
Chapter 14 H2 optimal Control

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 1/116



H2 optimal Control

1 14.1 Factorization for Simple RHP Zeros

2 14.2 Construction Procedure of Factorizations

3 14.3 Factorizations for Multiple RHP Zeros

4 14.4 Analysis and Computation

5 14.5 Solution of the H2 Optimal Control Problem

6 14.6 Filter Design

7 14.7 Examples for designing H2 Optimal Controllers

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 2/116



Section 14.1 Factorization for Simple RHP Zeros

14.1 Factorization for Simple RHP Zeros

Optimal Control v.s. Optimal Decoupling Control

Feature of optimal decoupling control: The closed-loop
response is decoupled; the response of each channel is determined
by only one parameter. This is important for applications:

1 When a channel is tuned it is usually desirable that other
channels should not be affected

2 The feature makes the tuning of a decoupling control system
significantly simplified

Feature of the optimal control in general sense: The
closed-loop response may be non-decoupled. The optimal control
is theoretically more important than the decoupling optimal
control, since the general optimality implies that the minimum
error is achieved
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Section 14.1 Factorization for Simple RHP Zeros

Assumption

Preceding chapters: The plant was permitted to have time delays
This chapter: The plant is restricted to be rational
Reason: The factorization, which is the key of the H2 optimal
design, is still an open question for systems with time delays

Let G(s) denote an n× n plant and C(s) be an n× n controller. It
is assumed in this chapter that

1 There is not any unstable hidden mode in G(s)

2 G(s) is of full normal rank

3 G(s) does not have any finite zeros on the imaginary axis

The assumptions are the same as those for the H2 decoupling
control
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Inner-Outer Factorization

Inner-outer factorization: Compute the factorization of a stable
nonsingular transfer function matrix G(s) as a product of a proper
inner factor GA(s) and a stable MP outer factor GMP(s), i.e.

G(s) = GA(s)GMP(s)

Inner matrix: A matrix GA(s) is said to be inner if it is stable
and satisfies GA

∗(s)GA(s) = I
GA(s) is in general a full matrix. It is an all-pass function, since
GA
∗(jω)GA(jω) = I for all ω

Outer matrix: A matrix GMP(s) is said to be outer if it is stable
and does not have zeros in the RHP
GMP(s) may have imaginary zeros in view of the original definition
of the inner-outer factorization
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Existing Problems

The inner-outer factorization is not unique. For example,
multiplying both factors by an orthogonal matrix will not change
the poles and the zeros. The obtained is still an inner-outer
factorization

To obtain a unique inner-outer factorization, a constraint must be
imposed on the inner factor or the outer factor. For example, let
GA(∞) = I

The original inner-outer factorization is only defined for stable
plants. Aiming at the design problem of general linear systems,
the extended inner-outer factorization is defined in this chapter,
which is applicable to both stable and unstable plants
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Extension of the Inner-Outer Factorization

Definition

GA(s) and GMP(s) are said to be the extended inner-outer
factorization of G(s) if

1 GA
∗(s)GA(s) = I

2 GA(s) and GMP
−1(s) are stable

3 GMP(s) has the same closed RHP poles as G(s)

In the new definition, Condition 1 is from the original definition.
The condition implies that GA(s) has the same number of zeros
and poles

Conditions 2 and 3 are from the design requirement of the H2

optimal controller
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In Condition 2 it is required that GA(s) must be stable even if
the plant is unstable, while GMP(s) is not necessarily stable. Since
GMP(s) is required to be MP, GMP

−1(s) must be stable

If Condition 3 is not satisfied, the plant has to be factorized a
second time, so that a MP part with the same closed RHP poles as
G(s) is obtained. Such a factorization is needed in deriving the
optimal solution

In particular, to obtain the optimal controller analytically an
analytical solution is expected for the factorization

The extended inner-outer factorization is a control-oriented
definition. One can regard the original inner-outer factorization as
a special case of the new factorization except for the imaginary
axis case
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In the new definition the outer factor does not have imaginary
zeros anymore. Otherwise, an internally unstable system may be
obtained in the design

For clarity of presentation, the factorization for plants with simple
open RHP zeros is introduced first. The result will be extended to
plants with multiple open RHP zeros shortly later

Assume that zj(j = 1, 2, ..., rz) are the simple zeros of G(s).

Definition

The nonzero 1× n vector vj satisfying vjG(zj) = 0 is called the
direction of the zero zj

In the definition, the zero is not necessarily a RHP zero
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Section 14.1 Factorization for Simple RHP Zeros

The vector vT
j is the eigenvector of GT (zj) associated with the

eigenvalue zero

It is called a zero direction since for system input of the form cezj t

(where c is an arbitrary complex vector, t ≥ 0), the output caused
by the input in the direction of vj is identically zero given
appropriate initial conditions

Now let GA(s) be an n × n transfer function matrix with the
following features:

1 det[GA(s)] is not identically zero (or equivalently, GA(s) is of
full normal rank)

2 det[GA(s)] does not have any poles at zj
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Lemma

GA(s) has a simple zero zj with zero direction vj if and only if
GA
−1(s) has an expression of the form

GA
−1(s) = (−s + zj)

−1αjvj + G0(s)

where G0(s) is a term without poles at zj and αj is a nonzero
n × 1 vector

Proof.

Suppose that GA
−1(s) has an expression of the form

GA
−1(s) = (−s + zj)

−1αjvj + G0(s)

where G0(s) is a term without poles at zj
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Proof ctd.1.

Multiply both sides of the equation on the right by
(−s + zj)GA(s). We have

(−s + zj)I = [αjvj + (−s + zj)G0(s)]GA(s)

As αj is a nonzero column vector, one obtains that vjGA(zj) = 0.
This implies that GA(s) has at least one zero at zj .
On the other hand, taking determinants yields

(−s + zj)
n = det[αjvj + (−s + zj)G0(s)] det[GA(s)]

Since the rows of αjvj are multiples of vj, αjvj is of rank 1. It is
known that det[αjvj + (−s + zj)G0(s)] has a zero at zj of
multiplicity at least n − 1. It is deduced that det[GA(s)] has a zero
at zj of multiplicity at most 1
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Proof ctd.2.

Therefore, zj is a simple zero of GA(s)

Conversely, suppose that GA(s) has a simple zero zj with the zero
direction vj. Since det[GA(s)] is not identically zero, GA(s) is
invertible and GA

−1(s) has a simple pole at zj . Apply the Laurent
expression to rational transfer function matrices. GA

−1(s) can be
written in the following form:

GA
−1(s) =

∞∑
i=−1

(−s + zj)
iRi+2

= (−s + zj)
−1

∞∑
i=−1

(−s + zj)
i+1Ri+2
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Proof ctd.3.

Ri(i = 1, 2, ...,∞) are n × n constant matrices. As GA(s) does not
have poles at zj , R1 6= 0

Choose a 1× n vector β satisfying βR1 6= 0. We have

βGA
−1(s) = (−s + zj)

−1
∞∑

i=−1

β(−s + zj)
i+1Ri+2

Rewrite the equation as

(−s + zj)β =

[ ∞∑
i=−1

β(−s + zj)
i+1Ri+2

]
GA(s)
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Proof ctd.4.

In particular, at s = zj we have

βR1GA(zj) = 0

Recall that the definition of the zero direction is

vjG(zj) = 0.

It is easy to see that βR1 is a multiple of vj for any row vector β.
This happens if and only if there exists a nonzero column vector αj

so that R1 = αjvj

In the theorem, αjvj is in fact the residue of GA
−1(s) at zj . The

uniqueness of the residue implies that the expression is unique
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Section 14.1 Factorization for Simple RHP Zeros

Lemma

If an n × n stable transfer function matrix GA(s) satisfies

1 GA
∗(s)GA(s) = I, and

2 zj(Re(zj) > 0, j = 1, 2, ..., rz) are the only open RHP zeros of
GA(s) with zero directions vj ,

then GA(s) is the inner factor of G(s) and
GMP(s) = GA

−1(s)G(s) is the outer factor

Proof.

It is enough to prove that GMP(s) is MP and has the same closed
RHP poles as G(s)

Since zj(j = 1, 2, ..., rz) are the only open RHP zeros of GA(s), the
only open RHP poles of GA

−1(s) are zj
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Proof ctd.1.

According to Lemma 3, GA
−1(s) has an expression of the form

GA
−1(s) = (−s + zj)

−1αjvj + G0(s)

where αj is a nonzero column vector and G0(s) is a term without
poles at zj .
Multiply both sides on the right by G(s). We have

GA
−1(s)G(s) = (−s + zj)

−1αjvjG(s) + G0(s)G(s)

The second term in the right-hand side is analytic at zj for
j = 1, 2, ..., rz , since both G0(s) and G(s) do not have poles at zj
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Proof ctd.2.

In the first term, vjG(zj) = 0. Hence, GA
−1(s)G(s) does not have

a pole at zj for j = 1, 2, ..., rz ; that is, all open RHP poles of
GA
−1(s) are cancelled by those open RHP zeros of G(s).

GMP(s) = GA
−1(s)G(s) has the same closed RHP poles as G(s)

Furthermore, those open RHP zeros of G(s) are the only possible
open RHP zeros of GMP(s). All of these zeros are cancelled.
Therefore, GMP(s) is MP

The following theorem gives the main result of this section
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Theorem

The n × n transfer function matrix GA(s) of the form

GA(s) = I− B∗(sI + Ā)−1F−1B

is inner. Here

A =

 z1 · · · 0
...

. . .
...

0 · · · zrz

 ,B =

 v1
...

vrz

 ,
F = [fij ] , fij =

vivj
∗

z̄j + zi
, i , j = 1, 2, ..., rz
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Proof.

First, it is shown that GA
∗(s)GA(s) = I. zj(j = 1, 2, ..., rz) are the

simple zeros of GA(s). By using this fact, it can be proved that

GA
∗(s) = I− B∗(F∗)−1(−sI + AT )−1B

Since F = F∗,

GA
∗(s)GA(s)

= [I− B∗F−1(−sI + AT )−1B][I− B∗(sI + Ā)−1F−1B]
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Proof ctd.1.

= I− B∗F−1(−sI + AT )−1B− B∗(sI + Ā)−1F−1B +

B∗F−1(−sI + AT )−1BB∗(sI + Ā)−1F−1B

= I− B∗F−1(−sI + AT )−1{F(sI + Ā) +

(−sI + AT )F− BB∗}(sI + Ā)−1F−1B

= I− B∗F−1(−sI + AT )−1(FĀ + ATF− BB∗)(sI + Ā)−1F−1B

It can be verified that F satisfies the following Lyapunov equation:

FĀ + ATF = BB∗

One readily obtains GA
∗(s)GA(s) = I
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Proof ctd.2.

Next, examine the zeros of GA(s). Since

GA
−1(s) = GA

∗(s) = I− B∗F−1(−sI + AT )−1B

zj(j = 1, 2, ..., rz) are the only open RHP zeros of GA(s). By
Lemma 4 it is known that GA(s) is inner

Evidently, GA(s) is unique since GA(∞) = I
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Section 14.2 Construction Procedure of Factorizations

14.2 Construction Procedure of Factorizations

One may wish to know how the inner matrix in the last section was
conceived. The procedure will be explained in detail in this section

An important step in constructing: Construct a transfer
function matrix with the desired zero-pole distribution and, at the
same time, without the RHP zero-pole cancellation

Difficulty: This is very easy in scalar systems; in multivariable
systems the constructing procedure is an involved problem, since
the zero of the plant may not be the zero of its elements

In the last chapter, it was shown that the inner matrix could be
obtained by analyzing the inverse of a transfer function matrix,
since all zeros of the plant would emerge in the inverse matrix
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Section 14.2 Construction Procedure of Factorizations

This is an important idea that inspires the solving of the
factorization problem in this chapter

It is found in interpolation study that the zero-pole distribution of
a transfer function matrix is closely related to the partial fraction
expansion of its inverse matrix

This fact will be used to compute the factorization

To obtain a unique inner-outer factorization, let GA(∞) = I .
Assume that zj(j = 1, 2, ..., rz) are the simple zeros of GA(s) with
the zero directions vj. By Liouville’s Theorem, GA

−1(s) has the
following partial fraction expansion:

GA
−1(s) = I +

rz∑
j=1

(−s + zj)
−1αjvj
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Section 14.2 Construction Procedure of Factorizations

where αj are unknown nonzero n × 1 vectors. Based on this
expression, the form of GA(s) is given in the following lemma

Lemma

If GA
−1(s) = I +

rz∑
j=1

(−s + zj)
−1αjvj, it can be proved that

GA(s) = I + Cv[sI− (Av + BvCv)]−1Bv

where

Av =

 z1 · · · 0
...

. . .
...

0 · · · zrz

 ,
Bv = [v1

T , v2
T , · · · , vrz

T ]T ,Cv = [α1,α2, · · · ,αrz ]
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Proof.

I−
rz∑
j=1

(s − zj)
−1αjvj

 [I + Cv[sI− (Av + BvCv)]−1Bv]

= I−
rz∑
j=1

(s − zj)
−1αjvj + Cv[sI− (Av + BvCv)]−1Bv − rz∑

j=1

(s − zj)
−1αjvj

Cv[sI− (Av + BvCv)]−1Bv

= I− Cv(sI− Av)−1Bv + Cv[sI− (Av + BvCv)]−1Bv −
Cv(sI− Av)−1BvCv[sI− (Av + BvCv)]−1Bv

= I− Cv(sI− Av)−1
{

[sI− (Av + BvCv)]− (sI− Av) + BvCv

}
[sI− (Av + BvCv)]−1Bv

= I
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Since αj are unknown, more conditions are needed to compute
GA(s)

Consider the transfer function matrix with the same number of
zeros and poles, since the inner factor possesses the feature.
Assume that pj(j = 1, 2, ..., rz) are simple zeros of GA

−1(s) with
the zero directions wj, and zj 6= pj . Then pj are simple poles of
GA(s).

On one hand, from Lemma 3 and Liouville’s Theorem GA(s) can
be expressed as

GA(s) = I +
rz∑
j=1

(s − pj)
−1wjβj

where βj are unknown nonzero 1× n vectors
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The expression can be rewritten as

GA(s) = I + Cw(sI− Aw)−1Bw

where

Aw =

 p1 · · · 0
...

. . .
...

0 · · · prz

 ,
Bw = [β1

T ,β2
T , · · · ,βrz

T ]T ,Cw = [w1,w2, · · · ,wrz ]

On the other hand, the poles of GA(s) are the eigenvalues of the
matrix Av + BvCv. In other words, pj(j = 1, 2, ..., rz) are the
eigenvalues of Av + BvCv. This implies that Av + BvCv is similar
to Aw, or equivalently, there exists an invertible matrix F such that
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Av + BvCv = FAwF−1

Substitute this expression into GA(s). One obtains that

GA(s) = I + Cv[sI− (Av + BvCv)]−1Bv

= I + Cv(sI− FAwF−1)−1Bv

= I + CvF(sI− Aw)−1F−1Bv

The two expressions are identical when Cw = CvF and
Bw = F−1Bv. If F is known, GA(s) can readily be derived (Figure)

Consider the computation of F. Substituting the expressions of Cw

into (1) yields the following Lyapunov equation:

FAw − AvF = BvCw

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 29/116



Section 14.2 Construction Procedure of Factorizations

Figure: Construction of GA(s)
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Let fij(i , j = 1, 2, ..., rz) be the (i , j)th element of F. Evidently, the
matrix equation is equivalent to the following scalar equations:

fijpj − zi fij = viwj

The unique solution of this equation is

fij =
viwj

pj − zi

The matrix F is now obtained.
When Bv and F are known, Bw = F−1Bv, or equivalently, β1

...
βrz

 =

 f11 · · · f1rz
...

. . .
...

frz1 · · · frz rz


−1  v1

...
vrz


The computing procedure is summarized as the following theorem
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Theorem

Assume that zj(j = 1, 2, ..., rz) are the simple zeros of GA(s) with
the zero directions vj, pj are simple zeros of GA

−1(s) with the zero
directions wj, zj 6= pj , and GA(∞) = I. Then GA(s) can be written
as

GA(s) = I +
rz∑
j=1

(s − pj)
−1wjβj

where  β1
...

βrz

 = F−1

 v1
...

vrz

 ,
F = [fij ] , fij =

viwj

pj − zi
, i , j = 1, 2, ..., rz
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Proof.

Follows the foregoing analysis procedure.

Consider a special case: zj(Re(zj) > 0, j = 1, 2, ..., rz) are the
simple zeros, and the only open RHP zeros, of GA(s) with zero
directions vj , while pj = −z̄j are the simple zeros of GA

−1(s) with
zero directions wj = −vj

This is the case encountered in the extended inner-outer
factorization problem.

Lemma

Assume that GA(s) is the inner factor of G(s). If zj are the simple
open RHP zeros of GA(s), then −z̄j are the simple poles of GA(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 33/116



Section 14.2 Construction Procedure of Factorizations

Proof.

Follows the foregoing analysis procedure.

Consider a special case: zj(Re(zj) > 0, j = 1, 2, ..., rz) are the
simple zeros, and the only open RHP zeros, of GA(s) with zero
directions vj , while pj = −z̄j are the simple zeros of GA

−1(s) with
zero directions wj = −vj

This is the case encountered in the extended inner-outer
factorization problem.

Lemma

Assume that GA(s) is the inner factor of G(s). If zj are the simple
open RHP zeros of GA(s), then −z̄j are the simple poles of GA(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 33/116



Section 14.2 Construction Procedure of Factorizations

Proof.

det[GA
∗(s)] = det[GA

T (−s)]

= det[GA(−s)]

It is easy to know that −zj are the simple zeros of GA
∗(s). The

coefficients in the zero polynomial of GA
∗(s) are real. This implies

that −z̄j are the simple zeros of GA
∗(s), too

Since GA
∗(s)GA(s) = I,

GA
−1(s) = GA

∗(s)

−z̄j are simple zeros of GA
−1(s) and thus simple poles of

GA(s)
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Theorem

Assume that zj(j = 1, 2, ..., rz) are the simple zeros of GA(s) with
the zero directions vj, −z̄j are simple zeros of GA

−1(s) with the
zero directions −vj, and GA(∞) = I. Then the following transfer
function matrix is inner:

GA(s) = I +
rz∑
j=1

(s + z̄j)
−1vj

∗βj

where  β1
...

βrz

 = F−1

 v1
...

vrz


F = [fij ] , fij =

vivj
∗

z̄j + zi
, i , j = 1, 2, ..., rz
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Let

A =

 z1 · · · 0
...

. . .
...

0 · · · zrz

 ,B =

 v1
...

vrz


GA(s) can be expressed in the matrix form in the last section

GA
∗(s) = GA

−1(s). By the first Lemma in this section, GA
∗(s)

can be expressed in the matrix form in the last section
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14.3 Factorizations for Multiple RHP Zeros

In this section, the factorization for simple zeros will be extended
to the case of multiple zeros. More precisely, the parameters A, B,
and F will be derived for plants with multiple RHP zeros

Observation: In the factorization of plants with simple RHP
zeros, it is seen that the construction of A depends on the open
RHP zeros, while the construction of B and the computation of F
depend on zero directions

Problems: The zero direction is only defined for simple zeros
Solution: Define the zero direction for multiple zeros and then
construct A and B, and compute F based on the definition
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Definition

Assume that zj is a kj multiplicity zero of G(s). The nonzero 1× n
vectors vjk(k = 1, 2, ..., kj) satisfying

lim
s→zj

d l

ds l


 −1∑
i=−kj

vj(i+kj+1)(−s + zj)
i+kj

G(s)

 = 0,

l = 0, 1, ..., kj − 1

are called the zero directions of zj

The definition of multiple zero directions is a natural extension of
the original definition of the zero direction. When kj = 1,
vj1G(zj) = 0. This definition reduces to the one for simple zeros
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Assume that zj(j = 1, 2, ..., rz) are kj multiplicity RHP zeros of
G(s) with zero directions vjk(k = 1, 2, ..., kj)

A special case is that some zj are the common zeros of all
elements in G(s). In this case, the common zero in G(s) should be
separated before the extended inner-outer factorization is carried
out. Otherwise, G(zj) = 0; the corresponding zero direction can be
any nonzero vector

This can be achieved by removing the following factor from G(s):

−s/z̄j + 1

s/zj + 1

and then factorize the remainder of G(s):

s/zj + 1

−s/z̄j + 1
G(s) = GA(s)GMP(s)
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The inner factor of the original plant G(s) is

−s/z̄j + 1

s/zj + 1
GA(s)

It should be emphasized that only those common zeros are
separated in the procedure. Some zj are the zeros of G(s) at the
same place, rather than the common zeros of all elements in

s/zj + 1

−s/z̄j + 1
G(s)

These zeros should be preserved in G(s)

To simplify the presentation, it is assumed that G(zj) 6= 0
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Figure: Computation of the inner factor
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Let GA(s) be an n × n transfer function matrix. det[GA(s)] is not
identically zero and GA(s) does not have poles at zj

Lemma

GA(s) has a kj multiplicity zeros zj with zero directions
vjk(k = 1, 2, ..., kj) if and only if GA

−1(s) can be expressed as

GA
−1(s) = (−s + zj)

−kjαjvj1 + ...+

(−s + zj)
−2αjvj(kj−1) +

(−s + zj)
−1αjvjkj + G0(s)

where αj is a nonzero column vector and G0(s) is a term without
poles at zj
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Proof.

Suppose first that GA
−1(s) can be expressed as

GA
−1(s) = (−s + zj)

−kjαjvj1 + ...+

(−s + zj)
−2αjvj(kj−1) +

(−s + zj)
−1αjvjkj + G0(s)

Multiply both sides of the equation on the right by
(−s + zj)

kj GA(s). We have

(−s + zj)
kj I = [αjvj1 + ...+ (−s + zj)

kj−2αjvj(kj−1) +

(−s + zj)
kj−1αjvjkj + (−s + zj)

kj G0(s)]GA(s)

Compute the lth (l = 0, 1, ..., kj − 1) derivatives of the two sides at
zj
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Proof ctd.1.

l = 0:

vj1GA(zj) = 0

which implies that GA(s) loses rank at zj
l = 1:

vj2GA(zj) + (−1)vj1
d

ds
GA(zj) = 0

which implies that d
ds GA(s) loses rank at zj

...
l = kj − 1:

vjkjGA(zj) +

kj−1∑
i=1

(−1)kj−i
vji

(kj − i)!

dkj−i

dskj−i
GA(zj) = 0
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Proof ctd.2.

which implies that d
kj−i

ds
kj−i GA(s) loses rank at zj . Hence, GA(s) has

at least kj zeros at zj

On the other hand, taking determinants of both sides yields

(−s + zj)
kj×n = det[αjvj1 + ...+ (−s + zj)

kj−2αjvj(kj−1) +

(−s + zj)
kj−1αjvjkj + (−s + zj)

kj G0(s)] det[GA(s)]

Since all of the lth (l = 0, 1, ..., kj − 1) derivatives of

αjvj1 + ...+ (−s + zj)
kj−2αjvj(kj−1) +

(−s + zj)
kj−1αjvjkj + (−s + zj)

kj G0(s)
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Proof ctd.3.

at zj are of rank 1, by Theorem in Section 10.1

det[αjvj1 + ...+ (−s + zj)
kj−2αjvj(kj−1) +

(−s + zj)
kj−1αjvjkj + (−s + zj)

kj G0(s)]

has at least kj × (n − 1) zeros at zj . It is deduced that det[GA(s)]
has at most kj zeros at zj .
Therefore, det[GA(s)] has a zero at zj of multiplicity kj

Conversely, suppose that GA(s) has a kj multiplicity zero zj with
the zero direction vjk(k = 1, 2, ..., kj). Since det[GA(s)] is not
identically zero, GA(s) is invertible. GA

−1(s) has kj multiplicity
poles at zj
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Proof ctd.4.

It has the following Laurent expression:

GA
−1(s) =

∞∑
i=−kj

(−s + zj)
iRi+kj+1

Ri(i = 1, 2, ...,∞) are n × n constant matrices. GA(s) does not
have poles at zj . Hence, R1 6= 0.
Choose a nonzero 1× n vector β so that βR1 6= 0. We have

βGA
−1(s) = (−s + zj)

−kj
∞∑

i=−kj

β(−s + zj)
i+kj Ri+kj+1

Rewrite the equation as
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Proof ctd.5.

(−s + zj)
kjβ =

 ∞∑
i=−kj

β(−s + zj)
i+kj Ri+kj+1

GA(s)

Compute the lth (l = 0, 1, ..., kj − 1) derivatives of the two sides at
zj :

lim
s→zj

d l

ds l


 ∞∑
i=−kj

β(−s + zj)
i+kj Ri+kj+1

GA(s)

 = 0

l = 0, 1, ..., kj − 1

which can be reduced to
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Proof ctd.6.

lim
s→zj

d l

ds l


 −1∑
i=−kj

β(−s + zj)
i+kj Ri+kj+1

GA(s)

 = 0

l = 0, 1, ..., kj − 1

Compare it with the definition of zero directions:

lim
s→zj

d l

ds l


 −1∑
i=−kj

vj(i+kj+1)(−s + zj)
i+kj

GA(s)

 = 0

l = 0, 1, ..., kj − 1
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Proof ctd.7.

It is easy to see that βRk(k = 1, 2, ..., kj) is a multiple of vjk for
any row vector β. This happens if and only if there exists a
nonzero column vector αj so that Rk = αjvjk(k = 1, 2, ..., kj)

Lemma

If an n × n stable transfer function matrix GA(s) satisfies

1 GA
∗(s)GA(s) = I, and

2 zj of multiplicity kj(j = 1, 2, ..., rz) are the only open RHP
zeros of GA(s) with zero directions vjk(k = 1, 2, ..., kj),

then GA(s) is the inner factor of G(s) and
GMP(s) = GA

−1(s)G(s) is the outer factor of G(s)
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Proof.

It is enough to prove that GMP(s) is MP and has the same closed
RHP poles as G(s).
Since zj(j = 1, 2, ..., rz) are the only open RHP zeros of GA(s), the
only open RHP poles of GA

−1(s) are zj . Recall Lemma 11. If zj is
a kj multiplicity zero of GA(s), GA

−1(s) has an expression of the
form

GA
−1(s) = (−s + zj)

−kjαjvj1 + ...+

(−s + zj)
−2αjvj(kj−1) +

(−s + zj)
−1αjvjkj + G0(s)

where αj is a nonzero column vector and G0(s) is a term without
poles at zj
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Proof ctd.1.

Multiply both sides on the right by G(s):

GA
−1(s)G(s) = (−s + zj)

−kjαjvj1G(s) + ...+

(−s + zj)
−2αjvj(kj−1)G(s) +

(−s + zj)
−1αjvjkjG(s) + G0(s)G(s)

To obtain the Laurent expression of GA
−1(s)G(s) at zj , all

coefficients of the terms with (−s + zj)
−i (i = 1, 2, ..., kj) have to

be computed. This can be achieved by multiplying both sides by
(−s + zj)

−kj , and then computing the lth (l = 0, 1, ..., kj − 1)
derivatives at zj . The computing procedure is similar to that in
Lemma of Section 14.3
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Proof ctd.2.

By utilizing the definition of zero directions, it can be found that
all coefficients are zero for j = 1, 2, ..., rz . In other words, all open
RHP poles of GA

−1(s) are cancelled by those open RHP zeros of
G(s)

The implication of this fact is twofold:

1 GA
−1(s) does not introduce any closed RHP poles to

GA
−1(s)G(s) GMP(s) has the same closed RHP poles as G(s)

2 All open RHP zeros of G(s) are removed. GMP(s) does not
have any open RHP zeros

This completes the proof
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Theorem

The matrix GA(s) of the form

GA(s) = I− B∗(sI + Ā)−1F−1B

is inner. Here

A =

 A1 · · · 0
...

. . .
...

0 · · · Arz

 ,Aj =


zj −1

zj
. . .
. . . −1

zj


B =

 B1
...

Brz

 ,Bj =

 vj1
...

vjkj

 , j = 1, 2, ..., rz
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Theorem (ctd.1)

F is the solution of the following Lyapunov equation:

FĀ + ATF = BB∗

Proof.

First, it is shown that GA
∗(s)GA(s) = I. By using a similar

procedure to the that for the simple zero, it can be proved that

GA
∗(s) = I− B∗F−1(−sI + AT )−1B

Since F = F∗,
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ctd.1.

GA
∗(s)GA(s)

= [I− B∗(sI + Ā)−1F−1B]∗[I− B∗(sI + Ā)−1F−1B]

= [I− B∗F−1(−sI + AT )−1B][I− B∗(sI + Ā)−1F−1B]

= I− B∗F−1(−sI + AT )−1B− B∗(sI + Ā)−1F−1B +

B∗F−1(−sI + AT )−1BB∗(sI + Ā)−1F−1B

= I− B∗F−1(−sI + AT )−1
{

F(sI + Ā) + (−sI + AT )F−
BB∗

}
(sI + Ā)−1F−1B

= I− B∗F−1(−sI + AT )−1(FĀ + ATF− BB∗)(sI + Ā)−1F−1B
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Proof ctd.2.

It is known that F satisfies the following Lyapunov equation:

FĀ + ATF = BB∗

One readily obtains that GA
∗(s)GA(s) = I

Next, examine the zero of GA(s). Since

GA
−1(s) = GA

∗(s) = I− B∗F−1(−sI + AT )−1B

zj(j = 1, 2, ..., rz) are the only open RHP zeros of GA(s)
By Lemma 12 it is concluded that GA(s) is inner

It is easy to verify that the theorem for simple zeros is a special
case of the theorem for multiple zeros
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14.4 Analysis and Computation

Result in the last three sections: An analytical solution to the
extended inner-outer factorization was developed. Provided that
the zeros of the plant are given, the factorization can be computed
by a formula in closed form

Normally, the zeros of the plant are known for the sake of
analyzing the stability or estimating the performance

Computation of zeros: Analytical for low-order plants, but not
analytical for high-order plants. The computation of zeros is
equivalent to computing the roots of an equation in a single
unknown. If the order of the equation is more than 4, then there is
not analytical formula for the computation
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Computation complexity: When the zeros of the plant are
known, the computation complexity of the factorization depends
on the multiplicity of the zero in the RHP

As it was seen in preceding sections, to compute the inner matrix,
A, B, and F must be obtained first:

1 A is from construction. It is exactly known

2 B is also from construction, but the zero directions have to be
computed first. If the zero directions are known, B is exactly
known

3 F has to be computed on the basis of the zero directions

The zero directions can be computed by the following formulas:
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vj1G(zj) = 0,

vj2G(zj) = vj1
d

ds
G(zj),

... ,

vjkjG(zj) =

kj−1∑
i=1

(−1)kj−i+1 vji

(kj − i)!

dkj−i

dskj−i
G(zj),

j = 1, 2, ..., rz

They can directly be derived from the definition of zero direction.

If the plant has only simple open RHP zeros, the zero direction can
be obtained by

vj1G(zj) = 0, j = 1, 2, ..., rz
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Computation of zero directions: Because G(s) loses rank at zj
and vj1 can be any nonzero vector satisfying the foregoing
formulas, the computation of vj1 is very simple

For example, if G(zj) = [0 0; 1 2], one can simply take vj1 = [1 0].
By using the foregoing formulas, the computation of vj2 is simple
once vj1 is known. For the computation of vjk(k > 2), the
complexity is mainly from the computation of the derivative of
G(s) at zj

Computation of F: Now it is shown that when the zero directions
are exactly known, F can be exactly computed. F is the solution of
the following Lyapunov equation:

FĀ + ATF = BB∗
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Express F as a block matrix:

F = [Fij] ,Fij =
[
f ij
xy

]
, i , j = 1, 2, ..., rz ; x , y = 1, 2, ..., kj

Let f ij
x0 = f ij

0y = 0 for all i , j , x , y . F can be directly computed by
the following formula:

f ij
xy =

vixvjy
∗

z̄j + zi
+

f ij
(x−1)y + f ij

x(y−1)

z̄j + zi

In particular, when the plant has only simple RHP zeros, we have

F =
[
f ij
11

]
, f ij

11 =
vi1v∗j1
z̄j + zi
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Note that the computation of F is an exact procedure without any
numerical error

The deriving procedure for the factorization formula is very long.
However, the result is simple, because it is analytical. The
computation is summarized as follows

Given an n × n transfer function matrix G(s), its kj multiplicity
open RHP zeros zj(j = 1, 2, ..., rz), and zero directions
vjk(k = 1, 2, ..., kj). The inner matrix can be exactly computed
through the following steps:
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1 A =

 A1 · · · 0
...

. . .
...

0 · · · Arz

 ,Aj =


zj −1

zj
. . .
. . . −1

zj


2 B =

 B1
...

Brz

 ,Bj =

 vj1
...

vjkj


3 F = [Fij] ,Fij =

[
f ij
xy

]
, f ij

xy =
vixvjy

∗

z̄j+zi
+

f ij
(x−1)y

+f ij
x(y−1)

z̄j+zi
, and

f ij
x0 = f ij

0y = 0

4 GA(s) = I− B∗(sI + Ā)−1F−1B
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Two typical examples are given here to illustrate the use of these
formulas

Example

Consider the plant described by the following transfer function
matrix:

G(s) =

[
(s−1)2

(s+1)2
(s−1)2

(s+1)2

−1
s+1

s−2
s+1

]

The plant has a RHP zero of multiplicity 3 at s = 1 (that is,
rz = 1, kj = 3) and a LHP pole of multiplicity 3 at s = −1. The
zero directions can be obtained based on computation formulas:

v11 = [1 0], v12 = [1 0], v13 = [0 1/2]
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Example (ctd.1)

As the open RHP zeros and zero directions are known, it is readily
obtained that

A =

 1 −1 0
0 1 −1
0 0 1

 ,B =

 1 0
1 0
0 1/2


F can be computed by means of (1) and (1):

F =

 1/2 3/4 3/8
3/4 5/4 13/16
3/8 13/16 15/16
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Example (ctd.2)

Consequently,

GA(s) = I− B∗(sI + Ā)−1F−1B

= I−
[

1 1 0
0 0 1/2

]sI +

 1 −1 0
0 1 −1
0 0 1

−1

 1/2 3/4 3/8
3/4 5/4 13/16
3/8 13/16 15/16

−1  1 0
1 0
0 1/2


=

[
5s3−7s2−s+3

5(s+1)3
−4(s−1)2

5(s+1)3

−4
5(s+1)

5s−3
5(s+1)

]

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 67/116



Section 14.4 Analysis and Computation

Example (ctd.3)

and

GMP(s) =

[
5s+7

5(s+1)
5s+11
5(s+1)

−1
5(s+1)

5s+2
5(s+1)

]

Since the computation is analytical, the result is exact

Example

Consider the following plant:

G(s) =
1

s + 1

[
s − 1 s − 1
−1 s − 2

]
The plant has a RHP zero of multiplicity 2 at s = 1 and a LHP
pole of multiplicity 2 at s = −1
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Example (ctd.1)

The zero directions are

v11 = [1 0], v12 = [1 − 1]

It is easy to obtain that

A =

[
1 −1
0 1

]
,B =

[
1 0
1 −1

]
,F =

[
1/2 3/4
3/4 7/4

]
Then

GA(s)

= I− B∗(sI + Ā)−1F−1B

= I−
[

1 1
0 −1

](
sI +

[
1 −1
0 1

])−1 [
1/4 3/4
3/4 7/4

]−1 [
1 0
1 −1

]
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Example (ctd.2)

Hence,

GA(s) =

[
5s2−2s−3

5(s+1)2
−4(s−1)
5(s+1)2

−4
5(s+1)

5s−3
5(s+1)

]

and

GMP(s) =

[
5s+7

5(s+1)
5s+11
5(s+1)

−1
5(s+1)

5s+2
5(s+1)

]
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14.5 Solution of the H2 Optimal Control Problem

Goal of this section: The parameterization in Section 13.1 and
the extended inner-outer factorization in Section 14.3 will be used
to analytically derive the H2 optimal controller

H2 optimal control:

min ‖S(s)W(s)‖2

where W(s) = I/s is the weighting function and

S(s) = I− G(s)Q(s)

Here Q(s) is the IMC controller. When Q(s) is known, the unity
feedback loop controller can be obtained as follows:

C(s) = Q(s)[I− G(s)Q(s)]−1
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Lemma

Assume that GA(s) is the inner factor of G(s).
GA
−1(s)− GA

−1(0) has only unstable poles

Proof.

It has been known that

GA
−1(s) = I− B∗F−1(−sI + AT )−1B

GA(0) is a constant matrix. It does not affect the distribution of
poles. From the expression of GA

−1(s), it is known that
GA
−1(s)− GA

−1(0) has only unstable poles
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In Section 13.1, all stabilizing controllers with asymptotic tracking
properties are parameterized. Substitute the parameterization into
the H2 optimization problem. We have:∥∥s−1S(s)

∥∥2

2

=
∥∥s−1[I− G(s)Q(s)]

∥∥2

2

=
∥∥s−1{I− G(s)G−1(0)[I + sQ1(s)]}

∥∥2

2
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Theorem

Assume that the plant can be factored into two parts:

G(s) = GA(s)GMP(s),

where GA(s) is the inner factor given by Theorem 14 and
GMP

−1(s) is the corresponding outer factor. Then the unique
optimal solution for the H2 optimal control is

Qopt(s) = GMP
−1(s)GA

−1(0)
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Proof.

Since GA
∗(s)GA(s) = I , we have∥∥s−1S(s)

∥∥2

2

=
∥∥ GA(s)s−1{GA

−1(s)− GMP(s)G−1(0)[I + sQ1(s)]}
∥∥2

2

=
∥∥ s−1{GA

−1(s)− GMP(s)G−1(0)[I + sQ1(s)]}
∥∥2

2

=

∥∥∥∥ s−1[GA
−1(s)− GA

−1(0)]+
s−1{GA

−1(0)− GMP(s)G−1(0)[I + sQ1(s)]}

∥∥∥∥2

2

s is a factor of

GA
−1(s)− GA

−1(0)
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Proof ctd.1.

Since GMP(0)G−1(0) = GA
−1(0), s must be a factor of

GA
−1(0)− GMP(s)G−1(0)[I + sQ1(s)].

It is evident that

s−1[GA
−1(s)− GA

−1(0)]

is strictly proper.

s−1{GA
−1(0)− GMP(s)G−1(0)[I + sQ1(s)]}

is also strictly proper if Q(s) = G−1(0)[I + sQ1(s)] is proper
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Proof ctd.2.

On the other hand, it was proved that

s−1[GA
−1(s)− GA

−1(0)]

has only unstable poles.

s−1{GA
−1(0)− GMP(s)G−1(0)[I + sQ1(s)]}

is stable. To see this, let us consider the following equality:

GA(s){GA
−1(0)− GMP(s)G−1(0)[I + sQ1(s)]}

= [GA(s)GA
−1(0)− I] + {I− G(s)G−1(0)[I + sQ1(s)]}
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Proof ctd.3.

As GA(s) is stable, the first term in the right-hand side is stable.
By Theorem for parameterization, the second term is stable, too.
To find the optimal controller, a constrained search will be
replaced with an unconstrained one in the design procedure.
Temporarily relax the constraint on Q(s). We have∥∥s−1S(s)

∥∥2

2

=
∥∥s−1[GA

−1(s)− GA
−1(0)]

∥∥2

2
+∥∥s−1{GA

−1(0)− GMP(s)G−1(0)[I + sQ1(s)]}
∥∥2

2

Minimizing the right-hand side of the equation, we obtain that

Q1opt(s) = s−1[G(0)GMP
−1(s)GA

−1(0)− I]
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Proof ctd.4.

A little algebra yields

Qopt(s) = GMP
−1(s)GA

−1(0)

It can be seen that the controller order is directly related to the
plant order. Since the optimal solution is obtained, the achievable
performance can be directly estimated

Corollary

The optimal performance for the H2 control is∥∥∥s−1B∗F−1[(AT )−1 − (−sI + AT )−1]B
∥∥∥

2
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Proof.

GA
−1(s)− GA

−1(0)

= [I− B∗F−1(−sI + AT )−1B]− [I− B∗F−1(AT )−1B]

= B∗F−1(AT )−1B− B∗F−1(−sI + AT )−1B

= B∗F−1[(AT )−1 − (−sI + AT )−1]B

Therefore,

min
∥∥s−1S(s)

∥∥
2

=
∥∥∥s−1B∗F−1[(AT )−1 − (−sI + AT )−1]B

∥∥∥
2
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14.6 Filter Design

The optimal controller Qopt(s) is usually improper. To implement
the controller, a filter J(s) must be introduced

Suboptimal control: When the plant model is exactly known, the
optimal solution can be arbitrarily approximated by choosing an
appropriate filter while the internal stability is kept

The optimal control: The optimal solution can never be reached,
as the optimal controller is physically irrealizable

In general, the filter should satisfy the following requirements:

1 The controller Q(s) = Qopt(s)J(s) is proper

2 The closed-loop system is internally stable

3 Asymptotic tracking is achieved

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 81/116



Section 14.6 Filter Design

For clarity of presentation, it is assumed that the system inputs are
steps. Depending on different plants, the filter is chosen in
different ways.

Stable plants
For stable plants, the filter can be chosen as a diagonal one:

J(s) =

 J1(s) · · · 0
...

. . .
...

0 · · · Jn(s)


with

Ji (s) =
1

(λi s + 1)ni
, i = 1, 2, ..., n

where λi (i = 1, 2, ..., n) are performance degrees
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The fist condition is easy to satisfy. Assume that the largest
relative degree in any element of the ith column of Qopt(s) is αi .
To satisfy the first condition, one can take ni = αi for strictly
proper columns and ni = 1 for semi-proper columns

The second condition and the third condition are already satisfied.
Since J(s) is stable, the closed-loop system must be internally
stable. J(0) = I. Hence,

lim
s→0

det[I− G(s)Q(s)] = lim
s→0

det[I− GA(s)GA
−1(0)J(s)] = 0

The tuning method for quantitative performance and robustness is
similar to that in the H2 decoupling control system. As different
loops are decoupled, the tuning procedure is more complex than
that for decoupling control
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Unstable MP plants
For unstable MP plants, the filter can also be chosen as a diagonal
one:

J(s) =

 J1(s) · · · 0
...

. . .
...

0 · · · Jn(s)


with

Ji (s) =
Nxi (s)

(λi s + 1)ni
, i = 1, 2, ..., n

where λi (i = 1, 2, ..., n) are performance degrees, Nxi (s) are
polynomials with all roots in the LHP and Nxi (0) = 1. Suppose lij
is the largest multiplicity of the unstable pole pj(j = 1, 2, ..., rp) in
the ith row of G(s). deg{Nxi (s)} = lij
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Assume that the largest relative degree in any element of the ith
column of Qopt(s) is αi . To satisfy the first condition, one can
take ni = deg{Nxi (s)}+ αi for strictly proper columns and
ni = deg{Nxi (s)}+ 1 for semi-proper columns

For MP plants, G(s)Qopt(s) = I. The closed-loop response is
decoupled. To make the closed-loop system internally stable, the
ith element of the filter should satisfy

lim
s→pj

dk

dsk
[1− Ji (s)] = 0

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

Since J(0) = I, the third condition is already satisfied
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Unstable NMP plants
For unstable NMP plants, a more complex structure may be
necessary for the filter

The fist condition is easy to satisfy. As it is known, an improper
transfer function implies that the degree of its numerator is greater
than that of its denominator. To make it proper, a pole-zero
excess should be introduced by the filter. This is not difficult.

The second condition is normally not easy to satisfy, because J(s)
is determined by

lim
s→pj

dk

dsk
det[I− GA(s)GA

−1(0)J(s)] = 0

j = 1, 2, ..., rp; k = 0, 1, ..., lj − 1
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To solve the problem, let J(s) = JF(s)JD(s), where the subscripts
F and D denote “full matrix” and “diagonal matrix”, respectively

JF(s) = GA(0)GA
−1(s)

JD(s) =

 J1(s) · · · 0
...

. . .
...

0 · · · Jn(s)


with

Ji (s) =
rz∏
j=1

(−s/zj + 1)kij
Nxi (s)

(λi s + 1)ni
, i = 1, 2, ..., n

where λi (i = 1, 2, ..., n) are performance degrees, Nxi (s) are
polynomials with all roots in the LHP, and kij is the largest
multiplicity of zj in the ith column of JF(s)
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As JD(s) removes all unstable poles of JF(s), J(s) is stable. In this
case, the second condition reduces to

lim
s→pj

dk

dsk
[1− Ji (s)] = 0

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

The third condition can be achieved by choosing Nxi (0) = I. The
order of JD(s) should be chosen such that Q(s) is proper

As T(s) = G(s)Q(s) = JD(s), the obtained response is decoupled.
As a matter of fact, the response is identical to that in Section 12.2
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Compared to the design with the weighting functions Wp1(s) and
Wp2(s), the introduction of filter simplifies the design task. The
designer is not required to choose the weighting function by trial
and error

Now let us see how to simplify the selection of the weighting
functions when using a filter

Consider the weighting function Wp1(s) first. In Section 10.4, it is
assumed that the inputs are unit steps, and the controller is
designed only for pre-specified weight Wp1(s) = s−1I and the
following performance index:

min ‖Wp2(s)S(s)Wp1(s)‖2
2

However, the system inputs may be complicated
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They may be steps with lags (for example, r(s) = 1/s/(s + 1)) or
the ramp (that is, r(s) = 1/s/s). If the weight function Wp1(s) is
chosen to equal the input, the design procedure will be complex

In this case, one can choose the weighting function as s−1I and
adopt the following simple design procedure:

1 Design the controller for unit steps

2 Choose an appropriate filter J(s) to satisfy the constraints
imposed by asymptotic properties

The design procedure can be used for both the optimal control and
the decoupling control
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Now consider the weighting function Wp2(s). As it is known,
Wp2(s) is used to weight errors over different frequency ranges

Although the optimal controller can be derived for a general
weighting function Wp2(s), the procedure and the obtained
controller will be complicated

The optimal solution for general Wp2(s) is

Qopt(s) = GMP
−1(s)[Wp2(s)GA(s)]−1

MP

{s{[Wp2(s)GA(s)]MPGA
−1(s)/s −

[Wp2(0)GA(0)]MPGA
−1(0)/s}∗ +

[Wp2(0)GA(0)]MPGA
−1(0)}
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where Wp2(s)GA(s) = [Wp2(s)GA(s)]A[Wp2(s)GA(s)]MP,
[Wp2(s)GA(s)]A and [Wp2(s)GA(s)]MP denote the all-pass and
MP parts of Wp2(s)GA(s), respectively. [Wp2(0)GA(0)]MP

denotes the value of [Wp2(s)GA(s)]MP at s = 0. {·}∗ denotes that
after a partial fraction expansion of the function all terms involving
the poles zj are removed

This is why the controller is designed only for a simple weighting
function Wp2(s) = I. With the help of the filter, the errors can be
weighted in an easy way; that is, the weighting is achieved by
tuning
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14.7 Examples for designing H2 Optimal Controllers

The purpose of this section is to demonstrate the H2 optimal
design procedure. The design procedure is summarized as follows:

1 Factorize the plant: G(s) = GA(s)GMP(s), where
GA(s) = I− B∗(sI + Ā)−1F−1B

2 Compute the optimal controller:
Qopt(s) = GMP

−1(s)GA
−1(0)

3 Introduce the filter to the optimal controller:
Q(s) = Qopt(s)J(s). The unity feedback controller is
C(s) = Q(s) [I− G(s)Q(s)]−1
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Three examples are provided in this section:

1 In the first example, the controller is analytically designed and
tuned for the required quantitative undershoot

2 The second example is used to illustrate the quantitative
tuning on weighting errors of different channels

3 In the third example, a real plant with frequency domain
design requirement is considered. It is shown how the
quantitative requirement can be easily achieved by means of
the design method introduced in this chapter
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Example

Consider the following plant:

G(s) =
1

(s + 1)3

[
(s − 1)2 (s − 1)2

(s − 1)(s − 2) 2(s − 1)(s − 2)

]
The plant has three NMP zeros at s = 1, one NMP zero at s = 2,
and 6 stable poles at s = −1. One zero at s = 1 is the common
zero of all elements of G(s). As introduced in Section 14.3, the
first step is to separate the common zero as follows:

−s + 1

s + 1

The next step is to factorize the remainder of G(s)
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Example (ctd.1)

Let

Gr(s) =
s + 1

−s + 1
G(s) =

−1

(s + 1)2

[
s − 1 s − 1
s − 2 2(s − 2)

]
Since

A =

[
1 0
0 2

]
,B =

[
1 0
0 1

]
,F =

[
1/2 0

0 1/4

]
The inner factor of Gr(s) is

GA(s) =

[ s−1
s+1 0

0 s−2
s+2

]
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Example (ctd.2)

The inner factor of the original plant G(s) is

−s + 1

s + 1
GA(s) =

−s + 1

s + 1

[ s−1
s+1 0

0 s−2
s+2

]
Therefore

GMP(s) =
s + 1

−s + 1
GA
−1(s)G(s) =

−1

(s + 1)2

[
s + 1 s + 1
s + 2 2(s + 2)

]
.

It is easy to verify that for the special plant, the H2 optimal control
and the H2 decoupling control result in the same factorization
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Example (ctd.3)

Using Theorem in Section 14.5, the optimal controller is

Qopt(s) = GMP
−1(s)GA

−1(0) =
s + 1

s + 2

[
2(s + 2) −(s + 1)
−(s + 2) s + 1

]
The plant is stable. For step inputs, choose

J(s) =

[ 1
λ1s+1 0

0 1
λ2s+1

]
The suboptimal controller is

Q(s) = Qopt(s)J(s) =
s + 1

s + 2

[
2(s+2)
λ1s+1

−(s+1)
λ2s+1

−(s+2)
λ1s+1

s+1
λ2s+1

]
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Example (ctd.4)

The sensitivity function is

S(s) = I− G(s)Q(s)

=

[
1− (s−1)2

(s+1)2(λ1s+1)
0

0 1− (s−1)(s−2)
(s+1)(s+2)(λ2s+1)

]

The unity feedback loop controller is

C(s) =

 2(s+1)3

s(λ1s2+2λ1s+λ1+4)
−(s+1)3

s(λ2s2+3λ2s+2λ2+6)
−(s+1)3

s(λ1s2+2λ1s+λ1+4)
(s+1)3

s(λ2s2+3λ2s+2λ2+6)


This controller is exact. There is not any numerical error
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Example (ctd.5)

The performance degrees are determined by the desired closed-loop
response, such as overshoot, robustness, the shape of S(s), and so
on. Suppose the design specification is 20% undershoot with the
shortest rise time for both of the two loops. One can take
λ1 = 1.25 and λ2 = 1.05. The closed-loop responses are shown in
Figures
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Figure: Response of the system with λ1 = 1.25 and λ2 = 1.05-1
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Figure: Response of the system with λ1 = 1.25 and λ2 = 1.05-2
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Example

Consider the plant in Example of Section 14.4:

G(s) =
1

s + 1

[
s − 1 s − 1
−1 s − 2

]
It has been obtained that

GA(s) =

[
5s2−2s−3

5(s+1)2
−4(s−1)
5(s+1)2

−4
5(s+1)

5s−3
5(s+1)

]

and

GMP(s) =

[
5s+7

5(s+1)
5s+11
5(s+1)

−1
5(s+1)

5s+2
5(s+1)

]
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Example (ctd.1)

Hence, the optimal controller is

Qopt(s) = GMP
−1(s)GA

−1(0) =
1

5(s + 1)

[
−(7s + 10) −(s − 5)

4s + 5 −(3s + 5)

]
Introduce the following filter for step inputs:

J(s) =

[ 1
λ1s+1 0

0 1
λ2s+1

]
The suboptimal controller is

Q(s) = Qopt(s)J(s) =
1

5(s + 1)

[
−(7s+10)
λ1s+1

−(s−5)
λ2s+1

4s+5
λ1s+1

−(3s+5)
λ2s+1

]
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Example (ctd.2)

The sensitivity function is

S(s) = I− G(s)Q(s)

=

[
1− 5s2−2s−3

5(s+1)2(λ1s+1)
4(s−1)
5(s+1)2

4
5(s+1)(λ1s+1) 1− 5s−3

5(s+1)(λ2s+1)(λ1s+1)

]

The unity feedback loop controller is

C(s) = Q(s)[I− G(s)Q(s)]

Suppose that the design specification is y2 < 0.3 for r1 = 1/s and
r2 = 0, y1 < 0.3 for r1 = 0 and r2 = 1/s. One can take λ1 = 1 and
λ2 = 0.5
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Example (ctd.3)

The controller is

C(s) =
1

s(5s2 + 34s + 65)

[
−(7s2 + 41s + 34) −2(s2 − 8s − 9)

4s2 + 17s + 17 −2(3s2 + 16s + 13)

]
The closed-loop responses are shown in Figures
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Figure: Response of the system with λ1 = 1 and λ2 = 0.5-1
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Figure: Response of the system with λ1 = 1 and λ2 = 0.5-2
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Example

The longitudinal dynamics of an aircraft trimmed at 25 000ft and
0.9 Mach is unstable and has two RHP phugoid modes
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Example (ctd.1)

The linear model can be expressed in the form of

G(s) =

[
n11(s) n12(s)
n21(s) n22(s)

]
d(s)

where

n11(s) = −5.1240s4 − 1099.4s3 − 28390s2 − 568.48s + 24.076

n12(s) = −948.12s3 − 30325s2 − 56482s − 1215.3,

n21(s) = −0.14896s4 + 655.67s3 + 19817s2 + 385.44s − 61.970

n22(s) = 671.88s3 + 21446s2 + 38716s + 916.45,

d(s) = s6 + 64.554s5 + 1167.0s4 + 3728.6s3 −
5495.4s2 + 1102.0s + 708.10
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Example (ctd.2)

The singular value design specification is:

1 Robustness specification:-40 dB/decade roll-off and at least
-20 dB at 100 rad/sec.

2 Performance specification: Minimize the sensitivity function as
much as possible.

The plant is unstable and MP. There are two unstable poles at
s = 0.6898 + 0.2488i and s = 0.6898− 0.2488i . The optimal
solution is

Qopt(s) = G−1(s)

The largest relative degree of the first column is -2, the largest
relative degree of the second column is -3, and the plant has two
unstable poles
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Example (ctd.3)

The following filter is chosen:

J(s) =

[
β12s2+β11s+1

(λ1s+1)4 0

0 β22s2+β21s+1
(λ2s+1)5

]

With the following constraints:

lim
s→0.6898+0.2488i

[1− Ji (s)] = 0, lim
s→0.6898−0.2488i

[1− Ji (s)] = 0, i = 1, 2

we have

β12 = −10.2624λ1 + 6λ2
1 − 0.5377λ4

1 +

1.3796(7.4387λ1 − 4λ3
1 + 1.3796λ4

1)

β11 = 0.5377(7.4387λ1 − 4λ3 + 1.3796λ4
1)
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Example (ctd.3)

β22 = −12.828λ2 + 10λ2
2 − 2.6887λ4

2 + 0.7419λ5
2 +

1.3796(9.2984λ2 − 10λ3
2 + 6.898λ4

2 − 1.3656λ5
2)

β21 = 0.53773(9.2984λ2 − 10λ3
2 + 6.898λ4

2 − 1.3656λ5
2)

Therefore, the closed loop transfer function matrix is

T(s) =

[
β12s2+β11s+1

(λ1s+1)4 0

0 β22s2+β21s+1
(λ2s+1)5

]

and the sensitivity function matrix is

S(s) = I−

[
β12s2+β11s+1

(λ1s+1)4 0

0 β22s2+β21s+1
(λ2s+1)5

]
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Example (ctd.4)

It is seen that the closed-loop response is thoroughly decoupled.
Since the relative degrees of the two loops in the system are
greater than 2, the singular value satisfies the specification of -40
dB/decade roll-off. For simplicity, let the two performance degrees
be the same. Increase the performance degrees until reaching -20
dB at 100 rad/sec. The performance degrees are λ1 = λ2 = 0.16.
The closed-loop responses are shown in Figure

Once the critical T(s) is determined, S(s) is determined at the
same time owing to the constraint T(s) + S(s) = I
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Figure: Response of the system with λ1 = λ2 = 0.16.
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End of Chapter 14
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