Lesson 22, 9.1-9.6
CHAPTER 9.  CURVE FITTING

9.1. Introduction

· There are many occasions in engineering that require experiment to determine the behavior of a particular phenomenon. 

· The experiment may produce a set of data points which represents a relationship between the variables involved in the phenomenon. 

· We may then wish to express this relationship analytically. 

· A mathematical expression which describes the data is called an approximating function. 

· There are two approaches to determining an approximating function:

1. The approximating function graphs as a smooth curve. The approximating curve will generally not pass through all the data points, but we seek to minimize the resulting error in order to get the best fit. A plot of the data on linear, semi-log or log-log coordinates can often suggest an appropriate form for the approximating function.

2. The approximating function passes through all data points (as described in Section 9.5). However, if there is some scatter in the data points, this approximating function may not be satisfactory.

9.2. Method of Least Squares

a. Best-fit straight line

In the method of least squares, we seek to find the best fit straight line given a set of n data points 
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We wish to represent the approximating curve, 
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, as a straight line of the form
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where 
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 are unknown constants to be determined. Let D be the sum of the square of the errors between the approximating line and the actual points. Then,
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(9.3)


To obtain the best fit straight line approximating function, minimize D by taking 
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. Taking the partial derivative of Equation (9.2) with respect to 
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(9.4)

Taking the partial derivative of Equation (9.2) with respect to 
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(9.5)

Equations (9.4) and (9.5) describe a system of two algebraic equations in two unknowns which can be solved by the method of determinants (Cramer’s Rule):
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(9.7)

b. Best-fit mth-degree polynomial

We can generalize the above approach for an mth-degree polynomial fit. In this case, take the approximating curve, 
[image: image21.wmf]c

y

, to be:
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where 
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 and n is the number of data points.

The measured values are 
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Let 
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(9.9)

To minimize D, take
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Then,
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This set of equations reduces to
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(9.10)

Equations (9.10) can be solved by Gauss Elimination (as described in Chapter 4).

However, MATLAB’s polyfit function (discussed in Section 9.4) provides a solution to Equations (9.10), which represents the best-fit polynomial of degree m for the (xi , yi) set of data points.  

9.3.  Curve Fitting With The Exponential Function
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Many physical systems can be modeled as exponential functions.  If your experimental data appears to fall into this category, it can be fitted with a function of the form
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where 
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 are real constants.

Let us assume that a set of n measured data points 
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. Then taking the log of both sides of Equation (9.11) and making the above substitutions, we obtain the linear equation
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For the data points 
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As we derived in the previous section, the best-fit approximating straight-line curve by the method of least squares gives:
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and
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Then, 
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The above analysis can be used to determine the damping constant in a mass-spring-dashpot system. This is accomplished by examining the oscilloscope graph of free damped vibration (see Figure 9.1). 
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Figure 9.1.
The governing equation of the envelope is 
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where


c = damping constant.


m = the mass.


y = the mass displacement from the equilibrium position.

Comparing Equation (9.15) with Equation (9.11) we see that
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By measuring n coordinates on the envelope, i.e., (t1, y1), (t2,y2) ... (tn,yn) , we can determine the best fit value for 
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 giving our best estimate for the damping factor c.
9.4. MATLAB’S Curve Fitting Functions

MATLAB calls curve fitting with a polynomial by the name “Polynomial Regression”.  The  function  polyfit (x, y, m) returns a vector of (m+1) coefficients, ai, that represent the best-fit polynomial of degree m for the (xi , yi) set of n data points.  The coefficient order corresponds to decreasing powers of x; i.e.
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To obtain 
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 use the MATLAB function polyval (a,x), where

the vector 
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The function polyval (a,x) returns a vector of length n giving yc ,i where
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(9.19)

MATLAB measures of the precision of the fit with a function named the mse, which  is defined as  follows:



mse = 
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where n is the number of data points

Example 9.1:
% Example_9_1.m
% This program determines the best fit polynomial approximating 
% function of orders 2 thru 5 for the data set listed below.
% m is the polynomial degree. n is the number of data points.
% The sprintf command is used in this program to write
% formatted data in the plot title. The sprintf command is
% the same as the fprintf command except that it returns the
% data in a MATLAB string rather than writing to the screen or
% to a file.
clear; clc;
x = -10:2:10;
y = [-980 -620 -70 80 100 90 0 -80 -90 10 220];
x2 = -10:0.5:10;
mse = zeros(4);
for m = 2:5
    fprintf('m = %i \n',m);
    coef = zeros(m+1);
    coef = polyfit(x,y,m);
    yc2 = polyval(coef,x2);
    yc = polyval(coef,x);
    MSE(m) = sum((y-yc).^2)/length(x);
    fprintf(' x         y           yc \n');
    fprintf('----------------------------\n');
    for i = 1:length(x)
        fprintf('%5.1f %10.1f %10.3f \n',x(i),y(i),yc(i));
    end
    fprintf('\n\n');
    subplot(2,2,m-1),plot(x2,yc2,x,y,'o'),
    xlabel('x'), ylabel('y'), grid, axis([-10 10 -1500 500]);
    title(sprintf('Degree %d polynomial fit',m));
end
fprintf(' m    MSE \n')
fprintf('--------------------\n');
for m = 2:5
    fprintf(' %d %8.2f \n',m,MSE(m))
end
------------------------------------------------------------------------------------------------------
Program results:
Output for m = 5 is only displayed here.

m= 5 

  x        y         yc 

-------------------------------------

-10.0    -980.0      -999.09 

 -8.0    -620.0      -545.31 

 -6.0     -70.0      -156.76 

 -4.0      80.0        78.39 

 -2.0     100.0       148.18 

  0.0      90.0        93.80 

  2.0       0.0       -13.50 

  4.0     -80.0       -95.45 

  6.0     -90.0       -89.91 

  8.0      10.0        26.15 

 10.0     220.0       213.50 
  m        mse 

-------------------------

  2       32842.4  

  3        2660.0  

  4        2342.1  

  5        1502.9  

>>
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Figure 9.3
----------------------------------------------------------------------------------------------------
As would be expected, the mse decreases as the order of the fitted polynomial is increased. 

----------------------------------------------------------------------------------------------------
9.5. Cubic Splines

Given a set of n data points. Suppose that an mth degree polynomial is selected as the approximating curve and that this approximating curve produces curve values that are not allowed. For example, suppose it is known that a particular property represented by the approximating curve (such as absolute pressure or absolute temperature) must be positive and the approximating function produces values that are negative. In this case the approximating function produces values that are not allowed and is therefore not satisfactory. The method of cubic splines eliminates this problem..

Given a set of (n +1) data points (xi , yi ), i = 1, 2,…, (n+1), the method of cubic splines develops a set of n cubic functions, such that y(x) is represented by a different cubic in each of the n intervals and the set of cubics passes through the (n+1) data points.

This is accomplished by forcing the slopes and curvatures to be the same for each pair of cubics that join at a data point.
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 This is accomplished by the following equations:
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In interval (i -1), 
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 (see Figure 9.6).
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In interval i ,
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This gives fewer equations than the number of unknowns and as a result additional assumptions must be made. Values for 
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 at x1 and xn+1 must be assumed.

Several alternatives exists:

(1) Assume 
[image: image68.wmf]0

)

(

)

(

1

1

=

¢

¢

=

¢

¢

+

n

x

y

x

y


Widely used – forces splines to approach straight lines at end points

(2) Assume 
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This forces the splines to approach parabolas at the end points.

9.6. MATLAB’s Cubic Spline Curve Fitting Function

The syntax for MATLAB’s cubic spline function is 
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where (xi, yi) is a given set of data points and yy is the value of y at xx. The spline function determines the four cubic coefficients for each section in the given data and will evaluate yy by the cubic spline method. The same result can be obtained by using MATLAB’s interp1 function and specifying the use of the spline method of interpolation. The syntax for interpolating by the spline method is


       yi = interp1
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Example 9.3:
Eample 9.3
The following example involves a measured increase in air pressure at distances from 

a blast. The data specifies the pressure above normal atmospheric pressure and is designated as over-pressure. The program demonstrates the use of the MATLAB’s spline function as well as MATLAB’s interp1 function with the spline option to determine the pressure at distances not in the data. We see that the two methods produce the same results. The program follows:
% Example_9_3.m
% This program uses both MATLAB's spline function and MATLAB's 
% interp1 function with the cubic spline option to determine the 
% over-pressure resulting from a blast. The over-pressure is in kPa
% and the distance from the blast in km. 
clear; clc; 
dist=0.52:0.3:4.12;
press1=[165.5 96.5 69.0 52.4 37.2 27.6 21.4 17.2 13.8 11.7];

press2=[10.3 9.0 7.2];
press=[press1 press2];
d=0.52:0.1:4.12;
p1=spline(dist,press,d);
p2=interp1(dist,press,d,'spline');
fo=fopen('output.txt','w');
fprintf(fo,'PEAK OVERPRESSURE VS. DISTANCE FROM BLAST  \n');
fprintf(fo,'CUBIC SPLINE FIT \n');
fprintf(fo,'  dist(km)   over-press(kPa)    over-press(kPa)\n');
fprintf(fo,'           by spline function     by interp1    \n');
fprintf(fo,'----------------------------------------------- \n');
for n=1:length(d)
    fprintf(fo,' %5.2f   %10.2f      %10.2f \n',d(n),p1(n),p2(n));
end   
plot(d,p1,d,p2,'o'), xlabel('km from ground zero'),
ylabel('overpressure(kPa)'), grid, 
title('peak over-pressure vs. distance from blast')
fclose(fo);
---------------------------------------------------------------   

Program Results
PEAK OVERPRESSURE VS. DISTANCE FROM BLAST  
CUBIC SPLINE FIT 
 dist(km)     over-press(kPa)    over-press(kPa)
             by spline function     by interp1    
----------------------------------------------- 
  0.52           165.50              165.50 
  0.62           135.72              135.72 
  0.72           113.15              113.15 
  0.82            96.50               96.50 
  0.92            84.46               84.46 
  1.02            75.72               75.72 
  1.12            69.00               69.00 
  1.22            63.15               63.15 
  1.32            57.71               57.71 
  1.42            52.40               52.40 
  1.52            47.02               47.02 
   .                .                   .

   .                .                   .                 .
  3.12            12.28               12.28 
  3.22            11.70               11.70 
  3.32            11.19               11.19 
  3.42            10.73               10.73 
  3.52            10.30               10.30 
  3.62             9.88                9.88 
  3.72             9.46                9.46 
  3.82             9.00                9.00 
  3.92             8.49                8.49 
  4.02             7.89                7.89 
  4.12             7.20                7.20 
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Figure 9.7.
-------------------------------------------------------------

9.7. Curve Fitting With Fourier Series

Example 9.5.

The following example involves measured turbulent wind velocity as a function of time at a fixed point as a helicopter approaches and leaves the region of interest. 

The experimental data set produced a plot as shown in Figure 9.9.
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Figure 9.9.
 We wish to obtain an analytical expression (approximating curve) that comes close to fitting the data. An attempt to fit a polynomial approximating curve to this data was not be successful. However, we found that the use of a Fourier series gave a reasonable analytical expression approximating the data. The original time domain, t’, ranged from 0 to 10.5 s.

However, to use the Fourier series method, we needed to shift the time domain by letting 
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. Thus, our new time domain is from -5.25  to 5.25 s. The time domain, t , was subdivided into 70 equal spaces, with 
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 Thus, 

(ti+1 - ti ) was uniform over the entire time domain.

The measured data that is shown in Table 9.2 represents turbulent wind velocity as a function of time at a specific point as a helicopter approaches and leaves the region of interest.


Table 9.2. Shifted velocity data as a function of time. 

	t
	u
	t
	u
	t
	u
	t
	u

	-5.25
	557.78
	-2.55
	8778.24
	0.15
	233.17
	2.85
	3.35

	-5.1
	1557.53
	-2.4
	6644.64
	0.3
	112.47
	3
	6.71

	-4.95
	1737.36
	-2.25
	4511.04
	0.45
	34.75
	3.15
	2.74

	-4.8
	880.87
	-2.1
	1679.45
	0.6
	45.42
	3.3
	1.83

	-4.65
	144.48
	-1.95
	2493.26
	0.75
	69.49
	3.45
	2.74

	-4.5
	272.80
	-1.8
	1972.06
	0.9
	44.81
	3.6
	2.74

	-4.35
	338.33
	-1.65
	847.34
	1.05
	26.82
	3.75
	7.92

	-4.2
	408.43
	-1.5
	649.22
	1.2
	25.60
	3.9
	7.62

	-4.05
	984.50
	-1.35
	1097.28
	1.35
	26.82
	4.05
	6.40

	-3.9
	1792.22
	-1.2
	1024.13
	1.5
	16.46
	4.2
	3.05

	-3.75
	3200.40
	-1.05
	448.06
	1.65
	19.20
	4.35
	1.22

	-3.6
	5090.16
	-0.9
	316.99
	1.8
	28.04
	4.5
	2.44

	-3.45
	3901.44
	-0.75
	217.02
	1.95
	22.25
	4.65
	4.27

	-3.3
	637.03
	-0.6
	109.12
	2.1
	3.66
	4.8
	2.74

	-3.15
	987.55
	-0.45
	126.49
	2.25
	5.79
	4.95
	4.27

	-3
	3596.64
	-0.3
	224.33
	2.4
	7.92
	5.1
	3.05

	-2.85
	11460.48
	-0.15
	106.07
	2.55
	8.53
	5.25
	1.52

	-2.7
	12954.00
	0
	194.46
	2.7
	8.23
	 
	 


If uc is the approximating curve, then by a Fourier series,
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(9.27)

where
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(9.29)
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(9.30)

Using 30 terms in the series and Simpson’s rule on integration and replacing t' with t the  approximating curve as shown in Figure 9.10 was obtained. The data in Table 9.2 was entered into the program as two column vectors.

The 
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 terms can be put into the following form by the trigonometric identity 
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The program follows:
% Example_9_5.m
% This program determines an approximating curve to the data in
% in awake3.txt by Fourier series. 
clear; clc;
load awake3.txt
dt=0.15;
t=awake3(:,1);
u=awake3(:,2);
plot(t,u), title('u(cm/s) vs t(s)'), xlabel('t'), ylabel('u'),grid;
figure;
L=5.25;
for n=1:30
    i=1;
    for j=1:35
       arg1=n*pi*t(i)/L;
       arg2=n*pi*t(i+1)/L;
       arg3=n*pi*t(i+2)/L;
       f(i)=u(i)*cos(arg1);
       f(i+1)=u(i+1)*cos(arg2);
       f(i+2)=u(i+2)*cos(arg3);
       A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
       i=i+2;
    end  
    a(n)=1.0/L*sum(A);
end
 for n=1:30
    i=1;
    for j=1:35
       arg1=n*pi*t(i)/L;
       arg2=n*pi*t(i+1)/L;
       arg3=n*pi*t(i+2)/L;
       f(i)=u(i)*sin(arg1);
       f(i+1)=u(i+1)*sin(arg2);
       f(i+2)=u(i+2)*sin(arg3);
       A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
       i=i+2;
    end  
    b(n)=1.0/L*sum(A);
end
i=1;
for j=1:35
    f(i)=u(i);
    f(i+1)=u(i+1);
    f(i+2)=u(i+2);
    A(j)=dt/3*(f(i)+4*f(i+1)+f(i+2));
    i=i+2;
end  
a0=0.5/L*sum(A); 
for i=1:71
    for n=1:30
        arg=n*pi*t(i)/L;
        term(n)=a(n)*cos(arg)+b(n)*sin(arg);
    end 
uc(i)=a0+sum(term);    
end
uc=uc'; 
plot(t,uc,t,u,'.'),xlabel('t'), ylabel('u,uc)'), grid,
title('uc(cm/s) and u(cm/s) vs. t(s)'), legend('uc','u');
figure;
for m=1:30
    c(m)=sqrt(a(m)^2+b(m)^2);
    x(m)=m*pi/L;
end    
plot(x,c), xlabel('m*\pi/L'), ylabel('c'), title('c(cm/s) vs. m*\pi/L'),grid;
---------------------------------------------------------------------------------------------------------

Program results:
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Figure 9.10.
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Figure 9.11.
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