Lesson 9:

CHAPTER 3. TAYLOR SERIES, SELF WRITTEN FUNCTIONS AND MATLAB’S INTERP1 FUNCTION

3.1. Introduction

· In this Chapter we introduce the concept of expressing various functions as a series. In particular, we cover the Taylor series expansions of several functions.
· Numerical methods for solving various types of engineering problems are based on the use of a few terms in the Taylor series expansions.
· The Chapter contains several exercises and projects to demonstrate the equivalence of the Taylor Series Expansion of several functions and MATLAB’s evaluation of the function by the use of an arithmetic statement.

· The next topic in this Chapter is the self written function. The self written function is another building block that can be used in constructing a manageable computer program.
· The use of many MATLAB functions that solve various types of mathematical problems require the user to write a self written function.
· Self written functions are usually saved as separate .m files. However, if the self written function involves a single statement, an anonymous function can be used which is contained within the calling program and thus avoids an additional .m file.

· The next topic covered in this Chapter is MATLAB’s interp1 function. Many type of engineering problems involve material properties that are tabulated. If a particular problem involves properties that lie between tabulated values, one needs to interpolate for the property of interest. MATLAB’s interp1 function provides the means to do this.

· Lastly, the use of characters and strings in MATLAB programs is discussed.

3.2. Functions expressed as a series

Taylor Series Expansion
Any rational function can be evaluated by a power series, such as a Taylor series.

The function
[image: image1.wmf]()

fx

can be approximated by the nth term Taylor series, which is:

[image: image2.wmf]23

()

()()()

()()'()()''()'''()....()

2!3!!

n

n

xaxaxa

fxfafaxafafafa

n

=+-++++

 (3.1)

where

[image: image3.wmf]()

'()is the first derivative of ()evaluate

d at ,

''()is the second derivative of ()evalua

ted at ,

()is the derivative of ()evaluated at

nth

fafxxa

fafxxa

fanfxxa

=

=

=

g

g

g

Since a number of the sample programs involve determining
[image: image4.wmf]x

e

 by a Taylor series expansion, we start with a discussion of the series expansion of
[image: image5.wmf]x

e

.

We wish to determine the Taylor series expansion of
[image: image6.wmf]x

e

 about x = 0.

[image: image7.wmf]0

()

(0)1,

','(0)1

'',''(0)1

''','''(0)1

.

x

x

x

x

fxe

fe

fef

fef

fef

etc

=

==

==

==

==

Thus, the Taylor series expansion of
[image: image8.wmf]x

e

 to n terms is

[image: image9.wmf]234

1

2!3!4!!

n

x

xxxx

ex

n

=++++++

L

(3.2)

There are several possible programming algorithms to calculate the above series.
· The simplest method is to start with sum = 1 and then evaluate each term using exponentiation and MATLAB’S factorial function and add the obtained term to sum.
· An alternative approach would be to evaluate each term individually, save them in an array, and then use MATLAB’s sum function to add them all up.
· However, for some series expressions it is more efficient to compute each term in the series based on the value of the preceding term. For example, in the above series, we can see that the third term in the series can be obtained from the second term by multiplying the second term by x and dividing 3; that is, term3 = term2
[image: image10.wmf]×

x /3. In general,

term(n) = term(n-1)
[image: image11.wmf]×

x /n.
We have set up a Term index to identify each term in the series:

[image: image12.wmf]234

Term index:1234

1

2!3!4!!

n

x

n

xxxx

ex

n

=++++++

L

L

This concept is used in several of the following sample programs.

Example 3.1.

The following example determines
[image: image13.wmf]x

e

 by using MATLAB’s factorial function.

% Example_3_1.m

% This program calculates e^x by series and by MATLAB'S exp() function

% e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...

% The 'for' loop ends when the term only affects the seventh significant
% figure.

clear; clc;
x=5.0;

ex1=1.0;

for n=1:100

 term=x^n/factorial(n);

 ex1=ex1+term;

 if(abs(term) <= ex1*1.0e-7)

 break;

 end

end

ex2=exp(x);

fprintf('x=%3.1f ex1=%7.2f ex2=%7.2f \n',x,ex1,ex2);

--

Program results:

x = 5.0 ex1= 148.41 ex2= 148.41

>>

Example 3.2.
The following program illustrates the use of nested loops to calculate ex both by series and by MATLAB’s exp() function for -0.5 < x < 0.5.
% Example_3_2.m

% This program illustrates the use of nested loops;
% that is, an inner 'for' loop inside an outer 'for' loop.
% The program calculates e^x by both an arithmetic statement (ex2), and % by a Taylor series expansion (ex1), where

% -0.5 < x < 0.5. The outer 'for' loop is used to determine the x
% values. The inner loop is used to determine the Taylor series method % for evaluating e^x. In this example term(n+1)is obtained by
% multiplying term(n) by x/n.

% The variable, term, is established as a vector so that MATLAB's built % in 'sum' function can be used to sum all the terms calculated in the % Taylor series method. A maximum of fifty terms is used in the series.

% e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...
% Program output is both to the screen and to a file.

% By printing the output to a file, one can edit the output file,

% such as lining up column headings, etc. One cannot directly

% edit output to the screen.

clear; clc;

fo=fopen('output.txt','w');
% Table headings
fprintf(' x ex1 ex2 \n');
fprintf('-------------------------------------\n');

fprintf(fo,' x ex1 ex2 \n');
fprintf(fo,'-------------------------------------\n');

for x=-0.5:0.1:0.5
 ex2=exp(x);
 term(1)=1.0;
 for n=1:49
 term(n+1)=term(n)*x/n;
 if abs(term(n+1)) <= 1.0e-7
 break;
 end
 end
 ex1= sum(term);
 fprintf('%5.2f %10.5f %10.5f \n',x,ex1,ex2);

 fprintf(fo,'%5.2f %10.5f %10.5f \n',x,ex1,ex2);
end

fclose(fo);

Program results:

 x ex1 ex2

-0.50 0.60653 0.60653

-0.40 0.67032 0.67032

-0.30 0.74082 0.74082

-0.20 0.81873 0.81873

-0.10 0.90484 0.90484

 0.00 1.00484 1.00000

 0.10 1.10517 1.10517

 0.20 1.22140 1.22140

 0.30 1.34986 1.34986

 0.40 1.49182 1.49182

 0.50 1.64872 1.64872

>>
--

The following program uses a while loop to determine ex by series. The program also determines ex by MATLAB’s exp() function. The program is made interactive by asking the user to enter an x value from the keyboard.

Example 3.3.

% Example_3_3.m

% Calculation of e^x by both MATLAB's exp function and the Taylor
% series expansion of e^x. The input() function is used to establish
% the exponent x. A 'while loop' is used in determining the series
% solution. A break statement is used to end the loop if the number of % terms becomes greater than 50. The display statement is used to
% display the values of x, ex and ex2 in the command window.

% e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...

clear; clc;

x=input('Enter a value for the exponent x \n');

n=1; ex=1.0; term=1.0;

while abs(term) > ex*1.0e-6

 term=x^n/factorial(n);

 ex=ex+term;

 n=n+1;
 if n > 50

 break;

 end

end

ex2=exp(x);

disp('x='); disp(x); disp('e^x='); disp(ex);

Program results:

Enter a value for the exponent x

5

x=

 5

e^x=

 148.4131

PAGE
1

_1389029781.unknown

_1389539908.unknown

_1424606246.unknown

_1397307029.unknown

_1389030466.unknown

_1389031042.unknown

_1389030155.unknown

_1343288380.unknown

_1389028901.unknown

_1387721719.unknown

_1343288093.unknown

_1343288109.unknown

