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Section 11.1 Interaction Analysis

11.1 Interaction Analysis

Feature of MIMO control systems: There exists interaction (or
coupling) between inputs and outputs, that is, each input may
affect more than one outputs. This feature makes the design of
MIMO systems very challenging

The first step in many design methods for MIMO systems is to
analyze the extent of interaction
Purpose: Determine proper pairings between plant inputs and
plant outputs so that the plant output and the plant input that
have the largest effect on each other are matched up

Purpose: An extensively adopted method for interaction analysis
is Relative Gain Array (RGA). It provides a measure for the
steady-state gain between a given input-output pairing. By
selecting sensitive input-output connections, interaction can be
reduced
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Section 11.1 Interaction Analysis

Consider the system with
two inputs u1 and u2 and
two outputs y1 and y2,
where each output is
affected by both inputs

The RGA is defined as

Λ =

[
λ11 λ12

λ21 λ22

]
where

λij =
Open-loop gain kij between yi and uj
Closed-loop gain aij between yi and uj

, i , j = 1, 2

is called the relative gain between yi and uj . It should be
emphasized that the relative gain λij is entirely unrelated to the
performance degree, for which a similar symbol is used
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Section 11.1 Interaction Analysis

The computation of RGA involves three steps:
1 Calculate open-loop gains.
2 Calculate closed-loop gains.
3 Calculate the RGA.

The open-loop gains can be expressed as

u1 u2

y1 k11 =
∆y1

∆u1

∣∣∣∣
u2

k12 =
∆y1

∆u2

∣∣∣∣
u1

y2 k21 =
∆y2

∆u1

∣∣∣∣
u2

k22 =
∆y2

∆u2

∣∣∣∣
u1

which are from the steady-state open-loop relationship between the
inputs and outputs:

∆y1 = k11∆u1 + k12∆u2

∆y2 = k21∆u1 + k22∆u2
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Section 11.1 Interaction Analysis

The open-loop gain can be determined by utilizing experimental
tests. To evaluate k11, for example, one can make a small change
∆u1 in u1 while the plant is operated at the steady state and u2 is
kept constant (that is, ∆u2 = 0). Let ∆y1 be the output offset.
The open-loop gain between y1 and u1 is given by

k11 =
∆y1

∆u1

∣∣∣∣
u2

Assume that instead of keeping u2 constant, one makes a small
change in u1 and simultaneously manipulates u2 to bring y2 back
to the value it had before the change in u1 is made. This can be
reached by a closed-loop system shown in Figure
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Section 11.1 Interaction Analysis

The closed-loop gain between y1 and u1 is obtained as follows:

a11 =
∆y1

∆u1

∣∣∣∣
y2

The gain a11 reflects how y1 responds to a change in u1 when y2

is kept constant.

The relative gains λij can be computed by utilizing the obtained kij
and aij . As aij is not independent of kij , λij can also be computed
employing only kij . According to the definition of the closed-loop
gain, a11 = ∆y1/∆u1 when ∆y2 = 0. Then

0 = k21∆u1 + k22∆u2

Solving for ∆u2 results in

∆u2 = −k21

k22
∆u1
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Section 11.1 Interaction Analysis

It follows that

∆y1 = k11∆u1 −
k12k21

k22
∆u1

Therefore,

a11 =
∆y1

∆u1

∣∣∣∣
∆y2=0

= k11 −
k12k21

k22

The relative gain is

λ11 =
k11

a11

=
k11k22

k11k22 − k12k21

A useful property of the relative gain matrix is that each row and
each column sums to 1. Thus, in a 2× 2 system, only one of the
four elements needs to be explicitly computed
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Section 11.1 Interaction Analysis

The relative gain provides a useful measure for interaction. In
particular:

1 If λij = 0, the open-loop gain is zero. uj does not have effect
on yi

2 If λij = 1, the loop consisting of uj and yi is not affected by
other loops

3 If 0 < λij < 1, there exists interaction among different loops.
The worst case is λij = 0.5

4 If λij < 0, the open-loop gain is in the opposite direction to
the closed-loop gain. This case should be avoided

The rule to reduce the interaction by pairing plant inputs and
outputs is that the control loops should be selected in such a way
that the relative gains are positive, and as close as possible to
unity. Since only steady-state responses are considered, the rule
does not guarantee the minimum dynamic interaction
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Section 11.1 Interaction Analysis

The definition of relative gains and their use in selecting control
loops are not limited to systems with two inputs and two outputs.
The extension to n × n systems is straightforward. The relative
gains can be computed with the following procedure for n × n
systems

First, arrange the kijs in a matrix:

K =

 k11 · · · k1n
...

. . .
...

kn1 · · · knn


Then, compute a new matrix, by first inverting, then transposing

the matrix K:

(K−1)T =

 c11 · · · c1n
...

. . .
...

cn1 · · · cnn


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Section 11.1 Interaction Analysis

The element in the ith row and jth column of (K−1)T is the
reciprocal of aij , that is,

cij =
1

aij

The relative gain array is given by

Λ = K⊗ (K−1)T

where “⊗” denotes the element-by-element product

Example

Blending is a frequently encountered process in industry. For
example in a paper-making process, the thick pulp from the stock
preparation system is blended with the recycled water, and then
delivered to the head box
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Section 11.1 Interaction Analysis

Example (ctd.1)

Choose the flow rate of thick pulp, u1, and the flow rate of
recycled water, u2, as plant inputs. The system outputs are the
flow rate of thin pulp, y1, and its consistence, y2. When the
condenser paper is produced, the consistence of the thick pulp and
the recycled water are 0.66% and 0.03%, respectively. The desired
flow rate and consistence of thin pulp are 152 kg/min and 0.25%,
respectively. The mass balance yields

152 = u1 + u2

152× 0.25% = u1 × 0.66% + u2 × 0.03%

The steady-state solution for the flow rates of u1 and u2 is

u1 = 53.08, u2 = 98.92
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Section 11.1 Interaction Analysis

Example (ctd.2)

Change u1 by one unit (that is, u1 changes from 53.08 to 54.08)
while keep u2 constant. The following steady-state outputs are
obtained:

y1 = 153, y2 = 0.2527%

Therefore,

k11 =
∆y1

∆u1

∣∣∣∣
u2

=
1

1
= 1

Change u1 by one unit (that is, u1 changes from 53.08 to 54.08)
while keep y2 the same. We have

y1 = 154.87, u2 = 100.79
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Example (ctd.3)

Then

a11 =
∆y1

∆u1

∣∣∣∣
y2

=
1.87

1
= 1.87

Consequently, the relative gain array is

Λ =

[
0.535 0.465
0.465 0.535

]
The two loops with minimum interaction are formed when y1 is
controlled by u1 and y2 is controlled by u2
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Section 11.2 Decentralized Controller Design

11.2 Decentralized Controller Design

Once proper loop pairings are determined, the next step is to
design a controller for the MIMO system

Decentralized control: In decentralized control, multiple
independent SISO controllers are designed. Each controller uses
one plant input to control a preassigned output. Feedback is
utilized to overcome the interaction

Such a system can always be arranged such that the controller is
diagonal

Advantage of decentralized control:
1 The approach is easy to understand
2 Good control can be reached in many cases
3 The complexity and the cost of hardware are low
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Section 11.2 Decentralized Controller Design

Compared to the system with a full controller matrix, the
constraint imposed by the decentralized control on the controller
structure leads to performance deterioration

Tradeoff in design: The designer must weigh which aspect is the
most important, the performance or the simplicity

Assume that the plant is denoted by an n × n transfer function
matrix G(s):

G(s) =

 G11(s) · · · G1n(s)
...

. . .
...

Gn1(s) · · · Gnn(s)


and the controller is denoted by an n × n transfer function matrix

C(s)
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Section 11.2 Decentralized Controller Design

Without loss of generality, in a decentralized control system C(s) is
diagonal:

C(s) = diag {C11(s), ...,Cnn(s)}

The reference r(s) is a vector of n × 1 dimension:

r(s) =
[
r1(s) r2(s) ... rn(s)

]T
and the system output y(s) is a vector of n× 1 dimension as well:

y(s) =
[
y1(s) y2(s) ... yn(s)

]T
Then we have

y(s) = G(s)C(s)[I + G(s)C(s)]−1r(s)
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Section 11.2 Decentralized Controller Design

The control structure for the simplest case (that is, the 2× 2 case)
is shown in Figure
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The characteristic equation of the system is

det[I + G(s)C(s)] = 0

This equation can be used to test the closed-loop stability. For a
stable plant, if the Nyquist plot of det[I + G(s)C(s)] encircles the
origin, the closed-loop system is unstable. Define a scalar function
Wc(s):

Wc(s) = −1 + det [I + G(s)C(s)]

The closer the Nyquist plot of Wc(s) to the point (-1, 0), the
closer the closed-loop system to instability. Define the closed-loop
logarithm modulus for MIMO systems as follows:

Lc = 20 lg

∣∣∣∣ Wc(jω)

1 + Wc(jω)

∣∣∣∣
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Section 11.2 Decentralized Controller Design

By testing on a large number of MIMO plants, it is found that the
following choice can provide reasonable tradeoff between stability
and performance:

max(Lc) = 2n

In a SISO system, max(Lc) is the resonance peak.

Different controller parameters may reach max(Lc) = 2n for the
same plant. When better response is desired, further tuning has to
be carried out

The SISO H∞ or H2 design methods introduced in foregoing
chapters can be used to design a decentralized controller. The
design procedure is as follows:
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Section 11.2 Decentralized Controller Design

1 Calculate SISO controllers for each individual loop.
2 Close all loops. Take the same performance degrees

temporarily: λ1 = λ2 = ... = λn. Increase the performance
degrees from small to large so that the closed-loop system is
stable.

3 Tune each performance degree to reach the required
closed-loop response (for example, max(Lc) = 2n).

Advantage of the decentralized H∞ or H2 design: Each
channel can be tuned easily for the required response; the tuning
does not require exact model about the uncertainty

Analysis of the stability:
For the original system,

T(s) = G(s)C(s)[I + G(s)C(s)]−1

S(s) = [I + G(s)C(s)]−1
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Section 11.2 Decentralized Controller Design

In decentralized control:
Nominal plan—Diagonal elements are regarded as a
Uncertainty—Nondiagonal elements

Write the nominal plant as follows:

Ga(s) = diag{G11(s),G22(s), ...,Gnn(s)}

The nominal plant and the controller constitute a new system:

Ta(s) = Ga(s)C(s)[I + Ga(s)C(s)]−1

Sa(s) = [I + Ga(s)C(s)]−1

Regard the new system as the nominal one and the original
system as the uncertain one. The uncertainty is described by the
multiplicative output uncertainty δa(s). Assume that G(s) and
Ga(s) have the same RHP poles
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Section 11.2 Decentralized Controller Design

Theorem

Assume that Ta(s) is stable. The closed-loop system T(s) is stable
if and only if the Nyquist plot of det[I + δa(s)Ta(s)] does not
encircle the origin.

Proof.

For the original system, we have the following identity:

I + G(s)C(s) = [I + δa(s)Ta(s)][I + Ga(s)C(s)]

Let the number of the unstable poles of G(s) and Ga(s) be k .
T(s) is stable if and only if

det[I + G(s)C(s)] = det[I + Ga(s)C(s)]det[I + δa(s)Ta(s)]

encircles the origin k times counterclockwise
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Proof ctd.1.

Because Ta(s) is stable by assumption, det[I + Ga(s)C(s)]
encircles the origin k times counterclockwise. It is immediately
known that det[I + δa(s)Ta(s)] should not encircle the origin

Example

Basis weight and moisture content are the two primary controlled
variables in paper-making processes. In general, the basis weight is
controlled by adjusting the flow rate of stock. The larger the flow
rate, the larger the basis weight. The moisture content can be
controlled by adjusting the steam pressure of dryers. The larger the
steam pressure, the higher the temperature of dryers and the less
the moisture content
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Section 11.2 Decentralized Controller Design

Figure: Control strategy of paper machines
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Section 11.2 Decentralized Controller Design

Example (ctd.1)

For producing the paper of 78g/m2, the model of a paper machine
is

G(s) =

[
5.15e−2.8s

1.8s+1
−0.20e−1.2s

2.23s+1
0.44e−2.8s

1.8s+1
−1.26e−1.2s

2.23s+1

]

Suppose that the H∞ PID controller given by (??) is used:

C(s) =

[
C11(s) 0

0 C22(s)

]
where
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Example (ctd.2)

C11(s) =
1

5.15

(1.8s + 1)(1 + 1.4s)

λ2s2 + (2λ+ 1.4)s

C22(s) =
1

1.26

(2.23s + 1)(1 + 0.6s)

λ2s2 + (2λ+ 0.6)s

The controller parameters are taken as λ1 = 0.9θ11, λ2 = 0.6θ22,
where θ11 and θ22 are time delays of the diagonal elements
respectively. The response of the closed-loop system is fast and
steady (Figure)
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Figure: Responses of the decentralized H∞ controller-1
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Figure: Responses of the decentralized H∞ controller-2
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Section 11.3 Decoupler Design

11.3 Decoupler Design

When the interaction among control loops is weak, the
decentralized control method works well

For the control loops with severe interaction, decoupling control is
a better method

Decoupling control: In decoupling control, an additional
compensation structure called decoupler is introduced to reduce
the interaction

Function of a decoupler: Decompose a MIMO plant into a series
of independent SISO plants. Then the SISO design methods (for
example, the H∞ method or H2 method introduced in foregoing
chapters) can be utilized to design MIMO control systems
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Figure shows the general decoupling structure
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Section 11.3 Decoupler Design

For ease of understanding, consider a 2× 2 MP plant first. The
decoupling system is shown in Figure, where the decoupler inputs
are two new manipulated variables m1(s) and m2(s), and its
outputs are the original manipulated variables u1(s) and u2(s)
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Section 11.3 Decoupler Design

For the original plant we have[
y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
u1(s)
u2(s)

]
The decoupler equation can be written as[

u1(s)
u2(s)

]
=

[
D11(s) D12(s)
D21(s) D22(s)

] [
m1(s)
m2(s)

]
Then the equations for the plant-decoupler combination are[
y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
D11(s) D12(s)
D21(s) D22(s)

] [
m1(s)
m2(s)

]
The decoupler should be designed so that the non-diagonal

elements are zero. In this case, y1(s) is only affected by u1(s) and
y2(s) is only affected by u2(s)
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Let [
y1(s)
y2(s)

]
=

[
P11(s) 0

0 P22(s)

] [
m1(s)
m2(s)

]
We have[
G11(s) G12(s)
G21(s) G22(s)

] [
D11(s) D12(s)
D21(s) D22(s)

]
=

[
P11(s) 0

0 P22(s)

]
This equality involves 4 equations and 6 unknowns. The solution

is not unique. For example, the following are possible solutions:

D11(s) = 1,D12(s) = −G12(s)

G11(s)
,D21(s) = −G21(s)

G22(s)
,D22(s) = 1

D11(s) = 1,D12(s) = 1,D21(s) = −G21(s)

G22(s)
,D22(s) = −G11(s)

G12(s)

D11(s) = −G22(s)

G21(s)
,D12(s) = −G12(s)

G11(s)
,D21(s) = 1,D22(s) = 1

D11(s) = −G22(s)

G21(s)
,D12(s) = 1,D21(s) = 1,D22(s) = −G11(s)

G12(s)
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Section 11.3 Decoupler Design

For the obtained solution, P11(s) and P22(s) can be determined as
follows:

P11(s) = G11(s)D11(s) + G12(s)D21(s)

P22(s) = G21(s)D12(s) + G22(s)D22(s)

To obtain an unique solution, three typical methods were
proposed in literature. The first is to take the inverse of the plant
as the decoupler, that is,[

P11(s) 0
0 P22(s)

]
= I

The second is to take 1 as the diagonal elements of the decoupler:

[
D11(s) D12(s)
D21(s) D22(s)

]
=

[
1 D12(s)

D21(s) 1

]
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Section 11.3 Decoupler Design

And the third is to take 0 as the diagonal elements of the
decoupler:[

D11(s) D12(s)
D21(s) D22(s)

]
=

[
0 D12(s)

D21(s) 0

]

Question: Which decoupling scheme should the designer choose
among the three?

Two aspects should be considered for the question:

The first is whether the obtained decoupler is realizable. Some
methods cannot give a decoupler that is physically realizable,
in particular, when the plant involves RHP zeros or time delays

The second is whether a simple decoupler can be obtained.
The ultimate objective of the decoupler design is to eliminate
the effect of interactions. If the decoupler is realizable, the
simpler is certainly the better
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Section 11.3 Decoupler Design

Now consider the decoupler design problem for a general plant.
The design equations can be conveniently summarized by using
matrix notations

Let the plant be an n × n transfer function matrix G(s) and the
decoupler be an n × n transfer function matrix D(s). We have

y(s) = G(s)D(s)m(s)

Assume that the decoupled plant is an n × n diagonal matrix
P(s). It is desirable that

y(s) = P(s)m(s)

By comparison, the decoupler is given by

D(s) = G(s)−1P(s)
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Section 11.3 Decoupler Design

Mathematically, the calculation of the decoupler is trivial. If P(s)
is given (for example, it is taken to be a unity matrix), D(s) can be
determined uniquely as long as G(s) is not singular

Non-singularity of a transfer function matrix: Means that its
determinant is not identically zero, or equivalently that the transfer
function matrix is not singular for every s in the set of complex
numbers, except for a finite number of points. The inverse of a
non-singular G(s) can be expressed as

G−1(s) =
adj[G(s)]

det[G(s)]

where adj(·) denotes the adjoint. The determinant of G(s) can be
calculated as a signed sum of the permutations taking one and
only one element from every row and column of G(s):

det[G(s)] =
∑

j1j2...jn

[sgn(j1j2...jn)]G1j1G2j2 ...Gnjn
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Section 11.3 Decoupler Design

where j1j2...jn denotes a permutation of the number 1, 2, ..., n. The
value of sgn(j1j2...jn) can be found as follows:

sgn(j1j2...jn) =

{
1 if the number of permutation inversion is even
−1 if the number of permutation inversion is odd

}
The element of the adjoint matrix, adj[G(s)], is the cofactor of
Gij(s), which is the signed determinant of G(s) with row i and the
column j removed

Nevertheless, the problem is not so easy from a control theory
point of view:

The obtained decoupler may not be physically realizable

The decoupled system may be internally unstable when the
plant is NMP or unstable

These problems can be solved well using the methods in the next
two chapters
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End of Chapter 11
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