Lesson 3.
Section 2.4 continued.
· Arithmetic Operators

+
addition

-
subtraction

*
multiplication

/
division

^
exponentiation
· For arithmetic statements (assignments) containing several of these Arithmetic Operators, most, if not all, have a specific order in carrying out the operations.
· First all expressions within parentheses will carried out first in the following order, exponentiation, multiplication and division, addition and subtraction.
· Expressions outside parentheses will be carried out in the same
order. Knowing this order, may help you in deciding where parentheses are required when
you write arithmetic statements. Suppose you had an expression
[image: image1.wmf]2

c

y

m

=

, you might be tempted to write the expression in MATLAB Command window (after defining c and m) as

clc;

c = 5.2; m = 24.6;

y = c/2*m

This would give the wrong answer for y. MATLAB would divide c by 2 and multiply the
result by m. The correct ways to write the expression are

y = c/(2*m) or c/2/m
In the first expression, MATLAB will first carry out the expression within the parentheses, so that the 2*m becomes one number, then c is divided by this one number. In the second expression, there are no parentheses, so MATLAB, proceeding from left to right, will calculate c/2, then divide the result by m. Try typing these expressions in the Command window and observe the two different answers you get for y.
· To display a variable value, just type the variable name without the semicolon and the variable will appear on the screen.
Try typing these statements into the Command Window:

clc;

x = 5;

y = 10;

z = x + y

w = x – y

z = y/x

z = x*y

z = x^2

· Special values

pi

π

i or j

[image: image2.wmf]1

-

inf

[image: image3.wmf]¥

ans

the last computed unassigned result to an expression typed in the
 Command Window.

z = x/0 (gives the infinity symbol)

· Trigonometric functions:

sin

sine

sinh

hyperbolic sine

asin

inverse sine

asinh

inverse hyperbolic sine

cos

cosine

cosh

hyperbolic cosine

acos

inverse cosine

acosh

inverse hyperbolic cosine

tan

tangent

tanh

hyperbolic tangent

atan

inverse tangent

atan2

four-quadrant inverse tangent

atanh

inverse hyperbolic tangent
The arguments of these trigonometric functions are in radians. However, the arguments can be made in degrees if a “d” is placed after the function name, such as sind(x).
Try typing these statements into the Command Window:

clc;

x = pi/2;

y = sin(x)

z = atan(1.0)

x = 30;

w = sind(x)

z = atand(1.0)

· Exponential, square root, and error functions:

exp

exponential

log

natural logarithm

log10

common (base 10) logarithm

sqrt

square root

erf

error function
Try typing these statements into the Command Window:

clc;

x = 2.5;

y = exp(x)

z = log(y)

w = sqrt(x)
Suppose we had a problem involving the following arithmetic statement which we needed to evaluate:

[image: image4.wmf]2

cos

2

kc

yt

mm

æö

æö

ç÷

=-

ç÷

ç÷

èø

èø

To make it easier to write the MATLAB statement corresponding to the above arithmetic statement, we could break up the argument of the cos term as follows (type the following in the Command window)

k = 200; c = 5; m = 25; t = 5;

arg = sqrt(k/m – (c/(2*m))^2);

y = cos(arg*t)

· Complex numbers:
Complex numbers may be written in two forms: Cartesian, e.g.

z = x + yj;
or polar form, e.g.

z = r * exp(j*theta).
Note that we will use j for
[image: image5.wmf]1

-

 throughout this text. However, MATLAB allows the use of i for
[image: image6.wmf]1

-

 as well.

Note: i and j are also legal MATLAB variable names which are often used within loops. To avoid confusion, programs which involve complex numbers should not use i or j as variable names.

· Other special values

abs

Absolute value (magnitude)

angle

Phase angle (in radians)

conj

Complex conjugate

imag

Complex imaginary part

real

Complex real part
Try typing these statements into the Command Window:

clc;

z1 = 1 + j;

z2 = 2 * exp(j * pi/6)

y = abs(z1)

w = real(z2)

v = imag(z1)

phi = angle(z1)
· Other useful functions:

size(X)

Gives the size (number of rows and the number of columns) of

matrix X.

length(X)
For vectors, length(X) gives the number of elements in X.

sum(X)
For vectors, sum(X) gives the sum of the elements in X. For

matrices, sum(X) gives a row vector containing the sum of the

elements in each column of the matrix.

max(X)
For vectors, max(X) gives the maximum element in X. For

matrices, max(X) gives a row vector containing the maximum in

each column of the matrix. If X is a column vector, it gives the

maximum absolute value of X.

min(X)

Same as max(X) except it gives the minimum element in X.

sort(X)

For vectors, sort(X) sorts the elements of X in ascending order.

For matrices, sort(X) sorts each column in the matrix in

ascending order.

factorial(n)
[image: image7.wmf]!123

nn

=´´´´

L

mod(x,y)
modulo operator, gives the remainder resulting from the division of

x by y.
For example, mod(13,5)= 3, i.e.,
[image: image8.wmf]5

13

¸

 gives 2 plus

remainder of 3 (the 2 is discarded). Another example: mod(n,2)

gives zero if n is an even integer and one if n is an odd integer.

Try typing these statements into the command window:

clc;

A = [2 15 6 18];

length(A)

y = max(A)

z = sum(A)

A = [2 15 6 18; 15 10 8 4; 10 6 12 3];

x = max(A)

y = sum(A)

size(A)

mod(21,2)

mod(20,2)

· A list of the complete set of elementary math functions can be obtained by typing

help elfun in the Command Window.

· Sometimes it is necessary to pre-allocate a matrix of a given size. This can be done by defining a matrix of all zeros or ones; examples:

A = zeros(3)
[image: image9.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

0

0

0

0

0

0

0

0

0

=

B = zeros(3,2)
[image: image10.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

0

0

0

0

0

0

=

C = ones(3)

[image: image11.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

1

1

1

1

1

1

1

1

D = ones(2,3)
[image: image12.wmf]ú

û

ù

ê

ë

é

=

1

1

1

1

1

1

The function to generate the identity matrix (main diagonal of ones, all other elements are zero) is eye; example:

I = eye(3)
[image: image13.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

0

0

0

1

0

0

0

1

Review 2.2.
1. Are command statements and variable names case sensitive?
2. What is the purpose of placing a semi-colon at the end of a command statement or a variable assignment?

3. How does one establish a comment line in a script?

4. What is the command that will clear the command window?

5. What is the basic data structure in MATLAB?

6. Name two functions of the colon operator.

7. List the arithmetic operators in MATLAB.

8. What is MATLAB’s command for:

a.
[image: image14.wmf]p

.

b. e.

c. ln.

d. sine function in radians.

e. sine function in degrees.

f. sin-1 function.

g. the number of elements in a vector.

h. the size of a matrix (the number of rows and columns).

i. the sum of the elements in a vector.

j. the maximum of the elements in a vector.

k. pre-allocating the size of a 3 x 3 matrix.
PAGE
1

_1343284831.unknown

_1378039046.unknown

_1408382884.unknown

_1408433686.unknown

_1398236104.unknown

_1377430863.unknown

_1343076937.unknown

_1343077138.unknown

_1343077247.unknown

_1343077312.unknown

_1343077225.unknown

_1343077114.unknown

_1071475727

