Lesson 13.

Chapter 4.  MATRICES

4.1. Introduction

This chapter covers some basic concepts in matrices and methods for solving a system of linear equations.  
· The basic element in MATLAB is a matrix and it is therefore appropriate to have a chapter on matrices. 
· First, we discuss some basic matrix concepts and operations and the treatment of matrices in MATLAB, including several sample MATLAB programs involving matrices. 
· This is followed by a discussion of MATLAB’s inv function for solving a system of linear equations. 

· Problems in statics and in resistive circuits, which involve a system of linear equations are covered. 

· Next, the Gauss elimination and the Gauss-Jordon methods are described, including examples on these methods.  

· A method for obtaining the inverse of a matrix is also discussed. These latter three topics do not involve MATLAB and may be skipped without affecting the remaining chapters in the book. 

· Finally, the matrix eigenvalue problem is covered, including problems in vibrations and in resonant circuits.
4.2. Matrix Operations

· A rectangular array of numbers of the form shown below is called a matrix.
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The numbers 
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 in the array are called the elements of the 
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 matrix A.

· A matrix of m rows and one column is called a column vector.

· A matrix of one row and n columns is called a row vector.

· Matrices obey certain rules of addition, subtraction and multiplication.

· Addition and subtraction: if matrices A and B have the same number of rows and columns, then
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· Addition and subtraction of the matrices A and B is only defined if A and B have the same number of rows and columns.

· Multiplication: The product AB is only defined if the number of columns in A equals the number of rows in B. If  C = AB, where



[image: image6.wmf]111213

212223

aaa

aaa

éù

êú

=

êú

ëû

A


  and    
[image: image7.wmf]1112

2122

3132

bb

bb

bb

éù

êú

êú

=

êú

êú

êú

ëû

B


then
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· If A has m rows and B has K columns, then C = AB will have m rows and K columns. A general expression for the element 
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 is
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In MATLAB, the multiplication of matrices A and B is entered as A*B.
· The transpose of a matrix A is an operation in which rows become columns and columns become rows. In matrix algebra the transpose of matrix A is written as AT. If
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In MATLAB, the transpose of matrix A is entered as A'.
· Summing the elements of a vector or the columns of a matrix:
If 
[image: image13.wmf][

]

123

aaa

=

A

, then 



[image: image14.wmf]123

sum()

aaa

=++

A

. 
If 



[image: image15.wmf]111213

212223

313233

bbb

bbb

bbb

éù

êú

êú

=

êú

êú

êú

ëû

B


then



[image: image16.wmf](

)

(

)

(

)

112131122232132333

sum()

bbbbbbbbb

=++++++

éù

ëû

B


· Dot Product: In vector notation, the dot product of two vectors is defined as 
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For example, if  
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The result of a dot product is always a scalar (i.e. a single number).
In MATLAB, the dot product, 
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AB

, is entered as dot(A,B).

· Identity matrix: the identity matrix, 
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, is a matrix where the main diagonal elements are all ones and all other elements are zero. 
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For example, for the case of a three-by-three matrix A,
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In MATLAB, you can generate an 
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 identity matrix with eye(n).

· Inverse of a matrix: The inverse of  matrix A, denoted 
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A

, is a matrix such that
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(for a 
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 matrix)
In MATLAB, the matrix inverse 
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 is entered as inv(A). 

· In MATLAB, the determinant of the matrix A is entered as det(A). 

Before the use of computers, determinants were developed as a method for obtaining a solution to a system of linear equations. Computationally, it is only practical for a system involving just a few equations [1]. However, determinants do have an application in the eigenvalue problem that is discussed at the end of this Chapter.

The determinant of a 
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 matrix is:
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Note that the determinant of a matrix is written with two straight lines that encloses the matrix elements. 

The determinant of a 
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 matrix is:
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· You can obtain the size of matrix A by the command size(A). This command is useful when you run a script and you get an error message like “Index exceeds matrix dimensions”.  Entering the size()command in the script  will help you determine the problem.
· Element-by-Element Operations: given two vectors of the same dimensions, we can perform element-by-element multiplication and division in MATLAB with the .* and ./ operators.
Given 
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We see that the element-by element operation results in a vector that is the same dimension as the vectors that are involved in the operation. Also, note the dot product can be expressed as a combination of an element-by-element multiplication and a sum:
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· Product of functions of two vectors:
As described in Chapter 2, MATLAB allows taking a function of a vector and that the result is also be a vector. If a script involves a mathematical operation of two vector functions (such as a product of two vector functions), then the operation will require an element-by-element operation. In Example 4.2

· , we compute the product of two vector functions, both directly and indirectly by using a for loop and multiplying the elements of each vector.

· Examples
% Example_4_1.m

% This program demonstrates matrix algebra in MATLAB

clear; clc;

a=[1 5 9]

b=[2 6 12]

c=a+b

d=dot(a,b)

e=a.*b

f=a./b

g=sum(a.*b)

h=a*b'
size(a)
-------------------------------------------------------------------------------------------------------
Program results:

a =

     1     5     9

b =

     2     6    12

c =

     3    11    21

d =

   140

e =

     2    30   108

f =

    0.5000    0.8333    0.7500

g =

   140

h =

   140
ans =

     1     3

>>

------------------------------------------------------------------------------------------------
Example 4.2

% Example_4_2.m

% This example illustrates element-by element operation 
% of vector functions
clear; clc;
x = 0:30:180;
% y1 is the product of two vector functions
y1 = sind(x).* cosd(x);
fprintf('  x        y1         y2\n');
fprintf('--------------------------------------------------\n');
for n=1:length(x);
     % y2(n) is the product of the elements of the two functions.

y2(n) = sind(x(n)) * cosd(x(n));

fprintf('%5.1f   %8.5f   %8.5f \n',x(n),y1(n),y2(n));
end
 ---------------------------------------------------------------------

Program results:

    x                   y1                  y2

---------------------------------------------
  
  0.0      0.00000    0.00000 

 
 30.0      0.43301    0.43301 

 
 60.0      0.43301    0.43301 

 
 90.0      0.00000    0.00000 


120.0     -0.43301   -0.43301 


150.0     -0.43301   -0.43301 


180.0     -0.00000   -0.00000 


>>
-----------------------------------------------------------------------


We see that the two different methods for computing y1 and y2 give the same answer.

Review 4.1.
1. If matrix C = A+B, what must be true about matrices A and B.
2. If C = AB, what must be true about matrices A and B?

3. What command in MATLAB is used to obtain the inverse of a matrix?

4. What symbol is used in MATLAB to transpose a matrix?

5. Is the dot product of two vectors a scalar or a vector? 

6. Is the element by element multiplication of two vectors a scalar or a vector?

7. Does the use of MATLAB’s sum command on a vector produce a scalar or a vector?

8. Does the use of MATLAB’s sum command on a matrix of  two or more columns produce a scalar or a vector?
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