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Section 6.1 The Quasi-H∞ Smith Predictor

6.1 The Quasi-H∞ Smith Predictor

Chapter 4 and Chapter 5: The controller is analytically designed
by minimizing the weighted sensitivity function

This section: The controller is analytically designed by specifying
the desired closed-loop response
Actually, a simplified version of this method was already used in
Sections 5.5 and 5.6

Consider the diagram of the Smith predictor in Figure, where G̃ (s)
is the plant, G (s) is its model, and Go(s) is the delay-free part of
G (s). If the closed-loop transfer function T (s) is known, the
controller of the Smith predictor is

R(s) =
T (s)

G (s)− T (s)Go(s)
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Section 6.1 The Quasi-H∞ Smith Predictor

Figure: Diagram of the Smith predictor

Key of the design

How to choose the desired closed-loop transfer function

To introduce the idea clearly, the simplest case is considered first.
The general result will be inductively derived
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Section 6.1 The Quasi-H∞ Smith Predictor

Case 1:
Consider the following stable rational plant of MP:

G (s) =
KN−(s)

M−(s)

where K is the gain, N−(s) and M−(s) are the polynomials with
roots in the LHP, N−(0) = M−(0) = 1, and deg{N−} ≤ deg{M−}.
It is easy to control such a plant. For the H∞ performance index
and the weighting function W (s) = 1/s we have

‖W (s)S(s)‖∞ = ‖W (s)[1− G (s)Q(s)]‖∞
≥ 0

The following controller is the optimal one:

Qopt(s) =
M−(s)

KN−(s)
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Section 6.1 The Quasi-H∞ Smith Predictor

Introduce the filter

J(s) =
1

(λs + 1)nj

where λ is the performance degree. In light of the discussion in
Section 5.7, nj is chosen as follows:

nj =

{
deg{M−} − deg{N−} deg{M−} > deg{N−}
1 deg{M−} = deg{N−}

The suboptimal proper controller is

Q(s) =
M−(s)

KN−(s)(λs + 1)nj

The closed-loop transfer function is

T (s) =
1

(λs + 1)nj
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Section 6.1 The Quasi-H∞ Smith Predictor

Case 2:
Consider a bit more complex case. Assume that the plant has a
zero in the RHP:

G (s) =
KN−(s)(−z−1r s + 1)

M−(s)

where zr > 0, N−(0) = M−(0) = 1, and
deg{N−}+ 1 ≤ deg{M−}. Solve the weighted sensitivity problem
again:

‖W (s)S(s)‖∞ = ‖W (s)[1− G (s)Q(s)]‖∞
≥ |W (zr )|

The optimal controller is obtained as follows:

Qopt(s) =
M−(s)

KN−(s)
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Section 6.1 The Quasi-H∞ Smith Predictor

Introduce the following filter:

J(s) =
1

(λs + 1)nj

where

nj = deg{M−} − deg{N−}

The suboptimal proper controller is

Q(s) =
M−(s)

KN−(s)(λs + 1)nj

The closed-loop transfer function can be written as

T (s) =
−z−1r s + 1

(λs + 1)nj
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Section 6.1 The Quasi-H∞ Smith Predictor

Case 3:
Now, consider the general stable rational plant described by

G (s) =
KN+(s)N−(s)

M−(s)

where N−(s) and M−(s) are the polynomials with roots in the
LHP, N+(s) is a polynomial with roots in the RHP,
N+(0) = N−(0) = M−(0) = 1, and
deg{N+}+ deg{N−} ≤ deg{M−}. As this is a rational plant,
Go(s) = G (s)

Motivated by the foregoing design procedures, the following
function is chosen as the desired closed-loop transfer function:

T (s) = N+(s)J(s)

where J(s) is a filter
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Section 6.1 The Quasi-H∞ Smith Predictor

J(s) =
1

(λs + 1)nj

and

nj =

{
deg{M−} − deg{N−} deg{M−} > deg{N−}
1 deg{M−} = deg{N−}

The feature of the closed-loop transfer function is that it has the
same RHP zeros as the plant.
Once the desired T (s) is determined, the controller of the Smith
predictor can be analytically derived through

R(s) =
T (s)

G (s)− T (s)Go(s)

=
1

K

M−(s)

N−(s)[(λs + 1)nj − N+(s)]
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Section 6.1 The Quasi-H∞ Smith Predictor

For rational plants, the unity feedback loop controller C (s) is
identical to R(s). The controller has the same order as that of the
plant. The corresponding Q(s) is

Q(s) =
T (s)

G (s)
=

M−(s)

N−(s)

Case 4:
When there is a time delay in the plant, the basic idea of designing
the Smith predictor is to move the time delay out from the
feedback loop, so that the controller can be designed for the
rational part of the plant. Along this line, the design procedure for
rational plants can be extended to plants with time delays
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Section 6.1 The Quasi-H∞ Smith Predictor

Assume that the plant with time delay is

G (s) =
KN+(s)N−(s)

M−(s)
e−θs

where θ is the time delay. The desired closed-loop transfer
function can be chosen as

T (s) = N+(s)J(s)e−θs

where J(s) is identical to (1). The R(s) and Q(s) corresponding
to this desired closed-loop transfer function is the same as those in
(1) and (1) respectively, but C (s) contains a time delay:

C (s) =
Q(s)

1− G (s)Q(s)
=

1

K

M−(s)

N−(s)[(λs + 1)nj − N+(s)e−θs ]

which is irrational
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Section 6.1 The Quasi-H∞ Smith Predictor

Stability is a basic requirement for control system design. A
question associated with the design is whether the closed-loop
system is internally stable.

Theorem

The closed-loop system is internally stable

Proof.

Follows directly from the Youla parameterization for stable
plants

The design method here is in fact a pole placement method. Since
the method is developed based on special H∞ solutions, it is
named quasi-H∞ control
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Section 6.1 The Quasi-H∞ Smith Predictor

A frequently encountered case is that the plant is MP or has only
one zero in the RHP. Then an exact H∞ controller can be obtained
by the method

If the plant has more than one zero in the RHP or the plant
contains a time delay, the results of H∞ control and the quasi-H∞
control are different

The quasi-H∞ control is a compromise: The solution may not be
an exact H∞ controller, but the design is significantly simplified

The analytical design formula for the quasi-H∞ controller has been
given. If the nominal plant is known, the quasi-H∞ controller can
be obtained by directly substituting the plant parameters into the
formula. One can also design the quasi-H∞ controller through the
following steps:
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Section 6.1 The Quasi-H∞ Smith Predictor

1 If the plant does not contain a time delay, turn to 3.

2 If the plant contains a time delay, take the rational part of the
plant as the nominal plant.

3 If the nominal plant does not have any zeros in the RHP, take
its inverse as Qopt(s) and turn to 5.

4 If the nominal plant has zeros in the RHP, remove the factor
that contains these zeros and take the inverse of the reminder
as Qopt(s).

5 Introduce a filter to Qopt(s), compute the controller by
R(s) = Q(s)/[1− Go(s)Q(s)] and
C (s) = Q(s)/[1− G (s)Q(s)].

If it is necessary, the desired closed-loop transfer function of the
quasi-H∞ control can be chosen as complex as desired
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

6.2 The H2 Optimal Controller and the Smith
Predictor

Consider the general plant used in the last section:

G (s) =
KN+(s)N−(s)

M−(s)
e−θs

It is assumed that the performance index is min ‖W (s)S(s)‖2, the
input is a unit step, and the weighting function is W (s) = 1/s. For
asymptotic tracking, the following constraint must be satisfied:

lim
s→0

[1− G (s)Q(s)] = 0

The Q(s) that satisfies the condition can be expressed as

Q(s) =
1

K
+ sQ1(s)

where Q1(s) is stable
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

Therefore,

‖W (s)S(s)‖22

=

∥∥∥∥W (s)

{
1− G (s)

[
1

K
+ sQ1(s)

]}∥∥∥∥2
2

=

∥∥∥∥1

s

[
1− N+(s)N−(s)

M−(s)
e−θs − KN+(s)N−(s)s

M−(s)
e−θsQ1(s)

]∥∥∥∥2
2

=

∥∥∥∥M−(s)− N+(s)N−(s)e−θs

sM−(s)
− KN+(s)N−(s)

M−(s)
e−θsQ1(s)

∥∥∥∥2
2

=

∥∥∥∥∥ N+(s)

N+(−s)
e−θs

[
M−(s)N+(−s)eθs−N+(s)N−(s)N+(−s)

sM−(s)N+(s)
−

KN+(−s)N−(s)
M−(s) Q1(s)

]∥∥∥∥∥
2

2

=

∥∥∥∥∥
M−(s)N+(−s)eθs−N+(s)N−(s)N+(−s)

sM−(s)N+(s)
−

KN+(−s)N−(s)
M−(s) Q1(s)

∥∥∥∥∥
2

2
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

=

∥∥∥∥∥
N+(−s)eθs−N+(s)

sN+(s)
+

M−(s)−N−(s)N+(−s)
sM−(s) − KN−(s)N+(−s)

M−(s) Q1(s)

∥∥∥∥∥
2

2

Since M−(0) = N+(0) = N−(0) = 1, s must be a factor of

N+(−s)eθs − N+(s)

and

M−(s)− N−(s)N+(−s)

Then we have

‖W (s)S(s)‖22

=

∥∥∥∥N+(−s)eθs − N+(s)

sN+(s)

∥∥∥∥2
2

+∥∥∥∥M−(s)− N−(s)N+(−s)

sM−(s)
− KN−(s)N+(−s)

M−(s)
Q1(s)

∥∥∥∥2
2
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

Minimizing the right-hand side gives the optimal performance:

min ‖W (s)S(s)‖22 =

∥∥∥∥N+(−s)eθs − N+(s)

sN+(s)

∥∥∥∥2
2

There are two important implications with regard to the result:
1 This performance is the limit of the H2 control for the given

index and input, no matter what design method is used
2 The optimal performance is obtained by using only the

input-output information

As the unique optimal Q1opt(s) is

Q1opt(s) =
M−(s)− N−(s)N+(−s)

KsN−(s)N+(−s)

The optimal controller is

Qopt(s) =
M−(s)

KN−(s)N+(−s)
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

Introduce the following filter to roll the optimal controller off:

J(s) =
1

(λs + 1)nj

where λ is the performance degree,

nj =

{
deg{M−} − {N+} − {N−} {M−} > {N+}+ {N−}
1 {M−} = {N+}+ {N−}

The suboptimal controller is

Q(s) = Qopt(s)J(s) =
M−(s)

KN−(s)N+(−s)(λs + 1)nj

The Smith predictor is

R(s) =
1

K

M−(s)

N−(s)[(λs + 1)njN+(−s)− N+(s)]

Notice that the order of the controller is identical to that of the
rational part of the plant
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

The unity feedback loop controller is

C (s) =
1

K

M−(s)

N−(s)[(λs + 1)njN+(−s)e−θs − N+(s)]

One can also design it through the following steps:

1 If the plant does not contain a time delay, turn to 3.

2 If the plant contains a time delay, take the rational part of the
plant as the nominal plant.

3 If the nominal plant does not have zeros in the RHP, take its
inverse as Qopt(s) and turn to 5.

4 If the nominal plant has zeros in the RHP, construct an
all-pass transfer function by using the factor that contains
these zeros and then remove the all-pass transfer function.
Take the inverse of the remainder as Qopt(s).

5 Introduce a filter to Qopt(s), compute R(s) and C (s).
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

The procedures for designing the quasi-H∞ controller and the H2

controller is illustrated in the following example.

Example

Consider the control system of the maglev gap described in the last
chapter. The dynamic model of the gap is

G (s) =
s − 4

(s + 2)2

Normalize the plant so that the constant terms of all factors are 1:

G (s) = − −s/4 + 1

(s/2 + 1)2

First, the quasi-H∞ controller is designed. There is no time delay in
the plant, but there is a RHP zero. Remove the factor containing
the zero and take the inverse of the reminder as Qopt(s):
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

Example (ctd.1)

Qopt(s) =
(s/2 + 1)2

−1

A proper Q(s) can be obtained by introducing a filter. When Q(s)
is known, it is trivial to compute R(s) and C (s).
Now design the H2 controller. First, an all-pass transfer function
has to be constructed by utilizing the factor that contains the RHP
zero:

G (s) = − s/4 + 1

(s/2 + 1)2
−s/4 + 1

s/4 + 1

Second, remove the all-pass transfer function and take the inverse
of the remainder as Qopt(s):
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Section 6.2 The H2 Optimal Controller and the Smith Predictor

Example (ctd.2)

Qopt(s) = −(s/2 + 1)2

s/4 + 1

Finally, introduce a filter to Qopt(s)

Construction of the all-pass transfer function is very simple for
SISO plants. Assume that an open RHP zero of the plant is
zr = a + bi , a > 0. The all-pass transfer function can be
constructed as follows:

−s + zr
s + z̄r
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Section 6.3 Equivalents of the Optimal Controller

6.3 Equivalents of the Optimal Controller

Explanation for the Optimal Controller

Figure: Rearrangement of the Smith predictor

Rearrange the diagram of the Smith predictor. An equivalent is
obtained, which is in fact the IMC structure
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Section 6.3 Equivalents of the Optimal Controller

Assume that the model is exact (that is, G̃ (s) = G (s)) and there is
no disturbance. Then the feedback signal is zero. A natural idea is
to take

Q(s) = G (s)−1

as the controller. Then the closed-loop transfer function is

T (s) = G (s)Q(s) = 1

This implies that the output can track the reference
instantaneously without any error. This situation, referred to as
perfect control, is impossible in a real system, since the inverse of
the time delay is non-casual. A non-casual transfer function is not
physically realizable
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Section 6.3 Equivalents of the Optimal Controller

An alternative is to take

Q(s) = Go(s)−1

as the controller. The closed-loop transfer function becomes

T (s) = G (s)Q(s) = e−θs

which implies that the output can track the reference perfectly
after the time delay θ. Such a result is reasonable. Imagine a
shower control system. Assume that the temperature of outlet
water is controlled by adjusting the flow rate of inlet hot water.
When the valve of hot water is increased by a small percentage (so
that the change on pressure can be omitted), the increased
temperature can only be detected at the outlet after a period of
time. No matter what control method is used, it is
impossible to eliminate the time delay
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Section 6.3 Equivalents of the Optimal Controller

Go(s)−1 is improper. Since Go(s)−1 is rational, it can be arbitrarily
approximated by a proper transfer function of finite order:

Q(s) =
Go(s)−1

(λs + 1)nj

where λ is the performance degree and nj is the positive integer
that makes Q(s) bi-proper. Obviously, this is exactly the result
obtained in the optimal design

Norminal case: λ can be any positive real number. There is no
overshoot and the rise time can be arbitrarily fast as λ− > 0
Uncertain case: λ can be calculated. However, in practice it is
difficult to obtain an uncertainty profile with high precision, and
the profile may vary. In this case, the tuning method introduced in
the last two chapters can be used: Increase the performance
degree monotonically until the required response is obtained
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Section 6.3 Equivalents of the Optimal Controller

Relationship Among Several Controllers

Status quo: Many different design methods have been developed
in the past decades. Some of these methods have been applied to
real systems and provide satisfied performances

Question: The optimal solution is unique in mathematics. Are
these methods really independent?

The quasi-H∞ controller and the H2 controller:
If the plant has a stable rational part of MP, they are identical

Dahlin controller: The attractiveness of this technique comes
from the fact that it is easy to use and can provide good
performance
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Section 6.3 Equivalents of the Optimal Controller

The Dahlin algorithm was presented for the first-order plant with
time delay:

G (s) =
Ke−θs

τs + 1

The basic idea is to specify the desired closed-loop transfer
function T (s) as a first-order transfer function with its time delay
equal to that of the plant G (s); that is,

T (s) =
e−θs

λs + 1

from which a unity feedback loop controller C (s) can be derived.
Since the time delay is difficult to treat in Laplace domain, the
design procedure is performed in discrete domain. The time delay
is a finite dimension function in discrete domain
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Section 6.3 Equivalents of the Optimal Controller

Evidently, the Dahlin algorithm is a discrete domain version of the
quasi-H∞ controller and the H2 controller for the first-order plant
with time delay

Deadbeat control:
When λ→ 0, the Dahlin controller reduces to the deadbeat
controller (also referred to as minimal prototype controller).
Therefore, the deadbeat controller is a special case of the
quasi-H∞ controller and the H2 controller as well

Inferential control and IMC:
Consider the diagram of the inferential control in Figure. A plant is
given to the right-hand side of the dotted line, with one
unmeasured output ỹ(s) and one secondary measured auxiliary
output y(s). The manipulated variable u(s) and the disturbance
d(s) affect both outputs
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Section 6.3 Equivalents of the Optimal Controller

The disturbance is considered to be unmeasured. Q(s) is the
controller and G (s) is the model of a stable MP plant

Figure: Inferential control system
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Section 6.3 Equivalents of the Optimal Controller

Since

y(s) = G (s)u(s) + A(s)d(s)

the disturbance can be written as

d(s) =
y(s)

A(s)
− G (s)

A(s)
u(s)

Define an estimator

E (s) :=
B(s)

A(s)

The estimated value of the unmeasured output is

ỹ(s) = G̃ (s)u(s) + B(s)d(s)

= G̃ (s)u(s) + E (s)[y(s)− G (s)u(s)]

The function of E (s) is to combine inputs and predict the effect
of the unmeasured disturbance on the plant output
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Section 6.3 Equivalents of the Optimal Controller

Now assume that the output ỹ(s) can be measured. If the model
is exact: G̃ (s) = G (s), ỹ(s) = y(s), A(s) = B(s), then E (s) = 1.
The inferential control structure reduces to the IMC structure

Figure: Reduced inferential control system
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Section 6.3 Equivalents of the Optimal Controller

The signal entering the estimator is d(s)A(s). To reject its effect
on the plant output, the control effort should be

u(s) = −d(s)A(s)Q(s)

Cancellation is perfect when Q(s) = 1/G (s).
For the general plant

G (s) =
KN+(s)N−(s)

M−(s)

the controller is

Q(s) =
M−(s)

KN−(s)N+(−s)

This controller contains the element that is not physically
realizable. The problem can be solved by introducing a filter to the
controller. Then, the result is identical to the H2 controller
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Section 6.3 Equivalents of the Optimal Controller

Consequently, the quasi-H∞ control, the H2 control, the inferential
control with measured output, and the IMC are equivalent for the
plant whose rational part is stable MP

The H2 control, the inferential control scheme with measured
output, and the IMC are equivalent for the plant whose rational
part is stable

Model predictive control:
The model predictive control is a general designation of a variety
of control algorithms developed for computer control systems,
rather than one single control algorithm

Assume that the plant is rational stable MP, and Ts denotes the
sampling time
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Section 6.3 Equivalents of the Optimal Controller

Model: The value of a unit step response at every sampling instant
t = Ts , 2Ts , ..., NTs : a1, a2, ..., aN

Control objective: The predicted output yp(k) on the considered
horizon L follows the desired output trajectory yr (k)

Desired output trajectory:

yr (k + 1) = αy(k) + (1− α)r(k)

Here α = e−Ts/λ, λ is the time constant of the desired output
trajectory, and y(s) is the real output of the plant

Objective function:

min
P∑
i=1

[yp(k + i)− yr (k + i)]2

P control variables, u(k)s, can be calculated by minimizing it
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Section 6.3 Equivalents of the Optimal Controller

Comparison:
The predictive model vs The step response model in the form of a
transfer function
The desired output trajectory vs The desired closed-loop transfer
function
The objective function vs The optimal performance index

It is seen that the design idea of the model predictive control is
very similar to that of the quasi-H∞ Smith predictor and the H2

Smith predictor.

Certainly, model predictive control involves many algorithms. Each
predictive algorithm possesses its specific form. Not every
predictive algorithm is exactly equivalent to the quasi-H∞ Smith
predictor and the H2 Smith predictor
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Section 6.3 Equivalents of the Optimal Controller

Consider the one step MAC, that is, P = L = 1. Let the output of
the model is ym(k). The predicted output of the plant, yp(k), is

yp(k + 1) = ym(k + 1) + [y(k)− ym(k)]

When the system is optimal, we have yp(k + 1) = yr (k + 1) and
y(k) = yr (k). Then

αyr (k) + (1− α)r(k) = yr (k) + ym(k + 1)− ym(k)

Taking the Z -transform yields

(1− α)r(z)− (1− α)yr (z) = (z − 1)ym(z)

This equation, together with the Z -transforms of the model
output and the desired output trajectory

ym(z) = u(z)G (z), yr (z) =
1− α
z − α

r(z)
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Section 6.3 Equivalents of the Optimal Controller

shows that

u(z)

r(z)
=

1− α
(z − α)G (z)

Computing the Laplace domain version of this controller, one can
find it is identical to that of the quasi-H∞ controller and the H2

controller.

Similarly, it can be proved that the DMC with P = L is identical to
the quasi-H∞ controller and the H2 controller.
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Section 6.4 The PID Controller and High-Order Controllers

6.4 The PID Controller and High-Order Controllers

Section 4.3 An approximate Smith predictor was derived by
utilizing the PID controller
This section: How is a PID controller derived by utilizing the
quasi-H∞ Smith predictor or the H2 Smith predictor

For simplicity of presentation, it might as well let the rational part
of the plant be stable MP and have no zeros. In this case, the
quasi-H∞ control and the H2 control results in the same controller

Rearranging the Smith predictor, one can obtain an equivalent
unity feedback loop with the controller

C (s) =
R(s)

1 + [Go(s)− G (s)]R(s)
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Section 6.4 The PID Controller and High-Order Controllers

Substitute the nominal plant

G (s) =
Ke−θs

M−(s)

and the Smith predictor

R(s) =
M−(s)

K (λs + 1)nj − K

into the controller. The obtained controller is

C (s) =
1

K

M−(s)

(λs + 1)nj − e−θs

When λ→ 0, the C (s) tends to be optimal. The optimal
controller is unique
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Section 6.4 The PID Controller and High-Order Controllers

Assume that there is a first-order plant with time delay, that is,
M−(s) = τs + 1 and nj = 1. The controller C (s) is

C (s) =
1

K

τs + 1

λs + 1− e−θs

The open-loop transfer function of the system is

L(s) = G (s)C (s)

=
e−θs

λs + 1− e−θs

The Nyquist plot and the Bode plot are given in Figures
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Section 6.4 The PID Controller and High-Order Controllers

Figure: Nyquist plot of the system with the first-order plant

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 44/74



Section 6.4 The PID Controller and High-Order Controllers

Figure: Bode plot of the system with the first-order plant
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Section 6.4 The PID Controller and High-Order Controllers

With this controller, the closed-loop response can be computed
analytically. The reference response is

y(t) =

{
0 0 < t < θ

1− e−(t−θ)/λ t ≥ θ

The response for the input disturbance can be written as

y(t) =


0 0 < t < θ

K
[
1− e−(t−θ)/τ

]
0 ≤ t < 2θ

K

[ λ
λ−τ e

−(t−2θ)/λ−
τ

λ−τ e
−(t−2θ)/τ − e−(t−θ)/τ

]
t ≥ 2θ

Since the feedback acts after t ≥ 2θ, the error appearing during
t < 2θ can never be overcome. This error will not be less than
K (1− e−θ/τ ). The larger the θ/τ , the larger the error
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Section 6.4 The PID Controller and High-Order Controllers

Evidently, the PID controller can not be used as an exact
substitute for the optimal controller. There are two reasons:

1 When the time delay equals zero, if the order of the plant is
greater than 3, C (s) is of high order. A PID controller is not
able to reproduce the dynamics of C (s) exactly

2 When the time delay is not zero, C (s) involves a time delay
and thus is of infinite dimension. Since the PID is of finite
dimension, it cannot reproduce the dynamics of C (s)

Two ways to derive a PID controller from high-order controllers:

1 expand e−θs by using the Pade approximation. The resulting
controller is the H2 PID controller developed in Section 5.1

2 Approximate the overall controller by a low-order rational
function. One obtains the Maclaurin PID controller (Section
5.5) or the PID controller with best achievable performance
(Sections 5.6)
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Section 6.4 The PID Controller and High-Order Controllers

Besides these analytical design methods, one can also utilize the
pole-placement method or other numerical algorithms to design
the PID controller. This is not recommended because

1 Numerical methods are tedious.

2 The controller has fixed parameters. It cannot be tuned for
quantitative responses.

3 Almost no performance improvement can be obtained.

The following example is used to compare the responses of
different controllers.

Example

The primary control loop of a nuclear power plant is shown in
Figure. The goal is to control the temperature of water by
adjusting the speed of the reaction, which is determined by the
depth of the control rods in the reactor.
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Section 6.4 The PID Controller and High-Order Controllers

Figure: Control system of a nuclear reactor
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Section 6.4 The PID Controller and High-Order Controllers

Example (ctd.1)

Since the water has to be transported from the reactor to the
measurement point, there is a time delay in the plant. The transfer
function of the temperature plant is obtained by carrying out
experiments:

G (s) =
e−0.4s

0.2s + 1
.

In this example,
K = 1, θ = 0.4,N+(s) = 1,N−(s) = 1,M−(s) = 0.2s + 1, and
nj = 1. The Smith predictor given by (1) or (1) is

R(s) =
0.2s + 1

λs
.
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Example (ctd.2)

The H2 PID controller is

C (s) =
(0.2s + 1)2

s(0.2λs + λ+ 0.4)

The Maclaurin PID controller is

C (s) =
TI

λ+ 0.4

[
1 +

1

TI s
+

0.08(3TI − 0.4)

3TI (λ+ 0.4)

]
where

TI = 0.2 +
0.08

λ+ 0.4
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Example (ctd.3)

The PID controller with best achievable performance is

C (s) = a1

[
1 +

a0
a1s

+
a2
a1

s

]
1

b1s + 1

where

a0 =
1

2(λ+ 0.4)
,

a1 =
0.224 + 0.16λ

0.64 + 0.4λ
,

a2 = 0.0333
0.64− 0.48λ

0.64 + 0.4λ
,

b1 = −0.2
0.064− 0.48λ− 0.4λ2

0.64 + 0.4λ
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Example (ctd.4)

Take λ = 0.41θ for these controllers. A unit step reference is
added at t = 0 and a unit step load is added at t = 100. The
nominal responses of the closed-loop system are shown in Figure

In practice, the reference has a limited bandwidth. If the
bandwidth of reference is restricted to be 5 rad/s, the responses of
these methods are closer than those without the restriction.

It is assumed that there are 10% uncertainties on the three
parameters of the plant, respectively. The worst case is that the
gain and the time delay become the maximum and the time
constant becomes the minimum. In this case, the closed-loop
responses are given in Figure. The responses of these controller are
still steady with respect to this uncertainty
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Figure: Responses for full frequency range
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Figure: Responses for limited frequency range

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 55/74



Section 6.4 The PID Controller and High-Order Controllers

Figure: Worst-case responses with 10% uncertainties
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Section 6.5 Choice of Weighting Functions

6.5 Choice of Weighting Functions

Two problems that closely relate to the design of optimal
controllers:

1 The choice of the filter (The subject of Section 5.7)

2 The choice of the weighting function (The subject of this
section)

Basis of the design in this book: System gains
Constraints imposed on the weighting function by the system
gain: The weighting function should be chosen in accordance with
the system input

H2 optimal control:
The controller is designed for an impulse
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Section 6.5 Choice of Weighting Functions

The weighting function should be chosen so that∥∥∥∥ r(s)

W (s)

∥∥∥∥
2

= 1

or equivalently, the weighting function should equal the system
input
H∞ optimal control:
Require that ∥∥∥∥ r(s)

W (s)

∥∥∥∥
2

≤ 1

To cover all energy-bounded inputs, a reasonable choice for the
weighting function is to take it to be equal to the input

Now consider the choice problem of the weighting functions for
several frequently encountered cases
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Section 6.5 Choice of Weighting Functions

Case 1:
In most methods, the control system is designed for ideal step
inputs or step-like signals (that is, an ideal step signal with a lag).
In this case, the transfer function of the input signal can directly
be chosen as the weighting function for both the H2 optimal
control and the H∞ optimal control

Case 2:
In statistic control, the input is a random signal. Normally, the
statistics feature or the spectrum of the input is known. Then the
transfer function of the equivalent input can be obtained. The
weighting function W (s) can also be taken as the transfer function
of the equivalent input

Case 3:
In some applications, designers have acquired through experience
the desired shape for the Bode magnitude plot of S(s)
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Section 6.5 Choice of Weighting Functions

In particular, a good performance is known to be achieved if the
plot of S(s) lies under some curve. In this case, the weighting
function W (s) can be chosen as the transfer function
corresponding to the curve. A known S(s) has two implications:

1 Since S(s) + T (s) = 1, the desired shape of T (s) is
determined.

2 The bandwidth of the system is restricted.

Further consideration:
The above method may not be a good one for the design problem.
In the design problem, it is desirable the weighting function is as
simple as possible. In some applications, the system input is
complex. Consequently, the weighting function W (s) is in a
complex form. For example, the weighting function might be

W (s) =
1

s(τ1s + 1)(τ2s + 1)
.
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Section 6.5 Choice of Weighting Functions

The design of an optimal controller for a complex weighting
function is tedious.

Simplified design: Take W (s) = 1/s
This works because the controller designed for an ideal step has a
potential to work well for step-like signals

Design procedure:

1 Design the controller for the ideal step

2 Choose an appropriate filter according to the design
requirement

Since W (s) is fixed, the obtained closed-loop response may not
reflect the required feature. The problem can simply be solved by
tuning the filter (Figure)
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Section 6.5 Choice of Weighting Functions

Figure: Designs with different procedures
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Section 6.5 Choice of Weighting Functions

Difference Between the Two Methods

The question of interest: Whether can the function of the
weighting function be thoroughly substituted by a filter

Analysis: Suppose that the complex weighting function and the
associated controller are Wp1(s) and Q1(s) respectively, and the
fixed weighting function and the associated controller are Wp2(s)
and Q2(s) respectively. In most cases, both of the two weighting
functions are MP and do not have poles in the open RHP. For
example, the weighting functions may be

Wp1(s) =
1

s(τ1s + 1)(τ2s + 1)
and Wp2(s) =

1

s
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Section 6.5 Choice of Weighting Functions

Let

Wp1(s)[1− G (s)Q1(s)] = Wp2(s)[1− G (s)Q2(s)]

Then

Q2(s) = G−1(s)[1−W−1
p2 (s)Wp1(s)] + W−1

p2 (s)Wp1(s)Q1(s)

In light of the feature of Wp1(s) and Wp2(s), W−1
p2 (s)Wp1(s) is

stable
G (s) is MP: For a given Wp1(s) one can always find a stable
Q2(s), which can reach the same performance as Wp1(s)
G (s) is NMP: If G−1(s)[1−W−1

p2 (s)Wp1(s)] is stable, one can
find an equivalent Q2(s) to Wp1(s). For other cases, the function
of the weighting function cannot be substituted by a filter

Since T (s) = G (s)Qopt(s)J(s), the filter provides an alternative to
design the controller for the required closed-loop response
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Section 6.5 Choice of Weighting Functions

The design method of using a filter has several advantages:

1 In many advanced design methods, the determination of
weighting functions is a difficult problem. The “no-weight”
design procedure given in this section does not require the
designer to choose a weight function. The design task is
significantly simplified.

2 In some methods, the weighting function is determined by
empirical methods, which implies that different designers will
obtain different controllers, even when the same method is
used. With the design procedure in this section, different
designers will obtain the same controller.

3 The filter is closely related to the closed-loop response. As
compared with the method using weighting functions for
performance design, the new method is provides a direct and
simple means for adjusting the closed-loop response.
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6.6 Simplified Tuning for Quantitative Robustness

Many methods: The controller is designed based on both the
nominal plant and the uncertainty profile. If the uncertainty profile
varies, the controller has to be re-designed

Problems: Such methods are inconvenient in practice.

A solution: The design methods introduced in this book do not
depend on the prior information about the uncertainty profile

If the uncertainty profile is known, quantitative performance and
robustness can be obtained by computation or tuning
When the uncertainty profile is not known, quantitative
performance and robustness can roughly be achieved by tuning
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If the uncertainty profile varies, it is not necessary to re-design the
controller. The robust performance can be obtained by tuning the
performance degree

The tuning procedure is simple: Increase the performance
degree monotonically until the required response is obtained

Further consideration: The procedure is still a bit inconvenient.
In many applications, the requirement on the dynamic performance
is not very strict, while the convenience is very important.
Sometimes, the dynamic performance is even sacrificed for the
convenience

Goal of this section: Simplify the tuning procedure and to
provide an engineering tuning method that can be applied in
control software or hardware
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Simplified Tuning

Assume that the plant model is

G (s) =
Ke−θs

τs + 1

and the uncertainties of the three parameters have the same
amplitude. Their varying profile, epu, is expressed in the
percentage of the nominal value. The unstructured uncertainty of
the system can be expressed by

∆m(jω) =


∣∣∣∣ |K |+ epuK

|K |
jτω + 1

j(τ − epuτ)ω + 1
e jepuθω − 1

∣∣∣∣ ω < ω∗∣∣∣∣ |K |+ epuK

|K |
jτω + 1

j(τ − epuτ)ω + 1

∣∣∣∣+ 1 ω ≥ ω∗
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Here ω∗ is determined by

epuθω
∗ + arctan

epuτω
∗

1 + τ(τ − epuτ)ω∗2
= π,

π

2
≤ epuθω

∗ ≤ π

It should be pointed out that the above assumption does not
require the three parameters to change simultaneously, or that the
three parameters must have the same level of uncertainty. The real
case could be that the uncertainty of one parameter is larger than
that of another one or the other two; nevertheless, the
unstructured uncertainty profile is still within the same scope

Now let us see how to simplify the tuning procedure. Split the
overall uncertainty scope epu into 3 ranges: small (10%), middle
(20%), and large (30%). Certainly, it can also be split into more
ranges for finer tuning. The three ranges are marked on a knob,
which is set up on the panel of a regulator (Figure)
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Figure: Three range knob of the performance degree
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How to use:

1 Make a rough estimation of the uncertainty

2 Set the performance degree knob at a proper range

3 If the performance requirement changes or the uncertainty
profile varies, the performance and the robustness can be
adjusted by re-setting the performance degree knob

Two cases encountered:

1 The closed-loop system is unstable or the response oscillates
intensely. This implies that the actual uncertainty is larger
than the estimated. The performance degree knob should be
set at a larger range

2 The response of the closed-loop system is always slow. This
implies that the actual uncertainty is smaller than the
estimated. The performance degree knob should be set at a
smaller range
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Performance Degree Somputation

Problem formulation: After the parameter uncertainty scope,
epu, is given, how to determine the relationship between epu and λ:
λ = f (epu)

A simple method:

λ = (αepu + β)θ

where α and β are listed in Table. This is a rough formula, as
its form is very simple

Table: Tuning parameters for three range knob

10% 20% 30%
α 1.32 0.47 0.76
β 0.95 0.39 0.32

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 72/74



Section 6.6 Simplified Tuning for Quantitative Robustness

Scope: As indicated in the preceding section, many widely applied
methods are equivalent to each other. Hence, the split-range
tuning method can be applied not only to the design method in
this book, but also to many other methods, for example, the
Dahlin controller and the model predictive control

Comparison with the automatic camera:
Automatic camera: The user has to roughly estimate the distance
from the objective to the camera. There are usually three choices:
flower (which denotes near), portrait (which denotes middle), and
mountain (which denotes far). The focus range is then determined.
Other works are automatically finished by the camera after the
shutter button is pressed

Split-range method: The only work to do is to roughly estimate
the uncertainty profile. Other works are automatically finished by
the regulator
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End of Chapter 6

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 74/74


	6.1 The Quasi-H Smith Predictor
	6.2 The H2 Optimal Controller and the Smith Predictor
	6.3 Equivalents of the Optimal Controller
	6.4 The PID Controller and High-Order Controllers
	6.5 Choice of Weighting Functions
	6.6 Simplified Tuning for Quantitative Robustness

