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Section 7.1 The Feature of Integrating Systems

7.1 The Feature of Integrating Systems

Assumption: Integrating plants in this book do not have any open
RHP poles. Those with poles in the open RHP are included in
unstable plants. This assumption is made solely for simplicity
of presentation

Consider the feedback control loop in Figure, where G (s) is an
integrating plant and C (s) is the controller
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Section 7.1 The Feature of Integrating Systems

Internal Stability

The closed-loop system is internally stable if and only if all
elements in the transfer matrix H(s)are stable:[

y(s)
u(s)

]
= H(s)

[
r(s)
d ′(s)

]
where

H(s) =


G (s)C (s)

1 + G (s)C (s)

G (s)

1 + G (s)C (s)
C (s)

1 + G (s)C (s)

−G (s)C (s)

1 + G (s)C (s)


Since the Youla parameterization for stable plants cannot be used

for integrating plants, the following transfer function is defined:

Q(s) =
C (s)

1 + G (s)C (s)
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Section 7.1 The Feature of Integrating Systems

The transfer function Q(s) is in fact the IMC controller. Then the
transfer matrix H(s) becomes

H(s) =

[
G (s)Q(s) [1− G (s)Q(s)]G (s)

Q(s) −G (s)Q(s)

]
Since G (s) is not stable, the stability of Q(s) cannot guarantee

the stability of the closed-loop system.

Theorem

Assume that G (s) is an integrating plant. The unity feedback loop
shown in Figure is internally stable if and only if

1 Q(s) is stable.

2 [1− G (s)Q(s)]G (s) is stable.
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Section 7.1 The Feature of Integrating Systems

Proof.

Necessity is obvious. Consider sufficiency. Assume that the two
conditions hold. It remains to show that G (s)Q(s) is stable. If
G (s)Q(s) is unstable, 1−G (s)Q(s) is unstable, which implies that
[1− G (s)Q(s)]G (s) must be unstable. This contradicts the
assumption.

The conclusion may not be applicable to other structures.
Consider the IMC structure shown in Figure
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Section 7.1 The Feature of Integrating Systems

When the model is exact, the system is open-loop for G (s) and
Q(s). Since G (s) is unstable and G (s)Q(s) is stable, there must
exist closed RHP zero-pole cancellation between G (s) and Q(s).
In this case, the closed-loop system is not internally stable

Consequently, the IMC structure cannot be used for the control of
integrating plants
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Section 7.1 The Feature of Integrating Systems

Steady-state Performance

Consider the first-order integrating plant:

G (s) =
K

s
e−θs

where K is the gain, θ is the time delay. Assume that the
disturbance at the plant input is d ′(s) = 1/s. The effect of d ′(s)
on the system output can be equivalent to that of a disturbance
d(s) at the plant output:

d(s) = d ′(s)G (s) =
K

s2
e−θs

It is seen that the system is in fact of Type 2. Only when the
controller is designed for ramps, can the steady-state error caused
by d ′(s) vanish asymptotically
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Section 7.1 The Feature of Integrating Systems

In general, if the plant has m poles at the origin, the system should
be of Type m + 1 for asymptotic tracking; or equivalently, the
controller has to satisfy

lim
s→0

1− G (s)Q(s)

sk
= 0, k = 0, 1, ...,m

or

lim
s→0

dk

dsk
[1− G (s)Q(s)] = 0, k = 0, 1, ...,m

This conclusion is very important in the design of systems
with integrating plants
Derivatives of a function are frequently calculated in the design of
systems with integrating plants. To avoid complicated
computation, two algebra results are given here
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Section 7.1 The Feature of Integrating Systems

Theorem

The kth (k = 0, 1, ..., q) coefficient of a q-order polynomial N(s) is
dkN(0)/dsk/k!.

Proof.

Follows directly from its Taylor series expansion.

Theorem

Given the transfer function N(s)/M(s). N(s) and M(s) are
polynomials, and q = deg{N(s)} ≤ p = deg{M(s)}. Let m ≤ q be
any nonnegative integer. Then

lim
s→0

dk

dsk

[
1− N(s)

M(s)

]
= 0, k = 0, 1, ...,m

holds if and only if the coefficients of the first k(k = 0, 1, ...,m)
terms of N(s) are the same as those of M(s), respectively.
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Section 7.1 The Feature of Integrating Systems

Proof.

Sufficiency is obvious. To prove necessity, assume that

N(s) = βqsq + ...+ βksk + ...+ β1s + β0,

M(s) = αpsp + ...+ αksk + ...+ α1s + α0,

where βi (i = 0, 1, ..., q) and αi (i = 0, 1, ..., p) are positive real
numbers. Let

F (s) = 1− N(s)

M(s)
.

Then

M(s)F (s) = M(s)− N(s).
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Section 7.1 The Feature of Integrating Systems

Proof ctd.1.

The inductive method is used: First, the case k = 0 and k = 1 are
shown to be true; Then the case for the k-order is shown to be
true if the case for the (k − 1)-order is true.
When k = 0,

lim
s→0

F (s) =
α0 − β0
α0

Let the right-hand side be 0. We have α0 = β0
When k = 1,

d

ds
[M(s)F (s)] = F (s)

d

ds
M(s) + M(s)

d

ds
F (s)

d

ds
[M(s)− N(s)] =

d

ds
M(s)− d

ds
N(s)
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Section 7.1 The Feature of Integrating Systems

Proof ctd.2.

Since

lim
s→0

F (s) = 0,

the derivative of F (s) is

lim
s→0

d

ds
F (s) =

d

ds
M(s)− d

ds
N(s)

M(s)

=
α1 − β1
α0

.

Let lims→0
d
ds F (s) = 0. This yields

α1 = β1.
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Section 7.1 The Feature of Integrating Systems

Proof ctd.3.

Now assume that the conclusion holds for k − 1. To prove the
theorem, it suffices to prove that the conclusion holds for the kth
time differentiating. Consider the following fact:

dk

dsk
[M(s)F (s)] =

dk

dsk
M(s)F (s) + C 1

k

dk−1

dsk−1
M(s)

d

ds
F (s) + ...

+ C k−1
k

d

ds
M(s)

dk−1

dsk−1
F (s) + M(s)

dk

dsk
F (s)

dk

dsk
[M(s)− N(s)] =

dk

dsk
M(s)− dk

dsk
N(s),

where

C i
k =

k!

i !(k − i)!
.
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Section 7.1 The Feature of Integrating Systems

Proof ctd.4.

With the assumption, we have

lim
s→0

dk

dsk
F (s) =

dk

dsk
M(s)− dk

dsk
N(s)

M(s)

=
αk − βk
α0

.

The left-hand side should be 0. Therefore,

αk = βk .

This completes the proof.
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Section 7.1 The Feature of Integrating Systems

Corollary

Given the transfer function N(s)/M(s).

lim
s→0

[
1− N(s)

M(s)

]
= 0 and lim

s→0

d

ds

[
1− N(s)

M(s)

]
= 0

hold if and only if the coefficients of the first 2 terms of N(s) are
the same as those of M(s), respectively.

If a quasi-polynomial that contains a time delay is encountered
when using these results, the time delay should be substituted by
its Taylor series expansion.
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Section 7.1 The Feature of Integrating Systems

Example

There are two polynomials: N(s) = (1− θs/2)(β1s + 1) and
M(s) = (1 + θs/2)(λs + 1)2. Compute the constant β1 that makes
the following hold:

lim
s→0

[
1− N(s)

M(s)

]
= 0 and lim

s→0

d

ds

[
1− N(s)

M(s)

]
= 0

According to Corollary, the zeroth-order and the first-order
coefficients of N(s) and M(s) should equal, respectively. Both the
zeroth-order coefficients of N(s) and M(s) are 1. The first-order
coefficient of N(s) is β1 − θ/2 and the first-order coefficient of
M(s) is 2λ+ θ/2. This yields

β1 = 2λ+ θ
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Section 7.1 The Feature of Integrating Systems

Example

It is known that N(s) = (β1s + 1)e−θs and M(s) = (λs + 1)nj .
Compute the constant β1 that makes

lim
s→0

[
1− N(s)

M(s)

]
= 0 and lim

s→0

d

ds

[
1− N(s)

M(s)

]
= 0

hold.
Again, the zeroth-order and the first-order coefficients of N(s) and
M(s) should equal, respectively. Both the zeroth-order coefficients
of N(s) and M(s) are 1. The first-order coefficient of N(s) is
β1 − θ and the first-order coefficient of M(s) is njλ. Let them
equal. One readily obtains

β1 = njλ+ θ
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Section 7.2 H∞ PID Controllers for Integrating Plants

7.2 H∞ PID Controllers for Integrating Plants

One Way to Design H∞ PID Controllers

Assume that the coprime factorization of G (s) is
G (s) = V (s)/U(s), where U(s) and V (s) are stable proper real
rational. According to the discussion in Section 3.3, all stabilizing
controllers for integrating plants can be expressed as

C (s) =
X (s) + U(s)Q(s)

Y (s)− V (s)Q(s)

where Q(s) is stable, and X (s) and Y (s) are stable proper real
rational functions that satisfy the equation

V (s)X (s) + U(s)Y (s) = 1
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Section 7.2 H∞ PID Controllers for Integrating Plants

The design procedure is as follows:

1 Expand the time delay by the Pade approximation

2 Take the performance index as min ‖W (s)S(s)‖∞
3 Design the controller by following steps:

1 Calculate the coprime factorization of the plant:
G (s) = V (s)/U(s). Then S(s) = U(s)[Y (s)− V (s)Q(s)]

2 Derive Qopt(s) by minimizing ‖W (s)S(s)‖∞
3 Introduce a filter to roll Qopt(s) off at high frequencies.
4 Compute the controller C (s) by Q(s)

Such a design procedure will not be adopted in this section, since
it is tedious to obtain a coprime factorization. There are only
numerical algorithms available. A simple design procedure is
developed here
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Section 7.2 H∞ PID Controllers for Integrating Plants

Simplified Design

1 Following the Youla parameterization of stable plants a
transfer function Q(s) is defined:

Q(s) =
C (s)

1 + G (s)C (s)

This was already done in the last section. To guarantee the
internal stability, Q(s) has to satisfy that

1 Q(s) is stable
2 G (s)[1− G (s)Q(s)] is stable

2 Design the optimal controller Qopt(s) for step inputs

3 Introduce an appropriate filter for the internal stability and the
asymptotic tracking property, and compute C (s)
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Section 7.2 H∞ PID Controllers for Integrating Plants

Design for the First-Order Plant

Consider the first-order integrating process:

G (s) =
K

s
e−θs

An approximate plant is obtained by employing the 1/1 Pade
approximant:

G (s) ≈ K (1− θs/2)

s(1 + θs/2)

The internal stability requires that

lim
s→0

[1− G (s)Q(s)] = 0

To satisfy the condition, s must be a factor of Q(s), and the
constant term of the remainder must be 1/K
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Section 7.2 H∞ PID Controllers for Integrating Plants

that is,

Q(s) =
s[1 + sQ1(s)]

K

where Q1(s) is a stable transfer function
Assume that the input is a unit step. Take W (s) = 1/s. The
approximate plant has a RHP zero at 2/θ. Then

‖W (s)S(s)‖∞ = ‖W (s)[1− G (s)Q(s)]‖∞ ≥ |W (2/θ)|

Minimizing the left-hand side of the equality yields

min

∥∥∥∥W (s)

{
1− G (s)

s[1 + sQ1(s)]

K

}∥∥∥∥
∞

= θ/2

Then the optimal controller is

Q1opt(s) = θ/2
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Section 7.2 H∞ PID Controllers for Integrating Plants

This yields

Qopt(s) =
s

K

(
1 +

θ

2
s

)
Similar to the design for stable plants, a filter is introduced to

Qopt(s): Q(s) = Qopt(s)J(s). For asymptotic tracking, the system
with the first-order integrating plant has to be of Type 2, which
imposes the following constraint on Q(s):

lim
s→0

[1− G (s)Q(s)] = 0

lim
s→0

d

ds
[1− G (s)Q(s)] = 0

To achieve this, the filter has a more complex form than that in
the system with a stable plant. It must have a zero:

J(s) =
βs + 1

(λs + 1)nj
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Section 7.2 H∞ PID Controllers for Integrating Plants

where λ is the performance degree, nj should be large enough to
make Q(s) bi-proper, and β is a positive real number and chosen
to satisfy the asymptotic tracking constraint
It is easy to verify that a first-order or second-order filter cannot
satisfy the asymptotic tracking requirement. It might as well
choose the third-order filter. The filter satisfying the requirement
can be obtained as follows:

J(s) =
(3λ+ θ/2)s + 1

(λs + 1)3

The suboptimal controller is

Q(s) =
s(1 + θs/2) [(3λ+ θ/2)s + 1]

K (λs + 1)3
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Section 7.2 H∞ PID Controllers for Integrating Plants

A little algebra gives

C (s) =
Q(s)

1− G (s)Q(s)

=
1

K

s(1 + θs/2) [(3λ+ θ/2)s + 1]

(λs + 1)3 − (1− θs/2) [(3λ+ θ/2)s + 1]

=
1

K

(
3λθ/2 + θ2/4

)
s2 + (3λ+ θ)s + 1

λ3s2 + (3λ2 + 3λθ/2 + θ2/4) s

This is a PID . Compare it with the following PID:

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

Controller parameters are

TF =
λ3

3λ2 + 3λθ/2 + θ2/4
, TI = 3λ+ θ

TD =
3λθ/2 + θ2/4

TI
, KC =

1

K

TI

3λ2 + 3λθ/2 + θ2/4
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Section 7.2 H∞ PID Controllers for Integrating Plants

The controller can also be tuned for quantitative responses

Figure: Overshoot of the H∞ control system with an integrating plant
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Section 7.2 H∞ PID Controllers for Integrating Plants

Figure: Rise time of the H∞ control system with an integrating plant
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Section 7.2 H∞ PID Controllers for Integrating Plants

Figure: Perturbation peak of the H∞ control system with an integrating
plant
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Section 7.2 H∞ PID Controllers for Integrating Plants

Figure: Resonance peak of the H∞ control system with an integrating
plant
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Section 7.2 H∞ PID Controllers for Integrating Plants

Design for the Second-Order Plant

Assume the second-order integrating plant is expressed as

G (s) =
K

s(τs + 1)
e−θs

where τ is the time constant. With the first-order Taylor series
expansion, the plant can be rewritten as follows:

G (s) =
K (1− θs)

s(τs + 1)

Apply the H∞ design procedure. The solution is

Qopt(s) =
s(τs + 1)

K
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Section 7.2 H∞ PID Controllers for Integrating Plants

To get a proper Q(s), the following filter is introduced:

J(s) =
(3λ+ θ)s + 1

(λs + 1)3

Then the unity feedback loop controller is

C (s) =
1

K

(τs + 1)[(3λ+ θ)s + 1]

s(λ3s + 3λ2 + 3λθ + θ2)

If the PID controller is in the form of

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

The following controller parameters can readily be obtained:

TF =
λ3

3λ2 + 3λθ + θ2
, TI = 3λ+ θ + τ

TD =
(3λ+ θ)τ

TI
, KC =

1

K

TI

3λ2 + 3λθ + θ2

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 32/79



Section 7.3 H2 PID Controllers for Integrating Plants

7.3 H2 PID Controllers for Integrating Plants

Design for the First-Order Plants

Consider the approximate first-order integrating plant obtained by
utilizing the 1/1 Pade approximant:

G (s) ≈ K (1− θs/2)

s(1 + θs/2)

The performance index is chosen as min ‖W (s)S(s)‖2. The
internal stability requires that

lim
s→0

[1− G (s)Q(s)] = 0

The Q(s) that satisfies the requirement can be expressed as

Q(s) =
s[1 + sQ1(s)]

K

where Q1(s) is stable
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Section 7.3 H2 PID Controllers for Integrating Plants

This leads to

‖W (s)S(s)‖22

=

∥∥∥∥1

s

{
1− 1− θs/2

1 + θs/2
[1 + sQ1(s)]

}∥∥∥∥2
2

=

∥∥∥∥ θ

1 + θs/2
− 1− θs/2

1 + θs/2
Q1(s)

∥∥∥∥2
2

=

∥∥∥∥ θ

1− θs/2
− Q1(s)

∥∥∥∥2
2

=

∥∥∥∥ θ

1− θs/2

∥∥∥∥2
2

+ ‖Q1(s)‖22

Evidently, Q1opt(s) = 0 gives the optimal solution, which implies

Qopt(s) = s/K
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Section 7.3 H2 PID Controllers for Integrating Plants

To satisfy the constraints for asymptotic tracking

lim
s→0

[1− G (s)Q(s)] = 0 and lim
s→0

d

ds
[1− G (s)Q(s)] = 0

introduce the following filter:

J(s) =
(2λ+ θ)s + 1

(λs + 1)2

The suboptimal solution is Q(s) = Qopt(s)J(s). The unity
feedback loop controller is

C (s) =
Q(s)

1− G (s)Q(s)

=
1

K

s[(2λ+ θ)s + 1](1 + θs/2)

(λs + 1)2(1 + θs/2)− (1− θs/2)[(2λ+ θ)s + 1]

=
1

K

(1 + θs/2)[(2λ+ θ)s + 1]

θλ2s2/2 + (λ2 + 2λθ + θ2/2)s

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 35/79



Section 7.3 H2 PID Controllers for Integrating Plants

Compare the obtained controller with the PID controller

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

Controller parameters are

TF =
λ2θ

2λ2 + 4λθ + θ2
, TI = 2λ+

3θ

2

TD =
(2λ+ θ)θ

2TI
, KC =

1

K

TI

λ2 + 2λθ + θ2/2

Relationships between the performance degree and the closed-loop
responses are shown in Figures
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Section 7.3 H2 PID Controllers for Integrating Plants

Figure: Overshoot of the H2 control system with an integrating plant
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Figure: Rise time of the H2 control system with an integrating plant
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Figure: Perturbation peak of the H2 control system with an integrating
plant
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Figure: Resonance peak of the H2 control system with an integrating
plant
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Section 7.3 H2 PID Controllers for Integrating Plants

Design for the Second-Order Plant

By employing the first-order Taylor series expansion, the
approximate plant is obtained as follows:

G (s) =
K (1− θs)

s(τs + 1)

With a similar design procedure, the optimal controller is

Qopt(s) =
s(τs + 1)

K (1 + θs)

The filter is taken as

J(s) =
(2λ+ 2θ)s + 1

(λs + 1)2
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Section 7.3 H2 PID Controllers for Integrating Plants

It follows that

C (s) =
1

K

(τs + 1)[(2λ+ 2θ)s + 1]

λ2θs2 + (λ2 + 4λθ + 2θ2)s

For the PID controller of the form

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

parameters are as follows:

TF =
λ2θ

λ2 + 4λθ + 2θ2
, TI = 2λ+ 2θ + τ

TD =
(2λ+ 2θ)τ

TI
, KC =

1

K

TI

λ2 + 4λθ + 2θ2
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Section 7.3 H2 PID Controllers for Integrating Plants

Example

Consider a distillation column. The materials to be separated are a
mixture of three isomers and a small amount of other heavy
components. To increase the production rate, the distillation
column is designed such that there is very little excess separation
ability. This makes tight control very important.
The control strategy is illustrated in Figure. The objective is to
keep the distillate composition nearly pure in the lightest isomer
while maintaining it at a very low level in the tails stream. The
heat to the column is fixed, because the heat source is a vapor
boiler that runs best at a fixed rate. The feed is set to fix the
overall production rate for this part of the process. The base level
is controlled by manipulating the tails flow rate. The overhead
condensate tank level is controlled by manipulating the reflux flow.
Under these conditions, composition control can be accomplished
by controlling the middle column temperature.

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 43/79



Section 7.3 H2 PID Controllers for Integrating Plants

Figure: Control system of an high-purity distillation
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Example (ctd.1)

Through an open-loop step test, the process model was developed:

G (s) =
0.01

s
e−5.5s

Take λ = 25 for the H2 PID controller:

C (s) =
100(138.75s2 + 58s + 1)

s(2.75λ2s + λ2 + 11λ+ 15.125)

and λ = 16 for the H∞ PID controller:

C (s) =
100[(8.25λ+ 7.5625)s2 + (3λ+ 5.5)s + 1]

s(λ3s + 3λ2 + 8.25λ+ 7.5625)
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Example (ctd.2)

A unit step reference is added at t = 0 and a unit step load is
added at t = 200. The nominal responses of the closed-loop
system are shown in Figure. It is observed that both of the two
controllers give large overshoots and long settling times. This is an
evident feature for the system with an integrating plant
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Figure: Nominal responses of H2 PID and H∞ PID
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7.4 Controller Design for General Integrating Plants

Implementation: The IMC structure must be abandoned for the
implementation of control systems, since there always exist
zero-pole cancellations at the origin, which will cause the internal
instability problem

Implementation: The IMC controller Q(s) could be utilized to
design the unity feedback loop controller

Design for general plants: To simplify the presentation, only the
integrating plant with a simple pole at the origin is considered

Somple poles: A pole is simple if its multiplicity is one
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Assume that the integrating plant is expressed by

G (s) =
KN+(s)N−(s)

sM−(s)
e−θs

where K is the gain
θ is the time delay
N−(s) and M−(s) are the polynomials with roots in the LHP
N+(s) is a polynomial with roots in the RHP
N+(0) = N−(0) = M−(0) = 1
deg{N+(s)}+ deg{N−(s)} ≤ deg{M−(s)}+ 1

Quasi-H∞ control:
By following the quasi-H∞ controller design procedure for stable
plants, the desired closed-loop transfer function is chosen as

T (s) = N+(s)J(s)e−θs

where J(s) is a filter
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J(s) =
(βs + 1)

(λs + 1)nj

λ is the performance degree,

nj =

{
2 + deg{M−} − deg{N−} deg{M−}+ 1 > deg{N−}
2 deg{M−}+ 1 = deg{N−}

and β is determined by the following constraints:

lim
s→0

dk

dsk
[1− T (s)] = 0, k = 0, 1

or equivalently,

lim
s→0

[1− N+(s)J(s)e−θs ] = 0

lim
s→0

d

ds
[1− N+(s)J(s)e−θs ] = 0

Notice that one zero is introduced to T (s)
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Since both G (s) and T (s) are known, the controller can be
analytically derived:

Q(s) =
T (s)

G (s)
=

1

K

sM−(s)(βs + 1)

N−(s)(λs + 1)nj

The unity feedback loop controller is

C (s) =
T (s)

1− T (s)

1

G (s)

=
1

K

sM−(s)(βs + 1)

N−(s)[(λs + 1)nj − (βs + 1)N+(s)e−θs ]

The reason the IMC structure cannot be used to control
integrating plants is that there are zero-pole cancellations at the
origin between Q(s) and G (s)
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One may want to solve the problem by combining Q(s) and G (s)
into C (s). Unfortunately, the problem cannot be overcome so
easily. It can be verified that

lim
s→0

[(λs + 1)nj − (βs + 1)N+(s)e−θs ] = 0

which implies that the denominator of C (s) has a root at the
origin. Since there is a time delay in the denominator, the root
cannot be directly removed. As a result, the obtained C (s) cannot
guarantee the internal stability of the closed-loop system

Only after the RHP root is removed by employing rational
approximations, can C (s) guarantee the internal stability of the
closed-loop system
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The design for quasi-H∞ controllers can also be carried out as
follows:

1 If the plant does not have a time delay, turn to 3.

2 If the plant contains a time delay, take the rational part of the
plant as the nominal plant.

3 If the nominal plant does not have any zeros in the RHP, take
its inverse as Qopt(s) and turn to 5.

4 If the nominal plant has zeros in the RHP, remove the factor
that contains these zeros and take the inverse of the
remainder as Qopt(s).

5 Introduce a filter to Qopt(s), compute the controller C (s) and
remove the RHP zero-pole cancellation in C (s).
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H2 control:
The integrating plant is

G (s) =
KN+(s)N−(s)

sM−(s)
e(−θs)

The performance index is min ‖W (s)S(s)‖2. The internal stability
imposes a constraint on Q(s):

lim
s→0

[1− G (s)Q(s)] = 0

The Q(s) that satisfies the constraint has the following
expression:

Q(s) =
s[1 + sQ1(s)]

K

where Q1(s) is stable
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Then

‖W (s)S(s)‖22

=

∥∥∥∥1

s

{
1− N+(s)N−(s)

M−(s)
e−θs [1 + sQ1(s)]

}∥∥∥∥2
2

=

∥∥∥∥1

s

{
N+(−s)

N+(s)
eθs − N+(−s)N−(s)

M−(s)
[1 + sQ1(s)]

}∥∥∥∥2
2

=

∥∥∥∥eθsN+(−s)− N+(s)

sN+(s)

∥∥∥∥2
2

+∥∥∥∥1

s
− N+(−s)N−(s)

sM−(s)
[1 + sQ1(s)]

∥∥∥∥2
2

Solving the optimal problem yields

Q1opt(s) =
M−(s)− N+(−s)N−(s)

sN+(−s)N−(s)
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Hence

Qopt(s) =
sM−(s)

KN+(−s)N−(s)

Introduce the following filter:

J(s) =
βs + 1

(λs + 1)nj

where λ is the performance degree,

nj =

{
2 + deg{M−} − {N+} − {N−} {M−}+ 1 > {N+}+ {N−}
2 {M−}+ 1 = {N+}+ {N−}

Consequently,

Q(s) = Qopt(s)J(s) =
sM−(s)(βs + 1)

KN+(−s)N−(s)(s + 1)nj
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β is determined by the constraints for asymptotic tracking:

lim
s→0

dk

dsk
[1− G (s)Q(s)] = 0, k = 0, 1

or equivalently,

lim
s→0

[1− N+(s)

N+(−s)
J(s)e−θs ] = 0

lim
s→0

d

ds
[1− N+(s)

N+(−s)
J(s)e−θs ] = 0

The design procedure for H2 controllers can be described in a
similar way to that for quasi-H∞ controllers, except Step 4:

4. When the nominal plant has zeros in the RHP, construct an
all-pass transfer function by using the factor that contains
these zeros and then remove the all-pass transfer function,
take the inverse of the remainder as Qopt(s)
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Idea for design in this section: A Type 2 controller was derived
by modifying a Type 1 controller

Question: What difference exists between the two controllers?

Design a Type 2 system: The first step is to determine the form
of the Q(s) for a Type 2 system. Q(s) should satisfy the following
two conditions:

lim
s→0

[1− G (s)Q(s)] = 0

lim
s→0

d

ds
[1− G (s)Q(s)] = 0

The Q(s) that satisfies the first condition can be expressed as

Q(s) =
s[1 + sQ1(s)]

K
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where Q1(s) is stable. Substituting this into the left-hand side of
the second condition, we have

lim
s→0

d

ds

{
1− N+(s)N−(s)

M−(s)
e−θs [1 + sQ1(s)]

}
= − lim

s→0

d

ds

[
N+(s)N−(s)

M−(s)
e−θs + s

N+(s)N−(s)

M−(s)
e−θsQ1(s)

]
The second condition gives

Q1(0) = θ +
d

ds
M−(0)− d

ds
N+(0)− d

ds
N−(0)

Then the Q(s) that satisfies the two conditions can be written as

Q(s) =
s[1 + sQ1(0) + s2Q2(s)]

K

where Q2(s) is stable
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Therefore,

‖W (s)S(s)‖22

=

∥∥∥∥ 1

s2

{
1− N+(s)N−(s)

M−(s)
e−θs [1 + sQ1(0) + s2Q2(s)]

}∥∥∥∥2
2

=

∥∥∥∥ 1

s2

{
N+(−s)

N+(s)
eθs − N+(−s)N−(s)

M−(s)
[1 + sQ1(0) + s2Q2(s)]

}∥∥∥∥2
2

=

∥∥∥∥∥∥∥
eθsN+(−s)− N+(s)[1 + θs − 2

d

ds
N+(0)s]

s2N+(s)

∥∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥∥
1+θs−2

d

ds
N+(0)s

s2
−

N+(−s)N−(s)
s2M−(s)

[1 + sQ1(0) + s2Q2(s)]

∥∥∥∥∥∥∥
2

2
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It is evident that when

Q2opt(s) =
M−(s)[1 + θs − 2

d

ds
N+(0)s]M−(s)

s2N+(−s)N−(s)
− 1 + Q1(0)s

s2

the right-hand side is minimum. The optimal controller is

Qopt(s) =
sM−(s)[1 + θs − 2

d

ds
N+(0)s]

KN+(−s)N−(s)

Introduce a Type 2 filter. The suboptimal controller is

Q(s) =
sM−(s)[1 + θs − 2

d

ds
N+(0)s]{[njλ+ 2

d

ds
N+(0)]s + 1}

KN+(−s)N−(s)(λs + 1)nj

where

nj =

{
3 + {M−} − {N+} − {N−} {M−}+ 1 > {N+}+ {N−}
3 {M−}+ 1 = {N+}+ {N−}
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It is easy to verify that the optimal performance of the Type 2
controller designed for W (s) = 1/s is

min ‖W (s)S(s)‖2 =

∥∥∥∥N+(−s)− N+(s)e−θs

sN+(−s)

∥∥∥∥
2

while the optimal performance of the Type 2 controller designed
for W (s) = 1/s2 is

min ‖W (s)S(s)‖2 =∥∥∥∥∥N+(−s)− N+(s)[1 + θs − 2 d
ds N+(0)s][2 d

ds N+(0)s + 1]e−θs

s2N+(−s)

∥∥∥∥∥
2

The controller can also be design for quantitative responses:

Increase the performance degree monotonically until the required
response is obtained

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 62/79



Section 7.5 Maclaurin PID Controllers for Integrating Plants

7.5 Maclaurin PID Controllers for Integrating Plants

Assume that the integrating plant has m poles at the origin:

G (s) =
KN+(s)N−(s)

smM−(s)
e−θs

Quasi-H∞ control: The closed-loop transfer function is

T (s) = N+(s)J(s)e−θs

where J(s) is a filter:

J(s) =
Nx(s)

(λs + 1)nj

λ is the performance degree,

nj =

{
2m + {M−} − {N−} {M−}+ m > {N−}
m + 1 {M−}+ m = {N−}
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Nx(s) is a polynomial with its roots in the LHP, Nx(0) = 1, and
deg{Nx(s)} = m. Nx(s) is determined by the asymptotic tracking
constraints:

lim
s→0

dk

dsk
[1− T (s)] = 0, k = 0, 1, ...,m

Quasi-H2 control: The closed-loop transfer function is

T (s) =
N+(s)

N+(−s)
J(s)e−θs

where

J(s) =
Nx(s)

(λs + 1)nj

The determination of Nx(s) is similar to that for the quasi-H∞
control
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nj =

{
2m + {M−} − {N+} − {N−} {M−}+ m > {N+}+ {N−}
m + 1 {M−}+ m = {N+}+ {N−}

PID design: Both the quasi-H∞ controller and the H2 controller
can be computed by

C (s) =
1

G (s)

T (s)

1− T (s)

Since T (0) = 1, C (s) has a pole at the origin. Write C (s) as

C (s) =
f (s)

s

The Maclaurin series expansion of C (s) is

C (s) =
1

s

[
f (0) + f ′(0)s +

f ′′(0)

2!
s2 + ...

]
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Omit high-order terms. Only the first three terms are taken to
approximate the ideal controller:

C (s) = KC

(
1 +

1

TI s
+ TDs

)
whose parameters are

KC = f ′(0), TI =
f ′(0)

f (0)
, TD =

f ′′(0)

2f ′(0)

Furthermore, define

f (s) =
N(s)

M(s)

where M(s) and N(s) are polynomials
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The values of f (s) and its derivatives at the origin are

f (0) =
N(0)

M(0)

f ′(0) =
N ′(0)M(0)−M ′(0)N(0)

M(0)2

f ′′(0) =
N ′′(0)M(0)2 −M ′′(0)N(0)M(0)

M(0)3
−

2M ′(0)N ′(0)M(0) + 2M ′(0)2N(0)

M(0)3

Two cases are considered: The plant is of first-order and the plant
is of second-order. First, assume that the plant is

G (s) =
K

s
e−θs
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The closed-loop transfer function with the asymptotic tracking
property is

T (s) =
(2λ+ θ)s + 1

(λs + 1)2
e−θs

Then

N(s) =
(2λ+ θ)s + 1

K

M(s) =
(λs + 1)2 − [(2λ+ θ)s + 1]e−θs

s2

which yields

N(0) =
1

K
, N ′(0) =

2λ+ θ

K

N ′′(0) = 0, M(0) =
2λ2 + 4λθ + θ2

2

M ′(0) =
−3λθ2 − θ3

3
, M ′′(0) =

3θ4 + 8θ3λ

12
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f (s) and its first order and second order derivatives are

f (0) =
2

K (2λ2 + 4λθ + θ2)

f ′(0) =
2(12λ3 + 30λ2θ + 24λθ2 + 5θ3)

3K (2λ2 + 4λθ + θ2)2

f ′′(0) =
θ2(288λ4 + 768λ3θ + 702λ2θ2 + 252λθ3 + 31θ4)

9K (2λ2 + 4λθ + θ2)3

Accordingly, controller parameters are

TI = 2λ+ θ +
2θ3 + 6λθ2

3(2λ2 + 4λθ + θ2)

KC =
2TI

K (2λ2 + 4λθ + θ2)

TD =
θ2(288λ4 + 768λ3θ + 702λ2θ2 + 252λθ3 + 31θ4)

36TI (2λ2 + 4λθ + θ2)2
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The formula seems a bit complicated. However, the computation is
not difficult, since all parameters of the plant are known.

Consider the second-order plant:

G (s) =
K

s(τs + 1)
e−θs

The closed-loop transfer function with the asymptotic tracking
property can be written as

T (s) =
(3λ+ θ)s + 1

(λs + 1)3
e−θs

Then

N(s) =
(τs + 1)[(3λ+ θ)s + 1]

K
,

M(s) =
(λs + 1)3 − [(3λ+ θ)s + 1]e−θs

s2
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This yields

N(0) =
1

K
, N ′(0) =

3λ+ τ + θ

K

N ′′(0) =
2τ(3λ+ θ)

K
, M(0) =

6λ2 + 6λθ + θ2

2

M ′(0) =
6λ3 − 9λθ2 − 2θ3

6
, M ′′(0) =

θ4 + 4λθ3

4

The values of f (s) and its first order and second order derivatives
at the origin are

f (0) =
2

K (6λ2 + 6λθ + θ2)

f ′(0) =
2(18τλ2 + 3θ2τ + 18τλθ + 72λ2θ + 5θ3 + 36λθ2 + 48λ3)

3K (6λ2 + θ2 + 6θλ)2
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f ′′(0) =

8352τλ3θ2 + 31θ6 − 1152λ6 + 3456τλ5 + 60τθ5+
1602λ2θ4 + 378λθ5 + 2640λ3θ3 + 864λ4θ2−
1728λ5θ + 8640τλ4θ + 792τλθ4 + 3816τλ2θ3

9K (6λ2 + 6λθ + θ2)3

Therefore, controller parameters are

TI = τ +
5θ3 + 36λθ2 + 48λ3 + 72θλ2

3(6λ2 + 6λθ + θ2)

KC =
2TI

K (6λ2 + 6λθ + θ2)

TD =

240τλ4θ + 22τλθ4 + 232τλ3θ2 + 106τλ2θ3+
5τθ5/3 + 96τλ5 + 89θ4λ2/2 + 31θ6/36− 48λ5θ+
24λ4θ2 + 21λθ5/2 + 220λ3θ3/3− 32λ6

TI (6λ2 + 6λθ + θ2)2
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7.6 Best Achievable Performance of a PID
Controllers

Compromise in designing a PID controller:
Good performance<=> Complicated form
Not so good a result <=> Simple form

PID with best achievable performance: A general integrating
plant can be described as

G (s) =
KN+(s)N−(s)

smM−(s)
e−θs

Suppose that the closed-loop transfer function T (s)is given as
that in (1) or (1). The controller can be computed by

C (s) =
1

G (s)

T (s)

1− T (s)
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C (s) has a pole at the origin. Express it as

C (s) =
f (s)

s

Using the Maclaurin series expansion, we have

f (s) = f (0) + f ′(0)s +
f ′′(0)

2!
s2 +

f (3)(0)

3!
s3 + ...

A practical PID controller can be written as

C (s) =
a2s2 + a1s + a0

s(b1s + 1)

Let the Pade approximation of f (s) be

a2s2 + a1s + a0
b1s + 1
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Then  a0
a1
a2

 =

 f (0) 0
f ′(0) f (0)

f ′′(0)/2! f ′(0)

[ 1
b1

]
b1f ′′(0)/2! = −f (3)(0)/3!

This yields

a0 = f (0), a1 = b1f (0) + f ′(0)

a2 = b1f ′(0) + f ′′(0)/2!, b1 = − f (3)(0)

3f ′′(0)

If the PID controller is in the form of

C = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 75/79



Section 7.6 Best Achievable Performance of a PID Controllers

A little computations give

KC = a1, TI =
a1
a0
, TD =

a2
a1
, TF = b1

As discussed in Section 5.6, all of these parameters should be
chosen as positive numbers
Consider the plant

G (s) =
Ke−θs

s

The value of f (s) and its derivatives at the origin are

f (0) =
2

K (2λ2 + θ2 + 4λθ)

f ′(0) =
2(12λ3 + 24λθ2 + 30λ2θ + 5θ3)

3K (2λ2 + θ2 + 4λθ)2

f ′′(0) =
θ2(768θλ3 + 252λθ3 + 702θ2λ2 + 31θ4 + 288λ4)

9K (2λ2 + θ2 + 4λθ)3
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f (3)(0) =

θ3(121θ6 − 2880λ6 + 1044θ2λ4+
5040θλ5 + 1248λθ5 + 4620λ2θ4 + 6696λ3θ3)

45K (2λ2 + θ2 + 4λθ)4

Controller parameters are obtained as follows:

a0 =
2

K (2λ2 + θ2 + 4λθ)

a1 =

4(109θ5 + 1026λθ4 + 3648λ2θ3+
6090λ3θ2 + 4800θλ4 + 1440λ5)

5K (252θ3λ+ 702θ2λ2 + 768θλ3+
31θ4 + 288λ4)(2λ2 + θ2 + 4λθ)

a2 =

(265θ5 + 2496λθ4 + 9000λ2θ3+
15408θ2λ3 + 12480θλ4 + 3840λ5)

10K (768θλ3 + 252θ3λ+ 702θ2λ2+
31θ4 + 288λ4)(2λ2 + θ2 + 4λθ)
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b1 = −

θ(121θ6 + 1248θ5λ− 2880λ6 + 6696θ3λ3−
5040θλ5 + 1044θ2λ4 + 4620θ4λ2)

15(768θλ3 + 252θ3λ+ 702θ2λ2 + 31θ4+
288λ4)(2λ2 + θ2 + 4λθ)
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End of Chapter 7
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