Hydraulic Fill Manual
For dredging and reclamation works

Editors

Jan van ‘t Hoff
Van ‘t Hoff Consultancy B.V., Zeist, The Netherlands

Art Nooy van der Kolff
Royal Boskalis Westminster, Papendrecht, The Netherlands
RECOMMENDATION

There are many reference books and sources of information on dredging techniques and dredging equipment but very little has been written solely on planning, design and construction of land reclamation using hydraulic fill. This manual, a first of its kind, is an ideal reference for all involved in the development of such infrastructure projects. Written and reviewed by expert practitioners who have been involved in many such projects around the world, this manual provides a useful and practical overview and reference guide for clients, developers, consultants and contractors who are engaged in planning, design and construction of reclamation works.

A lot of hard work has gone into the development and compilation of this manual. It is our pleasure to be able to recommend this document to all those involved in the civil engineering and dredging industries.

Piet Besselink Executive Board Royal Haskoning DHV
Payam Foroudi Global Technology Director, Ports and Maritime – Halcrow Group Ltd
Jan de Nul Managing Director, Jan de Nul N.V.
Ronald Paul Chief Operation Officer, Port of Rotterdam Authority
Frank Verhoeven Member of the Board of Management, Royal Boskalis Westminster N.V.
Wim Vlasblom Professor, Emeritus Delft University of Technology
CONTENTS

Preface

Acknowledgements

Notation

Abbreviations

1. **INTRODUCTION TO THE MANUAL**
 1.1 Land reclamation by hydraulic filling
 1.2 History and prospects
 1.3 Context and objectives
 1.4 Design philosophy
 1.5 Structure, content and use

2. **PROJECT INITIATION**
 2.1 General
 2.2 Basic elements of a land reclamation project
 2.2.1 Conceptual design
 2.2.2 Availability of fill sources
 2.2.3 Data collection
 2.2.4 Environmental requirements
 2.2.5 Feasibility study
 2.2.6 Initial project planning
 2.2.7 Legal aspects
 2.2.8 Types of contracts
 2.3 Design
 2.3.1 Design phases
 2.4 Considerations for selecting construction method
 2.5 Systems Engineering

3. **DATA COLLECTION**
 3.1 Introduction
 3.2 Interpretation of data, contractual aspects
 3.3 Desk study
 3.4 Required data
 3.4.1 Bathymetrical or topographical data
 3.4.2 Geological and geotechnical information
3.4.2.1 Geological and geotechnical information in the borrow area 39
3.4.2.2 Geological and geotechnical information of the subsoil in the reclamation area 44
3.4.3 Hydraulic, meteorological, morphological and environmental data 44
 3.4.3.1 Hydraulic data 45
 3.4.3.2 Meteorological data 46
 3.4.3.3 Morphological and environmental data 49
3.4.4 Seabed obstructions 50
3.5 Typical sand search site investigation 51
3.6 Reporting 54
 3.6.1 Soil and rock classification and description 54
 3.6.2 Soil classification based on CPT measurements 57
3.7 Use of data during different project stages 59
3.8 Geostatistical methods 61
 3.8.1 General 61
 3.8.2 Methods 61
 3.8.3 Geostatistical software 63

4 DREDGING EQUIPMENT 67
 4.1 Introduction 69
 4.2 Dredging equipment 71
 4.2.1 Suction dredging 71
 4.2.2 Mechanical dredging 74
 4.2.3 Other types of equipment 77
 4.2.4 Combinations of equipment or dredge chains 77
 4.3 Operational limitations 79
 4.3.1 Waves and swell 79
 4.3.2 Currents 81
 4.3.3 Hindrance to shipping and other parties 81
 4.3.4 Environmentally driven limitations 82
 4.4 Dredging of fill material 83
 4.4.1 Introduction 83
 4.4.2 Volume and dimensions of borrow area 84
 4.4.3 Minimum thickness of fill deposits 84
 4.4.4 Dredgeability 85
 4.5 Transport of fill 87
 4.5.1 Introduction 87
 4.5.2 Hydraulic transport through a pipeline 87
 4.5.3 Transport by trailing suction hopper dredger or barge 88
 4.6 Utilisation characteristics of dredging equipment 89
 4.7 Basis of cost calculation for dredging 96
5 **SELECTION BORROW AREA**

5.1 Considerations for the selection of a borrow area 102

5.2 Quality of the potential fill material 103

5.2.1 Change of the grading as a result of dredging 104

5.2.2 Alternative fill materials 104

5.3 Data collection in the borrow area 105

5.3.1 Data collection for quality assessment 105

5.3.2 Data collection for quantity assessment 106

5.3.3 Data collection for dredgeability assessment 106

5.4 Quantity of fill material available 107

5.4.1 Bulking 107

5.4.2 Losses 108

5.4.3 Slope stability 109

5.4.4 Geo-statistical methods 111

5.5 Boundary conditions 111

6 **PLANNING AND CONSTRUCTION METHODS RECLAMATION** 113

6.1 Planning of the works 115

6.1.1 Introduction 115

6.1.2 Work preparation 116

6.1.2.1 Establishment of project team 117

6.1.2.2 Provision of housing and offices for personnel 117

6.1.2.3 Execution of engineering works 117

6.1.2.4 Create access to site and development of lay-down areas 118

6.1.2.5 Preparation and mobilization of equipment 118

6.1.3 Construction and monitoring 118

6.1.4 Demobilisation, clean-up and maintenance 119

6.1.5 Example of a project schedule 119

6.2 Work plan for reclamation works 121

6.3 Placement methods 121

6.4 Construction of containment bunds 122

6.4.1 General 122

6.4.2 Methods of bund construction 125

6.5 Placement of fill material 129

6.5.1 Underwater placement in bulk of fill material 129

6.5.2 Placement of fill material using a discharge pipeline 131

6.5.3 Rainbowing 134

6.5.4 Spraying 136

6.6 Fill mass properties related to method of placement 137

6.7 Management of poor quality materials 139

6.7.1 Use of cohesive or fine grained materials 139

6.7.2 Settling ponds 139
7 GROUND IMPROVEMENT 143
 7.1 Introduction 145
 7.2 Benefits of ground improvement 145
 7.3 Overview of ground improvement techniques 146
 7.4 Pre-loading with or without vertical drains 149
 7.4.1 Purpose and principle of pre-loading 149
 7.4.2 Vertical drains 153
 7.5 Compaction 156
 7.5.1 Introduction 156
 7.5.2 Vibratory surface compaction 156
 7.5.3 Deep vibratory compaction 157
 7.5.3.1 General 157
 7.5.3.2 Vibratory probes without jets 161
 7.5.3.3 Vibroflotation 163
 7.5.4 Dynamic compaction techniques 167
 7.5.5 Explosive compaction 170
 7.6 Soil replacement 172
 7.6.1 Introduction 172
 7.6.2 Soil removal and replacement 172
 7.6.3 Stone columns 173
 7.6.3.1 Purpose and principle 173
 7.6.3.2 Execution of stone columns by the vibro-replacement technique 173
 7.6.4 Sand compaction piles (closed end casing) 176
 7.6.5 Geotextile encased columns 176
 7.6.6 Dynamic replacement 178
 7.7 Admixtures and in-situ soil mixing 180

8 DESIGN OF RECLAMATION AREA 183
 8.1 Design philosophy 185
 8.2 Basic mass properties 187
 8.2.1 Strength of fill mass: Bearing capacity and slope stability 187
 8.2.2 Stiffness of fill mass: Settlements, horizontal deformations and tolerances 188
 8.2.3 Density of the fill mass and subsoil: Resistance against liquefaction 189
 8.2.4 Permeability of fill mass: Drainage capacity 190
 8.2.5 Platform level: Safety against flooding and erosion 190
 8.3 Density 190
 8.3.1 Definition of key parameters 191
 8.3.2 Density ratios 192
 8.3.3 The use of densities or density ratios in specifications 194
 8.3.4 Effect of grain size distribution on the density of a soil sample 196
8.3.5 Density measurement 198
8.3.5.1 Measurement of reference densities (minimum and maximum density) 198
8.3.5.2 Direct measurement of in situ density 199
8.3.5.3 Indirect measurement of relative density by cone penetration testing 199
8.3.5.4 Indirect measurement of relative density by SPT testing 201
8.3.5.5 Measurement of in situ state parameter ψ by cone penetration testing 201

8.3.6 Typical relative density values of hydraulic fill before compaction 202

8.4 Strength of the fill mass and subsoil (bearing capacity and slope stability) 202
8.4.1 Introduction 202
8.4.2 Shear strength 204
8.4.2.1 High quality fill material 204
8.4.2.2 Poor quality fill material 210
8.4.2.3 Assessment of shear strength 215

8.4.3 Relevant failure modes 221
8.4.3.1 Introduction 221
8.4.3.2 Safety approach 222
8.4.3.3 Analytical calculation models versus Finite Element Method (FEM) 227
8.4.3.4 Bearing capacity 228
8.4.3.5 Punch through 232
8.4.3.6 Squeezing 234
8.4.3.7 Slope stability of fill and subsoil 236
8.4.3.7.1 Design methods 236
8.4.3.7.2 Limit Equilibrium Methods 238
8.4.3.7.3 Finite Element Method 242
8.4.3.8 Construction of a slope on soft soil 243
8.4.3.9 Effect of groundwater flow on slope stability 244
8.4.3.10 Earthquakes and slope stability 250
8.4.3.11 Stabilising measures for slope stability 250
8.4.3.11.1 Optimizing the slope geometry by using counterweight berms 251
8.4.3.11.2 Staged construction 251
8.4.3.11.3 Soil replacement (sand key) 252
8.4.3.11.4 Stone columns, sand compaction piles 252
8.4.3.11.5 Geosynthetics 253
CONTENTS

8.5 Stiffness and deformation 254

8.5.1 Introduction 254

8.5.2 Stiffness 254

8.5.2.1 General considerations 254
8.5.2.2 Stiffness of subsoil 256
8.5.2.3 Stiffness of fill material 257

8.5.3 Deformations 258

8.5.3.1 General considerations 258
8.5.3.2 Settlement calculation methods 260
8.5.3.3 Additional considerations 262
8.5.3.4 Vertical deformation of a reclamation surface 264
8.5.3.5 Vertical deformations of structures 269
8.5.3.6 Horizontal deformations 270

8.5.4 Techniques for limiting settlement 271

8.6 Liquefaction and earthquakes 272

8.6.1 Overview 272
8.6.2 History of understanding 275
8.6.3 Flow slides versus Cyclic softening 280

8.6.4 Assessing liquefaction susceptibility 282

8.6.4.1 Codes & Standards 283
8.6.4.2 Loading: Estimating CSR by site response analysis 285
8.6.4.3 Resistance, Step 1: Susceptibility to large deformations 289
8.6.4.4 Resistance, Step 2: Evaluation of CRR 292

8.6.5 Movements caused by liquefaction 296

8.6.5.1 Slope deformations 296
8.6.5.2 Lateral spreads 299
8.6.5.3 Settlements 300

8.6.6 Fill characterization for liquefaction assessment 303

8.6.6.1 Necessity for in situ tests 303
8.6.6.2 Required number of CPT soundings 305
8.6.6.3 CPT calibration 306
8.6.6.4 Supporting laboratory data 307

8.6.7 Note on soil type (Calcareous and other non-standard sands) 307

9 Special fill materials and problematic subsoils 309

9.1 Cohesive or fine-grained fill materials 311

9.1.1 Introduction 311
9.1.2 Segregation of fines 313
9.1.3 Soft clay or soft silt 315

9.1.3.1 Suitability of soft (organic) clay or silt as fill material 316
Contents

9.1.3.2 Workability of clay 316
9.1.3.3 Effects of winning method 317
9.1.3.4 Measures to improve the fill properties after disposal 318
9.1.3.5 Construction aspects of soft soils in case of application above the waterline 334
9.1.3.6 Construction aspects of soft soils in case of application below the waterline 336

9.1.4 Stiff clay or silt 336

9.2 Carbonate sand fill material 342
9.2.1 Introduction 342
9.2.2 Origin and composition of carbonate sands 343
9.2.3 Typical properties of carbonate sands 344
9.2.4 Mechanical behaviour of carbonate sands 349
9.2.5 The use of carbonate sand as fill 357
 9.2.5.1 Typical behaviour during dredging and hydraulic transport 357
 9.2.5.2 Cone Penetration and Standard Penetration testing in carbonate sands 359
 9.2.5.3 Laboratory testing 361
 9.2.5.4 Field compaction 363

9.3 Hydraulic rock fill 364
9.3.1 Introduction 364
9.3.2 Lump size 364
9.3.3 Compaction and measurement of compaction result 364
9.3.4 Grading 367
9.3.5 Fines 367
9.3.6 Wear and tear 368
9.3.7 Pumping distance during rock dredging 368
9.3.8 Specifications rock fill 369

9.4 Problematic subsoils 370
9.4.1 Sensitive clay 370
9.4.2 Peat 372
9.4.3 Glacial soils 374
9.4.4 Sabkha 375
9.4.5 Karst 379
9.4.6 Laterite 383

10 Other design items 387
10.1 Introduction 388
10.2 Drainage 388
 10.2.1 Infiltration 390
 10.2.2 Surface runoff 390
 10.2.3 Artificial drainage systems 391
10.3 Wind erosion
10.4 Slope, bank and bed protection
10.5 Interaction between reclamation and civil works
 10.5.1 General
 10.5.2 Foundations
 10.5.3 Construction sequence
 10.5.4 Impact on existing structures
10.6 Earthquakes
10.7 Tsunamis

11 Monitoring and quality control
11.1 Introduction
11.2 Quality Control Plan
11.3 Monitoring and testing
 11.3.1 Geometry
 11.3.2 Fill material properties
 11.3.2.1 Grain size distribution
 11.3.2.2 Minimum and maximum dry densities
 11.3.2.3 Mineralogy
 11.3.3 Fill mass properties
 11.3.3.1 Shear strength
 11.3.3.2 Stiffness
 11.3.3.3 Density, relative compaction and relative density
 11.3.4 Environmental monitoring

12 Technical specifications
12.1 Introduction
12.2 Roles and responsibilities
12.3 Checklist project requirements
12.4 Commented examples of technical specifications
 12.4.1 Introduction
 12.4.2 Description of the works
 12.4.3 Standards
 12.4.4 Data collection (see Chapter 3)
 12.4.5 Dredging equipment and working method (see Chapter 4)
 12.4.6 Selection borrow area—quality fill material (see Chapter 5)
 12.4.7 Construction methods reclamation area (see Chapter 6)
 12.4.8 Environmental impact
 12.4.9 Design of a land reclamation (see Chapter 8)
 12.4.10 Ground improvement (see Chapter 7)
12.4.11 Special fill materials (see Chapter 9) 461
12.4.12 Other design aspects (see Chapter 10) 462
12.4.13 Monitoring and quality control (see Chapter 11) 463
 12.4.13.1 Geometry 464
 12.4.13.2 Testing fill material properties (see Section 11.3.2) 466
 12.4.13.3 Testing fill mass properties (see Section 11.3.3) 467
 12.4.13.4 Settlement monitoring (see Appendix B.5.3) 470
 12.4.13.5 Performance testing 470
 12.4.13.6 Reporting 472
 12.4.13.7 Monitoring and Quality Control Program (see Section 11.2) 472

APPENDICES

A Equipment 477
B Field and Laboratory Tests 529
C Correlations and Correction Methods 593
D Geotechnical Principles 609

REFERENCES 627
Preface

Hydraulic fills are often used to reclaim land for large infrastructure projects such as airports, harbours, industrial and domestic areas and roads. The quality of the borrow material and construction methods are crucial for the quality of the end product. The end product or application will ask specific performance requirements and the characteristics of the fill mass will determine how well these performance criteria are met.

Given the fundamental importance of hydraulic fill to infrastructure projects, a need was felt for a single volume bundling the wide range of the design and construction aspects of hydraulic fills. The Hydraulic Fill Manual is the result.

The Manual represents the concerted effort of Clients, Consultants and Contractors to arrive at a rational and transparent process of project initiation, design, specification and construction of hydraulic fills. The aim of the book is to point the way for each particular project to realise an optimum design based on:

− the available quality and quantity of fill material;
− boundary conditions like the soil conditions, bathymetry, wave climate and tectonic setting of the proposed fill area;
− the selection of dredging equipment with its related construction methods;
− appropriate functional and performance requirements.

Such an optimum design is achieved by making the process from project initiation to construction a clear, iterative process. The Manual promotes this iterative process in which the results of each step are compared with the starting points and results of the previous step and/or with the functional requirements of the project.

This process follows the “System Engineering” approach, a method often applied to the realisation of engineering projects. The underlying idea of this approach is that process transparency and the implementation of sound engineering principles should lead the involved parties to suitable specifications for the construction of the hydraulic fill. Suitability of specifications implies that the functional requirements of the fill mass will be met within the wanted safety margins (and, hence, without excessive costs), but at the same time ensures that the hydraulic fill can be constructed in a feasible and economic manner. This will reduce excessive costs, unwanted disputes, arbitrations and lawsuits.
As it is the intention of the authors that the Manual can be used all over the world on land reclamation projects by hydraulic filling it will not necessarily adhere to (local) standards, norms and/or Codes of Practice. When considered to be relevant references to such documents will be made, but this will be limited to generally accepted and often used systems like the American Standards, the British Standards and/or the European Codes. It may nevertheless be important to be fully informed about the local codes and standards as they may form part of the jurisdiction of the country in which the project has to be realized.

For Clients the Manual presents the most important elements of a land reclamation project (planning, design, data collection, legal and contractual aspects) and explains how the land reclamation forms part of an overall cost-benefit analysis. Clients and Consultants will also learn that to make a project feasible, the fill material may not have to be restricted to sandy material but that
with certain technical measures and under certain conditions, cohesive and fine-grained materials (clay, silt) also may be used. The use of carbonate sands is also highlighted.

The Manual also advises about the various types of dredging equipment, fill material and soil improvement techniques and what geotechnical data are required for production estimates of dredging equipment and for analysing the suitability of fill material. Emphasis is placed on how to translate performance and functional requirements into a measurable properties of the fill mass, with special attention focussed on density, strength and stiffness characteristics and to liquefaction and breaching.

The Manual concludes with examples of practical geotechnical specifications for the construction of a fill mass.

Readers are warned that for proper understanding of design issues some background knowledge in geotechnical engineering is required. For specialist knowledge the reader is referred to handbooks on these subjects.
ACKNOWLEDGEMENTS

This publication is the result of a joint project of Clients, Consultants and Contractors from Belgium, United Kingdom and the Netherlands. The overall management has been performed by CUR Building & Infrastructure. The manual has been reviewed by CIRIA/UK.

Authors/reviewers

Ken Been Golder Associates
Rik Bisschop Arcadis
Erik Broos Port of Rotterdam Authority
Egon Bijlsma Arcadis
Henk Cloo Royal Haskoning DHV
Jurgen Cools Royal Haskoning DHV
David Dudok van Heel Rotterdam Municipality Consultancy
Arnoud van Gelder Royal Haskoning DHV
Reimer de Graaff Arcadis
Jarit de Gijt Rotterdam Municipality/Delft University of Technology
Robert de Heij Witteveen + Bos
Ilse Hergarden Royal Haskoning DHV
Jan van ‘t Hoff Van ‘t Hoff Consultancy bv
Richard de Jager Royal Boskalis Westminster N.V.
Dirk-Jan Jaspers Focks Witteveen + Bos
Mike Jefferies Golder Associates
Wouter Karreman Van Oord Dredging and Marine Contractors
Lieve De Kimpe Van Oord Dredging and Marine Contractors
Edwin Koeijers Rotterdam Municipality Consultancy
Rob Lohrmann Witteveen + Bos
Joop van der Meer Van Oord Dredging and Marine Contractors
Piet Meijers Deltares
Patrick Mengé DEME Group/Dredging International
Mario Niese Royal Haskoning DHV
Art Nooy van der Kolff Royal Boskalis Westminster N.V.
Cissy de Rooij Royal Boskalis Westminster N.V.
Rob Rozing Arcadis
Berten Vermeulen Jan de Nul
ACKNOWLEDGEMENTS

Editors
Jan van ’t Hoff & Art Nooy van der Kolff

Peer reviewers
In response to a request from CUR Bouw & Infra CIRIA has managed a peer review of this manual. This review was conducted by the following UK experts:
John Adrichem Royal Haskoning DHV
Ken Been Golder Associates
Nick Bray HR Wallingford
Gijsbert Buitenhuis Royal Haskoning DHV
Chris Capener Royal Haskoning DHV
Chris Chiverrell CIRIA
Scott Dunn HR Wallingford
Payam Foroudi Halcrow
Helge Frandsen Royal Haskoning DHV
Prasad Gunawardena Mott MacDonald
Greg Haigh Arup
Mike Jefferies Golder Associates
David Jordan Scot Wilson/HR Wallingford
Roderick Nichols Halcrow
Philip Smith Royal Haskoning DHV

CIRIA Project Managers peer reviews
Kristina Gamst
Gillian Wadams

Review English translation
Marsha Cohen

Technical review
Chris Chiverrell CIRIA
Aad van den Thoorn CURNET

Executive steering board
Jurgen Cools Royal Haskoning DHV
Jarit de Gijt Rotterdam Municipality/Delft University of Technology
Jan van ‘t Hoff Van ‘t Hoff Consultancy bv
René Kolman IADC
Joop Koenis (upto Dec. 2010) CUR Bouw & Infra
Dirk Luger Deltares
Art Nooy van der Kolff Royal Boskalis Westminster N.V.
Daan Rijks (upto Dec. 2009) Royal Boskalis Westminster N.V.
Ger Vergeer (from Jan. 2011) CUR Bouw & Infra
Wim Vlasblom (chair) Delft University of Technology
ACKNOWLEDGEMENTS

The overall project management has been performed by CUR Building & Infrastructure: Joop Koenis (up to Dec. 2010) en Ger Vergeer (from Jan. 2011)

Ministry of Infrastructure and the Environment, International Dredging Association (IADC), China Communications Construction Company (CCCC), Foundation FCO-GWW, Port of Rotterdam Authority, Inros Lackner, PAO Delft University

CUR wishes to thank the following organisations for providing photographs: DEME, Jan de Nul, Royal Boskalis Westminster, Van Oord Dredging and Marine Contractors, Port of Rotterdam Authority.
NOTATION

\(a_g \) = Ground acceleration \((m/s^2) \)
\(B \) = Bulk Modulus \((kPa) \)
\(B_q \) = CPT excess pore pressure ratio \(B_q = (u_c - u_0)/(q_t - \sigma_v) \) \((-)\)
\(c' \) = Effective cohesion \((kPa) \)
\(c_u \) = Undrained shear strength \((kPa) \)
\(c_v \) = Vertical coefficient of consolidation \((m^2/year) \)
\(c_h \) = Horizontal coefficient of consolidation \((m^2/year) \)
\(c'_c \) = Characteristic effective cohesion \((kPa) \)
\(c_u(t) \) = Undrained shear strength at time \(t \) after loading \((kPa) \)
\(c_{u,0} \) = Initial undrained shear strength \((kPa) \)
\(c_{u,k} \) = Characteristic undrained shear strength \((kPa) \)
\(c'_u \) = Undrained shear strength at the upper side of a soft layer \((kPa) \)
\(c'_l \) = Undrained shear strength at the lower side of a soft layer \((kPa) \)
\(C_\alpha \) = Peak ground acceleration \((m/s^2) \)
\(C_\alpha' \) = Secondary compression index \((-)\)
\(C_c \) = Compression index \((-)\)
\(C_t \) = Coefficient of curvature \((-)\)
\(C_r \) = Recompression index \((-)\)
\(C_u \) = Coefficient of uniformity \((-)\)
\(d_e \) = Equivalent diameter of the zone of influence of a drain \((m) \)
\(d_{e,c} \) = Equivalent diameter of a cylindrical drain column \((m) \)
\(d_{q,c} \) = Depth factors \((-)\)
\(D_{50} \) = Mean grain size \((mm) \)
\(e \) = Void ratio \((-)\)
\(e_0 \) = Void ratio of layer with initial thickness \(h_0 \) \((-)\)
\(e_p \) = Void ratio of layer with thickness \(h_p \) after primary settlement \((-)\)
\(E \) = Modulus of Elasticity \((kPa) \)
\(E_{dyn} \) = Dynamic Modulus \((kPa) \)
\(E_y \) = Young’s Modulus \((kPa) \)
\(E_{DMT} \) = Dilatometer Modulus \((kPa) \)
\(E_{PLT} \) = Plate Load Test Modulus \((kPa) \)
\(E_{PMT} \) = Pressiometer Modulus \((kPa) \)
\(E_s \) or \(E_{oed} \) or \(M \) = Constrained Modulus \((kPa) \)
\(E_{sec} \) = Secant Modulus \((kPa) \)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{\tan}</td>
<td>Tangent Modulus</td>
<td>(kPa)</td>
</tr>
<tr>
<td>E_u</td>
<td>Undrained Modulus</td>
<td>(kPa)</td>
</tr>
<tr>
<td>E_0</td>
<td>Young's Modulus at very small deformations</td>
<td>(kPa)</td>
</tr>
<tr>
<td>E_{50}</td>
<td>Young's Modulus at 50% of the failure stress</td>
<td>(kPa)</td>
</tr>
<tr>
<td>F_R</td>
<td>Friction Ratio CPT test</td>
<td>(−)</td>
</tr>
<tr>
<td>G</td>
<td>Shear Modulus</td>
<td>(kPa)</td>
</tr>
<tr>
<td>G_0</td>
<td>Shear Modulus at very low strain</td>
<td>(kPa)</td>
</tr>
<tr>
<td>G_{50}</td>
<td>Shear Modulus at very low strain</td>
<td>(kPa)</td>
</tr>
<tr>
<td>h_0</td>
<td>Initial thickness of layer</td>
<td>(m)</td>
</tr>
<tr>
<td>h_p</td>
<td>Thickness of the considered layer after primary settlement</td>
<td>(m)</td>
</tr>
<tr>
<td>H</td>
<td>Layer thickness</td>
<td>(m)</td>
</tr>
<tr>
<td>i_q, i_c, i_{γ}</td>
<td>Inclination factors</td>
<td>(−)</td>
</tr>
<tr>
<td>I_{ss0}</td>
<td>Point load strength</td>
<td>(MPa)</td>
</tr>
<tr>
<td>I_p</td>
<td>Plasticity index</td>
<td>(−)</td>
</tr>
<tr>
<td>I_C</td>
<td>Consistency index</td>
<td>(−)</td>
</tr>
<tr>
<td>I_L</td>
<td>Liquidity index</td>
<td>(−)</td>
</tr>
<tr>
<td>K_o</td>
<td>Coefficient of active earth pressure at rest</td>
<td>(−)</td>
</tr>
<tr>
<td>k_h</td>
<td>Horizontal seismic coefficient</td>
<td>(−)</td>
</tr>
<tr>
<td>k_v</td>
<td>Vertical seismic coefficient</td>
<td>(−)</td>
</tr>
<tr>
<td>k_y</td>
<td>Yield coefficient</td>
<td>(−)</td>
</tr>
<tr>
<td>M</td>
<td>Earthquake magnitude</td>
<td>(−)</td>
</tr>
<tr>
<td>M, E_s or E_{oed}</td>
<td>Constrained Modulus</td>
<td>(kPa)</td>
</tr>
<tr>
<td>M_L</td>
<td>Local magnitude</td>
<td>(−)</td>
</tr>
<tr>
<td>M_S</td>
<td>Surface wave magnitude</td>
<td>(−)</td>
</tr>
<tr>
<td>M_w</td>
<td>Moment magnitude of earthquake</td>
<td>(−)</td>
</tr>
<tr>
<td>n</td>
<td>Porosity</td>
<td>(−)</td>
</tr>
<tr>
<td>n_0</td>
<td>Initial porosity</td>
<td>(−)</td>
</tr>
<tr>
<td>N'</td>
<td>Number of blows per per foot (300 mm) penetration of SPT</td>
<td>(−)</td>
</tr>
<tr>
<td>N_k</td>
<td>Empirical factor to correlate the undrained shear strength to the cone resistance</td>
<td>(−)</td>
</tr>
<tr>
<td>N_q, N_c, N_{γ}</td>
<td>Bearing capacity factors</td>
<td>(−)</td>
</tr>
<tr>
<td>p'</td>
<td>Mean effective stress</td>
<td>(kPa)</td>
</tr>
<tr>
<td>p_a</td>
<td>Atmospheric pressure</td>
<td>(kPa)</td>
</tr>
<tr>
<td>q_{allow}</td>
<td>Allowable load</td>
<td>(kPa)</td>
</tr>
<tr>
<td>q_c</td>
<td>Measured cone resistance</td>
<td>(MPa)</td>
</tr>
<tr>
<td>q_{ck}</td>
<td>Characteristic cone resistance for liquefaction assessment</td>
<td>(MPa)</td>
</tr>
<tr>
<td>q_t</td>
<td>Corrected cone resistance</td>
<td>(MPa)</td>
</tr>
<tr>
<td>Q</td>
<td>Dimensionless CPT resistance based on mean stress, $Q = (q - \sigma_0)/\sigma'_{ss}$</td>
<td>(−)</td>
</tr>
<tr>
<td>Q_u</td>
<td>CPT resistance modified on pore pressure</td>
<td>(−)</td>
</tr>
<tr>
<td>Q_u</td>
<td>Ultimate bearing capacity</td>
<td>(kPa)</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>q_u</td>
<td>Unconfined compressive strength</td>
<td>(kPa)</td>
</tr>
<tr>
<td>r_d</td>
<td>Response coefficient</td>
<td>(-)</td>
</tr>
<tr>
<td>R_v</td>
<td>Relative void ratio</td>
<td>(-)</td>
</tr>
<tr>
<td>R_p</td>
<td>Relative porosity</td>
<td>(-)</td>
</tr>
<tr>
<td>R_c</td>
<td>Degree of compaction</td>
<td>(-)</td>
</tr>
<tr>
<td>s_r</td>
<td>Residual undrained shear strength</td>
<td>(kPa)</td>
</tr>
<tr>
<td>s_p, s_c, s_y</td>
<td>Shape factors</td>
<td>(-)</td>
</tr>
<tr>
<td>S</td>
<td>Degree of saturation</td>
<td>(-)</td>
</tr>
<tr>
<td>S_{min}</td>
<td>Minimum settlement to be reached at time of hand-over</td>
<td>(m)</td>
</tr>
<tr>
<td>S_{total}</td>
<td>Total primary settlement</td>
<td>(m)</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>(year)</td>
</tr>
<tr>
<td>t_p</td>
<td>Time at end of primary settlement (full consolidation)</td>
<td>(year)</td>
</tr>
<tr>
<td>t_f</td>
<td>Time at which the secondary compression has to be calculated</td>
<td>(year)</td>
</tr>
<tr>
<td>T_h</td>
<td>Time factor for horizontal consolidation</td>
<td>(-)</td>
</tr>
<tr>
<td>T'</td>
<td>Fundamental period</td>
<td>(s)</td>
</tr>
<tr>
<td>T_v</td>
<td>Time factor</td>
<td>(-)</td>
</tr>
<tr>
<td>u_2</td>
<td>Pore pressure measured behind the cone</td>
<td>(kPa)</td>
</tr>
<tr>
<td>u_0</td>
<td>In situ pore pressure</td>
<td>(kPa)</td>
</tr>
<tr>
<td>U_v</td>
<td>Average degree of consolidation due to vertical drainage</td>
<td>(-)</td>
</tr>
<tr>
<td>UCS</td>
<td>Unconfined compressive strength</td>
<td>(MPa)</td>
</tr>
<tr>
<td>U_h</td>
<td>Average degree of consolidation due to horizontal drainage</td>
<td>(-)</td>
</tr>
<tr>
<td>U_{sh}</td>
<td>Average degree of consolidation</td>
<td>(-)</td>
</tr>
<tr>
<td>$U(t)$</td>
<td>Degree of consolidation at time t after loading</td>
<td>(-)</td>
</tr>
<tr>
<td>w</td>
<td>Water content</td>
<td>(-)</td>
</tr>
<tr>
<td>w_L</td>
<td>Liquid limit</td>
<td>(-)</td>
</tr>
<tr>
<td>w_P</td>
<td>Plastic limit</td>
<td>(-)</td>
</tr>
<tr>
<td>α</td>
<td>Peak horizontal ground acceleration</td>
<td>(m/s2)</td>
</tr>
<tr>
<td>γ</td>
<td>Volumetric weight</td>
<td>(kN/m3)</td>
</tr>
<tr>
<td>γ_{dry}</td>
<td>Dry unit weight</td>
<td>(kN/m3)</td>
</tr>
<tr>
<td>γ_{sat}</td>
<td>Saturated unit weight</td>
<td>(kN/m3)</td>
</tr>
<tr>
<td>ε</td>
<td>Shear strain</td>
<td>(-)</td>
</tr>
<tr>
<td>$\Delta \varepsilon$</td>
<td>Change in void ratio from a layer with initial void ratio e_0</td>
<td>(-)</td>
</tr>
<tr>
<td>Δh</td>
<td>Compression of layer with initial thickness h_0</td>
<td>(m)</td>
</tr>
<tr>
<td>Δh_p</td>
<td>Secondary compression of layer with thickness h_p</td>
<td>(m)</td>
</tr>
<tr>
<td>$\Delta \sigma'$</td>
<td>Effective stress increment in the middle of the considered layer</td>
<td>(kPa)</td>
</tr>
<tr>
<td>$\Delta \sigma'_{ref}$</td>
<td>Reference stress (usually taken equal to 1 kPa)</td>
<td>(kPa)</td>
</tr>
</tbody>
</table>
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta S_{\text{allow}})</td>
<td>Allowable residual settlement at time of hand-over</td>
<td>m</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Slope of CSL for semi-log idealization</td>
<td>(−)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_b)</td>
<td>Bulk density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_d)</td>
<td>Dry density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_g)</td>
<td>Particle density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_s)</td>
<td>Density of solid particles</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_{\text{sat}})</td>
<td>Saturated density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Normal stress</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_0)</td>
<td>Initial effective stress in the middle of the considered layer with initial thickness (h_0)</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_{\text{m}})</td>
<td>Mean effective stress</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_{\text{n}})</td>
<td>Effective normal stress</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_p)</td>
<td>Pre-consolidation stress in the middle of the considered layer with initial thickness (h_0)</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma_{\text{t}})</td>
<td>Total stress</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_v)</td>
<td>Effective vertical stress at foundation level</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_{v,0})</td>
<td>Effective vertical stress</td>
<td>kPa</td>
</tr>
<tr>
<td>(\Delta \sigma'_{v})</td>
<td>Increase effective vertical stress due to loading after full consolidation</td>
<td>kPa</td>
</tr>
<tr>
<td>(\sigma'_{v,0})</td>
<td>Effective vertical stress at foundation level</td>
<td>kPa</td>
</tr>
<tr>
<td>(\varphi')</td>
<td>Effective friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\varphi'_{\text{crit}})</td>
<td>Critical state friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\varphi'_{k})</td>
<td>Characteristic effective friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\varphi'_{\text{max}})</td>
<td>Peak effective friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\varphi'_s)</td>
<td>Secant friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\varphi_u)</td>
<td>Undrained friction angle</td>
<td>°</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Shear strength</td>
<td>kPa</td>
</tr>
<tr>
<td>(\psi)</td>
<td>State parameter</td>
<td>(−)</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCP</td>
<td>Acoustic Doppler Current Profilers</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>CIRIA</td>
<td>Construction Industry Research and Information Association</td>
</tr>
<tr>
<td>CPT</td>
<td>Cone Penetration Test</td>
</tr>
<tr>
<td>CRR</td>
<td>Cyclic Resistance Ratio</td>
</tr>
<tr>
<td>CSL</td>
<td>Critical State Locus</td>
</tr>
<tr>
<td>CSR</td>
<td>Cyclic Stress Ratio</td>
</tr>
<tr>
<td>CSWS</td>
<td>Continuous Surface Wave System</td>
</tr>
<tr>
<td>CTD</td>
<td>Conductivity, temperature, depth meter</td>
</tr>
<tr>
<td>CUR</td>
<td>Centre for Civil Engineering, Research and Codes</td>
</tr>
<tr>
<td>DC</td>
<td>Dynamic Compaction</td>
</tr>
<tr>
<td>DIN</td>
<td>German Institute for Standardization</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DSM</td>
<td>Deep Soil Mixing</td>
</tr>
<tr>
<td>EAU</td>
<td>Recommendations of the Committee for Waterfront Structures Harbours and Waterways EAU 2004</td>
</tr>
<tr>
<td>EC7</td>
<td>Eurocode 7</td>
</tr>
<tr>
<td>EC</td>
<td>Explosive Compaction</td>
</tr>
<tr>
<td>ECM</td>
<td>Electromagnetic Current Meter</td>
</tr>
<tr>
<td>EMS</td>
<td>European Macroseismic Scale</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FS</td>
<td>Factor of Safety</td>
</tr>
<tr>
<td>FS</td>
<td>Safety Against Instability</td>
</tr>
<tr>
<td>FS<sub>L</sub></td>
<td>CRR/CSR = Safety Against Failure by Liquefaction</td>
</tr>
<tr>
<td>GEC</td>
<td>Geotextile Encased Columns</td>
</tr>
<tr>
<td>GWL</td>
<td>Ground Water Level</td>
</tr>
<tr>
<td>HEIC</td>
<td>High Energy Impact Compaction</td>
</tr>
<tr>
<td>ISSMGE</td>
<td>International Society for Soil Mechanics and Geotechnical Engineering</td>
</tr>
<tr>
<td>LAT</td>
<td>Lowest Astronomical Tide</td>
</tr>
<tr>
<td>LEM</td>
<td>Limit Equilibrium Method</td>
</tr>
<tr>
<td>MBES</td>
<td>Multibeam Echo Sounding</td>
</tr>
<tr>
<td>MDD</td>
<td>Maximum Dry Density</td>
</tr>
<tr>
<td>MPM</td>
<td>Material Point Method</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric Turbidity Units</td>
</tr>
<tr>
<td>NCEER</td>
<td>National Center for Earthquake Engineering Research</td>
</tr>
<tr>
<td>OCR</td>
<td>Over Consolidation Ratio</td>
</tr>
<tr>
<td>PGA</td>
<td>Peak Ground Acceleration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>PIANC</td>
<td>Permanent International Commission for Navigation Congresses</td>
</tr>
<tr>
<td>PLT</td>
<td>Plate Load Test</td>
</tr>
<tr>
<td>PVD</td>
<td>Prefabricated Vertical Drain</td>
</tr>
<tr>
<td>RIC</td>
<td>Rapid Impact Compaction</td>
</tr>
<tr>
<td>RQD</td>
<td>Rock Quality Designation</td>
</tr>
<tr>
<td>SASW</td>
<td>Spectral Analysis of Surface Waves</td>
</tr>
<tr>
<td>SCR</td>
<td>Solid Core Recovery</td>
</tr>
<tr>
<td>SLS</td>
<td>Serviceability Limit State</td>
</tr>
<tr>
<td>SPT</td>
<td>Standard Penetration Test</td>
</tr>
<tr>
<td>SSM</td>
<td>Shallow Soil Mixing</td>
</tr>
<tr>
<td>SSS</td>
<td>Side Scan Sonar</td>
</tr>
<tr>
<td>TCR</td>
<td>Total Core Recovery</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultimate Limit State</td>
</tr>
<tr>
<td>ZLT</td>
<td>Zone Load Test</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION TO THE MANUAL

1.1 Land reclamation by hydraulic filling

Land reclamation is generally defined as the process of creating new land by raising the elevation of a seabed, riverbed or other low-lying land (‘filling’) or by pumping out the water from a watery area that is enclosed by dikes (‘polder construction’).

Land reclamation by filling may be undertaken by dry earth movement, but also by hydraulic filling. Hydraulic filling is defined as the creation of new land by the following consecutive activities:

1. dredging of fill material in a borrow area or dredging area by floating equipment (dredgers);
2. transport of fill material from the borrow area to the reclamation site by dredger, barge or pipeline;
3. placement of fill material as a mixture of fill material and (process) water in the reclamation area.

It is the hydraulic filling that forms the main subject of this Manual. For information on other reclamation methods like dry earth movement or the construction of polders reference is made to other publications like manuals, guides, state of the art reports and/or codes of practice that more specifically deal with these techniques.

In most cases land reclamation will be a part of a more comprehensive project such as the construction of a port, an airport, a housing project or an industrial complex. Whereas superstructures will not be discussed in this Manual, their presence will impose certain requirements on the quality of the reclaimed land, its response to external forces such as currents, waves, precipitation and wind and its ability to withstand hazards such as earthquakes and tsunamis.

1.2 History and prospects

Archaeological evidence indicates that land reclamation is not a recent invention, but has existed for thousands of years. Some 2000 years ago inhabitants of the swampy and tidal areas along the Wadden Sea in the north of The Netherlands and Germany lived on so-called ‘terpen’ or ‘wierden’, artificial dwelling mounds built to protect themselves against flooding in periods of high water levels. Further attempts to prevent their agricultural land from being flooded by the sea included the construction of dikes between those dwelling mounds.
Around 1500 A.D. a new method of land reclamation came into use: “Polders” were constructed by building a ring dike in shallow watery areas, after which the water was removed from the enclosed low-lying area by windmill-driven pumps. Once steam engines became available in the 19th century some of the windmills were replaced by pumping stations.

A transformational moment came with the development of the modern centrifugal pump that enabled the current large-scale reclamation projects by hydraulic filling. According to the International Association of Dredging Companies (*Terra et Aqua*, 2005) one of the first major reclamation works (Bay of Abidjan, Ivory Coast) was carried out in the 1960s.

As a result of the strong growth of the world’s population and the subsequent urbanisation and economic development, in particular in densely populated coastal areas, the last decades have witnessed an ever-increasing demand for new land. This demand has resulted in a large number of reclamation projects ranging from numerous small-scale projects all over the world to well-known, large-scale projects such as the Palm Island Project in Dubai or the construction of Maasvlakte 2 in Rotterdam Europoort, The Netherlands (see Figure 1.1).

Demographic forecasts suggest that in the foreseeable future this demand for new land will remain or even increase, see Figure 1.2.

![Figure 1.1 Construction of Maasvlakte 2 in progress, Rotterdam Europoort, The Netherlands, October 2011.](image-url)
1.3 **Context and objectives**

This Hydraulic Fill Manual is written to supply the wants of the dredging industry to create a handbook that helps to improve the understanding between the various parties (i.e., Clients, Consultants and Contractors) involved in a hydraulic fill project. It contains the latest developments in the field of design and construction of hydraulic fills and presents clear guidelines for initiation, design and construction of a hydraulic fill project.

The design and construction of a hydraulic fill project requires specific knowledge of a wide variety of disciplines, such as hydraulic, geotechnical and environmental engineering in combination with practical know-how and experience in dredging and filling techniques.

Moreover, a new generation of dredging equipment, increasing awareness of the marine environment and the tendency to reduce construction time (i.e., return on investment period) will affect the design and construction methods requiring new standards.

Worldwide experience indicates that in recent years the technical specifications of reclamation projects have become more stringent. No rational basis for such a trend exists as the intended use of this newly created land (i.e., functional requirements) has not changed significantly nor has an increase of failures been reported. In a number of cases this trend has led to inadequate and conflicting specifications, to construction requirements that could not be met and/or to excessive costs for
fill treatment and testing. These developments frustrate the tender process, cause serious problems during construction and quality control and may lead to long-lasting, costly arbitration.

This Hydraulic Fill Manual has been written to avoid these problems. It includes theoretical and practical guidelines for the planning, design, construction and quality control of hydraulic fills.

The Manual covers the interfaces between the areas of interest of the contractual parties usually involved in reclamation projects (see Figure 1.3). It will:

− enable the Client to understand and properly plan a reclamation project;
− provide the Consultant with adequate guidelines for design and quality control;
− allow the Contractor to work within known and generally accepted guidelines and realistic specifications.

This Manual is believed to be the first handbook to date that covers all these aspects that are relevant to the construction of hydraulic fills.

The authors and reviewers have endeavoured to gather the most up-to-date knowledge regarding the design and construction of hydraulic fills with the goal that with time this Manual will be a standard for all parties involved in the implementation of hydraulic fill projects.

The structure of the Manual assumes that the design and construction of a hydraulic fill should be a rational process that ultimately results in the best and most economical match between the specified properties of the land reclamation, the requirements imposed by its future use and the environment in which it is located.

Figure 1.3 Focus of the Manual: Interfaces between three contractual partners.
1.4 Design philosophy

Land reclamation projects are undertaken for various purposes and under varying conditions. The performance requirements imposed on a fill depend on the future use of the reclamation and, hence, they vary for each individual project.

Boundary conditions are often site and project specific as well. Physical site conditions, such as wave climate, currents, water depth, subsoil properties and the vulnerability of the environment to dredging and reclamation activities will differ from one site to another. The quality and quantity of the fill available for construction will strongly depend on the location of the project. These conditions will not only affect the design of a reclamation, but they must also be taken into account when selecting the most suitable dredging equipment and construction method.

A rational design must integrate the functional and performance requirements considering the boundary conditions of the project in order to adequately specify the geometry and properties of the fill mass. The same rationality must be applied with respect to the construction of the reclamation requiring an appropriate selection of equipment and working method.

Functional and performance requirements

A functional requirement defines what a system must do, while a performance requirement specifies something about the system itself and how well it performs its function. A fill mass (and its subsoil) can be regarded as a system with functional and performance requirements.

Starting point of a design must always be the future land use. The functional requirements of the fill mass follow directly from the intended use of the fill area. These functional requirements may be formulated in general terms (for instance: “the reclamation area must accommodate an airfield with runways, aprons, a terminal building and a traffic control tower”), but can also be more specific (for instance: “the fill mass must support a structure founded on a strip footing having a width of 1.5 m, an embedment depth of 1.0 m and a bearing load of 80 kPa”) which may vary over the area depending on the lay-out of the future development.

The functional requirements and the design of the superstructures (i.e., their Ultimate Limit State and/or Serviceability Limit State, see section 8.4.1) lead to performance requirements of the fill mass such as maximum allowable settlement of the superstructures (buildings, roads, storage areas, runways, revetments, tunnels, etc.), and sufficient safety against slope failure or liquefaction. The required basic mass properties like strength, stiffness, density and permeability can be derived from these performance requirements.
The definition of functional requirements and their subsequent translation into performance criteria form the basis of System Engineering, see section 2.5, which may be used as a tool to control the development cycle of a reclamation project.

Following an approach in terms of functional and performance requirements, the design of a reclamation project becomes an iterative process. Functional requirements, dictated by structural criteria and other project-dependent boundary conditions, will not be discussed in this Manual.

1.5 Structure, content and use

Rather than following a chronological sequence of events (project initiation, design and construction), the structure chosen for this Manual intends to put the main emphasis on the design of a land reclamation. To that end the first chapters describe not only the collection of data required for the design but also present basic information on dredging equipment and construction methods before touching upon the design aspects.

The Manual concludes with a discussion of the technical specifications that result from a design. Additional information can often be found in the referenced Appendices. Figure 1.4 illustrates the set-up of this Manual.

Following the scheme of Figure 1.4 the contents of this Manual can briefly be summarised as follows:

Chapter 2: Project initiation, gives an overview of the most relevant elements in the procedure to realise a reclamation project and the way they are related to each other. It introduces the development cycle to realize a project, including the iterative nature of that cycle and concludes with an illustrative scheme of activities leading to the construction of a reclamation project.

Chapter 3: Data collection, presents the data required for the design of a hydraulic fill project. It deals not only with the type of information needed for the design, but also with the methods to collect the information, the reporting and the processing of data.

Commonly used dredging equipment and its use can be found in Chapter 4: Dredging equipment. Possibilities and limitations of the various types of dredgers and their vulnerability to the physical conditions of the project site are also included.
The feasibility of a project strongly depends on the availability of sufficient suitable fill material in the vicinity of the reclamation site. Chapter 5: Selection borrow area, describes the most important criteria for the selection of a borrow area.

Chapter 6: Planning and construction methods reclamation, deals with the construction methods of a reclamation area. This not only includes the deposition of the material, but also the planning, preparation and monitoring of the operations.

In the case where the existing subsoil and/or the fill behaviour do not meet the requirements, ground improvement may be required. Chapter 7: Ground improvement, gives an overview of the most relevant ground improvement techniques.
Chapter 8: Design, discusses the geotechnical design of a land reclamation. The main sections deal with density, (shear) strength, stiffness and deformations of the fill mass. A special section of this chapter is dedicated to the phenomena liquefaction and breaching.

In some areas of the world land reclamation projects have to be undertaken using cohesive materials or carbonate sands rather than with the more frequently encountered quartz sands. Furthermore, some subsoils may exhibit a different behaviour when loaded by fill. Chapter 9: Special fill materials and problematic subsoils, describes the behaviour of these special fill materials and problematic subsoils.

In addition to the geotechnical behaviour, a design should also take into account aspects like drainage of the reclaimed area, wind erosion, and slope, bed and bank protection. A short introduction to these subjects and some relevant references are presented in Chapter 10: Other design items.

Chapter 11: Monitoring and quality control, is about monitoring and quality control requirements during and after construction of the reclamation.

Finally, Chapter 12: Specifications, makes recommendations for specifying the construction of a hydraulic fill area which logically follow from the engineering philosophy adopted in this Manual.