Lesson 8.

2.9.  Working with built in functions with vector arguments. 

MATLAB allows the built in functions, such as sin( ), cos( ), exp( ), etc., as well as functions in general to have vectors as arguments. The result will also be a vector. This is demonstrated in the next example.

Example 2.15.

% Example_2_15.m

% This program demonstrates that if the argument in a built in 
% function, such as MATLAB's sine function, is a vector, the result 
% will also be a vector.
 clear; clc;
% Define vector x;
 x=0:30:360;
% Let y1 be the sine of a vector x where x is in degrees.

% Running sind with vector x as an argument will return a vector:
 y1 = sind(x);

% Let y2(n) be the sine of the nth element of x.  We will use a for 

% loop to calculate each value y2(n) and then compare y1 and y2.
 for n=1:length(x)
    
y2(n)=sind(x(n)); 
 end 
 % Table headings
 fprintf('  x     y1     y2      \n');
 fprintf('--------------------------------------------------\n');
 for n=1:length(x)

fprintf('%5.1f   %8.5f   %8.5f \n', x(n),y1(n),y2(n))   
   end

   ------------------------------------------------------------------------------------------------

  Program Results:
   x          y1             y2      

-----------------------------------------------------------------------

  0.0       0.00000        0.00000 

 30.0       0.50000        0.50000 

 60.0       0.86603        0.86603 

 90.0       1.00000        1.00000 

120.0       0.86603        0.86603 

150.0       0.50000        0.50000 

180.0       0.00000        0.00000 

210.0      -0.50000       -0.50000 

240.0      -0.86603       -0.86603 

270.0      -1.00000       -1.00000 

300.0      -0.86603       -0.86603 

330.0      -0.50000       -0.50000 

360.0       0.00000        0.00000 

>>

------------------------------------------------------------
In the generated output, does y1=y2? 

· We see that in some scripts, we could replace the use of a for loop by using a vector argument in many built in functions, which produces a vector result, thus reducing the number of lines in the script. This concept was demonstrated in the above Example 2.15. 
· If the script requires a mathematical operation of two functions (such as a product of two vector functions), then the operation will require an element-by-element operation. Element-by-element operations are discussed in later in this book.

2.10.  More On MATLAB Graphics

· The subplot Command

Suppose you want to plot each of several curves as a separate plot, but all on the same page. The subplot command provides the means to do so. The subplot command is not a plot command, it is a positioning command. The command subplot(m,n,p) breaks the page into an m by n matrix of small plots, and p selects the matrix position of the plot. The following example demonstrates the use of the subplot command.
Example 2.16

% Example_2_16.m
% This program is an example of the use of the subplot command 
% The program also demonstrates that a function of a 
% vector agument produces a vector. Thus, y1, y2, y3 and y4 are  
% vectors. Separate plots of y1 vs. t, y2 vs. t and y3 vs. t are 
% plotted on the same page.
clc; clear;
t=0:0.5:10;
% squaring a vector has to be done elememt by element multiplication.
y1=t.^2/10;
% functions containing vector arguments produce vectors.
y2=sin(pi*t/10);
y3=exp(t/2);
y4=sqrt(t);
subplot(2,2,1), plot(t,y1), grid, title('y1 vs. t'), xlabel('t'),
        ylabel('y1'); 
subplot(2,2,2), plot(t,y2), grid, title('y2 vs. t'), xlabel('t'),
        ylabel('y2');  
subplot(2,2,3), plot(t,y3), grid, title('y3 vs. t'), xlabel('t'),
        ylabel('y3');
subplot(2,2,4), plot(t,y4), grid, title('y4 vs. t'), xlabel('t'),
        ylabel('y4');
-----------------------------------------------------------------
Program results:
  [image: image1.emf]
----------------------------------------------------------------


· Greek Letters and Mathematical Symbols 

Greek letters and mathematical symbols can be used in xlabel,  ylabel, title, and text by spelling out the Greek letter and preceding it with a ‘\’ (backslash character). Thus, to display 
[image: image2.wmf]w

, use \omega, and to display 
[image: image3.wmf]b

, use \beta.

 Example:

ylabel('\omega'), title('\omega vs. \beta'), 
text(10,5,'\omega');
For a complete list of Greek symbols and additional special characters, see Appendix A. You may also occasionally need to print a “'” character in your label or title. In this case, use a double “'”  to escape the single-quote character in your string. Thus, to generate the plot title “Signal 'A' vs. Signal 'B'”, you would type


title('Signal ''A'' vs. Signal ''B''')
· Interactively Annotating Plots:
As an alternative to adding the xlabel,  ylabel and title commands into your program, you can create the plot, then click on the Insert option in the menu bar in the plot window and choose  X Label from the dropdown menu. This will highlight a box in which you can type in the abscissa variable name. You can repeat this process for the Y Label and the Title of the plot. Other options available in the Insert menu are TextBox, Text Arrow, Arrow, and others. When you click any one of these options, a cross-hair will appear and you can then move the item to the location where you want it to appear, then left-click the mouse to fix the location. You can then type in the desired text. To remove the outlines of a TextBox, place the cursor in the TextBox and right-click the mouse. This will bring up a dropdown menu, then select Line Style, and then left-click on none. This will remove the lines from the TextBox.
· Saving Plots:
To save a plot, click on the File in the plot window and select the Save option from the dropdown menu. This produces a window where you can enter a file name. The disadvantage of this method is that you if decide to rerun the script, the items that you manually inserted will not be saved. If you wish to copy the figure into a report, you can click on Edit in the plot window, then select Copy Figure from the dropdown menu. You can then paste the figure into your report. If you need a monochrome version of your plot (for best reproduction on a photocopier), you can make all of your curves black by choosing File from the task  bar menu, then selecting Export Setup from the drop down menu. This will open a window in which you need to click on Rendering and change the Colorspace to black and white. 
There are many more options available in the plot window, however we leave it up to the  student to explore further.
Review 2.7.

1. What is the name of the function that will allow you to plot several graphs on one page?

2. How does one enter Greek symbols into a plot?

3. What are the commands that will allow you to enter text onto a plot once the plot has


     been created? 

2.11.  Debugging a Program

It is common when writing a program to make typographical errors such as omitting a parenthesis, forgetting a comma in a 2-D array, etc. This type of bug is called a syntax error. When this occurs, MATLAB will provide an error message pointing out the line in which the error has occurred. However, there are cases where there are no syntax errors, but the program still fails to run or gives an obvious incorrect answer. When this occurs, you can utilize the debug feature in MATLAB. The debug feature allows you to set break points in your program. The program will run up to, but not including, the line containing the break point. To set a break point, left-click the mouse in the narrow column next to the line number that you wish to be a break point. A small red circle will appear next to the break point line as shown in Figure 2.27. 
[image: image4.emf]




Figure 2.27. Creating a break point in a script.
The script will now run up to, but not including the line containing the breakpoint, as shown in Figure 2.28 (no plot appeared). 
[image: image5.emf]

                                       Figure 2.28. Program executed up to breakpoint.



The  K>>  prompt indicates that you are in the debug mode. You can then click on Continue item in the Toolstrip and the program will run to the next break point if one exists or to the end of the program if no additional break points exist. You can also execute one line at a time by clicking on the Step item in the Toolstrip. If your script contains a self written function, you can execute one line at a time in the function by clicking on the Step In item in the Toolstrip. To return to the calling program, click on the Step Out item in the Toolstrip.  If you wish to remove all break points, click on the Breakpoints item in the Toolstrip and a drop down menu will appear giving you the option to Clear all break point.



       
PAGE  
5

_1387742738.unknown

_1394709739.unknown

