;

end

The process is as follows:

· MATLAB sets the index m to 1.
· It then carries out the statements between the for and end statements.
· Then returns to the top of the loop.
· It changes m to 2 and repeats the process.
· After the process has been carried out 20 times the program exits the loop without further execution of the statements within the loop.
· All statements which are not to be repeated should not be within the for loop. For example, table headings which are not to be repeated should be outside the for loop.
· You will notice that statements within the for loop are indented. MATLAB does this automatically to make it easier to read and debug a script containing for loops. You can have MATLAB do final indenting by highlighting your entire script and then entering Ctl-I.
Example 2.2.
In this example, we illustrate the use of a for loop. The indices in the for loop are non-integers.

% Example_2_2.m

% This program determines the x position of a vehicle as a

% function of time, t.

% the governing equation is x=xo+v*cos(theta)*t

% t varies from 0 to 200 seconds.

% v=10 m/s and theta=30 degrees

clear; clc;

xo=0.0; theta=pi/6; v=10.0;

fprintf(' t(s) x(m) \n');

fprintf('------------------------------- \n');

for t=0:0.5:10

 x=xo+v*cos(theta)*t;

 fprintf('%4.1f %10.1f \n',t,x);

end

Program Results:

 t(s) x(m)

0.0 0.0

0.5 4.3

1.0 8.7

1.5 13.0

2.0 17.3

 . .

 . .

 8.0 69.3

 8.5 73.6

 9.0 77.9

 9.5 82.3

 10.0 86.6

>>

Note: If the index in a for loop is used to select an element of a matrix, then the index must be an integer. However, if you are not using the for indices to select an element of a matrix then the for indices need not be an integer as was shown in the previous example.

Example 2.3.

In the this example the indices in the for loop are integers and are used to select an element of a vector.

% Example_2_3.m

% This program is an example of the use of a for loop in which

% the indices of the for loop select an element of a vector.

% The program creates a table of y1 and y2 vs t.

% 0 <= t <= 10

clear; clc;

% Table headings:

fprintf(' t y1 y2 \n');

fprintf(' -----------------------------------\n');

t=0:0.5:10;

for j=1:length(t)

y1=t(j)^2/10;

y2=t(j)^3/100;

fprintf(' %5.1f %10.3f %10.3f \n',t(j),y1,y2);

end

Program Results:

 t y1 y2

 0.0 0.000 0.000

 0.5 0.025 0.001

 1.0 0.100 0.010

 1.5 0.225 0.034

 2.0 0.400 0.080

 . . .

 . . .

 8.0 6.400 5.120

 8.5 7.225 6.141

 9.0 8.100 7.290

 9.5 9.025 8.574

 10.0 10.000 10.000

 >>

Example 2.4.

In this example we will calculate the position and velocity of a ball thrown vertically upward in a gravitational field (neglecting drag) as a function of time t. The approximate path of the ball is shown in Figure 2.10.

[image: image3.emf]

 Figure 2.10.

Recall that velocity is the rate of change of distance with respect to time and acceleration is the rate of change of velocity with respect to time. For motion in the y direction only, with the y axis pointing upward, the governing equations are:

[image: image4.wmf]o

VVgt

=-

(2.1)

[image: image5.wmf]2

2

o

gt

yVt

=-

(2.2)

where

V = velocity.

y = the position of the ball at time t.

g = acceleration of gravity .

t = time.

Equations (2.1) and (2.2) are based on the initial conditions V(0) = Vo and y(0) = 0.
The following MATLAB program calculates V, and y vs. t, for 0
[image: image6.wmf]£

 t
[image: image7.wmf]£

 5 s in steps of

0.5 s. We have taken
[image: image8.wmf]2

20m/s,and9.81m/s

o

Vg

==

. The program follows:

% Example_2_4.m
% This program calculates the velocity and position of a free
% falling body vs. time.
% The velocity = Vo-gt
% The position y = Vo*t-0.5*g*t^2
% Vo=20 m/s, g=9.81 m/s^2
% The output goes to a file named output.txt.
 clear; clc;
 Vo=20.0; g=9.81;
fo=fopen('output.txt','w');
% Table headings
fprintf(fo,' t(s) v(m/s) y(m) \n');
fprintf(fo,'--\n');
for t=0:0.5:5
 v=Vo-g*t;
 y=Vo*t-0.5*g*t^2;

 fprintf(fo,'%6.2f %10.3f %10.3f \n',t,v,y);
end
--

Program Results:

t(s) v(m/s) y(m)

0.00 20.000 0.000

0.50 15.095 8.774

1.00 10.190 15.095

1.50 5.285 18.964

2.00 0.380 20.380

2.50 -4.525 19.344

3.00 -9.430 15.855

3.50 -14.335 9.914

4.00 -19.240 1.520

4.50 -24.145 -9.326

5.00 -29.050 -22.625
--

One might think that the statement t = 0:0.5:5 as part of the for loop statement will produce a vector of t values. However, that is not the case. As the program progresses back to the start of the for loop, old values of t are overwritten by the new value of t. Try running the following example.

 % for_loop_assignment
% This program tests an assignment in a for loop as compared to the
% same assignment outside the for loop.
clear; clc;
Vo=10; g=9.81;
for t=0:0.5:5
 v=Vo-g*t;
 y=Vo*t-0.5*g*t^2;
end
fprintf('This value for t is from the for loop \n');
fprintf('t=%6.2f \n\n',t);
fprintf('We see that the assignment of t=0:0.5:5 within the \n');
fprintf('for loop does not produce a vector. In fact, \n');
fprintf('only the last value of t is printed. \n\n');
fprintf('These values of t are from the statement t=0:0.5:5 \n');
fprintf('outside the for loop. \n');
t=0:0.5:5
fprintf('The assignment t=0:0.5:5 outside the for loop does \n');
fprintf('produce a vector of t values. \n');
Example 2.5.

Although atmospheric conditions vary from day to day, it is convenient for design purposes, to have a model for atmospheric properties with altitude. The US Standard Atmosphere, modified in 1976, is such a model. For altitudes less than or equal to 11,000 m, the governing equations for the air temperature, pressure and density are as follows:

[image: image9.wmf]o

o

1

g

R

z

pp

T

l

l

æö

=-

ç÷

èø

(2.3)

[image: image10.wmf]o

TTz

l

=-

(2.4)

[image: image11.wmf]T

R

p

=

r

(2.5)

where

p = air pressure

T = air temperature

z = the altitude .

To = 288.15 K (temperature at z = 0).

po = 1.01325
[image: image12.wmf]5

10

´

 Pa (pressure at z = 0).

R = 287 J/(kg-K) (gas constant for air).

g = 9.81 m/ s2 (gravitational constant for air).

[image: image13.wmf]l

 = 0.0065 K/m (the lapse rate).

[image: image14.wmf]r

= air density (kg/m3).

In the following example we calculate atmospheric properties of temperature, pressure, and density at every 1000 m from z = 0 (sea level) to z = 11,000 m and print the results to a file in a table format. The program follows.

% Example_2_5.m
% This program determines atmospheric properties of temperature, T,
% pressure, p, and density, rho every 1000 m of altitude and prints
% these values to a file in table format.
% The governing equations are T=To-lamda*z, p=po*(1-lamda*z/To)^ex,

% where ex=g/lamda*R), and rho=p/(R*T).
clear; clc;
To = 288.15;
po = 1.01325e5;
R = 287.0;
g = 9.81;
lamda = 0.0065;
z=0:1000:11000;
ex=g/(lamda*R);
fo=fopen('output.txt','w');
fprintf(fo,'Atmospheric Properties \n');
% Table headings
fprintf(fo,' z T p rho \n');
fprintf(fo,' (m) (K) (Pa) (kg/m^3) \n');
fprintf(fo,'------------------------------------ \n');
for i=1:length(z)
 T=To-lamda*z(i);
 p=po*(1-lamda*z(i)/To)^ex;
 rho=p/(R*T);
 fprintf(fo,'%6.0f %8.2f %10.4e %10.4f \n',z(i),T,p,rho);
end
 --

Program Results:

Atmospheric Properties
 z T p rho
 (m) (K) (Pa) (kg/m^3)
--
 0 288.15 1.0133e+005 1.2252
 1000 281.65 8.9869e+004 1.1118
 2000 275.15 7.9485e+004 1.0065
 3000 268.65 7.0095e+004 0.9091
 4000 262.15 6.1624e+004 0.8191
 5000 255.65 5.4002e+004 0.7360
 6000 249.15 4.7162e+004 0.6596
 7000 242.65 4.1041e+004 0.5893
 8000 236.15 3.5580e+004 0.5250
 9000 229.65 3.0723e+004 0.4661
 10000 223.15 2.6418e+004 0.4125
 11000 216.65 2.2614e+004 0.3637

· The while loop
An alternative to the for loop is the while loop. If an index in the program is required, the use of the while loop statement (unlike the for loop statement) requires that the program generate its own index, as shown in the following example.

n = 0;

while n < 10

n = n+1;

y = n^2;

end

· In the while loop, MATLAB will carry out the statements between the while and end statements as long as the condition in the while statement is satisfied.
· Note that the statement “n=n+1” above may not make sense algebraically, but does makes sense in the MATLAB language. The “=” operator in MATLAB (as in many computer languages) is the assignment operator which tells MATLAB to fetch the contents in the memory cell containing the variable n, put its value into the arithmetic unit of the CPU, increment the variable n by 1, and put the new value back into the memory cell designated for the variable n. Thus, the old value of n has been replaced by the new value for n.

Review 2.4.

1. What is the objective in using a for loop?

2. What is the syntax of a for loop?

3. Should table headings which are not to be repeated be inside a for loop?

4. If the index of a for loop is used to select an element of a vector or a matrix, what variable type should the for loop index be?

5. What other statement type can be used to create a loop?

6. What is the major difference between a for loop and a while loop?
PAGE
8

_1400139835.unknown

_1407953406.unknown

_1424144921.unknown

_1424146461.unknown

_1401216896.unknown

_1407953383.unknown

_1401215639.unknown

_1389115821.unknown

_1400139801.unknown

_1264655302.unknown

_1264655317.unknown

_1264356288.unknown

