Lesson 10:

3.3. Self Written Functions

· Self written functions are useful if you have a complicated program and wish to break it down into smaller segments.

· Also, if a series of statements is to be used many times, it is convenient to place them in a self written function.

· Many MATLAB functions (such as fzero, quad, ode45, etc.) require a self written function to define the problem of interest.

Self written functions are equivalent to subroutines in most programming languages, but in MATLAB they are usually stored in separate files instead of in the main program (though small functions can be defined in the same file as your main script, as described in the next section).

· The function file name must be saved as function_name.m

· MATLAB has a template for writing a function (see Figure 3.1).

[image: image1.emf]

Figure 3.1. MATLAB’s function template.
The first executable statement in the function file must be function. As can be seen from Figure 3.1, the function template is of the form:

function[output arguments]= function_name(input arguments)
Some example function definitions are shown in Table 3.3.
Table 3.3. Example of function usage

	Function Definition Line
	Function File name

	function [P,V] = power(i,v)
	power.m

	function ex = exf(x)
	efx.m

	function[] = output(x,y)
	output.m

· If the function has more than one output value, then the output variables must be in brackets.
· If there is only one output value, then no brackets are necessary.
· If there are no output values, use empty brackets.
It should be noted that the function output arguments may be passed to the calling program or to another function or to the Command Window. Variables defined and manipulated inside the function are local to the function. This means that that the only communication between the calling program and the function is through the input and output arguments of the function. The exception to this is when a global statement is contained in both the calling program and the function.
· Many of MATLAB’s “built-in” functions are actually implemented as .m files. For example, MATLAB’s factorial function is implemented in the file factorial.m. You can find factorial.m by typing which factorial in the Command Window.
In the following example,
[image: image2.wmf]x

e

is determined using a self written function.

Example 3.4.

% exf1.m

% This code defines a function, 'exf1', that evaluates e^x.

% This function takes 'x' as an input argument and is called either

% from the Command Window or from a script. The resulting output,

% 'ex', is available to be used in another program or in the Command
% Window.

% In this example, term(n+1) is obtained from term(n) by multiplying
% term(n) by x/n.

% e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...

function ex = exf1(x)

term(1)=1.0;

for n=1:99

 term(n+1)=term(n)*x/n;

 if abs(term(n+1)) <= 1.0e-7

 break;

 end

end

ex=sum(term);

--
To test out this function, run it from the Command Window. Some examples:

>> exf1(1.0)

ans =

2.7183
>> y=exf1(5.0)
y =

 148.4132
>>

In the following example, function exf1 created in Example 3.4 is used in two different arithmetic statements.

Example 3.5.

% Example_3_5.m

% This program uses the function exf1 (defined in Example_3_4) in two
% different arithmetic statements, i.e., it is used to calculate w, y
% and z.

% In this program, the output is sent to a file.

clear; clc;

fo=fopen('output.txt','w');

fprintf(fo,' x y w z \n');

fprintf(fo,'--- \n');

for x=0.1:0.1:2.0

 y=exf1(x);

 w=5*x*exf1(x);
 z=10*x/y;

 fprintf(fo,'%6.2f %10.3f %10.3f %10.3f \n',x,y,w,z);

end

fclose(fo);

--

Program results:
 x y w z

 0.10 1.105 0.553 0.905
 0.20 1.221 1.221 1.637
 0.30 1.350 2.025 2.222
 0.40 1.492 2.984 2.681
 0.50 1.649 4.122 3.033

 1.60 4.953 39.624 3.230
 1.70 5.474 46.529 3.106
 1.80 6.050 54.447 2.975
 1.90 6.686 63.516 2.842
 2.00 7.389 73.891 2.707

· The following two examples demonstrate that the names of the arguments in the calling program need not be the same as those in the function. It is only the argument list in the calling program that needs to be in the same order as the argument list defined in the function. This feature is useful when a function is to be used with several different scripts, each script having different variable names, but each of the variables names correspond to variables in the function. This concept is used in all of MATLAB’s built in functions.

Example 3.6.
% Example_3_6.m

% This program uses the function exf2 to calculate q=e^w/z .

% This calling program uses w and z as input variables to function
% exf2.

% The function exf2 calculates q and returns it to this program.

% The function exf2 names its input variables as (x,y) which is not the

% same names used in the calling program, which is (w,z). We see that
% the calling program need not use the same names for the input
% variables as those used in the function.

% For one-to-one correspondence, the argument positions in the calling
% program have to be the same as the argument positions in the
% function.

% Note: function exf2 (defined below) must be created before this
% program is executed because the function exf2 requires input from
% this program.

clear; clc;

z=5;

for w=0.2:0.2:1.0

 q=exf2(w,z);

 fprintf('printout of w,z and q from calling program \n');

 fprintf('w=%5.2f z=%2.0f q=%10.5f \n', w, z, q);

end

% exf2.m

% This script is used in Example_3_6 and creates a function 'exf2' that

% evaluates e^x/y. In this function, x and y are input variables that % need to be defined in another program, but need not have the same
% names. The output variable in the function exf2 is sent back to the
% calling program.
% This example demonstrates that the names of the arguments in the
% calling program need not be the same as those in the function. It is % the order list in the calling program that needs to be the same as
% the order list in the function.

% In this example, the next term is obtained from the previous term by
% multiplying the previous term by x and dividing by index n. The
% program does its own summing of terms.

% e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...

function exy = exf2(x,y)

s=1.0; term=1.0;

for n=1:100

 term=term*x/n;

 s=s+term;

 if abs(term) <= s*1.0e-6
 break;

 end

end

exy=s/y;
fprintf('printout of x,y and exy from exf2 \n');

fprintf('x=%5.2f y=%2.0f exy=%10.5f \n', x, y, exy);
% Compare the printout of x,y and exy from function exf2
% with the printout of w,z and q from the calling program,
% Example_3_6.m. Observe that (w,z) = (x,y) and q = exy.
--

Program results:

printout of x,y and exy from exf2

x = 0.20 y = 5 exy = 0.24428
printout of w,z and q from calling program

w = 0.20 z = 5 q = 0.24428
printout of x,y and exy from exf2

x = 0.40 y = 5 exy = 0.29836

printout of w,z and q from calling program

w = 0.40 z = 5 q = 0.29836

 . . .

 . . .
 . . .

Review 3.1.

1. What is the series expansion for ex?
2. What are the 2 different approaches for evaluating the terms in the series for ex?
3. When does it seem appropriate to write a self written function?

4. A self written function usually has both an input and an output. Where does the input come from? Where does the output go to?

5. If a self written function has more than one output, how must the output be presented?

6. How does a self written function communicate with the calling program?

7. What can be said about variables in the self written function that are not in the input or output arguments of the function?

8. Do the variable names in the input and output arguments between the calling program and the function have to be the same?
PAGE
1

_1389031510.unknown

