Lesson 24, 11.1-11.7
CHAPTER 11. OPTIMIZATION

11.1. Introduction

· The objective of optimization is to maximize or minimize some function f (called the object function).

· You are probably familiar with determining the maxima and minima of functions by using techniques from differential calculus.

· However, the problem becomes more complicated when we place constraints on the allowable solutions to f.

· As an example, suppose there is an electronics company that manufactures several different types of circuit boards. Each circuit board must pass through several different departments (such as drilling, pick-and-place, testing, etc.) before shipping. The time required for each circuit board to pass through the various departments is also known. There is a minimum production quantity per month that the company must produce. However, the company is capable of producing more than the minimum production requirement for each type of circuit board each month. The profit the company will make on each circuit board it produces is known. The problem is to determine the production amount of each type of circuit board per month that will result in the maximum profit.

· A similar type of problem may be one in which the object is to minimize the cost of producing a particular product.

· These types of optimization problems are discussed in greater detail later in this chapter.

· In most optimization problems, the object function f will usually depend on several variables,
[image: image1.wmf]123

,,,,

n

xxxx

K

. These are called the control variables because their values can be selected. Optimization theory develops methods for selecting optimal values for the control variables
[image: image2.wmf]123

,,,,

n

xxxx

K

 that either maximizes (or minimizes) the objective function f. In many cases, the choice of values for
[image: image3.wmf]123

,,,,

n

xxxx

K

 is not entirely free, but is subject to some constraints.
11.2. Unconstrained Optimization Problems

In calculus it is shown that a necessary (but not sufficient) condition for f to have a maximum or minimum at point P is that each of the first partial derivatives at P be zero, i.e.

[image: image4.wmf]1

()()()0

2n

fff

PPP

xxx

¶¶¶

====

¶¶¶

L

(11.1)

where the notation
[image: image5.wmf]()

i

f

P

x

¶

¶

 indicates the partial derivative with respect to
[image: image6.wmf]i

x

 evaluated at point P, i.e.
[image: image7.wmf]i

xP

f

x

=

¶

¶

. If
[image: image8.wmf]1

n

=

 and the object function is
[image: image9.wmf]()

yfx

=

, then a necessary condition for an extremum (maximum or minimum) at
[image: image10.wmf]0

x

 is for
[image: image11.wmf]0

)

(

0

=

¢

x

y

.
For y to have a local minimum at
[image: image12.wmf]0

x

,
[image: image13.wmf]0

)

(

0

=

¢

x

y

 and
[image: image14.wmf]0

)

(

0

>

¢

¢

x

y

.
For y to have a local maximum at
[image: image15.wmf]0

x

,
[image: image16.wmf]0

)

(

0

=

¢

x

y

 and
[image: image17.wmf]0

)

(

0

<

¢

¢

x

y

.
For f involving several variables, the condition for f to have a relative minimum is more complicated. First, Equation (11.1) must be satisfied. Second, the quadratic form

[image: image18.wmf](

)

(

)

)

(

)

(

)

(

1

1

2

P

x

x

P

x

x

P

x

x

f

Q

j

j

n

i

i

i

n

j

j

i

-

-

¶

¶

¶

=

å

å

=

=

(11.2)

must be positive for all choices of
[image: image19.wmf]i

x

 and
[image: image20.wmf]j

x

 in the in the vicinity of point P, and Q = 0 only when
[image: image21.wmf]()

ii

xxP

=

 for
[image: image22.wmf]1,2,,

in

=

K

. This condition comes from a Taylor series expansion of
[image: image23.wmf]12

(,,,)

n

fxxx

K

 about point P using only terms up to
[image: image24.wmf]2

().

ij

f

P

xx

¶

¶¶

This gives.

[image: image25.wmf](

)

(

)

(

)

)

(

)

(

)

(

)

(

)

(

)

(

)

,...,

,

(

1

1

2

2

1

P

x

x

P

x

x

P

x

x

f

P

x

x

P

x

f

P

f

x

x

x

f

j

j

n

i

i

i

n

j

j

i

i

i

n

i

i

n

-

-

¶

¶

¶

+

-

¶

¶

+

=

å

å

å

=

=

(11.3)
If
[image: image26.wmf]12

(,,,)

n

fxxx

K

 has a relative minimum at point P, then
[image: image27.wmf]0

)

(

=

¶

¶

P

x

f

i

 for
[image: image28.wmf]1,2,,

in

=

K

 and
[image: image29.wmf]12

(,,)()0

n

fxxxfP

->

K

 for all
[image: image30.wmf]12

(,,,)

n

xxx

K

 in the vicinity of point P. But,
[image: image31.wmf]12

(,,)()

n

fxxxfPQ

-=

K

. Thus, for
[image: image32.wmf]12

(,,,)

n

fxxx

K

 to have a relative minimum at point P, Q must be positive for all choices of
[image: image33.wmf]i

x

 and
[image: image34.wmf]j

x

 in the vicinity of point P.

Example 11.1.

As an example, let us consider the function,

[image: image35.wmf]2242

12121212112

(,)44.54222

fxxxxxxxxxxx

=+-++-+-

(11.4)

A relative minimum exits at (x1, x2) = (1.941, 3.854). Thus, point P has coordinates (1.941, 3.854). Let us evaluate Q in the vicinity of point P. For f as a function of

(x1, x2), the equation for Q is

[image: image36.wmf](

)

(

)

(

)

(

)

222

22

11112222

22

1122

()()2()()()()()

fff

QPxxPPxxPxxPPxxP

xxxx

¶¶¶

=-+--+-

¶¶¶¶

(11.5)

Taking the partial derivatives of f and substituting these expressions into Equation (11.2) gives

[image: image37.wmf]222

2

121

22

1122

2124;24;4;

fff

xxx

xxxx

¶¶¶

=+-=--=

¶¶¶¶

To evaluate Q in the vicinity of point P, we will take points on a small circle around point P, i.e.,

[image: image38.wmf](

)

(

)

1122

()cos()and()sin()

xxPsxxPs

JJ

-=D-=D

 with
[image: image39.wmf]0360

J

££

o

.
The program follows:

% Example_11_1.m

% Quadratic_form
% This program determines Q in the vinicity of a relative minimum
% for the following function:

% f(x1,x2)=4+4.5*x1-4*x2+x1^2+2*x2^2-2x1*x2+x1^4-2x1^2*x2.
% Q = d2fdx1^2(P)[x1-x1(P)]^2 +2*d2fdx1dx2(P)[x1-x1(P)][x2-x2(p)]+
% d2fdx2^2(P)[x2-x2(P)]^2
clear; clc;
x1p=1.941; x2p=3.854;
f=@(x1,x2) (4+4.5*x1-4*x2+x1^2+2*x2^2-2*x1*x2+x1^4-2*x1^2*x2);
d2fdx1dx1= @(x1,x2) (2+12*x1^2-4*x2);
d2fdx2dx2 = 4;
d2fdx1dx2 = @(x1) (-2-4*x1);
ds=0.1;
theta=0:18:360;
fmin=f(1.941,3.854);
fprintf('fmin=%10.4f \n',fmin);
fprintf('Determining Q around minimum value of f \n');
fprintf('Minimum value of f occurs at (x1,x2)=(%5.3f,%5.3f) \n',...

 x1p,x2p);
fprintf(' theta Q \n');
fprintf('------------------------------ \n');
for i=1:length(theta)
 theta1=theta(i);
 Q=d2fdx1dx1(x1p,x2p)*(ds*cosd(theta1))^2+4*(ds*sind(theta1))^2...
 +d2fdx1dx2(x1p)*(ds*cosd(theta1)*ds*sind(theta1));
 fprintf('%5.0f %10.4f \n',theta1,Q);
end
Program results:

fmin = 0.9856

Determining Q around minimum value of f

Minimum value of f occurs at (x1, x2)=(1.941, 3.854)

 theta Q

 0 0.3179

 18 0.2627

 36 0.1755

 54 0.0896

 72 0.0378

 90 0.0400

108 0.0952

126 0.1825

144 0.2683

162 0.3201

180 0.3179

198 0.2627

216 0.1755

234 0.0896

252 0.0378

270 0.0400

288 0.0952

306 0.1825

324 0.2683

342 0.3201

360 0.3179

>>

--

We see that Q is positive for all of the test points around point P.

Since the above analysis is quite complicated when f is a function of several variables, an iterative scheme is frequently used as a method of solution. One such method is the method of steepest descent. In this method, we first need to guess for a point where an extremum exists. Using a grid to evaluate the function at different values of the control variables can be helpful in establishing a good starting point for the iteration process.

11.3. Method of Steepest Descent

Consider a function f of three variables x, y, and z. From calculus, we know that the gradient of f, written as
[image: image40.wmf]f

Ñ

, is given by:

[image: image41.wmf]ˆˆˆ

xyz

fff

f

xyz

¶¶¶

Ñ=++

¶¶¶

eee

(11.6)

where
[image: image42.wmf]ˆ

x

e

,
[image: image43.wmf]ˆ

y

e

, and
[image: image44.wmf]ˆ

z

e

 are unit vectors in the x, y and z directions respectively.

At
[image: image45.wmf])

,

,

(

0

0

0

z

y

x

, we also know that
[image: image46.wmf])

,

,

(

0

0

0

z

y

x

f

Ñ

points in the direction of the maximum rate of change of f with respect to distance. A unit vector
[image: image47.wmf]ˆ

g

e

 which points in this direction is:

[image: image48.wmf]ˆ

||

g

f

f

Ñ

=

Ñ

e

(11.7)

where
[image: image49.wmf]2

2

2

|

|

÷

ø

ö

ç

è

æ

¶

¶

+

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

=

Ñ

z

f

y

f

x

f

f

.

To find a relative minimum via the method of steepest descent, we start at some initial point and move in small steps in the direction of steepest descent, which is
[image: image50.wmf]ˆ

g

-

e

. Let
[image: image51.wmf]111

(,,)

nnn

xyz

+++

 be the new position on the nth iteration and
[image: image52.wmf](,,)

nnn

xyz

 the old position. Then,

[image: image53.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

1

1

,,

,,

,,

,,

,,

,,

nnn

nn

nnn

nnn

nn

nnn

nnn

nn

nnn

f

xyz

x

xxs

fxyz

f

xyz

y

yys

fxyz

f

xyz

z

zzs

fxyz

+

+

+

¶

¶

=-D

Ñ

¶

¶

=-D

Ñ

¶

¶

=-D

Ñ

(11.8)

where (s is some small length.

Example 11.2.

Given:
[image: image54.wmf]2242

12121212112

(,)44.54222

fxxxxxxxxxxx

=+-++-+-

Determine: The minimum of f by the method of steepest descent, starting at point
[image: image55.wmf]12

(,)(6,10)

xx

=

. Use a
[image: image56.wmf]s

D

= 0.1 and a maximum of 100 iterations.

% Example_11_2.m

% This program determines a relative minimum by the method

% of steepest decent.

% The function is:

% f(x1,x2)=4+4.5*x1-4*x2+x1^2+2*x2^2-2*x1*x2+x1^4-2*x1^2*x2

% Note: this function has known minima at (x1,x2)=(1.941,3.854)

% and (-1.053,1.028). The functional values at the minima points are
% 0.9855 and -0.5134 respectively.
clear; clc;

% Define function and its partial derivatives

fx_func = @(x1,x2) 4+4.5*x1-4*x2+x1^2+2*x2^2-2*x1*x2+x1^4-2*x1^2*x2;

dfx1_func = @(x1,x2) 4.5+2*x1-2*x2+4*x1^3-4*x1*x2;

dfx2_func = @(x1,x2) -4+4*x2-2*x1-2*x1^2;

% Define stepping parameters

ds=0.1;

max_iterations = 100;

% First guess

x1=6;

x2=10;

fx=fx_func(x1,x2);

% Print headings and initial guess to screen

fprintf(' n x1 x2 fx \n');
fprintf('--- \n');
fprintf(' 0: %7.4f %7.4f %10.4f \n',x1,x2,fx);

for n=1:max_iterations

 % compute partial derivatives

 dfx1=dfx1_func(x1,x2);

 dfx2=dfx2_func(x1,x2);

 % compute magnitude of gradient

 gradf_mag=sqrt(dfx1^2+dfx2^2);

 % compute next values of x1 and x2 as per Equation 11.8
 x1n=x1-dfx1/gradf_mag*ds;

 x2n=x2-dfx2/gradf_mag*ds;

 fxn=fx_func(x1n,x2n);

 fprintf('%2d %7.4f %7.4f %10.4f \n',n,x1n,x2n,fxn);

 % if new value is larger than previous, then minimum has been found

 if(fxn > fx)

 fprintf('A minimum has been found after %d iterations \n\n',n);

 break;
 % otherwise, store new values over current ones and continue

 else

 x1 = x1n;

 x2 = x2n;

 fx = fxn;

 end

end

if n >= max_iterations

 fprintf('Error: no solution found after %d iterations\n',i);

else

 fmin=fx_func(x1,x2);

fprintf('The relative minimum occurs at approximately');

fprintf(' x1=%.4f x2=%.4f \n',x1,x2);

 fprintf('The minimum value for f =%.4f \n',fmin);

end
--

Program results:

 n x1 x2 fx
--
 0 6.0000 10.0000 683.0000

 1 5.9003 10.0077 622.7192

 2 5.8006 10.0155 566.2528

 3 5.7009 10.0233 513.4609

 .

 .

 .

 .

 .

 .

 .

 .
 .

89 1.9936 4.0234 1.0001

90 1.9638 3.9279 0.9883

91 1.9495 3.8289 0.9901
A minimum has been found after 91 iterations

The relative minimum occurs at approximately x1=1.9638 x2=3.9279

The minimum value for f=0.9883.

To obtain a more accurate result, we could rerun the program with revised starting values (from iteration 91 above) and use a smaller
[image: image57.wmf].

s

D

Example 11.3
In the above example, instead of starting the method of steepest decent at some arbitrary point (x1,x2)=(6,10), we could have first used a grid program to establish a good starting point. In addition, a grid program might also have indicated that there was more than one relative minimum point in the range of interest. Program Example_11_3.m demonstrates the grid program that could be used.

% Example_11_3.m
% This program calculates the values of a specified function f(x1,x2)
% of 2 variables for determining a good starting point for the method
% of steepest decent. The range of interest is from -5.0 <= x1 <= 5.0
% and -10.0 <= x2 <= 10.0.
clear; clc;
% Define function of interest:
fx_func = @(x1,x2) 4+4.5*x1-4*x2+x1^2+2*x2^2-2*x1*x2+x1^4-2*x1^2*x2;
% Define grid endpoints and step size
x1min=-5.0; x1max=5.0; dx1=2.0;
x2min=-10.0; x2max=10.0; dx2=2.0;
% Define grid and calculate f(x1,x2) at each point
x1=x1min:dx1:x1max;
x2=x2min:dx2:x2max;
for i=1:length(x1)
 for j=1:length(x2)
 f(i,j) = fx_func(x1(i),x2(j));
 end
end
% Print heading
fprintf('--- \n');
fprintf(' x2 |');
fprintf(' x1 \n');
fprintf('--- \n');
fprintf(' |');
for i=1:length(x1)
 fprintf('%6.1f ',x1(i));
end
fprintf('\n');
fprintf('---\n');
% Print values of f(x1,x2)
for j=1:length(x2)
 fprintf('%6.1f |',x2(j));
 for i=1:length(x1)
 fprintf('%7.1f ',f(i,j));
 end
 fprintf('\n');
end
--

Program Results:

 x2 | x1

 | -5.0 -3.0 -1.0 1.0 3.0 5.0

 -10.0 | 1271.5 440.5 241.5 290.5 587.5 1516.5

 -8.0 | 1111.5 336.5 161.5 202.5 459.5 1316.5

 -6.0 | 967.5 248.5 97.5 130.5 347.5 1132.5

 -4.0 | 839.5 176.5 49.5 74.5 251.5 964.5

 -2.0 | 727.5 120.5 17.5 34.5 171.5 812.5

 0.0 | 631.5 80.5 1.5 10.5 107.5 676.5

 2.0 | 551.5 56.5 1.5 2.5 59.5 556.5

 4.0 | 487.5 48.5 17.5 10.5 27.5 452.5

 6.0 | 439.5 56.5 49.5 34.5 11.5 364.5

 8.0 | 407.5 80.5 97.5 74.5 11.5 292.5

 10.0 | 391.5 120.5 161.5 130.5 27.5 236.5

>>
--
Looking at this table, we might guess that there is a relative minimum somewhere in the box
[image: image58.wmf]12

1.01.0,and0.02.0.

xx

-<<<<

11.4 MATLAB’s fminbnd and fminsearch Functions
· fminbnd function
MATLAB provides the fminbnd(FUN,x1,x2)function to determine the relative minimum of a single variable function in the interval x1 < x < x2. The three arguments to fminbnd are the function (FUN) whose the relative minimum we wish to determine and the x1, x2 gives the interval in which the relative minimum may lie. FUN can be a function defined in a separate .m file or may be defined anonymously within the script. The output of fminbnd is the x value where the relative minimum occurs. Note that MATLAB does not have a separate function to find a relative maximum. In order to find a maximum, redefine your function to return the negative value of the function and then use fminbnd to find the minimum (see Example 11.4).

Example 11.4
Given:
[image: image59.wmf]32

()5.735.185.176

yxxxx

=+-+

.

Determine: the relative minima and maxima.

% Example_11_4.m
% Find the minima and maxima of y = x^3 + 5.7 x^2 – 35.1x + 85.176
clc; clear;
% First, plot the function so that we can determine the x range to use
% in fminbnd is x1=-10, x2=10;
x=-10:0.1:10;
fprintf('This output is from MATLAB fminbnd function \n');
for i=1:length(x)
 y(i) = x(i)^3 + 5.7*x(i)^2 - 35.1*x(i) + 85.176;
end
plot(x,y), xlabel('x'),ylabel('y'), grid, title('y vs x');
% Next, find the minimum and maximum using MATLAB's anonymous
% function method (find first guesses by eyeballing plot).
xmin = fminbnd(@(x) x^3+5.7*x^2-35.1*x+85.176,-10,10);
Fmin=xmin^3+5.7*xmin^2-35.1*xmin+85.176;
fprintf('xmin=%.1f minvalue=%.1f \n',xmin,Fmin)
% Note: To find a maximum, instead find the minimum of the
% negative of the function.
xmax = fminbnd(@(x) -(x^3+5.7*x^2-35.1*x+85.176),-10,10);
Fmax=-(xmax^3+5.7*xmax^2-35.1*xmax+85.176);
% Print results
fprintf('xmax=%.1f maxvalue=%.1f \n',xmax,Fmax);
--
Program results:

This output is from MATLAB fminbnd function

xmin=2.0 minvalue=45.8

xmax=-5.8 maxvalue=-285.4

>>

[image: image60.emf]
--
· fminsearch function
MATLAB also provides the fminsearch(FUN,X0)function to determine the relative minimum of a multidimensional unconstrained function in the vicinity of X0. The syntax for the function is:

[X, FVAL] = fminsearch(FUN,X0)

The two arguments to fminsearch are the function, FUN, whose relative minimum we wish to determine and X0 is the starting coordinates in the search for the relative minimum of FUN. FUN can be a function defined in a separate .m file or may be defined anonymously within the script. The output of fminsearch is X and FVAL, where X is the position of the relative minimum and the FVAL is the minimum value of FUN.
Note that MATLAB does not have a separate function to find a relative maximum. In order to find a maximum, redefine your function to return the negative value of the function and then use fminsearch to find the minimum (see Example 11.4).

% Example_11_5.m
% This program determines the minimum value of the function in
% Example 11.2 by MATLAB's fminsearch function. The function is
% f(x1,x2)=4+4.5*x(1)-4*x(2)+x(1)^2+2*x(2)^2-2*x(1)*x(2)+x(1)^4- ...
% 2*x(1)^2*x(2);
% To use MATLAB's fminsearch function, we need to make an initial guess
% for the position of the relative minimum.
clear; clc;
% Initial guess for the position of the relative minimum.
% From Example 11.3 output, a minimum appears to be
% in the vicinity of [0 2]
xo=[0 2];
fun_x12 = @(x) 4+4.5*x(1)-4*x(2)+x(1)^2+2*x(2)^2 - ...

2*x(1)*x(2)+x(1)^4-2*x(1)^2*x(2);
[X, Fmin] = fminsearch(fun_x12,xo);
% x1min=X(1); x2min=X(2);
% Print results.
fprintf('Results from MATLAB fminsearch function \n');
fprintf('First relative minimum \n');
fprintf('x1min=%6.4f x2min=%6.4f minvalue=%8.4f \n',...
 X(1),X(2),Fmin);
% From Example 11.3 output, a second minimum appears to be
% in the vicinity of [2 6]
xo=[2 6];
[X, Fmin] = fminsearch(fun_x12,xo);
fprintf('Second relative minimum \n');
fprintf('x1min=%6.4f x2min=%6.4f minvalue=%8.4f \n',...
 X(1),X(2),Fmin);

Program results:

First relative minimum

x1min=-1.0527 x2min=1.0278 minvalue= -0.5134

Second relative minimum

x1min=1.9410 x2min=3.8543 minvalue= 0.9856

>>

11.5 Optimization with Constraints

In many optimization problems, the variables in the function to be maximized or minimized are not all independent but are related by one or more conditions or constraints. A simple example that illustrates the constraint concept follows.

Example 11.6

Suppose we wish to determine the maximum and minimum values of the objective function

[image: image61.wmf](,)23

fxyxy

=+

(11.10)

with the following constraints:

Lower bounds (LB):
[image: image62.wmf]0

x

³

,
[image: image63.wmf]0

y

³

(11.12)

Upper bounds (UB):
[image: image64.wmf]3

x

£

,
[image: image65.wmf]3

y

£

(11.13)

Constraint 1 (L1):
[image: image66.wmf]4

xy

+£

(11.14)

Constraint 2 (L2):
[image: image67.wmf]628

xy

+³

(11.15)

Constraint 3 (L3):
[image: image68.wmf]58

xy

+³

(11.16)
The bounds are graphed in Figure 11.2. The MATLAB code that produces Figure 11.2 follows. Letters at the points of intersection were obtained by using the insert option on the MATLAB figure.

% Example_11_6.m
% To draw straight lines, specify two points on the line
% upper bound on y
x(1)=0; y(1)=3; x(2)=3; y(2)=3;
% upper bound on x
x1(1)=3; y1(1)=0; x1(2)=3; y1(2)=3;
% lower bound on y
x2(1)=0; y2(1)=0; x2(2)=3; y2(2)=0;
% lower bound on x
x3(1)=0; y3(1)=0; x3(2)=0; y3(2)=3;
% line L1
x4(1)=0; y4(1)=4; x4(2)=3; y4(2)=1;
% line L2
x5(1)=0; y5(1)=4; x5(2)=3; y5(2)=-5;
% line L3
x6(1)=0; y6(1)=8/5; x6(2)=3; y6(2)=1;
% plot the allowable region
plot(x,y,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6)
xlabel('x'), ylabel('y'), title('y vs x');

Program results:
To obtain the final figure shown in Figure 11.2, the insert option was used on the figure produced by the script. In the script, the specified inequality constraint was made into an equality constraint. This enabled us to draw lines for LB, UB, L1, L2 and L3 and to add an arrow to indicate the region corresponding to the inequality. This specifies the allowable region in which to consider the maximum and minimum values for function f.

We see in the graph that the allowable region for
[image: image69.wmf](,)

xy

 in determining the maximum and minimum values for the object function, f, is the region enclosed by the polygon ABCD. For the specified object function, the minimum value of f is either on line L3 (between points D and C) or on line L2 (between points A and D) . We can see this if we place a point P on line L3 and a point Q directly above it, then the x values at points P and Q will be the same, but the y value at point Q will be larger than the y value of point P, thus f will be greater at point Q than f at point P. Thus, the minimum value of f is either on line L3 or on line L2.

The equation describing line L3 is

[image: image70.wmf]8

55

x

y

=-

 (line L3)

Substituting the above expression for y into Equation (11.10) gives the value of f on line L3, which is:

[image: image71.wmf]7

24

55

x

f

=+

 (on L3)

The minimum value for f occurs at the lowest allowable x value on L3, which is at point D. Point D results from the intersection of line L3 and line L2. The equation describing line L2 is

[image: image72.wmf]43

yx

=-

 (line L2)

The x coordinate at point D can be obtained by equating the y expressions for line L1 and line L2 giving the x value at point D, or
[image: image73.wmf]12

0.8571

14

D

x

==

. At point D, the value of f is 6.00.

Substituting the expression for y on line L2 into Equation (11.10) gives the equation for f on line L2, which is

[image: image74.wmf]127

fx

=-

 (on line L2)
The minimum value for f on line AD occurs at the maximum allowable value for x on AD, which is point D. Thus, in the allowable region,
[image: image75.wmf]6.000

min

f

=

.

From Figure 11.2, we see that the maximum value of f will be either at point B or somewhere else on Line L1. The equation describing line L1 is

[image: image76.wmf]4

yx

=-

 (on Line L1)

Substituting this expression for y into Equation (11.10) gives

[image: image77.wmf]12

fx

=-

 (on Line L1)

The maximum f occurs where x is a minimum on Line L1, which is at point B. At point B, x = 1. Thus, fm ax = 11.0.
[image: image78.wmf]
11.6 Lagrange Multipliers

A more general and mathematical discussion of the optimization problem with constraints follows. Suppose we are given the object function
[image: image79.wmf]123

(,,,,)

n

fxxxx

K

 in which the variables
[image: image80.wmf]123

,,,,

n

xxxx

K

 are subject to N constraints, say

[image: image81.wmf]1123

2123

123

(,,,,)0

(,,,,)0

(,,,,)0

n

n

Nn

xxxx

xxxx

xxxx

F=

F=

F=

K

K

M

K

(11.17)

Theoretically, the N x’s can be solved in terms of the remaining x’s. Then these N variables can be eliminated from the objective function f by substitution and the extreme problem can be solved as if there were no constraints. This method is referred to as the implicit method and in most cases is impractical.

The method of Lagrange multipliers provides the means for solving an extrema problem with constraints analytically. Suppose
[image: image82.wmf]123

(,,,,)

n

fxxxx

K

 is to be maximized subject to constraints
[image: image83.wmf]11221212

(,,)0,(,,)0,,(,,)0

nnnn

xxxxxxxxx

F=F=F=

KKKK

 as in Equations (11.17). We define the Lagrange function F as

[image: image84.wmf]12312311123

22123123

(,,,,)(,,,,)(,,,,)

(,,,,)(,,,,)

nnn

nNNn

Fxxxxfxxxxxxxx

xxxxxxxx

l

ll

=+F+

F++F

KKK

KLK

where
[image: image85.wmf]i

l

 are the unknown Lagrange multipliers to be determined. We now set

[image: image86.wmf]13

23

0,0,0,,0

Φ0,0,0,,0

2n

1N

FFFF

xxdxx

¶¶¶¶

====

¶¶¶

=F=F=F=

K

K

 (11.18)

(Note:
[image: image87.wmf]0

j

F

l

¶

=

¶

 implies
[image: image88.wmf]0

j

F=

.)

This set of n+N equations gives all possible extrema of f . [1]

Example 11.7
A silo is to consist of a right circular cylinder of radius R and length L, with a hemispherical roof (see Figure 11.3). Assume that the silo is to have a specified volume
[image: image89.wmf]3

8400m

V

=

. Find the dimensions, R and L, which makes its surface area S a minimum. Assume that the silo has a floor of the same material. Note:
[image: image90.wmf]3

sphere

4

3

VR

p

=

 and
[image: image91.wmf]2

sphere

4

SR

p

=

.

Solution:

[image: image92.wmf]32

2

3

VRRL

pp

=+

(11.19)

[image: image93.wmf]32

2

0

3

RRLV

pp

F=+-=

(11.20)

[image: image94.wmf]22

2

22

23

SRLRR

RLR

ppp

pp

=++

=+

 (11.21)

In this case, the surface area S is the function to be minimized and the volume V is the constraint. The Lagrange function is

[image: image95.wmf]232

2

23

3

FS

RLRRRLV

l

pplpp

=+F

æö

=+++-

ç÷

èø

(11.22)

The variables are R, L, and λ. Taking partial derivatives with respect to R and L gives

[image: image96.wmf]2

26(22)0

F

LRRRL

R

pplpp

¶

=+++=

¶

(11.23)

[image: image97.wmf]2

2

202or

F

RRR

LR

plpll

¶

=+=®=-=-

¶

(11.24)

Substituting the value of
[image: image98.wmf]l

 from Equation (11.24) into (11.23) gives

[image: image99.wmf]2

2

26(22)0

LRRRL

R

pppp

+-+=

(11.17)

The above equation reduces to
[image: image100.wmf]0

RL

-=

 or
[image: image101.wmf]RL

=

Substituting this result into Equation (11.19) gives

[image: image102.wmf]33

3

2

3

5

3

VRR

R

pp

p

=+

=

For
[image: image103.wmf]3

8400

Vm

=

,

[image: image104.wmf]1/3

84003

11.7065

5

Rm

p

æö

´

==

ç÷

èø

Substituting the values for R and L into Equation (11.21) gives S = 2152.6 m2.
11.7 MATLAB's fmincon Function
MATLAB’s function for solving optimization problems with constraints is fmincon. fmincon takes as arguments a user-defined function FUN, an initial guess, X0, plus additional arguments which depend on the type of constraints defined in the problem.

The function FUN defines the object function to be minimized. The vector X0 is an initial guess of the control variables that minimizes the object function. MATLAB’s fmincon handles four types of constraints:

1. Inequality Constraints: the constraints involve one or more inequalities of the form
[image: image105.wmf]*

£

AXB

. Suppose the problem specifies three linear inequality constraints of the form:

[image: image106.wmf]11112211

21122222

31132233

nn

nn

nn

axaxaxb

axaxaxb

axaxaxb

+++£

+++£

+++£

L

L

L

(11.18)
These constraints would be specified in MATLAB for use with fmincon as

A = [
[image: image107.wmf]11121

n

aaa

L

 ;
[image: image108.wmf]21222

n

aaa

L

;
[image: image109.wmf]31323

n

aaa

L

]

B = [
[image: image110.wmf]1

b

 ;
[image: image111.wmf]2

b

]
2. Equality Constraints: the constraints involve one or more equalities of the form
[image: image112.wmf]*

eqeq

=

AXB

. Suppose the problem specifies two linear equality constraints of the form:

[image: image113.wmf]11112211

21122222

nn

nn

axaxaxb

axaxaxb

+++=

+++=

%

%%%

L

%

%%%

L

(11.19)
where
[image: image114.wmf]ij

a

%

 and
[image: image115.wmf]i

b

%

 are the elements of
[image: image116.wmf]eq

A

 and
[image: image117.wmf]eq

B

 respectively. These constraints would be specified in MATLAB for use with fmincon as

Aeq = [
[image: image118.wmf]11121

n

aaa

%%%

L

;
[image: image119.wmf]21222

n

aaa

%%%

L

]

Beq = [
[image: image120.wmf]1

b

%

 ;
[image: image121.wmf]2

b

%

]
3. Bounds: the constraints involve lower or upper limits of the form
[image: image122.wmf]³

XLB

 and
[image: image123.wmf]£

XUB

. Then you would specify the bounds in MATLAB for use with fmincon as

LB = [
[image: image124.wmf]12

n

lll

L

]

UB = [
[image: image125.wmf]12

n

uuu

L

]
where
[image: image126.wmf]1122

,,,

nn

xlxlxl

³³³

K

 and
[image: image127.wmf]1122

,,,

nn

xuxuxu

£££

K

.

4. Nonlinear constraints: the constraints are defined by the function

[C,Ceq]= NONLCON(X), where NONLCON is a (user-defined) MATLAB function which specifies the nonlinear inequality constraints C and the nonlinear equality constraints Ceq. Suppose the problem specifies two nonlinear inequality constraints and one nonlinear equality constraint. The nonlinear inequality and equality constraint functions,
[image: image128.wmf]1

f

,
[image: image129.wmf]2

f

, and
[image: image130.wmf]3

f

, need to be set up such that

[image: image131.wmf]112

(,,...,)0

n

fxxx

£

,

[image: image132.wmf]21,2

(,...,)0

n

fxxx

£

 and
[image: image133.wmf]31,2

(,...,)0

n

fxxx

=

Then, in the function NONLCON, set C(1)
[image: image134.wmf]112

(,,...,)

n

fxxx

=

, C(2)
[image: image135.wmf]212

(,,...,)

n

fxxx

=

, and Ceq(1)
[image: image136.wmf]312

(,,...,).

n

fxxx

=

A description of the many invocations of fmincon can be obtained by typing help fmincon in the Command Window, some of which are described below.

Usage 1:

X = FMINCON(FUN,X0,A,B) starts at X0 and finds a minimum X to the

function FUN, subject to the linear inequalities A*X <= B. FUN accepts

input X and returns a scalar function value F evaluated at X. X0 may be

a scalar, vector, or matrix.
This first version is used only if all the constraints are linear inequalities; i.e. A*X <= B. In this case, the script starts at X0 and finds control variables X that minimizes the object function contained in FUN and returns the X values to the calling program. The initial guess X0 is a column vector, and A,B describe a system of equations defining the inequality constraints.
Usage 2:

X = FMINCON(FUN,X0,A,B,Aeq,Beq) minimizes FUN subject to the linear

equalities Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no

inequalities exist.)
The above version is used if there are also linear equality constraints, i.e. Aeq*X = Beq, where Aeq and Beq describe a system of equations describing the equality constraints. If there are no inequality constraints, then use [] for A and B.

Usage 3:

X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper

bounds on the design variables, X, so that a solution is found in

the range LB <= X <= UB. Use empty matrices for LB and UB

if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;

set UB(i) = Inf if X(i) is unbounded above.
The above version is used if you wish to set lower and upper limits LB and UB to the control variables, where LB and UB are vectors containing the bounds on X.
Usage 4:

X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) subjects the minimization

to the constraints defined in function NONLCON. The function NONLCON accepts X and returns the vectors C and Ceq, representing the nonlinear

inequalities and equalities respectively. FMINCON minimizes FUN such

that C(X) <= 0 and Ceq(X) = 0. (Set LB = [] and/or UB = [] if no bounds

exist, do the same for A,B,Aeq,Beq if there are no linear inequality or linear equality constraints.)
The above version is used if there are nonlinear constraints as defined in the function NONLCON of X as demonstrated in Examples 11.7 and 11.8.

Note that in all usages above, we have invoked fmincon as returning a single vector, i.e. the form X=fmincon(FUN,X0,...). However, for convenience, we can also use the form [X,FVAL]=fmincon(FUN,X0,...), which also returns FVAL, which is the minimum value of the object function.
Example 11.8
In this example, we use fmincon to determine the maximum and minimum values of the object function of Example 11.6 subject to the constraints specified in that example.
% Example_11_8.m
% Linear Programming Example using MATLAB's fmincon function
% for optimization
% Object function: 2*x(1)+3*x(2)
% Lower bounds: x(1)>=0 , x(2)>=0
% Upper bounds x(1)<=3 , x(2)<=3
% Inequality constraints:
 % x(1)+x(2)<=4, 6*x(1)+2*x(2)>=8, x(1)+5*x(2)>=8
clear; clc;
lb=[0; 0]; %Lower bound
ub=[3; 3]; %upper bound
x0=[0; 0]; %Initial guess
Aeq=[]; %No linear equality constraints
Beq=[]; %No linear equality constraints
A=[1 1; -6 -2; -1 -5]; %Linear inequality constraints
B=[4; -8; -8]; %Linear inequality constraints
object_fmin=@(x) (2*x(1)+3*x(2));
object_fmax=@(x) (-(2*x(1)+3*x(2)));
[xmin,fvalmin] = fmincon(object_fmin,x0,A,B,Aeq,Beq,lb,ub);
[xmax,fvalmax] = fmincon(object_fmax,x0,A,B,Aeq,Beq,lb,ub);
% Print min and max values:
fprintf('MIN \n');
fprintf('-------------------------------\n');
fprintf('xmin(1)=%8.4f xmin(2)=%8.4f \n',xmin(1),xmin(2));
fprintf('fmin=%8.4f \n\n',fvalmin);
fprintf('\nMAX \n');
fprintf('-------------------------------\n);
fprintf('xmax(1)=%8.4f xmax(2)=%8.4f \n',xmax(1),xmax(2));
fprintf('fmax=%8.4f \n',-fvalmax);
--

Program results.
MATLAB gives a warning which can be ignored.

MIN

xmin(1)= 0.8571 xmin(2)= 1.4286

fmin= 6.0000
MAX

xmax(1)= 1.0000 xmax(2)= 3.0000

fmax= 11.0000
>>

--
Example 11.9
Solve for the minimum surface area of the silo in Example 11.7 by using MATLAB’s fmincon function.
% Example_11_9.m

% This program minimizes the material surface area of a silo.

% The silo consists of a right cylinder topped by a hemisphere.

% Solve where the silo volume is 8400 m^3.

% Define the vector X = [R,L] where R is radius and L is length (as

% drawn in Figure 11.3)

% The function objfun_silo calculates the silo surface area and

% is the objective function to be minimized. The function confun_silo

% defines the constraint that the silo volume be fixed at 8400.

clear; clc;

global V;

V=8400;

% Define bounds: radius and length must be positive.

LB = [0,0];

UB = [];

% Initial guesses for R and L:

Xo = [10.0 20.0];

fprintf('Optimization Problem:\n\n');

fprintf('This program minimizes the surface area of a silo\n');

fprintf('consisting of a right cylinder topped by a hemisphere.\n');

fprintf('The silo volume is set at %.0f m^3 \n\n',V);

% Run the optimization. We have no linear constraints, so pass [] for
% those arguments:

objfun_silo=@(X) (2.0*pi*X(1)*X(2)+3.0*pi*X(1)^2);
[X,fval]=fmincon(objfun_silo,Xo,[],[],[],[],LB,UB,@confun_silo);

% Print results:

fprintf('Silo volume: %.0f m^3\n',V);

fprintf('Minimum surface area: %.3f m^2\n',fval);

fprintf('Optimum radius: %.3f m\n',X(1));

fprintf('Optimum length: %.3f m\n',X(2));

% confun_silo.m (constraint function for Example 11.9)

function [c, ceq] = confun_silo(X)
% Variables are: radius R = X(1), length of cylinder L = X(2).

global V;

% Nonlinear equality constraints:

ceq = pi*X(1)^2*X(2) + 2.0/3.0*pi*X(1)^3 - V;

% No nonlinear inequality constraints:

c = [];

Program results:

Optimization Problem:

This program minimizes the surface area of a silo

consisting of a right cylinder topped by a hemisphere.

The silo volume is set at 8400 m^3
Silo volume: 8400.000 m^3

Minimum surface area: 2152.651 m^2

Optimum radius: 11.707 m

Optimum length: 11.706 m

Example 11.10
Suppose we now reverse Example 11.9 and determine the maximum volume of the silo described in Example 11.9 subjected to the constraint that the surface area of the silo is to be less than a specified amount, say 2152.6 m2. The solution to the problem using MATLAB’s fmincon follows.

% Example_11_10.m
% This program maximizes the volume of a silo.
% The silo consists of a right cylinder topped by a hemisphere.
% The variables to optimize are radius 'R' and cylinder height 'L'.
% Let X(1) = R and X(2) = L.
% Equation for surface area: S = 3*pi*X(1)^2+2*pi*X(1)*X(2);
% Constraint: 3*pi*X(1)^2+2*pi*X(1)*X(2) <= 2152.6 m^2.
% We need to set up the constraint in the form:
% 3*pi*X(1)^2+2*pi*X(1)*X(2)- 2152.6 <= 0
% We wish to maximize the volume under the constraint.
% The equation for the volume, V, of the silo is given by
% V=2.0/3.0*pi*X(1)^3 + pi*X(1)^2*X(2).
% Since we wish to maximize V, we will need to place a minus sign in
% front of the expression for V and then minimize.
clear; clc;
global SAmax;
SAmax = 2152.6;
% Define bounds: radius and length must be positive.
LB = [0,0];
UB = [];
% Take an initial guess at the solution
Xo = [10.0 20.0];
objfun_silo2= @(X) (-(2.0/3.0*pi*X(1)^3+pi*X(1)^2*X(2)));
% Run the optimization. We have no linear constraints, so pass [] for
% those arguments:
[X,fval]=fmincon(objfun_silo2,Xo,[],[],[],[],LB,UB,@confun_silo2);
SA = 3*pi*X(1)^2 + 2*pi*X(1)*X(2);
% Print results:
fprintf('Optimization Problem:\n');
fprintf('This program maximizes the volume of a silo \n');
fprintf('consisting of a right cylinder topped by a hemisphere.\n');
fprintf('The maximum surface area is set at %.1f m^3 \n\n',SAmax);
fprintf('Maximum surface area: %9.3f m^2\n',SA);
fprintf('Maximum volume: %9.3f m^3\n',-fval);
fprintf('Optimum radius: %9.3f m\n',X(1));
fprintf('Optimum length: %9.3f m\n',X(2));
 --
% confun_silo2.m (constraint function for Example 11.10)
function [c, ceq] = confun_silo2(X)
global SAmax;
% Variables are: radius R = X(1), length of cylinder L = X(2)
% Nonlinear inequality constraint:
c = 3*pi*X(1)^2 + 2*pi*X(1)*X(2) - SAmax;
% No nonlinear equality constraints:
ceq = [];

Program results:
Optimization Problem:

This program maximizes the volume of a silo

consisting of a right cylinder topped by a hemisphere.

The maximum surface area is set at 2152.6 m^3

Maximum surface area: 2152.600 m^2

Maximum volume: 8399.701 m^3

Optimum radius: 11.706 m

Optimum length: 11.706 m
--
Example 11.11

Two machine shops, Machine Shop A and Machine Shop B, are to manufacture two types of motor shafts, shaft S1 and shaft S2. Each machine shop has two turning machines: Turning Machine T1 and Turning Machine T2. The following table lists the production time for each shaft type on each machine and at each location:

	Time to manufacture (minutes)

	
	Machine Shop A
	Machine Shop B

	
	Shaft S1
	Shaft S2
	Shaft S1
	Shaft S2

	Turning Machine T1
	4
	9
	5
	8

	Turning Machine T2
	2
	6
	3
	5

Shaft S1 sells for $35 and shaft S2 sells for $85. Determine the number of S1 and S2 shafts that should be produced at each machine shop and on each machine that will maximize the revenue for one hour of shop time.

% Example_11_11.m

% Shaft Production Problem

% This program maximizes the revenue/hr for the production

% of two types of shafts, type S1 and type S2. There are two

% machine shops producing these shafts, shop A and shop B.

% Each shop has two types of turning machines, T1 and T2,

% capable of producing these shafts.

% Shop A:

% Machine T1 takes 4 minutes to produce type S1 shafts

% and 9 minutes to produce type S2 shafts.

% Machine T2 takes 2 minutes to produce type S1 shafts

% and 6 minutes to produce type S2 shafts.

% Shop B:

% Machine T1 takes 5 minutes to produce type S1 shafts

% and 8 minutes to produce type S2 shafts.

% Machine T2 takes 3 minutes to produce type S1 shaft

% and 5 minutes to produce type S2 shafts.

% Shaft S1 sells for $35 and shaft S2 sells for $85.

% We wish to determine the number of S1 & S2 shafts that

% should be produced at each shop and by each machine

% that will maximize the revenue/hr.
% Let:

% X(1)=number of S1 shafts produced/hr by machine T1 at shop A

% X(2)=number of S2 shafts produced/hr by machine T1 at shop A

% X(3)=number of S1 shafts produced/hr by machine T2 at shop A

% X(4)=number of S2 shafts produced/hr by machine T2 at shop A

% X(5)=number of S1 shafts produced/hr by machine T1 at shop B

% X(6)=number of S2 shafts produced/hr by machine T1 at shop B

% X(7)=number of S1 shafts produced/hr by machine T2 at shop B

% X(8)=number of S2 shafts produced/hr by machine T2 at shop B

% Let r=total revenue/hr for producing these shafts, then

% r=35*(X(1)+X(3)+X(5)+X(7))+75*(X(2)+X(4)+X(6)+X(8))

clear; clc;

% Objective function: total revenue per hour for manufactured shafts.

% Have the function return a negative number because we are maximizing

% instead of minimizing.

revenue=@(x) -(35*(x(1)+x(3)+x(5)+x(7))+85*(x(2)+x(4)+x(6)+x(8)));

% Take a guess at the solution

Xo = [0 0 0 0 0 0 0 0];

% Lower and upper bounds:

LB = [0 0 0 0 0 0 0 0];

UB = [];

% We have linear inequality constraints. We require that each machine

% make an integral number of shafts per 60 minutes. However, we do

% allow some machines to remain out of production. The constraints are:

% 4*X(1)+9*X(2) <= 60

% 2*X(3)+6*X(4) <= 60

% 5*X(5)+8*X(6) <= 60

% 3*X(7)+5*X(8) <= 60

A=[4 9 0 0 0 0 0 0;

 0 0 2 6 0 0 0 0;

 0 0 0 0 5 8 0 0;

 0 0 0 0 0 0 3 5];

B=[60 60 60 60]';

% We have no linear equality constraints, so pass [] for those

% arguments.

[X, rmax] = fmincon(revenue,Xo,A,B,[],[],LB,UB);

fprintf('Optimization Results:\n');

fprintf('No. of S1 shafts produced at shop A, T1: %2.0f\n',X(1));

fprintf('No. of S2 shafts produced at shop A, T1: %2.0f\n',X(2));

fprintf('No. of S1 shafts produced at shop A, T2: %2.0f\n',X(3));

fprintf('No. of S2 shafts produced at shop A, T2: %2.0f\n',X(4));

fprintf('No. of S1 shafts produced at shop B, T1: %2.0f\n',X(5));

fprintf('No. of S2 shafts produced at shop B, T1: %2.0f\n',X(6));

fprintf('No. of S1 shafts produced at shop B, T2: %2.0f\n',X(7));

fprintf('No. of S2 shafts produced at shop B, T2: %2.0f\n',X(8));

fprintf('\n');

fprintf('The max revenue per hour: $%.0f /hour\n',-rmax);

Program results:
Optimization Results:

No. of S1 shafts produced at shop A, T1: 0

No. of S2 shafts produced at shop A, T1: 7

No. of S1 shafts produced at shop A, T2: 30

No. of S2 shafts produced at shop A, T2: 0

No. of S1 shafts produced at shop B, T1: 0

No. of S2 shafts produced at shop B, T1: 8

No. of S1 shafts produced at shop B, T2: 0

No. of S2 shafts produced at shop B, T2: 12
The max revenue per hour: $3274 /hour

Note: When the program is run, MATLAB gives diagnostic warnings to the screen which can be ignored. If a satisfactory solution is obtained, MATLAB will inform you by saying
Local minimum found that satisfies the constraints.

PAGE
34

_1384334098.unknown

_1385403437.unknown

_1385403869.unknown

_1410798645.unknown

_1416366746.unknown

_1416418430.unknown

_1418028048.unknown

_1455956517.unknown

_1416418802.unknown

_1416418833.unknown

_1416418108.unknown

_1416418363.unknown

_1416417712.unknown

_1410799556.unknown

_1410799759.unknown

_1410799017.unknown

_1385466305.unknown

_1388178940.unknown

_1388178970.unknown

_1388178999.unknown

_1410764240.unknown

_1388178992.unknown

_1388178946.unknown

_1388178935.unknown

_1385466748.unknown

_1385465636.unknown

_1385466172.unknown

_1385404169.unknown

_1385404245.unknown

_1385403884.unknown

_1385403647.unknown

_1385403723.unknown

_1385403761.unknown

_1385403666.unknown

_1385403585.unknown

_1385403624.unknown

_1385403516.unknown

_1384417840.unknown

_1385403318.unknown

_1385403365.unknown

_1385403426.unknown

_1385403345.unknown

_1384418715.unknown

_1384757465.unknown

_1384795234.unknown

_1384795219.unknown

_1384418759.unknown

_1384418462.unknown

_1384334907.unknown

_1384415460.unknown

_1384416439.unknown

_1384407543.unknown

_1384415395.unknown

_1384336499.unknown

_1384336567.unknown

_1384335705.unknown

_1384334149.unknown

_1384334168.unknown

_1384334133.unknown

_1364287670.unknown

_1384334000.unknown

_1384334058.unknown

_1384334084.unknown

_1384334045.unknown

_1384106000.unknown

_1384109909.unknown

_1384110561.unknown

_1384153072.unknown

_1384110465.unknown

_1384107203.unknown

_1364288152.unknown

_1365251076.unknown

_1383905865.unknown

_1364293474.unknown

_1364293487.unknown

_1364293640.unknown

_1364288672.unknown

_1364287761.unknown

_1364287805.unknown

_1364287731.unknown

_1356545357.unknown

_1356545849.unknown

_1356865816.unknown

_1364287506.unknown

_1364287517.unknown

_1356866361.unknown

_1356867403.unknown

_1356867443.unknown

_1356867456.unknown

_1356866397.unknown

_1356866255.unknown

_1356546087.unknown

_1356546176.unknown

_1356865688.unknown

_1356546211.unknown

_1356865648.unknown

_1356546122.unknown

_1356545885.unknown

_1356546059.unknown

_1356545868.unknown

_1356545629.unknown

_1356545664.unknown

_1356545769.unknown

_1356545658.unknown

_1356545550.unknown

_1356545591.unknown

_1356545421.unknown

_1356545493.unknown

_1356545374.unknown

_1356545399.unknown

_1356545114.unknown

_1356545239.unknown

_1356545350.unknown

_1356545223.unknown

_1109580364.unknown

_1128324929.unknown

_1286886686.unknown

_1356545075.unknown

_1261394140.unknown

_1109580633.unknown

_1109581311.unknown

_1109580373.unknown

_1109580237.unknown

_1109580278.unknown

_1109158311.unknown

_1109580217.unknown

_1109157596.unknown

_1109158299.unknown

