Lesson 6.

2.7 MATLAB Graphics

· Plot Commands:

MATLAB provides several different types of plots. Clicking on the PLOTS tab in MATLAB’s desktop graphically list the various types of plots that are available (see Figure 2.1). The commands for creating linear plots, semi-log plots and log-log plots follows:

plot(x,y)

linear plot of y vs. x

semilogx(x,y)
semi-log plot (log scale for x axis, linear scale for y axis)

semilogy(x,y)
semi-log plot (linear scale for x axis, log scale for y axis)

loglog(x,y)

log-log plot (log scale for both x and y axes)

The variable arguments in the plot commands need to be vectors. In addition the vectors need to be of the same length. If the arguments in the plot command are scalars, the plot commands will produce just a single point.

· Simple Linear Plot

Suppose we have created vectors y and t, where y = f(t) and we wish to create a linear plot with the command plot(t,y). We can label the t axis, y axis, add a title and a grid with the following commands,

xlabel('t'),

ylabel('y'),

title('y vs. t'),

grid;

A table and a plot of a cubic function is created in the following example.

Example 2.6.

% Example_2_6.m

% This program creates a simple table and a simple plot.

% First a table of y=x^3+3.2x^2-3.4x-20 is created.

% Then y vs. x is plotted.
% To plot y vs. x both variables need to be vectors
% of the same length.
clear; clc;
x=-5:0.5:5;

% Column headings

fprintf(' x y \n');

fprintf('-------------------------------- \n');

for n=1:length(x)

y(n)=x(n)^3+3.2*x(n)^2-3.4*x(n)-20.2;

fprintf('%8.1f %10.1f \n',x(n),y(n));
end

% Create the plot of y vs. x.
plot(x,y), xlabel('x'), ylabel('y'), grid,
title('y vs. x');

% Plot identification is also established by adding text to the plot.

Program results:

 x y

-5.0 -48.2

-4.5 -31.2

-4.0 -19.4

-3.5 -12.0

-3.0 -8.2

 . .

 . .

 3.0 25.4

 3.5 50.0

 4.0 81.4

 4.5 120.4

 5.0 167.8

>>

[image: image1.emf]

Figure 2.15. Plot of a cubic expression.

If your program involves creating more than one plot, you need to include the statement figure after the plot statement, otherwise only the last figure will appear. The following example program produces two separate plots.

Example 2.7.

% Example_2_7.m

% This program creates two separate plots.

% First y1=t^2/10 is plotted with 0 <= t <= 10,

% then y2=t^3/100 is plotted over the same t range.

% To plot y1 and y2 vs. and t, they need to be made vectors

% of the same length.

clear; clc;
t=0:0.5:10;
for n=1:length(t)

y1(n)=t(n)^2/10;

y2(n)=t(n)^3/100;
end

plot(t,y1), xlabel('t'), ylabel('y1'), grid, title('y1 vs. t');
figure;
plot(t,y2), xlabel('t'), ylabel('y2'), grid, title('y2 vs. t');

--

Program Results:

[image: image2.emf]

[image: image3.emf]
· Multiple Plots

Suppose in matrix A, shown below, we wish to plot column 2 vs. column 1, column 3 vs. column 1 and column 4 vs. column 1.

[image: image4.wmf]1111

2222

,

nnnn

tyzw

tyzw

tyzw

éù

êú

êú

=

êú

êú

ëû

A

MMMM

We could let T = A(:,1), Y = A(:,2), Z = A(:,3) and
W = A(:,4), giving

[image: image5.wmf]1111

2222

,,,

nnnn

tyzw

tyzw

tyzw

éùéùéùéù

êúêúêúêú

êúêúêúêú

====

êúêúêúêú

êúêúêúêú

ëûëûëûëû

TYZW

MMMM

Then to plot Y vs. T, Z vs. T and W vs. T all on the same graph, we would write,

plot(T,Y,T,Z,T,W);
Of course, we could have avoided the additional steps by writing

plot(A(:,1),A(:,2),A(:,1),A(:,3),A(:,1),A(:,4))
To identify which curve goes with which variable, you can add text to the plot with the command,

text(x,y,'text statement');

where (x,y) are the coordinates on the graph where the text statement will start.

Multiple curves on the same graph can be distinguished by color coding the curves.

Available color types:

 black 'k'

 blue 'b'

 green 'g'

 red 'r'

 cyan 'c'

 yellow 'y'

Multiple curves on the same graph can also be distinguished by using different types of lines.

Available line types:

solid
(default)

dashed
 '--'

dashed-dot
 '-.'

dotted
 ':'

Alternatively, you can create a marker plot of discrete points (without a line) by using one of these marker styles:

point
 '.'

plus
 '+'

star
 '*'

circle
 'o'

x-mark
 'x'

diamond

 'd'

The “legend” command may also be used in place of the text command

to identify the curves. The format for the legend command is:

legend('text1', 'text2')

The legend box may be moved by clicking on the box and dragging it to the desired position.

The following example illustrates a multiple plot program.
Example 2.8.
% Example_2_8.m
% This program creates a simple table and a multiple plot.

% First a table of y1=t^2/10 and y2=t^3/100 is created.

% To plot y1, y2 vs. and t, they need to be made vectors

% of the same length.

% y1 and y2 vs. t are plotted on the same graph.
clear; clc;

t=0:0.1:10

for n=1:length(t)

y1(n)=t(n)^2/10;

y2(n)=t(n)^3/100;

end

% By making t, y1 and y2 as vectors, their values can be printed out
% outside the for loop that created them.

% Column headings

fprintf(' t y1 y2 \n');

fprintf('--------------------------------------\n');

for n=1:10

fprintf('%8.1f %10.2f %10.2f \n',t(n),y1(n),y2(n));

end

% Create the plot, y1 as a solid line, y2 as a dashed line.

plot(t,y1,t,y2,'--');

xlabel('t'), ylabel('y1,y2'), grid, title('y1 and y2 vs. t');

% Plot identification is also established by adding text to the plot.

text(6.5,2.5,'y2');

% In the above statement, 6.5 is the abscissa position and 2.5 is

% the ordinate position where the 'y1' label will be positioned.

text(4.2,2.4,'y1'),

% We can also use the legend command to identify the curves
legend('y1','y2');
--

Program Results:

 t y1 y2

 0.0 0.0000 0.0000

 1.0 0.1000 0.0100

 2.0 0.4000 0.0800

 3.0 0.9000 0.2700

 4.0 1.6000 0.6400

 5.0 2.5000 1.2500

 6.0 3.6000 2.1600

 7.0 4.9000 3.4300

 8.0 6.4000 5.1200

 9.0 8.1000 7.2900

 10.0 10.0000 10.0000

>>

[image: image6.emf]

You may have noticed in your script program that MATLAB had a small orange horizontal line in the small vertical strip at the right border (see Figure 2.18).

[image: image7.emf]
If you clicked on that strip you would get the following message “The variable ‘y1’ appears to change in size on every loop iteration (within a script). Consider pre-allocating for speed”. This would be very important when the number of iterations of the loop is vey large, otherwise, it is not important. Although MATLAB recommends, but does not require, the preallocation of the size of the vector or matrix that is being generated, other programs such as C/C++ do require it. To pre-allocate the size of the vector that is being generated, use MATLAB’s zeros function. In the above example, 11 y1 values will be generated. So add the following statement before the for loop:

y1=zeros(11,1) for a column vector or y1 = zeros(1,11) for a row vector.

The following example illustrates the Plotting of Trigonometric Functions.
Example 2.9.

% Example_2_9.m
% This script calculates both sin(2x/3), sin(2x/3)^2 and cos(2x/3+pi)
% for -pi <= x <= pi. The x domain is subdivided into 50 subdivisions.
% The script plots the 3 functions and determines the absolute maximum
% values of the vectors fsin, fsinsq and fcos and prints those values
% to the screen.
clear; clc;
xmin=-pi; dx= 2*pi/50;
for i=1:51
 x(i)=xmin+(i-1)*dx;
 arg1=2*x(i)/3;
 arg2=2*x(i)/3+pi;
 fsin(i)=sin(arg1);
 fsinsq(i)=sin(arg1)^2;
 fcos(i)=cos(arg2);
end
fsin_max=max(abs(fsin)); fcos_max=max(abs(fcos));
fsinsq_max=max(fsinsq);
fprintf('\n fsin_max=%10.5f, fcos_max=%10.5f \n,...
fsin_max,fcos_max)

fprintf(fsinsq_max=%10.5f \n',fsinsq_max);
plot(x,fsin,x,fcos,'--',x,fsinsq,'-.'), xlabel('x'),
ylabel('fsin,fcos,fsinsq'), grid
title('fsin, fcos, fsinsq vs. x'), legend('fsin','fcos','fsinsq');

Program Results:

From the Command Window:

fsin_max = 0.99978, fcos_max = 1.00000, fsinsq_max = 0.99956

>>

[image: image8.emf]

Review 2.5.
1. What is the command that will produce a linear graph?

2. What are the commands that will label the x and y axis and provide a title to the graph?

3. When there is more than one function plotted on a graph, what are the ways to identify which curve goes with which function?
PAGE
10

_1427024001.unknown

_1427027656.unknown

