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Section 10.1 Zeros and Poles of a MIMO Plant

10.1 Zeros and Poles of a MIMO Plant

Causality: An n × n MIMO plant G(t) is causal if all of its
elements Gij(t)(i = 1, 2, ..., n; j = 1, 2, ..., n) are causal. Such a
MIMO plant can be described by a square transfer function matrix
G(s), whose elements are in the form of proper transfer functions

Proper: A transfer function matrix G(s) is proper if all its
elements Gij(s) are proper
Strictly proper: G(s) is strictly proper if all its elements Gij(s) are
strictly proper
Semi-proper: G(s) is semi-proper if G(s) is proper but not strictly
proper. For scalar plants, “semi-proper” is equivalent to
“bi-proper”
Improper: All transfer function matrices that are not proper are
improper
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Section 10.1 Zeros and Poles of a MIMO Plant

Pole polynomial: The pole polynomial π(s) of G(s) is the least
common denominator of all non-identically-zero minors of G(s)
Pole: The pole is the root of the equation π(s) = 0

Stability: A system is stable if and only if all its poles are in the
open LHP

Example

Consider the following plant:

G(s) =

[ 1
s+3

1
s−2

3
s+3

s+1
s−2

]
The minors of order 1 are the determinant of the elements of G(s).
The minor of order 2 is the determinant of the plant itself
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Section 10.1 Zeros and Poles of a MIMO Plant

Example (ctd.1)

According to the minors of all orders, the least common
denominator is

π(s) = (s + 3)(s − 2)

Therefore, G(s) has two poles: One is at s = −3 and the other is
at s = 2

Let “det” denote determinant

Zero polynomial: The zero polynomial ζ(s) is the numerator of
det[G(s)], provided that det[G(s)] has been adjusted to have the
pole polynomial as its denominator
Zero: The zeros of G(s) are the roots of the equation ζ(s) = 0
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Section 10.1 Zeros and Poles of a MIMO Plant

If a point is a zero of G(s), the rank of G(s) at this point is less
than its normal rank

Normal rank: The rank of G(s) for every s in the set of complex
numbers, except for a finite number of points

Example

Consider the plant in Example 10.1.1. Adjust det G(s) so that its
denominator is the pole polynomial:

det[G(s)] =
s − 2

(s + 3)(s − 2)

Then

ζ(s) = (s − 2)

Hence, G(s) has one zero at s = 2
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Section 10.1 Zeros and Poles of a MIMO Plant

Simple zero: When G(s) has only one pole at s = p0, p0 is said
to be a simple pole
Multiple zero: If G(s) has multiple poles at s = p0, p0 is a
multiple pole

Features of MIMO zeros:

MIMO plants can have zeros and poles at the same location.
In general, it is impossible to find all the zeros of a plant
from the condition det[G(s)] = 0. When forming the
determinant, zeros and poles at the same location cancel

The zero location of a MIMO system is no longer related to
the zero location of the individual SISO transfer function
constituting the MIMO system. Thus, it is possible for a
MIMO system to be NMP even though all the SISO transfer
functions are MP
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Section 10.1 Zeros and Poles of a MIMO Plant

NMP: A plant G(s) is NMP if its transfer function matrix
contains zeros in the closed RHP or contains a time delay
MP: Otherwise, the plant is MP

With regard to MIMO plants, different definitions of the time delay
will result in different MP plants. This book gives a definition for
decoupling control in Chapter 13

Example

The plant

G(s) =
1

s + 1

[
s + 3 2

3 1

]
has a zero at s = 3 and thus is NMP. However, all the SISO
transfer functions are MP.
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Section 10.1 Zeros and Poles of a MIMO Plant

Example (ctd.1)

The normal rank of G(s) is 2. Substituting s = 3 into G(s) yields

G(3) =
1

4

[
6 2
3 1

]
It can be seen the feature of the resulting matrix is that its two
rows are not independent. The rank of G(3) is 1, which is less
than the normal rank of G(s)

The multiplicity of a zero is closely related to the rank of the plant
at the zero

Theorem

If the rank of G(z) is k, then G(s) has a zero at s = z of
multiplicity at least n − k.
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Section 10.1 Zeros and Poles of a MIMO Plant

Proof.

Since rank[G(z)] = k, with proper elementary transformations
G(s) can be transformed into the following form:

G1(s) =



b1(s)
...

bk(s)
bk+1(s)

...
bn(s)


where b1(z), b2(z), ..., bk(z) are linearly independent rows.
bk+i (z)(i = 1, 2, ..., n − k) either are zero or can be written as

bk+i (z) = αi1b1(z) + αi2b2(z) + ...+ αikbk(z)

where αi1, αi2, ..., αik are constants that are not all zero.
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Section 10.1 Zeros and Poles of a MIMO Plant

Proof.

Carry out elementary transformations with regard to G1(s), so that

G2(s) =



b1(s)
...

bk(s)
b′k+1(s)

...
b′n(s)


where b′k+i (s) = bk+i (s)− αi1b1(s)− αi2b2(s)− ...− αikbk(s) if
bk+i (z) 6= 0 and b′k+i (s) = bk+i (s) if bk+i (z) = 0. Then
b′k+i (s)(i = 1, 2, ..., n − k) must contain the factor s − z .
As elementary transformations do not change the value of
determinant, G(s) has a zero at z of multiplicity at least n− k
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Section 10.2 Singular Values

10.2 Singular Values

Consider a fixed frequency ω. T (jω) is a complex number

Gain in SISO systems: For a SISO system, y(s) = T (s)r(s).
The gain at a given frequency can be simply expressed as

|y(jω)|
|r(jω)|

=
|T (jω)r(jω)|
|r(jω)|

= |T (jω)|

The gain depends on the frequency, but is independent of the
input magnitude

Gain in MIMO systems: In an n × n system T(s), the case is
different because both the input r(s) and the output
y(s) = T(s)r(s) are vectors. To investigate the gain at a given
frequency, we need to “sum up” the magnitudes of input and
output signals in each vector by utilizing norms
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Section 10.2 Singular Values

If the 2-norm, a frequently used measure, is selected, the “size” of
the input signal is

‖r(jω)‖2 :=

 n∑
j=1

|rj(jω)|2
1/2

and the “size” of the output signal is

‖y(jω)‖2 :=

[
n∑

i=1

|yi (jω)|2
]1/2

The gain of the system at a given frequency can then be described
by the ratio

‖y(jω)‖2

‖r(jω)‖2

=
‖T(jω)r(jω)‖2

‖r(jω)‖2

=

[∑
i |yi (jω)|2∑
j |rj(jω)|2

]1/2

In addition to the frequency, the gain also depends on the input
direction
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Section 10.2 Singular Values

Example

Consider a 2× 2 system

T =

[
1 2
3 4

]
The inputs are

r1 =

[
1
0

]
, r2 =

[
0
1

]
, r3 =

[
0.707
0.707

]
,

r4 =

[
0.707
−0.707

]
, r5 =

[
0.8
−0.6

]
These inputs have the same magnitude ‖r‖2 = 1, but they are in
different directions
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Section 10.2 Singular Values

Example (ctd.1)

Compute the system output for the five inputs:

y1 =

[
1
3

]
, y2 =

[
4
2

]
, y3 =

[
2.12
4.95

]
y4 =

[
−0.707
−0.707

]
, y5 =

[
−0.40

0

]
The 2-norms of these outputs are

‖y1‖2 = 3.16, ‖y2‖2 = 4.47, ‖y3‖2 = 5.38,

‖y4‖2 = 1.00, ‖y5‖2 = 0.40

It is observed that the inputs having the same magnitude and
different directions relate to different system gains.
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Section 10.2 Singular Values

As it is known, the eigenvalues of a MIMO system reflect its gain
characteristic. Let λei [T(jω)](i = 1, 2, ..., n) denote the eigenvalues
of T(jω). The sum of the eigenvalues of T(jω) is equal to the
trace of T(jω) (that is, the sum of the diagonal elements):

Trace[T(jω)] =
∑
i

λei [T(jω)]

The largest eigenvalue is called spectral radius, which is denoted
by

ρ[T(jω)] = max
i
|λei [T(jω)]|

Let the complex number tij be the elements of T(jω). Define the
norm of a complex matrix as

‖T(jω)‖∞ = max
i

∑
j

|tij |
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Section 10.2 Singular Values

If λei [T(jω)] is an eigenvalue of T(jω) and r(jω) is a
corresponding eigenvector, then

|T(jω)r(jω)| = |λei [T(jω)]||r(jω)|

As

|T(jω)r(jω)| ≤ ‖T(jω)‖∞ |r(jω)|

we have

ρ[T(jω)] ≤ ‖T(jω)‖∞

The eigenvalues of a system, however, do not provide a useful
means for generalizing the SISO gain, because they only measure
the gain in the special case where the input and the output are in
the same direction
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Section 10.2 Singular Values

Example

Consider the system y = Tr with

T =

[
0 1
0 0

]
There are two eigenvalues

λe1[T] = λe2[T] = 0

To conclude that the gain of the system is zero is clearly
misleading. For example, with the input

r = [0 1]T

we have the output

y = [1 0]T
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Section 10.2 Singular Values

A good measure for the MIMO gain at a given frequency ω is the
singular value. The singular values of a complex matrix T(jω),
denoted by σi [T(jω)], are the n square roots of the eigenvalues of
TH(jω)T(jω), that is,

σi [T(jω)] =
{
λei [T

H(jω)T(jω)]
}1/2

, i = 1, 2, ..., n

where the superscript H denotes the complex conjugate transpose

of a matrix: TH(jω) = T̄
T

(jω)
For convenience, the ordering σ1 ≥ σ2 ≥ ... ≥ σn is adopted. In
general, the singular values must be computed numerically.
However, for 2× 2 matrices analytical expressions can be obtained.

Instead of a single gain, there are a group of gains in MIMO
systems
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Section 10.2 Singular Values

The largest gain for all input directions is equal to the maximum
singular value:

σ̄[T(jω)] = max
r(jω)6=0

‖T(jω)r(jω)‖2

‖r(jω)‖2

and the smallest gain for all input directions is equal to the
minimum singular value:

σ[T(jω)] = min
r(jω)6=0

‖T(jω)r(jω)‖2

‖r(jω)‖2

A convenient way of representing a matrix that exposes its
internal structure is to use Singular Value Decomposition (SVD).
The SVD of T(jω) is given by

T(jω) = U(jω)Σ(jω)VH(jω)

=
n∑

i=1

σi [T(jω)]ui(jω)vi
H(jω)
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Section 10.2 Singular Values

where

U(jω) = [ u1(jω) u2(jω) ... un(jω) ]

and UH(jω) = U−1(jω),

V(jω) = [ v1(jω) v2(jω) ... vn(jω) ]

and VH(jω) = V−1(jω). Σ(jω) can be written as

Σ(jω) = diag{σ1[T(jω)], σ2[T(jω)], ..., σn[T(jω)]}

Here “diag” denotes a diagonal matrix

The columns of V(jω) and U(jω) are unit eigenvectors of
TH(jω)T(jω) and T(jω)TH(jω), respectively. They are known as
the right singular vectors and the left singular vectors of the
matrix. By SVD an arbitrary matrix can be decomposed into a
“rotation” (VH(jω)) followed by scaling (Σ(jω)) followed by a
“rotation” (U(jω))
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Section 10.2 Singular Values

Example

Consider again the system

T =

[
1 2
3 4

]
The singular value decomposition is

T =

[
−0.4046 −0.9145
−0.9145 0.4046

] [
5.4650 0

0 0.3660

] [
−0.5760 0.8174
−0.8174 −0.5760

]H
The largest gain of 5.4650 relates to the input in the direction

[−0.5760− 0.8174]T

and the smallest gain of 0.3660 relates to the input in the direction

[0.8174− 0.5760]T
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Section 10.3 Norms of Signals and Systems

10.3 Norms of Signals and Systems

Last section: The MIMO gain was considered only at individual
frequencies
This section:Estimate the MIMO gain for the whole system

Consider the vector function r(s) of dimension n
2-norm for signals:

‖r(s)‖2 :=

[
1

2π

∫ ∞
−∞

rH(jω)r(jω)dω

]1/2

If r(s) does not have any poles in the closed RHP, Parseval’s
theorem yields an equivalent time domain expression:

‖r(t)‖2 =

[∫ ∞
−∞

rT (t)r(t)dt

]1/2
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Section 10.3 Norms of Signals and Systems

Assume that the matrix-valued function T(s) of dimension n× n is
a strictly proper transfer function matrix without poles on the
imaginary axis
2-norm for systems:

‖T(s)‖2 :=

{
1

2π

∫ ∞
−∞

Trace
[
TH(jω)T(jω)

]
dω

}1/2

If T(s) does not have any poles in the closed RHP, by Parseval’s
theorem we have

‖T(s)‖2 = ‖T(t)‖2

=

{∫ ∞
−∞

Trace
[
TT (t)T(t)

]
dt

}1/2

The ∞-norm is sub-multiplicative:

‖T1(s)T2(s)‖∞ ≤ ‖T1(s)‖∞ ‖T2(s)‖∞
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Section 10.3 Norms of Signals and Systems

For beginners, it is easy to confuse the norm concept in this
section with that in the last section, where the norm is defined for
vectors and matrices whose elements are complex numbers. The
norm in this section is defined for vectors and matrices whose
elements are functions

Consider the linear system

y(s) = T(s)r(s)

An interesting problem is how to quantify the least upper bound of
the system output y(s) for a known input r(s), or equivalently, how
large the system gain is. The system gains are shown in in Table

r(t) = δ(t)I ‖r(t)‖2

‖y(t)‖2 ‖T(s)‖2 ‖T(s)‖∞
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Section 10.3 Norms of Signals and Systems

Assume that a unit pulse is applied to each input in due order:
r(t) = δ(t)I. We have

‖y(t)‖2 = ‖T(t)‖2 = ‖T(s)‖2

This implies that for this specific input, the least upper bound on
the system output is the 2-norm of the system transfer function
matrix.
Assume that the input is bounded: ‖r(s)‖2 ≤ 1. The ∞-norm of
the transfer function matrix equals the maximum energy of the
output. This is shown as follows:

‖y(s)‖2
2 =

1

2π

∫ ∞
−∞

rH(jω)TH(jω)T(jω)r(jω)dω

≤ sup
ω
|T(jω)|2 1

2π

∫ ∞
−∞

rH(jω)r(jω)dω

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 26/60



Section 10.3 Norms of Signals and Systems

or

‖y(t)‖2
2 ≤ ‖T(s)‖2

∞ ‖r(t)‖2
2

Thus, ‖T(s)‖∞ is an upper bound of the system output
To prove that it is the least upper bound, it is enough to show that
the bound can be reached for a specific input. The specific input is
a constructed frequency domain impulse occurring at the frequency
where |T(jω)| is maximum. The constructing procedure, which
can be found in Section 3.1, will not be repeated here
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10.4 Nominal Stability and Performance

In order to work well in a real system, the following objectives have
to be met by a controller:

Nominal stability (NS)

Nominal performance (NP)

Robust stability (RS)

Robust performance (RP)

The nominal stability is
mandatory, while the
robust performance is
normally the ultimate
design objective
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Section 10.4 Nominal Stability and Performance

Nominal stability and nominal performance are addressed in this
section. The other two objectives are going to be studied in the
next two sections

Consider the control system consisting of an n × n plant G(s) and
an n × n controller C(s). Assume that there is not any
unstable hidden mode in G(s). The assumption implies that the
plant can be stabilized by using feedback control. It is satisfied if
there is not any RHP zero-pole cancellation in G(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 29/60



Section 10.4 Nominal Stability and Performance

Nominal stability and nominal performance are addressed in this
section. The other two objectives are going to be studied in the
next two sections

Consider the control system consisting of an n × n plant G(s) and
an n × n controller C(s). Assume that there is not any
unstable hidden mode in G(s). The assumption implies that the
plant can be stabilized by using feedback control. It is satisfied if
there is not any RHP zero-pole cancellation in G(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 29/60



Section 10.4 Nominal Stability and Performance

Theorem (MIMO Nyquist Stability Criterion)

Let n be the number of unstable poles of L(s). The closed-loop
system is stable if and only if the Nyquist plot of det[I + L(s)] does
not pass through the origin, and encircles it n times
counterclockwise.

The test for internal stability introduced in Chapter 3 is also
applicable to MIMO systems. The unity feedback control system is
internally stable if and only if all elements in the transfer function
matrix H(s) are stable.[

y(s)
u(s)

]
= H(s)

[
r(s)
d′(s)

]
where

H(s) =

[
G(s)C(s)[I + G(s)C(s)]−1 [I + G(s)C(s)]−1G(s)

C(s)[I + G(s)C(s)]−1 −C(s)[I + G(s)C(s)]−1G(s)

]
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The performance analysis for MIMO systems is similar to that for
SISO systems. Consider the IMC structure shown in Figure, where
G̃(s) is the plant and G(s) is the model. Assume that the model is
exact (that is, G̃(s) = G(s)). The unit feedback loop controller
can be written as

C(s) = Q(s)[I− G(s)Q(s)]−1
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Section 10.4 Nominal Stability and Performance

Define the sensitivity function as

S(s) = [I + G(s)C(s)]−1

= I− G(s)Q(s)

The complementary sensitivity function is

T(s) = I− S(s)

= G(s)C(s)[I + G(s)C(s)]−1

= G(s)Q(s)

First of all, the steady-state performance of the closed-loop
system is characterized. Let m be the largest integer satisfying

rank{ lim
s→0

[smL(s)]} = n

L(s) is said to be of Type m. It is seen that L(s) has at least
n ×m poles at the origin
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Section 10.4 Nominal Stability and Performance

The corresponding sensitivity function matrix satisfies

lim
s→0

[s−kS(s)] = 0, k = 1, 2, ...,m − 1

If the closed-loop system is stable, as t →∞ the closed-loop
system perfectly tracks reference changes of the form

∑m
k=0 aks−k ,

where ak are real constant vectors

In particular, a Type 1 system requires

lim
s→0

[G(s)Q(s)] = I

and a Type 2 system requires

lim
s→0

[G(s)Q(s)] = I

lim
s→0

d

ds
[G(s)Q(s)] = 0

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 33/60



Section 10.4 Nominal Stability and Performance

Then, consider the dynamic performance of MIMO systems. Let
Wp1(s) and Wp2(s) be two weighting functions. The H2 optimal
control of MIMO systems is defined as

min ‖Wp2(s)S(s)Wp1(s)‖2
2

= min
1

2π

∫ ∞
−∞

Trace

{
[Wp2(jω)S(jω)Wp1(jω)]H ·
[Wp2(jω)S(jω)Wp1(jω)]

}
dω

The index for H∞ optimal control is expressed as

min ‖Wp2(s)S(s)Wp1(s)‖∞
= min sup

ω
σ̄ [Wp2(jω)S(jω)Wp1(jω)]

Generally speaking, Wp1(s) is more important than Wp2(s),
because Wp1(s) is needed for all designs, while Wp2(s) is not
necessary in some applications
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Wp1(s) is the input weighting function. Excite the system in
separate experiments with n different linearly independent inputs
ri(s)(i = 1, 2, ..., n). For one experiment the error is
ei(s) = S(s)ri(s). Define Wp1(s) = [r1(s), r2(s), ..., rn(s)]. The
columns of S(s)Wp1(s) are the errors from the n experiments. For
step inputs, one can take Wp1(s) = s−1I(s).
Wp2(s) is the output weighting function. Premultiplication by the
output weight Wp2(s) generates Wp2(s)S(s)Wp1(s). The columns
of the matrix are the weighted errors from the n experiments. The
output weight is used since it may be desirable to make errors
small over some frequency ranges.
In the method of this book, a filter is introduced to achieve the
same goal. Hence, Wp2(s) = I is taken. Comparatively, it is simple
to penalize errors by a filter; the resulting system is easy to tune.

Now only one weighting function needs to be considered. Hence,
Wp1(s) is denoted by W(s) for simplicity
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10.5 Robust Stability of MIMO Systems

The description of uncertainty and the test of robustness for
MIMO plants are very involved. The result is not a simple
generalization of the SISO case

SISO case: The uncertainty is described by an uncertain plant
family. The family corresponds to a Nyquist band consisting of a
union of disks with specified radius
MIMO case: Similar uncertainty description can be developed for
MIMO systems. Since the commutative property does not hold for
matrix multiplication, one has to distinguish the uncertainty
occurring at the plant input and that at the plant output

Assume that the uncertain plants have the same number of RHP
poles as the nominal plant. Let the subscript “I ” stand for “Input”
and the subscript “O” stand for “Output”

Zhang, W.D., CRC Press, 2011 (No.2 USU) Version 1.0 36/60



Section 10.5 Robust Stability of MIMO Systems

The uncertain plant can be described in the following manner:
Plant with multiplicative output uncertainty:

G̃(s) = [I + δO(s)]G(s)

Plant with multiplicative input uncertainty:

G̃(s) = G(s)[I + δI(s)]

Both of the two uncertainties can be described in a unified form:

δ(s) = W2(s)∆(s)W1(s)

where W1(s) and W2(s) are stable weighting function matrices.
∆(s) is a stable transfer function matrix denoting the normalized
uncertainty:

σ̄[∆(jω)] ≤ 1, ∀ω

or equivalently,

‖∆(s)‖∞ ≤ 1
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Figure: Input uncertainty δI (s) and output uncertainty δO(s)
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Unstructured uncertainty: Constructed by lumping different
sources of uncertainties into a single uncertainty
Let ∆m(s) be a stable scalar weighting function. The unstructured
uncertainty is usually interpreted as follows:

δ(s) = ∆m(s)∆(s)

that is, in the unified form of uncertainty

W1(s)(or W2(s)) = ∆m(s),W2(s)(or W1(s)) = 1

∆m(s) gives the profile for the magnitude of the uncertainty δ(s):

σ̄ [δ(jω)] ≤ |∆m(jω)|, ∀ω

G̃(jω) describes a disk with the center G(jω) and the radius
|∆m(jω)| at each frequency ω
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To analyze the robust stability of
the closed-loop system in a
unified framework, the system is
usually redrawn in the M∆ form

Let

SI(s) = [I + C(s)G(s)]−1

TI(s) = [I + C(s)G(s)]−1C(s)G(s)

and

SO(s) = [I + G(s)C(s)]−1

TO(s) = G(s)C(s)[I + G(s)C(s)]−1
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It is easy to verify that for the input uncertainty
δI (s) = ∆Im(s)∆I (s),

M(s) = −TI(s)∆Im(s),∆(s) = ∆I (s)

and for the output uncertainty δO(s) = ∆Om(s)∆O(s),

M(s) = −TO(s)∆Om(s),∆(s) = ∆O(s)

When the nominal system is internally stable, M(s) is stable. The
following theorem gives the condition for the robust stability

Theorem

The closed-loop system shown is stable for all ∆(s)s if and only if
one of the following two equivalent conditions is satisfied:
1. det[I−M(jω)∆(jω)] 6= 0, ∀ω,∀∆(jω)
2. ‖M(s)‖∞ < 1
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Proof.

1. By assumption, the nominal system is internally stable; the
uncertain plant and the nominal plant have the same number of
RHP poles. The closed-loop system shown in Figure ?? is stable
for all ∆(s)s, if and only if det[I + M(s)∆(s)] encircle the origin as
many times as the nominal system.
If the Nyquist plot of det[I + M(s)∆(s)] does not pass through the
origin, the number of encirclements will not change. This is
equivalent to

det[I−M(jω)∆(jω)] 6= 0, ∀ω,∀∆(jω)

2. The result can be proved by contradiction.
First, it is shown that ρ[M(jω)∆(jω)] < 1 is sufficient. Assume
that there exist a frequency ω′ and an uncertainty ∆′(jω′) such
that ρ[M(jω′)∆′(jω′)] < 1, but
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Proof ctd.1.

det[I−M(jω′)ε∆′(jω′)] = 0

which is equivalent to∏
i

λei [I−M(jω′)∆′(jω′)] = 0

This implies that for some i

1− λei [M(jω′)∆′(jω′)] = 0

Then

ρ[M(jω′)∆′(jω′)] ≥ 1
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Proof ctd.2.

which is a contradiction. Therefore, ρ[M(jω)∆(jω)] < 1 is
sufficient for robust stability.
Because ρ[M(jω)∆′(jω)] ≤ ‖M(jω)∆′(jω)‖∞ ≤ ‖M(s)‖∞,
‖M(s)‖∞ < 1 is also sufficient.
To prove the necessary of ‖M(s)‖∞ < 1, assume that the
closed-loop system is stable, but ‖M(s)‖∞ ≥ 1. For some
frequency ω′ we have σ1[M(jω′)] ≥ 1. It will be shown that there
exists a ∆′(s) with

∥∥∆′(s)
∥∥
∞ ≤ 1 such that the closed-loop

system is unstable.
Let the SVD of M(jω′) be

M(jω′) = U(jω′)Σ(jω′)VH(jω′)
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Proof ctd.3.

Define

D(jω′) = diag{1/σ1[M(jω′)], 0, ..., 0}

and

∆′(s) = V(s)D(jω′)UH(s)

V(s) and U(s) can easily be constructed from the complex
matrices V(jω′) and U(jω′). The first vector of V(jω′), v1(jω′), is
used to illustrate the procedure. Write it in the following form:

vT1 (jω′) = [v11e jφ1 , v12e jφ2 , ..., v1ne jφn ]

where v1j are real numbers, and are chosen so that φj ∈ [−π, 0),
j = 1, 2, ..., n. Choose αj ≥ 0 so that
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Proof ctd.4.

∠

(
αj − jω′

αj + jω′

)
= φj

v1(s) can be taken as

vT1 (s) =

[
v11

α1 − s

α1 + s
, v12

α2 − s

α2 + s
, . . . , v1n

αn − s

αn + s

]
Clearly, ∥∥∆′(s)

∥∥
∞ = 1/σ1[M(jω′)] ≤ 1

and
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Proof ctd.5.

det[I−M(jω′)∆′(jω′)]

= det[I−U(jω′)Σ(jω′)VH(jω′)V(jω′)D(jω′)UH(jω′)]

= det[I−U(jω′)Σ(jω′)D(jω′)UH(jω′)]

= 0,

which implies the closed-loop system is unstable

In particular, for input uncertainty and output uncertainty, there
are the following results.

Corollary

The closed-loop system is stable for the multiplicative input
uncertainty if and only if

‖TI(s)∆Im(s)‖∞ < 1
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Corollary

The closed-loop system is stable for the multiplicative output
uncertainty if and only if

‖TO(s)∆Om(s)‖∞ < 1

Structured uncertainty: Sometimes, the unstructured uncertainty
description is conservative. In this case, it is desirable to use the
structured uncertainty description. Unfortunately, in most cases
simple and meaningful conditions cannot be obtained for a rigorous
structured uncertainty description. A compromise is that some
sources of uncertainties are described in a structured manner, while
the rest is lumped into a single unstructured uncertainty
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The combined unstructured/structured uncertainty is usually
expressed in the form of a large block diagonal matrix:

δ(s) = W2(s)∆(s)W1(s)

with

∆(s) = diag{∆1(s),∆2(s), ...,∆m(s)}
‖∆i (s)‖∞ ≤ 1, i = 1, 2, ...,m

W1(s) = diag{W11(s),W12(s), ...,W1m(s)}
W2(s) = diag{W21(s),W22(s), ...,W2m(s)}

W1(s) and W2(s) are stable transfer function matrices

It can be proved that the robust stability is guaranteed if and only
if

det[I−M(jω)∆(jω)] 6= 0, ∀ω,∀∆(jω)
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Nevertheless, the second condition, namely ‖M(s)‖∞ < 1, is only
sufficient for robust stability, since only those having the specific
block diagonal structure are permissible

This can be conservative. To deal with this problem, Structured
Singular Value (SSV) is proposed. It can be regarded as a
generalization of the singular value

Definition

Find the smallest σ̄[∆(jω)](‖∆(s)‖∞ ≤ km) that makes
I−M(jω)∆(jω) singular. The SSV µ[M(jω)] = 1/σ̄[∆(jω)], or,

µ−1[M(jω)] = min{σ̄[∆(jω)] : det[I−M(jω)∆(jω)] = 0,∀∆(jω)}

If no ∆(jω) exists such that det[I−M(jω)∆(jω)] = 0, then
µ[M(jω)] = 0
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The singularity of a complex matrix means that its determinant is
zero

It is noted that the SSV depends on not only M(jω) but also the
structure of ∆(jω)

At present, the SSV can only be computed numerically

In the case where ∆(jω) is unstructured (that is, it is a full
matrix), µ[M(jω)] = σ̄[M(jω)]

Theorem

The closed-loop system is stable for all ∆(s)s(‖∆(s)‖∞ ≤ 1) if
and only if

µ[M(jω)] < 1, ∀ω
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Proof.

If µ[M(jω)] < 1 at all frequencies, then σ̄[∆(jω)] > 1, which
implies that no permissible ∆(jω) exists such that
det[I−M(jω)∆(jω)] = 0. Hence, the system is stable for all
∆(s)s(‖∆(s)‖∞ ≤ 1).
Assume that the system is stable, but µ[M(jω′)] ≥ 1 at some
frequency ω′. From the definition of the SSV, there must exist an
uncertainty σ̄[∆(jω′)] ≤ 1 so that det[I−M(jω′)∆(ω′)] = 0.
Then the system is unstable. This contradicts with the assumption
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10.6 Robust Performance of MIMO Systems

In some design methods for MIMO
control systems, the general control
configuration is frequently used. The
block N(s) in the configuration has two
sets of inputs and two sets of outputs

The first set of inputs— All exogenous signals (such as references
or disturbances)

The first set of outputs—The outputs whose behavior is of interest
(such as plant outputs or error signals)

The second set of inputs and outputs—The outputs and inputs of
the uncertainty of the plant, respectively
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Assume that the uncertainty is expressed as a block diagonal
matrix:

∆u(s) = diag{∆1(s),∆2(s), ...,∆m(s)}

with

‖∆u(s)‖∞ ≤ 1

The subscript “u” stands for “uncertainty”. N(s) is stable when
the nominal system is internally stable. Partition N(s) as

N(s) =

[
N11(s) N12(s)
N21(s) N22(s)

]
with the dimensions of its parts compatible with the input and

output signals. The transfer function matrix from w(s) to z(s),
F(N,∆u), can be expressed in the form of Linear Fractional
Transformation (LFT):

F(N,∆u) = N22(s) + N21(s)∆(s)[I−N11(s)∆(s)]−1N12(s)
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This can be obtained by eliminating y(s) and u(s) from the
following equations:[

y(s)
z(s)

]
=

[
N11(s) N12(s)
N21(s) N22(s)

] [
u(s)
w(s)

]
u(s) = ∆(s)y(s)

In particular, when there is no uncertainty,

F(N,∆u) = N22(s)

i.e. the nominal transfer function matrix from w(s) to z(s) is
N22(s)

In F(N,∆u), the only possible source of instability is the term
[I−N11(s)∆(s)]−1 when the nominal system is stable. Identifying
N11(s) with M(s), the stability of the system can be tested by
utilizing the M−∆ strucutre
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Figure: Systems with input or output uncertainty
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Consider the uncertain systems shown in Figure, where W(s) is the
input weighting function. Define z(s) = y(s) and w(s) = d′(s).
F(N,∆u) is the perturbed weighting sensitivity function. For the
input uncertainty, it is not difficult to convert the diagram into the
N−∆ strucutre:

N(s) =

[
C(s)SI(s)G(s)∆Im(s) −C(s)SI(s)W(s)

SI(s)G(s)∆Im(s) SI(s)W(s)

]
With respect to the output uncertainty, we have

N(s) =

[
TO(s)∆Om(s) −TO(s)W(s)
SO(s)∆Om(s) SO(s)W(s)

]
Robust performance means that the performance objective is

satisfied even there exists uncertainty. Suppose the robust
performance is measured in terms of the ∞ norm, like in the SISO
case
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The robust performance can be
expressed as

‖F(N,∆u)‖∞ < 1

To analyze the robust performance,
an uncertainty ∆p(s)
(σ̄[∆p(jω)] ≤ 1) is introduced, as
shown in Figure. Here the subscript
p stands for “performance”. ∆p(s)
is a fictitious uncertainty

The reason of introducing such an uncertainty is to build a
relationship between the N∆ structure and the M∆ structure. In
this way, the preceding result can be utilized to derive the
condition for testing robust performance
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Now the new uncertainty can be written as

∆(s) = diag{∆u(s),∆p(s)}
‖∆(s)‖∞ ≤ 1

The following theorem can readily be obtained.

Theorem

The stable system N(s) satisfies the robust performance condition
‖F(N,∆u)‖∞ < 1 if and only if

µ∆[N(jω)] < 1,∀ω,

where µ is computed with respect to the block diagonal
uncertainty ∆(s)
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End of Chapter 10
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