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Lesson 19.

Chapter 6. Numerical Integration

· 6.1. Introduction

· In this chapter, we cover both the trapezoidal rule and Simpson’s rule for approximating the value of definite integrals. 

· We then demonstrate the usage of MATLAB’s quad and dblquad functions for evaluating definite integrals. 

· Finally, examples demonstrating the usage of these four methods are given. 

6.2. Numerical Integration with the trapezoidal Rule.

We wish to evaluate the integral I where
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by the trapezoidal rule (see Figure 6.1). 
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The steps for calculating the integral, I,  numerically by the trapezoidal rule are as follows:

· Subdivide the x axis from 
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· The area, Aj ,  under the curve in jth interval can be approximated as the area of the trapezoid bounded by 
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Aj = 
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· Repeat the above process for all interval areas, giving
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(6.4)
· We now sum all the interval areas (A1, A2, .... , AN) to obtain the trapezoidal rule for evaluating the integral, I, which is
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(6.5)

Example 6.1.
Solve the definite integral, I, by the trapezoidal  rule: 




[image: image12.wmf](

)

10

32

0

3.23.420.2

Ixxxdx

=+-+

ò


% Example_6_1.m
% This program evaluates the integral by the trapezoidal rule
% The integrand is: x^3+3.2*x^2-3.4*x+20.2
% The limits of integration are from 0-10. 
clear; clc;
a=0; b=10;
N=100; dx=(b-a)/N;
% Compute values of x and f at each point:
% An arithmetic expression of vector x produces a vector f.
% Need to use element by element multiplication.
x = a:dx:b;
f = x.^3 + 3.2*x.^2 - 3.4*x + 20.2;
% Calculate the integral as per Equation 6.5
I = dx*(sum(f)-0.5*f(1)-0.5*f(N+1));
% Display results
fprintf('Integrand: x^3 + 3.2*x^2 - 3.4*x + 20.2 \n');
fprintf('Integration limits: %.1f to %.1f \n',a,b);
fprintf('Trapesoidal solution, I = %10.4f \n', I);
% Compare with analytical solution, which is:
% I2 = 1/4*x^4+3.2/3*x^3-2.4/2*x^2+20.2*x with 
% limits from 0 to 10.
I2 = 0.25*10^4+3.2/3*10^3- 3.4/2*10^2+20.2*10;
fprintf('Analytical solution, I2=%10.4f \n',I2);
----------------------------------------------------------------------
Program Results:
Integrand: x^3 + 3.2*x^2 - 3.4*x + 20.2 

Integration limits: 0.0 to 10.0 

Trapesoidal solution, I =  3598.9700 

Analytical solution, I2= 3598.6667 

>>

We see that the integration for this integral by the trapezoidal rule gives the correct answer up to four significant figures.


6.3. Numerical Integration and Simpson’s Rule

· We can also evaluate an integral of a single variable by Simpson’s rule, which is a more accurate method than the method using the trapezoidal rule. 
· In the Simpson’s rule case, three points on the curve 
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 are connected by second-degree polynomials (parabolas) and summing the areas under the parabolas to obtain the approximate area under the curve (see Figure 6.2). 
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· As in the trapezoidal rule case, the x domain is subdivided into N intervals, but in this case, N must be an even number. We proceed by first expanding 
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 in a Taylor series about 
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(6.6)

Then, the area under two adjacent strips 
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Let 
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Making these substitutions into Equation (6.7) gives
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Thus,
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Now, define 
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Adding the last two equations above gives: 
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Solving for a gives: 
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(6.8)
To obtain an approximation for the integral I, we need to sum all the 2-strip areas under the curve from 
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 (see Figure 6.3).
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The 2-strip areas are:



[image: image45.wmf][

]

[

]

[

]

[

]

1123

2345

3567

/211

4

3

4

3

4

3

4

3

NNNN

x

Afff

x

Afff

x

Afff

x

Afff

-+

D

=++

D

=++

D

=++

D

=++

M


Thus,
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This is Simpson’s rule for integration.

Example 6.2.

Solve by Simpson’s rule: 
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% Example_6_2.m

% This program calculates an integral in Example 6.1 by Simpson's Rule

% The integrand is: x^3+3.2*x^2-3.4*x+20.2

% The limits of integration are from 0-10. 

clear; clc;

A=0; B=10;

N=100; dx=(B-A)/N;

% Compute values of x and f at each point:
% An arithmetic expression of vector x produces a vector f.

% Need to use element by element multiplication.
x = A:dx:B;

f = x.^3 + 3.2*x.^2 - 3.4*x + 20.2;

% Use two separate loops to sum up the even and odd terms

% of Simpson's Rule.  Also, exclude endpoints in the loop.

sum_even=0.0;

for i=2:2:N

    sum_even=sum_even+f(i);

end

sum_odd=0.0;

for i=3:2:N-1

    sum_odd=sum_odd+f(i);

end

% Calculate integral as per Equation 6.5

I = dx/3 * (f(1) + 4*sum_even + 2*sum_odd + f(N+1));

% Display results

fprintf('Integrand: x^3 + 3.2*x^2 - 3.4*x + 20.2 \n');

fprintf('Integration limits: %.1f to %.1f \n',A,B);

fprintf('I = %10.4f \n', I);
% Compare with analytical solution, which is:

% I2 =
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I2 = 0.25*10^4+3.2/3*10^3- 3.4/2*10^2+20.2*10
--------------------------------------------------------------------------
Program Results:


Integrand: x^3 + 3.2*x^2 - 3.4*x + 20.2 

Integration limits: 0.0 to 10.0 

Simpson rule solution, I =  3598.6667 

Analytical solution, I2 = 3598.6667 

>>

-----------------------------------------------------------------------------

We see that solving the integral of Example 6.1 by Simpson’s rule gives a slightly better answer than solving the same integral by the Trapezoidal rule.

Review 6.1.

1. What is the formula for evaluating the integral, 
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 by the trapezoidal rule?

2.  What is the formula for evaluating the integral, 
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 by the Simpson’s rule?

6.4.  Improper Integrals

An integral is improper if the integrand approaches infinity at some point within the limits of integration, including the end points. In many cases, the integration will still result in a finite solution.
Example 6.3.
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The above integral is improper since both the numerator and denominator are zero at the lower limit (x = 0). The exact value of I can be obtained by residue theory in complex variables and in this case the integral, I, evaluates to 
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where
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Evaluate 
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 by Simpson’s Rule and evaluate 
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 by Equation (6.11). The following program illustrates the method.

% Example_6_3.m

% This program evaluates the improper integral: log(1+x)/x

% The limits of integration are from 0 to 1. 

% The integrand is undefined (0/0)at x=0.  Thus, the integral is

% broken up into 2 parts: I1 and I2.

% I1 is evaluated from epsilon to 1.

% I2 is expanded in a Taylor Series and evaluated from 0 to epsilon.

clear; clc;

epsilon = 0.0001;

A = 0;  B = 1;

N = 100; dx = (B-epsilon)/N;

% Evaluate I1.  First, evaluate log(1+x)/x for each value of x

% over the interval [epsilon,1].

x = epsilon:dx:B;

f = log(1+x)./ x;

% Next, calculate the even and odd terms for Simpson's Rule.

sumeven=0.0;

for i=2:2:N

    sumeven=sumeven+f(i);

end

sumodd=0.0;

for i=3:2:N-1

    sumodd=sumodd+f(i);

end

% As per Equation (6.5), I1 is the weighted sum of the even and 

% odd terms, plus the end terms.

I1 = dx/3 * (f(1) + 4*sumeven + 2*sumodd + f(N+1));

fprintf('Integrand = log(1+x)/x \n');

fprintf('I1 limits of integration are from %.4f to %.4f\n',epsilon,B);

fprintf('I2 limits of integration are from %.4f to %.4f\n',A,epsilon);

fprintf('I1 =%16.6f \n',I1);

% Calculate I2 via first 4 terms of Taylor series expansion.

I2 = epsilon - 1/4*epsilon^2 + 1/9*epsilon^3 - 1/16*epsilon^4;

fprintf('I2 =%16.6f \n',I2);

I=I1+I2;

fprintf('I=I1+I2 =%10.6f \n',I);

I_exact=0.822467;

fprintf('I_exact =%10.6f \n',I_exact);

--------------------------------------------------------------------------
Program Results:
Integrand = log(1+x)/x 

I1 limits of integration are from 0.0001 to 1.0000

I2 limits of integration are from 0.0000 to 0.0001

I1 =       0.822367 

I2 =       0.000100 

I=I1+I2 =  0.822467 

I_exact =  0.822467  

----------------------------------------------------------------------------------------------------------

As we see the method works quite well.

6.5.  MATLAB’s quad Function

The MATLAB function for evaluating integrals is the function quad. A description of the function can be obtained by typing help quad in the Command Window (from MathWorks, with permission):
Q = QUAD(FUN,A,B) tries to approximate the integral of scalar-valued
    function FUN from A to B to within an error of 1.e-6 using recursive

    adaptive Simpson quadrature. FUN is a function handle. The function

    Y=FUN(X) should accept a vector argument X and return a vector result

    Y, the integrand evaluated at each element of X.
    Q = QUAD(FUN,A,B,TOL) uses an absolute error tolerance of TOL

    instead of the default, which is 1.e-6.  Larger values of TOL

    result in fewer function evaluations and faster computation,

    but less accurate results.  The QUAD function in MATLAB 5.3 used

    a less reliable algorithm and a default tolerance of 1.e-3.
· Thus, the quad function takes as arguments a function handle  FUN which defines the integrand in a  .m file, and the limits of integration. 
· Alternatively if the integrand is not very large and can be expressed in a single line, then you can define the integrand within your script with an anonymous or an inline function (see Examples 6.4 and 6.5). 
· If the integrand involves very small numbers or very large numbers, you might wish to change the default tolerance by adding a third argument to quad (as shown in the second usage description above). 
· The quad function is able to evaluate certain improper integrals (See Exercises 6.2d, 6.2e, and 6.2f). It does this by selecting limits of integration that are very close to the singular points, but not on them. Thus, removing the singularity.

Example 6.4.
We will now repeat Example 6.2, but this time we will use MATLAB’s quad function to do the integration. The integral I in Example 6.2 is
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The program follows:

% Example_6_4.m

% This program evaluates the integral of the function 'f1' 

% between A and B by MATLAB's quad function. Since the function
% 'f1' is just a single line, we can use the anonymous form of 
% the function.

clear; clc;

f1=@(x) (x.^3+3.2*x.^2-3.4*x+20.2);

A=0.0;  B=10.0;

I = quad(f1,A,B);

fprintf('Integration of f1 over [%.0f,%.0f] ',A,B);

fprintf('by MATLAB''s quad function:\n');

fprintf('f1 = x^3 + 3.2*x^2 - 3.4*x + 20.2 \n');

fprintf('integral = %10.4f \n', I);

------------------------------------------------------------------------

Program Results:

Integration of f1 over [0,10] by MATLAB's quad function:

f1 = x^3 + 3.2*x^2 - 3.4*x + 20.2 

integral =  3598.6667
>>

---------------------------------------------------------------------
We see that the results are the same as those obtained in Example 6.2.
Review 6.2.
1. What is the name of MATLAB’s function for integration of a single variable?

2.    In MATLAB’s function for integration how does one define the function to be    integrated?

3. If the integrand contains nonlinear terms, how must they be treated? 

4. Will MATLAB’s quad function treat improper integrals?

Example 6.5.
Evaluate: 
[image: image67.wmf]ò

+

+

1

0

3

1

dt

t

t

t


% Example_6_5.m

% This program evaluates the integral of Example 6.5 by MATLAB's quad 
% function. Since the integrand can be expressed in a single line,

% we can use the anonymous form of the function.

clear; clc;

A=0.0; B=1.0;

f2 = @(t) t ./ (t.^3 +t + 1.0);

I2 = quad(f2,A,B);

fprintf('Integration of f2 over [%.0f,%.0f] ',A,B);

fprintf('by MATLAB''s quad function:\n');

fprintf('f2 = t/(t^3 + t + 1) \n');

fprintf('integral=%f \n',I2);

----------------------------------------------------------------------
Program Results:
Integration of f2 over [0,1] by MATLAB's quad function:

f2 = t/(t^3 + t + 1) 

integral=0.260068
>>
-------------------------------------------------------------------------------------------------------

Let us repeat Example 6.3 in which we evaluated the improper integral described by Equation (6.10), but this time we will evaluate the integral using  MATLAB’s quad function with limits from 0 to 1. Recall that the function 
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 is undefined at x = 0. In addition, we will use the inline method for specifying the function.

Example 6.6.

% Example_6_6.m

% This program evaluates the improper integral log(1+x)/x with  

% limits from 0 to 1 using MATLAB’s quad function.

clear; clc;

A=0; B=1;

fprintf('This program uses the quad function to evaluate \n');

fprintf('the integral of log(1+x)/x from %2.0f to %2.0f.\n',A,B);

I = quad(inline('log(1+x)./x'), A, B); 

fprintf('I = %10.6f \n', I);
-------------------------------------------------------------------------- 
Program Results:

This program produces the following result:

This program uses the quad function to evaluate 

the integral of log(1+x)/x from 0 to 1.

I =   0.822467 
>>

---------------------------------------------------------------------------------------------------------------
This answer is the same as shown in Example 6.3. 

6.6. MATLAB’s dblquad Function

The MATLAB function for numerically evaluating a double integral is dblquad.  A description of the function can be obtained by typing help dblquad in the Command Window (from MathWorks, with permission):

    Q = DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX) evaluates the double integral of

    FUN(X,Y) over the rectangle XMIN <= X <= XMAX, YMIN <= Y <= YMAX. FUN

    is a function handle. The function Z=FUN(X,Y) should accept a vector X

    and a scalar Y and return a vector Z of values of the integrand.
Non-square regions can be handled by setting the integrand to zero

outside of the region of interest.  For example, the volume of a   hemisphere of radius R can be determined by the dblquad function by setting -R <= x <= R and 0 <= y <= R and setting z = 0 for points (x,y) that lie outside the circle of radius R around the origin.       

The usage of dblquad is similar to quad, except:

· FUN must be a function of two variables (instead of one): a vector of values in the x direction and a single value in the y direction

· There must be two sets of integration limits (one for the x direction, and one for the y direction)
Example 6.8.

Calculate the volume of a hemisphere of radius, R, by MATLAB’s dblquad function. 

To find the volume, we define a differential volume element, dV, as follows.
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% Example_6_8.m
% This program calculates the volume of a hemisphere (with R=1)
% using MATLAB's dblquad function. The solution is compared with the
% known exact solution for the volume of a hemisphere.
clear; clc;
global R;
R = 1;
V = dblquad('hemisphere_V',-R,R,-R,R);
V_exact = 2/3*pi*R^3;
% print results
fprintf('Volume V of a hemisphere of radius %6.4f m \n',R);
fprintf('V by DBLQUAD  = %6.4f m^3\n',V);
fprintf('V exact       = %.4f m^3\n',V_exact);
--------------------------------------------------------------------------
% hemisphere_V.m

% This function defines the integrand z(x,y) for determining the volume  

% of a hemisphere and is used in MATLAB’s dblquad function.

% From analytical geometry, the equation of a sphere is

% X^2 + Y^2 + Z^2 = R^2.  Thus, dV=Z*dX*dY, where Z=sqrt(R^2-X^2-Y^2).

% Note that the hemisphere is only defined for (X,Y) points which

% lie within a circle of radius R around the origin, the region that is 
% the projection of the hemisphere onto the X-Y plane. An 'if' statement 
% is used to set Z = 0 for (X,Y) points outside the circle of radius R.

% Note: X is a vector and Y is a scalar. 

function Z = hemisphere_V(X,Y)

global R;

for i=1:length(X)

    if X(i)^2 + Y^2 <= R^2

        Z(i) = sqrt(R^2 - X(i)^2 - Y^2);

    else

        Z(i) = 0;

    end

end

--------------------------------------------------------------------------

Program results:
Volume V of a hemisphere of radius 1.0000 m 

V by DBLQUAD  = 2.0944 m^3 

V exact       = 2.0944 m^3 

>>

--------------------------------------------------------------------------
PAGE  

_1348923838.unknown

_1403512580.unknown

_1403514560.unknown

_1414823096.unknown

_1418885903.unknown

_1456730578.unknown

_1414823286.unknown

_1414824074.unknown

_1414823072.unknown

_1414823082.unknown

_1403591215.unknown

_1414823052.unknown

_1403591121.unknown

_1403512657.unknown

_1403512735.unknown

_1403513491.unknown

_1381647283.unknown

_1381647695.unknown

_1387524213.unknown

_1387702576.unknown

_1403434439.unknown

_1387702598.unknown

_1387702495.unknown

_1381662277.unknown

_1387523287.unknown

_1381663283.unknown

_1381647726.unknown

_1381647361.unknown

_1381647444.unknown

_1381647330.unknown

_1381087541.unknown
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