Lesson 23, 10.1-10.10
Chapter 10. Simulink

10.1. Introduction

· Simulink is used with MATLAB to model, simulate and analyze dynamic systems.

· Common uses are for solving differential equations, modeling feedback systems, and signal processing.

· With Simulink, models can be built from scratch or additions can be made to existing models.

· Simulations can be made interactive, so a change in parameters can be made while running the simulation.

· Simulink supports linear and nonlinear systems, modeled in continuous time, sample time or a combinations of the two.

· Simulink provides a graphical user interface (GUI) for building models as block diagrams, using click-and-drag mouse operations.

· By using scopes and other display blocks, simulation results can be seen quickly.

· The program includes a comprehensive library of components (“blocks”) from which to construct models.

10.2. Creating a Model in Simulink
1. In the MATLAB desktop, click on the Simulink icon in the toolstrip (see Figure 10.1) or type simulink in the MATLAB command window.

[image: image77.png]—
' e
Comsntz
i — utyuEru)
10 fom e
Constantt R Fon
ol)
comant
e > uiyuru(E)
10l amedudt
Constants ’] Font
x it i
Ok Tl .
i i (
Scopez Intsgrator Integratort
01+ sin20y
o
(D——, J20t
O B
closk [—
Product Tiigonometie | Productt
20 functon
Constantd
o1
Constants

Figure 10.26 Block diagram for sol
of Equation 10.5.

5 the second-order differential equa

This brings up the Simulink Library Browser window (see Figure 10.2).

[image: image2.emf]
2. Click on File in the Simulink Library Browser . Select a “New”, then “Model” (for a new model) or “Open” for an existing model. This brings up an untitled model window (for the case of a new model -see Figure 10.3) or an existing model window.

[image: image3.emf]
3. Next click on one of the Library Browser groups to view the contents in

 that group. For example, clicking on the Commonly Used Groups category

 (see Figure 10.4a) brings up a window containing the available blocks in that

 category.

[image: image4.emf]
To create a new model, you need to copy blocks from one of the

 Library Browser category windows into the new model window. This can be

 done by highlighting a particular block and dragging it into the model
window (see Figure 10.4b).

[image: image5.emf]

[image: image1.emf]
(b)

[image: image6]
4. To simplify the connections of blocks, you may need to rotate a block 90˚ or 180˚. To do this, highlight the block and click on Format in the menu bar, and then select Rotate Block (for 90˚) or Flip Block (for 180˚).

5. To change the default values of various blocks, you can left button double click on the block or right click on the block and select the block parameters option, in either case, a window will open giving you the option of changing the default value of the block.

Simulink has many categories for displaying the library blocks; those of interest for this chapter are: Commonly Used Blocks, Continuous, Discontinuities, Math Operations, Ports & Subsystems, Signal Routing, Sinks, Sources, and User-Defined Functions.

Common blocks that will be used repeatedly in this chapter are: Constant, Clock (from the Sources library); Product, Gain, Sum (from the Math Operations library); Integrator (from the Continuous library); Scope, Display, To Workspace (from the Sink library); Relay (from the Discontinuities library); Switch, Mux (from the Signal Routing library), and Fcn (from the User-Defined Functions library).

10.3. Typical Building Blocks in Constructing a Model

1. Addition of two constants with displayed output (see Figure 10.5).
[image: image7.emf]
To set the value for a constant, double-click on the block and edit the constant value. To run the program, click on Simulation in the menu bar and click the Play button (►) in the menu bar.

2. Subtraction of two constants with displayed output (see Figure 10.6).

[image: image8.emf]
To make the Sum block perform a difference, double-click on the block and edit the list of signs.

3. Product of two blocks with displayed output (see Figure 10.7).

[image: image9.emf]
4. Division of two blocks with displayed output (See Figure 10.8).

[image: image10.emf]
To make the Product block perform division, double-click on the block and edit the list of operations.

5. To construct a model involving a differential equation, rewrite the differential equation with the highest derivative term on the left side and all other terms on the right side. Construct a model consisting of all terms on the right side, the output will represent the derivative term, which you can then integrate with Simulink’s integrator block giving the solution to the differential equation. If the right hand side of the rewritten equation contains the independent variable, the output of the integrator block will need to go to the input of some or all of the blocks representing the right hand side of the differential equation. The method of solution is illustrated in Example 10.1.
10.4. Tips for Constructing and Running Models

1. To connect lines from the output of a block to the input of a second block, place the cursor on the output of the first block, right-click on the mouse and drag the line to the input of the second block.

2. To connect a point on a line to the input of a block, place the cursor on the line, right-click on the mouse and drag line to the input of the block.

3. To add alphanumeric information above a line, double-click above the line and a text box will appear. Type in the desired label and click elsewhere to complete.

4. To view the results on a scope, double-click on the scope to make the graph appear. To select the graph axis, right click on the graph and select “axis properties” or “autoscale.” In most cases selecting autoscale is sufficient. You may also click on the binoculars icon to autoscale the graph.

5. To set initial conditions for an integrator, double-click on the block and edit the initial condition line.

6. By default, Simulink runs over a time interval of zero to 10 seconds. These times are inappropriate for many models (e.g. high-frequency circuits). To edit the start and stop times, click on Simulation in the menu bar, select Model Configuration Parameters, and edit the start and stop time boxes. Alternatively, you can adjust the stop time in the menu bar (the start time defaults to zero). Another Simulation Parameter option is the method of solution which includes ode4 (Runge-Kutta) method.

7. To run the simulation, click on Simulation in the menu bar and choose Start. Alternatively, click the Run button (►) in the menu bar.

Example 10.1.
In this example, we consider a the temperature change of a small, good heat conducting object that is suddenly immersed in a fluid at temperature
[image: image11.wmf]¥

T

. The temperature, T, of the object varies with time. The governing equation is given by Equation (10.1). To build a model in Simulink, we put the highest order derivative on the left side and all other terms on the right side as shown in Equation 10.1

[image: image12.wmf])

,

(

t

T

f

dt

dT

=

[image: image13.wmf]T

mc

hA

T

mc

hA

dt

dT

s

s

-

=

¥

(10.1)

where

m = the mass of the object

As = the surface area

c = the specific heat of the object

h = the convective heat transfer coefficient

The following parameters for Equation. (10.1) were used:

[image: image14.wmf]4

1

8.710

10C,(0)100

s

hA

mcs

TTC

-

¥

=´

=°=

o

Block diagram for Equation (10.1) is shown in Figure 10.9. The Simulation Configuration Parameters stop time was changed to 500 seconds.

[image: image15.emf]
Example 10.2.

For the series RC circuit of Figure 10.10, we will examine the capacitor voltage
[image: image16.wmf]C

v

 with respect to time in response to a unit-step input voltage.

[image: image17.emf]
The governing equation (as derived in Exercise E7.1, with vi replacing VD) is

[image: image18.wmf](

)

1

C

iC

dv

vv

dtRC

=-

(10.2)

where

[image: image19.wmf]10k

R

=W

[image: image20.wmf]4.7F

C

m

=

[image: image21.wmf]0V for 0

1V for 0

i

t

v

t

£

ì

ï

=

í

ï

>

î

The block diagram for Equation (10.2) is shown in Figure 10.11, and the resulting scope output is shown in Figure 10.12.

[image: image22.emf]

[image: image23.emf]
10.5. Constructing a Subsystem

Suppose we build a large system consisting of many blocks and we wish to reduce the number of blocks appearing in the overall block diagram. This can be done by creating a subsystem. The subsystem will appear as a single block. To create a subsystem of the system in Example 10.1, place the cursor in the vicinity of the region that is to become a subsystem and right-click the mouse. This will highlight the blocks that were selected, which can be enlarged by dragging the mouse over the region enclosing the number of blocks to be included in the subsystem. When the mouse button is released, click on the Diagram option in the menu and select Subsystem & Model Reference. Then select Create Subsystem from the drop down menu. This will result in the selected multiple blocks to be replaced with a single subsystem block as shown in Figure 10.13.
[image: image24.emf]
In that figure the constants and the product blocks have been combined into the subsystem. This particular subsystem has one input and two outputs, but in general a subsystem may have multiple inputs and outputs. By double-clicking on the subsystem, you may view its components as shown in Figure 10.14. Blocks and lines in any of the views can be moved to create a model flow to your liking.

[image: image25.emf]

Similarly, in Example 10.2 (see Figure 10.11), the Constant, Product, and Integrator blocks can be combined into a subsystem (see Figure 10.15 and 10.16).

[image: image26.emf]
This particular subsystem has one input and one output. By double-clicking on the subsystem, you may view its components (see Figure 10.17).
[image: image27.emf]
10.6. Using the mux and fcn Blocks

In constructing a solution to many types of engineering type problems using Simulink, you may find it convenient to use the Mux and Fcn blocks. The purpose of the Fcn block is to allow arbitrary mathematical expressions and MATLAB functions to be defined within the model. The input to the Fcn block comes from the output of the Mux block. The Mux block allows you to select among multiple inputs (to adjust the number of inputs, double-click on the block and edit the number of inputs). The uppermost input is designated as
[image: image28.wmf](1)

u

, the one below is designated as
[image: image29.wmf](2)

u

, etc. The mathematical expressions in the Fcn block are expressed in terms of the u()’s. The use of the Mux and Fcn blocks for Example 10.1 is shown in Figure 10.18.

[image: image30.emf]
The use of the Mux and Fcn blocks to solve Example 10.2 is shown in Figure 10.19.

[image: image31.emf]
10.7. Using the transfer fcn Block

A common method for solving circuit problems is to substitute complex impedances for the capacitors and inductors and then solve like a resistive circuit. For the RC circuit, the impedance of the resistor is simply
[image: image32.wmf]R

ZR

=

 and the impedance of the capacitor is
[image: image33.wmf]1

C

Z

Cs

=

 (where
[image: image34.wmf]sj

w

=

). Then, the capacitor voltage is simply the output of a resistive divider:

[image: image35.wmf]1

1

1

1

()

C

Ci

RC

i

i

i

Z

vv

ZZ

Cs

v

R

Cs

RC

v

s

RC

Hsv

=

+

=

+

=

+

=

where
[image: image36.wmf]1

()

1

RC

Hs

s

RC

=

+

 is commonly referred to as the transfer function. In Simulink, the Transfer Fcn block allows direct entry of a transfer function into your model as shown in Figure 10.20.

[image: image37.emf]

10.8. Using the relay and switch Blocks

Relays and switches are used in designs to enable a low-power device (e.g. an electronic controller) to control a high-power system (e.g. a boiler or furnace). Simulink has relay and switch blocks which can be used to simulate these types of systems.

Example 10.3

In a home heating system, a temperature sensor is used to switch the boiler on and off in order to heat the house to a comfortable temperature. However, because most boilers do not turn on and off instantaneously (i.e. they take a few minutes to heat up after turning on, and also take time to cool after turning off), the control of the room temperature requires some hysteresis in order to avoid cycling the boiler on and off too often (which causes excessive wear on the boiler). This concept can be represented by a simple differential equation in which the temperature T is set to fluctuate at a constant rate between
[image: image38.wmf]20

o

C and
[image: image39.wmf]22

o

C:

[image: image40.wmf]30if20

where

30if22

T

dT

cc

dt

T

£

ì

ï

==

í

ï

-³

î

(10.4)

The block diagram for this system consists of an integrator, a constant, a relay, a product and a scope (Figure 10.21).
[image: image41.emf]
The relay is used to invert the sign on c depending on whether the relay is on or off. The relay parameters may be edited by double-clicking on the relay block and setting the parameters to the following values:

Switch point on = 22

Switch point off = 20

Output when on =
[image: image42.wmf]1

-

Output when off = +1

The switch point on value must be greater than the value of switch point off. We assume that the initial room temperature is
[image: image43.wmf]18

T

=

o

C, and this value is entered into the parameters for the integrator block. At the start of the simulation,
[image: image44.wmf]20

T

£

 and thus the relay switch is off and the output of the relay is +1, causing T to increase. The relay output will remain +1 until T reaches 22, at which point the relay will turn on and its output will be
[image: image45.wmf]1

-

, causing T to decrease. The relay output will remain
[image: image46.wmf]1

-

 until T reaches 20, at which point the relay will turn off and its output becomes +1 again. This process will continue until the simulation end time is reached. The output of the scope is shown in Figure 10.22.

[image: image47.emf]
Example 10.4

Some problems may involve a function that varies in time for
[image: image48.wmf]1

0

tt

££

 and is constant for
[image: image49.wmf]12

ttt

<£

. This type of function can best be modeled with the switch block which implements a DPST (double-pole single-throw) switch with an additional terminal to control the opening and closing of the switch.
Suppose

[image: image50.wmf]5for010

50for1020

tt

y

t

££

ì

ï

=

í

ï

<£

î

(10.5)

The Simulink model for this problem is shown in Figure 10.23.
[image: image51.emf]

The parameters for the switch are as follows (note that terminal “u1” is the top switch input, “u2” is the middle (control) input, and “u3” is the bottom switch input):

Criteria for passing first input: u2
[image: image52.wmf]³

 Threshold

Threshold: 10

The Gain block multiplies the input by a constant value (gain). The input and the gain can each be a scalar, vector, or matrix.

The resulting output is shown in Figure 10.24. Note that we used the Clock block to generate the independent variable, which in this case, is the time, t.

[image: image53.emf]
10.9. Trigonometric function Blocks

Functions such as sine, cosine, and tangent can be obtained via the Trigonometric Function block located in Simulink’s Math Operations library. The input to this block is the argument to the desired trig function. If the argument involves the independent variable t (as in
[image: image54.wmf]sin

t

w

), then we can use the Clock block to obtain the value of t. This is shown in Figure 10.25 where we compute the value of
[image: image55.wmf]cos2

t

.
[image: image56.emf]

Example 10.5. Simulation of a Spring-Dashpot System

The governing equation for a simple spring-dash-pot system subjected to an oscillatory force is:

[image: image57.wmf]s

m

x

m

x

t

m

F

x

m

k

x

m

c

x

/

0

)

0

(

,

5

)

0

(

,

)

(

sin

=

=

=

+

+

&

&

&

&

w

(10.6)

The following Simulink program (see Figure 10.26) gives the solution. The values used are:

k = 1 N/m,
[image: image58.wmf]0.5/,20/,1

ckgsradsFN

w

===

[image: image76.png]Figure 10.4 (cont
Window and the U

ued) (b) Overlap of the Commonly Used Blocks Library
tled Model Browser Window.

[image: image59]
10.10. To workspace block
There may be occasions when you may wish to have an output from a model go to the workspace for further manipulation. For example, you may wish to create a table or to construct a MATLAB plot that is not from the model’s scope. This can be done with Simulink’s To Workspace block, which is found in Sinks section. We will modify Example 10.1 model to include the To Workspace block (see Figure 10.27) and then write a MATLAB program to print a table and create a MATLAB plot.

[image: image60.emf]
To accomplish this, double click on the temperature To Workspace block and make the following changes: in the in the Variable name slot change simout (default) to T and in the Save format slot change Structure (default) to array. Do the same to the time To Workspace block, except in the Variable name slot, the name change is to t (see Figure 10.28).

[image: image61.emf]
Finally, edit the Simulation Configuration Parameters as follows: Stop time to 500, Solver options Type to Fixed-step, Solver to ode4 (Runge-Kutta), Fixed-step size (Fundamental sample time) to 10 (see Figure 10.29).

[image: image62.emf]
Running the model will bring variables (t,T) into the workspace. You can then run a standard MATLAB program to print out a table and create a MATLAB plot. The MATLAB program follows.

Example 10.6.

% Example_10_6.m
% This program takes data from the output of Simulink model
% and creates a table and a MATLAB plot.
% Do not use the clear statement in this program.
clc;
fprintf('t(s) T(C) \n');
fprintf('------------------------------------- \n');
for i=1:length(t)
 fprintf('%4.1f %8.2f \n',t(i),T(i));
end
plot(t,T), xlabel('t(s)'), ylabel('T(\circC)'),
title('Temperature vs. time'), grid;
--
Program results.

 t(s) T(C)

 0.0 100.00

10.0 99.22

20.0 98.45

30.0 97.68

40.0 96.92

50.0 96.17

 . .

 .
 .

450.0 70.84

460.0 70.32

470.0 69.79

480.0 69.28

490.0 68.76

500.0 68.25

>>

[image: image63.emf]
--

Example 10.7. Simulation of an RLC Circuit

In Projects 2.7 and 2.8, we studied the parallel RLC circuit. If we use a sinusoidal input current to the circuit in Figure P2.7 and assume that the switch closes at
[image: image64.wmf]0

t

=

, the governing equation is:

[image: image65.wmf]2

2

111

sin

LL

Lo

didi

iIt

dtRCdtLCLC

w

++=

(10.7)

where the circuit is “driven” by a sinusoidal current of frequency
[image: image66.wmf]w

 and magnitude
[image: image67.wmf]o

I

. The Simulink model that solves this second-order differential equation is shown in Figure 10.28.

[image: image68.emf]
The following circuit values and initial conditions were used:

[image: image69.wmf]1F

C

m

=

[image: image70.wmf]10mH

L

=

[image: image71.wmf]2000

R

=W

[image: image72.wmf]5mA

o

I

=

[image: image73.wmf]2000radian/sec

w

=

[image: image74.wmf](0)2mA

L

i

=

[image: image75.wmf](0)0

L

i

¢

=

The output of the simulation is shown on the scope screen (Figure 10.29). To obtain output values in table format, one needs to send the variable to workspace by the workspace block as shown in Figure 10.29. After the simulation is run, those variables become available for use in any MATLAB program.
Simulation and workspace parameters for this example are as follows:

Simulation time:
Start time: 0.0
Stop time: 0.015
Solver options:

Type: Variable-step
Solver: ode5 (Dormand-Prince)
Max step size: auto

Min step size: auto

Initial step size: auto

Relative Tolerance: 1e-3
Absolute Tolerance: auto

Workspace Parameters:

Variable name: i
Limit data points to last: inf
Decimation: 1
Sample time (-1 for inherited): -1
Save format: array

PAGE
32

_1355852002.unknown

_1355930682.unknown

_1382814064.unknown

_1417897606.unknown

_1417897623.unknown

_1382904788.unknown

_1416199476.unknown

_1416225171.unknown

_1410589561.unknown

_1382904606.unknown

_1356512430.unknown

_1356512538.unknown

_1356513152.unknown

_1356512719.unknown

_1356512438.unknown

_1356512501.unknown

_1356512286.unknown

_1356512287.unknown

_1355930792.unknown

_1355930791.unknown

_1355928345.unknown

_1355928982.unknown

_1355930111.unknown

_1355928403.unknown

_1355853076.unknown

_1355853158.unknown

_1355926327.unknown

_1355927241.unknown

_1355902283.unknown

_1355853139.unknown

_1355852003.unknown

_1355751840.unknown

_1355756274.unknown

_1355831144.unknown

_1355753759.unknown

_1286550355.unknown

_1355750965.unknown

_1355751266.unknown

_1355751671.unknown

_1355751003.unknown

_1286550404.unknown

_1286557284.unknown

_1286550049.unknown

