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Section 2.1 Process Dynamic Responses

2.1 Process Dynamic Responses

Plant Description

Different plants may be described by the same model:
Distillation column, paper-making machine, disk, maglev, ...
Description: Linear time-invariant causal model G (t), where t is
the continuous time variable. G (s) denote its transfer function.
Causality: G (t) = 0 for t < 0. Implication: the output depends
only on the current and the previous inputs
Properness:

1 Proper—G (s)|s=j∞ is finite (the degree of denominator is
greater than or equals the degree of numerator)

2 Strictly proper—G (s)|s=j∞ = 0 (the degree of denominator is
greater than the degree of numerator)

3 Bi-proper—G (s)|s=j∞ is a nonzero constant (the degree of
denominator equals the degree of numerator)

4 Improper—Not proper
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Section 2.1 Process Dynamic Responses

Stable Plants with Time Delays

When the original mass or energy equilibrium is upset by a change
at the input, the output will eventually reach a new equilibrium.
Feature: Do not have closed RHP poles
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Section 2.1 Process Dynamic Responses

Models of Stable Plants

G (s) =
K

(τ1s + 1)(τ2s + 1)...(τns + 1)
e−θs

K—Real constant denoting the static gain
θ—Positive real constant denoting the time delay
τi (i = 1, 2, ..., n)—Have positive real parts and denote time
constants

The first-order model frequently used in practice:

G (s) =
K

τs + 1
e−θs

The model can well be illustrated by utilizing a shower
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Section 2.1 Process Dynamic Responses

The Model of a Shower

At t, turn up the valve of hot
water by a small increment ∆q

At t1 the increment of the warm
water temperature is ∆c and
does not increase anymore

The warmer water flows to the
outlet at t2

K = ∆c/∆q
τ = t1 − t
θ = t3 − t2. Figure: Shower
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Section 2.1 Process Dynamic Responses

Unstable Plants with Time Delays

When the original mass or energy equilibrium is upset by a change
at the input, the output will increase or decrease faster and faster
until the physical limit is reached.
Feature: Have RHP poles
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Section 2.1 Process Dynamic Responses

Models of Unstable Plants

G (s) =
K

(−τ1s + 1)(−τ2s + 1)...(−τms + 1)×
(τm+1s + 1)...(τns + 1)

e−θs

K—Real constant denoting the static gain
θ—Positive real constant denoting the time delay
τi (i = 1, 2, ...,m, ..., n)—Have positive real parts and denote time
constants

The first-order model frequently used in practice:

G (s) =
K

τs − 1
e−θs

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 8/64



Section 2.1 Process Dynamic Responses

Models of Unstable Plants

G (s) =
K

(−τ1s + 1)(−τ2s + 1)...(−τms + 1)×
(τm+1s + 1)...(τns + 1)

e−θs

K—Real constant denoting the static gain
θ—Positive real constant denoting the time delay
τi (i = 1, 2, ...,m, ..., n)—Have positive real parts and denote time
constants

The first-order model frequently used in practice:

G (s) =
K

τs − 1
e−θs

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 8/64



Section 2.1 Process Dynamic Responses

Integrating Plants with Time Delays

When the original mass or energy equilibrium is upset by a change
at the input, the output will increase or decrease with a fixed speed
until the physical limit is reached.
Feature: Have poles at the origin
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Section 2.1 Process Dynamic Responses

Models of Integrating Plants

G (s) =
K

sm(τ1s + 1)(τ2s + 1)...(τns + 1)
e−θs

K—Real constant denoting the static gain
θ—Positive real constant denoting the time delay
τi (i = 1, 2, ..., n)—Have positive real parts and denote time
constants
m—Integer

The first-order model frequently used in practice:

G (s) =
K

s
e−θs
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Section 2.1 Process Dynamic Responses

Categories of Plants

According to pole positions:


Stable plants
Integrating plants
Unstable plants

According to zero positions:

{
MP plants
NMP plants

MP plants: Its transfer function does not contain zeros in the
closed RHP or a time delay
NMP plants: All plants that are not MP
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Section 2.1 Process Dynamic Responses

The General Plant

In theoretical study, the following model may be used:

G (s) =
KN+(s)N−(s)

M+(s)M−(s)
e−θs

K—Real constant denoting the static gain
θ—Positive real constant denoting the time delay
“+”—Denote that all of the roots are in the closed RHP
“-”—Denote that all of the roots are in the open LHP

Assumption 1: N+(0) = N−(0) = M+(0) = M−(0) = 1, which is
made solely to simplify the statement
Assumption 2: deg{N+}+ deg{N−} ≤ deg{M−}+ deg{M+},
with which the plant is proper
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Section 2.2 Rational Approximations for Time Delay

2.2 Rational Approximations for Time Delay

Why Use Rational Approximations

Main reasons:

The time delay is an irrational function, which is of infinite
dimension

Most design methods developed so far are based on rational
functions. They are only applicable to plants of finite
dimension

One way to overcome the problem: Approximate the time delay
by employing rational functions
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Section 2.2 Rational Approximations for Time Delay

Rational Approximations

1. Apprximation with lags

e−θs = lim
n→∞

(
1

1 + θs/n

)n

The first-order approximation:

e−θs =
1

1 + θs

2. Taylor series expansion

e−θs = lim
n→∞

1− θs + θ2s2/2! + ...+ (−1)nθnsn/n!

The first-order approximation:

e−θs = 1− θs
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Section 2.2 Rational Approximations for Time Delay

3. The Pade apprximation
Tools: Rational fraction expressions
Basic ideas: Make the power series expansion of a rational
function match a given power series expansion with as many as
possible terms

Assume that the formal power series expansion of F (s) is

F (s) = c0 + c1s + c2s
2 + ....

Let m and n be nonnegative integers. The Pade approximant of
F (s) is a rational fraction given by

Vmn(s)

Pmn(s)
=

ams
m + am−1s

m−1 + ...+ a0
bnsn + bn−1sn−1 + ...+ b0

To obtain the unique solution, take b0 = 1 (m + n + 1 unknowns)
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Section 2.2 Rational Approximations for Time Delay

Let the Taylor series expansion of the Pade approximant match the
first m + n + 1 terms of the power series expansion of F (s):

(bns
n + bn−1s

n−1 + ...+ b0)(c0 + c1s + c2s
2 + ...+ cm+ns

m+n)

= ams
m + am−1s

m−1 + ...+ a0

Compare the coefficients of 1, s, ..., sm+n in the two sides of the
equation. One obtains

a0
a1
...
am

 =


c0 0 0 ... 0
c1 c0 0 ... 0
... ... ... ... ...
cm cm−1 cm−2 ... cm−n




b0
b1
...
bn

 (1)


cm+1 cm ... cm−n+1

cm+2 cm+1 ... cm−n+2

... ... ... ...
cm+n cm+n−1 ... cm




b0
b1
...
bn

 =


0
0
...
0

 (2)

Here ci = 0 when i < 0.
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Section 2.2 Rational Approximations for Time Delay

If the equations have a solution, the coefficients of Pmn(s) can be
obtained from (2), and the coefficients of Vmn(s) can be obtained
from (1).
For exponential functions, the Pade approximant has a more clear
expression. The m/n Pade approximant of a time delay can be
written as

e−θs ≈ Vmn(θs)

Pmn(θs)

Vmn(θs) =
m∑
j=0

(m + n − j)!m!

(m + n)!j!(m − j)!
(−θs)j

Pmn(θs) =
n∑

j=0

(m + n − j)!n!

(m + n)!j!(n − j)!
(θs)j

It can be verified that Pmn(θs) = Vnm(−θs).
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Section 2.2 Rational Approximations for Time Delay

The first-order approximation:

e−θs =
1− θs/2

1 + θs/2

When m = n, the all-pass Pade approximant is obtained.

All-pass: For SISO systems, a transfer function is all-pass if its
magnitude equals 1 at all points on the imaginary axis.
Features of all-pass functions: An all-pass transfer function
passes without attenuation input sinusoids of all frequencies.
Zeros and poles of an all-pass Pade approximant:

All zeros are in the open RHP

All poles are in the open LHP

The zeros and the poles are mirror-images of each other
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Section 2.2 Rational Approximations for Time Delay

Features of the all-pass Pade approximant:
1 Better precision can be obtained than the Taylor series of the

same order.
2 The magnitude characteristic of time delay is preserved; the

only difference is the phase
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Section 2.2 Rational Approximations for Time Delay

Limitation of Rational Approximations

Stability: A closed-loop system is stable if its characteristic
equation has no roots in the closed RHP

Rational approximations were seldom used in classical control
theory for analyzing the stability of the closed-loop system,
because they cannot guarantee the correctness of the result.

Example

To see how the designer may be misled, consider the simple system
shown in Figure. The characteristic equation of the closed-loop
system is

1 + ses = 0.
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Section 2.2 Rational Approximations for Time Delay

Example (ctd.1)

It is easy to verify that the closed-loop system is stable. With the
Taylor series expansion of different orders, different roots for the
characteristic equation can be obtained :

1 + s = 0 The root is s = −1

1 + s + s2 = 0 The roots are s = −0.5± j0.8660

1 + s + s2 + s3/2 = 0 The roots are s = −1.5437,

−0.2282± j1.1151
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Section 2.2 Rational Approximations for Time Delay

Example (ctd.2)

According to these results, the closed-loop system should be
stable. However, a higher order Taylor series expansion gives the
following equation:

1 + s + s2 +
s3

2
+

s4

3!
+

s5

4!
+

s6

5!
= 0,

which has two roots in the RHP:

s = 0.1041± j3.0815.

Nevertheless, this does not imply that rational approximations
cannot be used for the analysis and design of a control system.
Key: Choosing proper methods
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Section 2.3 Time Domain Performance Indices

2.3 Time Domain Performance Indices

Control Structures in This Book

The most elementary feedback control system has two
components:

A plant to be controlled

A controller to generate the input to the plant

The main control structure discussed in this book:
The unity feedback control loop
The unity feedback control loop has played a vital role in the study
of control theory:

It is the most widely used structure

Most of the non-unity feedback control loops can easily be
converted into the unity feedback control loop
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Section 2.3 Time Domain Performance Indices

The Unity Feedback Loop

G (s)—Plant
C (s)—Controller
r(s)—Reference
e(s)—Error
u(s)—Controller output (control
variable/manipulated variable)

y(s)—System output (controlled
variable)
d ′(s)—Input disturbance
d(s)—Output disturbance
Measurement noise—Very small
and thus neglected
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Section 2.3 Time Domain Performance Indices

Test Signals

The response of a system depends on not only the model, but also
the input and the initial condition

Without loss of generality, it is a common practice to use the
standard initial condition; that is, the system is at rest initially with
its output and all time derivatives thereof being zero

In the analysis and design of control systems, performances of
various systems should be compared on the same basis. This can
be achieved by specifying a particular test signal for the input and
then comparing responses of different systems to the test signal
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Section 2.3 Time Domain Performance Indices

Frequently used Test Signals

Impulse:

δ(t) =

{
0 t 6= 0
∞ t = 0

,∫ ∞
0

δ(t) dt = 1,

No ideal impulse exists in the real world. It can be approximated
by a rectangular pulse. The Laplace transform is 1
Step:

r(t) =

{
0 t < 0
A t ≥ 0

,

where A is a constant. The step signal with A = 1 is called the
unit step. The Laplace transform is 1/s
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Section 2.3 Time Domain Performance Indices

Ramp:

r(t) =

{
0 t < 0
At t ≥ 0

,

where A is a constant. The Laplace transform is 1/s2

Sinusoidal:

r(t) =

{
0 t < 0
A sinωt t ≥ 0

.

Its Laplace transform is Aω/(s2 + ω2)

It is impossible to design a controller working well for all inputs.
Most controllers are designed for steps
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Section 2.3 Time Domain Performance Indices

Time Domain Indices

In classical control theory, the performance of a control system is
usually characterized in terms of the transient response and the
steady-state response:

Transient response—The response that goes from the initial
state to the steady state

Steady-state response—The manner in which the system
output behaves as the time approaches infinity

People usually pay more attention to the transient response,
because

It is difficult to obtain the required transient response

The system almost always goes from one state to another
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Section 2.3 Time Domain Performance Indices

Performance indices of the transient response are generally
defined by utilizing the unit step response

Overshoot σ

The maximum value of the unit step response, measured from
unity. It is common to use the percentage overshoot

Rise time tr

Overdamped systems: The time required for the unit step response
to rise from 10% to 90% of its steady-state value
Underdamped systems: The time from zero to that the unit step
response reaches the steady-state value for the first time is usually
used in the description of the rise time

Settling time ts

The time required for the unit step response to reach and stay
within a given error band (usually 5% of the steady-state value)
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Section 2.3 Time Domain Performance Indices

Figure: Step response curve for time-domain performance indices
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Section 2.3 Time Domain Performance Indices

One major objective of control systems: To reject the effect of
disturbances and keep the system output as close as possible to
the reference

To provide the information for disturbance responses, two transient
performance indices are defined for the unit step disturbance at the
plant input:

Perturbation peak ρ

The maximum value of the disturbance response, measured from
the steady-state value

Recovery time trs

The time required for the disturbance response to reach and stay
within a given error band (usually 5% of the steady-state value)
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Section 2.3 Time Domain Performance Indices

Figure: Disturbance response curve for time-domain performance indices
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Section 2.3 Time Domain Performance Indices

Measure for steady-state performance: Steady-state error
Steady-state error: The difference between the desired output
and the real output of the system as time goes to infinity

It is desirable that the steady-state error gradually vanishes

Let L(s) = G (s)C (s) be the open-loop transfer function. From
Final Value Theorem it is known that the steady-state error of a
stable system is

lim
t→∞

e(t) = lim
s→0

sr(s)

1 + L(s)

The steady-state error depends on not only the input but also the
open-loop transfer function. Whether or not a system exhibits a
steady-state error is determined by the system type
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Section 2.3 Time Domain Performance Indices

Definition

The system is said to be of Type m if L(s) has m poles at the origin

The steady-state error of the system for a step reference is

lim
t→∞

e(t) = lim
s→0

1

1 + L(s)
=

1

1 + lims→0 L(s)

It is a constant for a Type 0 system. If the zero steady-state error
is required, the system type must be at least one
The steady-state error of the system for a ramp reference is

lim
t→∞

e(t) = lim
s→0

1

s + sL(s)
=

1

lims→0[sL(s)]

The steady-state error of a Type 0 system is infinite. A Type 1
system can follow a ramp with a finite steady-state error. A Type 2
or higher system can follow a ramp with zero steady-state error

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 34/64



Section 2.3 Time Domain Performance Indices

The Problem of the classical performance indices: Difficult to
express them in mathematical forms
An alternative for controller design: Integral performance
indices
Merits: Can be optimized with mathematical methods

Integral Absolute Error (IAE):

IAE =

∫ ∞
0
|e(t)|dt.

Integral Square Error (ISE):

ISE =

∫ ∞
0

e2(t)dt.

Integral of Time Multiply by Absolute Error (ITAE):

ITAE =

∫ ∞
0

t|e(t)|dt.
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ISE =

∫ ∞
0

e2(t)dt.

Integral of Time Multiply by Absolute Error (ITAE):

ITAE =

∫ ∞
0

t|e(t)|dt.

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 35/64



Section 2.3 Time Domain Performance Indices

The ISE index is the only one that is widely applied. This is
because

It is easier to perform the optimization procedure with the ISE
index than with other indices (Mathematical convenience!)

Other indices can not provide superior performance to the ISE

ISE-based indices: LQ, LQG, H2, etc.
Basic design objective of the H2 control: Search for a controller
such that the ISE of the system is minimized for the impulse (or
equivalently, the white noise with zero-mean and unit variance)
Basic design objective of the H∞ control: Minimize the worst
ISE resulted from all energy-bounded inputs:

sup
r(t)

∫ ∞
0

e2(t)dt

Limitation: All these indices do not relate to classical indices
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Section 2.4 Frequency Response Analysis

2.4 Frequency Response Analysis

Frequency Response

Basis of frequency response analysis: When a linear system is
subject to a sinusoidal input, its ultimate response is also a
sustained sinusoidal wave
The closed-loop transfer function of the unity feedback loop is

T (s) =
L(s)

1 + L(s)

The frequency response of the system is

T (jω) =
L(jω)

1 + L(jω)

which can be expressed with magnitude and phase as

T (jω) = |T (jω)|∠T (jω)
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Section 2.4 Frequency Response Analysis

In frequency response analysis some points with special
characteristics are selected to define the performance indices

Resonance peak Tp

The maximum value of the magnitude of the closed-loop frequency
response

Resonance frequency ωr

The frequency at which the resonance peak occurs

Bandwidth BW

The range of frequencies beyond which the magnitude of a signal
drops down by more than 3dB

Feature of frequency response analysis: The stability, as well as
the performance, of the closed-loop system can be determined
from the characteristics of the open-loop response
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Section 2.4 Frequency Response Analysis

Figure: Magnitude curve for frequency response analysis
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Section 2.4 Frequency Response Analysis

Nyquist Stability Criterion

Nyquist path: It starts at the origin, goes up the imaginary axis,
turns into the RHP following a semicircle of infinity radius, and
comes up the negative imaginary axis to the origin again.
Nyquist plot: As a point s = jω makes one circuit around this
curve, the point L(jω) traces out a curve called the Nyquist plot of
the transfer function L(s)

Theorem (Nyquist Stability Criterion)

Let n denote the total number of poles of L(s) in the RHP, then
the closed-loop system is stable if and only if the Nyquist plot of
L(s) does not pass through the (−1, j0) point and encircles it n
times counterclockwise

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 40/64



Section 2.4 Frequency Response Analysis

Nyquist Stability Criterion

Nyquist path: It starts at the origin, goes up the imaginary axis,
turns into the RHP following a semicircle of infinity radius, and
comes up the negative imaginary axis to the origin again.
Nyquist plot: As a point s = jω makes one circuit around this
curve, the point L(jω) traces out a curve called the Nyquist plot of
the transfer function L(s)

Theorem (Nyquist Stability Criterion)

Let n denote the total number of poles of L(s) in the RHP, then
the closed-loop system is stable if and only if the Nyquist plot of
L(s) does not pass through the (−1, j0) point and encircles it n
times counterclockwise

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 40/64



Section 2.4 Frequency Response Analysis

Figure: Nyquist plot of a stable open-loop system
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Section 2.4 Frequency Response Analysis

Bode Stability Criterion

Bode plot: Consists of two graphs: One is a graph of the
logarithm of the magnitude, |L(jω)|; the other is a graph of the
phase angle, ∠L(jω) As a point s = jω makes one circuit around
this curve, the point L(jω) traces out a curve called the Nyquist
plot of the transfer function L(s)

Theorem (Bode Stability Criterion)

A closed-loop system is unstable if the frequency response of L(s)
has a magnitude greater than or equal to 1 at the frequency where
the phase angle is −180◦
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Section 2.4 Frequency Response Analysis

Figure: Bode plot
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Section 2.4 Frequency Response Analysis

Stability Margins

Not only can the Bode plot be used to test the stability of the
closed-loop system, but also to describe the relative stability:

Gain Margin (GM)

Let ωc be the frequency where the phase angle is −180◦. The gain
margin is the reciprocal of the magnitude at the frequency.

GM = |L(jωc)|−1,∠L(jωc) = −180◦

Phase Margin (PM)

Let ωg be the frequency where the magnitude is 1. The phase
margin is the additional phase lag needed to distabilize the system.

PM = 180◦ + ∠L(jωg ), |L(jωg )| = 1
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Section 2.5 Transformation of Two Commonly Used Models

2.5 Transformation of Two Commonly Used Models

Experimental Modeling methods

Two typical experimental methods:

Step response method—Based on the information from the
open-loop step response. The model is usually a transfer
function in the form of the first-order plant with time delay

Ultimate gain method—Tune a proportional controller KC

to build a sustained oscillation, which gives the ultimate gain
Ku and the ultimate period Tu

Typical design methods based on the step response model:
e.g. Cohen-Coon (C-C) method
Typical design methods based on the the ultimate gain
model: e.g. Ziegler-Nichols (Z-N) method
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Section 2.5 Transformation of Two Commonly Used Models

The Ultimate Cycle Model

Explanation: An increase of KC will make all the points on the
Nyquist plot move radially outward from the origin. When KC

increases to the extent that the Nyquist plot passes through
(−1, j0), the stability limit is reached and a sustained oscillation
occurs
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Section 2.5 Transformation of Two Commonly Used Models

Ultimate Cycle Model =>Step Response Model

Historically, the two models are developed independently
Idea: The plants they describe are the same one, they must be
internally equivalent
Goal of this section: The quantitative relationship between them

Assume that the plant is stable and given by

G (s) =
K

τs + 1
e−θs

The three parameters can be calculated by utilizing the obtained
ultimate cycle model:

∠KuG (jωu) = −π
|KuG (jωu)| = 1
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Section 2.5 Transformation of Two Commonly Used Models

Since

KuG (jωu) =
KuKe

−jθωu

jτωu + 1

The relationship between the step response model and the
ultimate cycle model can be expressed as

−θωu − arctan(τωu) = −π, KuK√
(τωu)2 + 1

= 1

When the plant gain K is known (Otherwise one can carry out the
procedure twice), the time constant of the step response model is

τ =

√
(KuK )2 − 1

ωu

The time delay of the step response model is

θ =
π − arctan(

√
(KuK )2 − 1)

ωu
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Section 2.5 Transformation of Two Commonly Used Models

Step Response Model => Ultimate Cycle Model

It is a challenge to obtain analytical expressions by solving the
foregoing equations. Here they are derived by time domain analysis

Without loss of generality, assume that a unit step reference is
used in the ultimate cycle method. The system output is

y(s) =
1

s

KCKe
−θs

τs + 1 + KCKe−θs

Let

f (s) =
KCKe

−θs

τs + 1 + KCKe−θs

Then

y(s) = f (s)/s

where f (s) is an irrational function
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Section 2.5 Transformation of Two Commonly Used Models

To derive the ultimate cycle model, f (s) is expanded first by using
a rational approximation. The Pade approximation is employed.
Assume that the Maclaurin series extension of f (s) is

f (s) = f (0) + f ′(0)s +
f ′′(0)

2!
s2 +

f (3)(0)

3!
s3 +

f (4)(0)

4!
s4 + ...

where

f (0) =
KCK

1 + KCK

f ′(0) = −KCK (θ + τ)

(1 + KCK )2

f ′′(0) = −KCK (KCKθ
2 − θ2 − 2θτ − 2τ2 + 2KCKθτ)

(1 + KCK )3

f (3)(0) = −

KCK (θ3 + 3K 2
c K

2θ2τ − 12KCKθ
2τ + 6τ3

−12KCKθτ
2 + 6θτ2 + K 2

c K
2θ3 + 3θ2τ − 4KCKθ

3)

(1 + KCK )4
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Section 2.5 Transformation of Two Commonly Used Models

f (4)(0) = −

KCK (K 3
c K

3θ4 + 4K 3
c K

3θ3τ − 11K 2
c K

2θ4

−44K 2
c K

2θ3τ − 48K 2
c K

2θ2τ2 + 11KCKθ
4

+44KCKθ
3τ + 84KCKθ

2τ2 + 72KCKθτ
3

−θ4 − 4θ3τ − 12θ2τ2 − 24θτ3 − 24τ4)

(1 + KCK )5
.

Let the Pade approximation of f (s) be

f (s) =
a2s

2 + a1s + a0
b2s2 + b1s + 1

Then  a0
a1
a2

 =

 f (0) 0 0
f ′(0) f (0) 0

f ′′(0)/2! f ′(0) f (0)

 1
b1
b2


[

f ′′(0)/2! f ′(0)

f (3)(0)/3! f ′′(0)/2!

] [
b1
b2

]
= −

[
f (3)(0)/3!

f (4)(0)/4!

]
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Section 2.5 Transformation of Two Commonly Used Models

This leads to

a0 = f (0),

a1 = b1f (0) + f ′(0),

a2 = b2f (0) + b1f
′(0) + f ′′(0)/2!,

b1 = − f ′′(0)f (3)(0)/12− f ′(0)f (4)(0)/24

f ′′(0)2/4− f ′(0)f (3)(0)/6
,

b2 = −−f
(3)(0)2/36 + f ′′(0)f (4)(0)/48

f ′′(0)2/4− f ′(0)f (3)(0)/6
.

The system output is

y(s) =
a2s

2 + a1s + a0
s(b2s2 + b1s + 1)

=
a2(s2 + p1s + p0)

b2s[(s + q)2 + ω2]
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Section 2.5 Transformation of Two Commonly Used Models

where

p0 =
a0
a2
, p1 =

a1
a2
, q =

b1
2b2

, ω2 =
1

b2
− b21

4b22
.

Evidently, to obtain a sustained oscillation q should be zero, or
equivalently, b1 = 0. This implies that the ultimate frequency is

ωu =
1

b2

Then, the ultimate period is

1

ωu
=√
θ(KKCθ3 + 6KKCθ2τ + 12KKCθτ2 + θ3 + 6θ2τ + 18θτ2 + 24τ3)

12(KKCθ2 + 4KKCθτ + 6KKC τ2 + θ2 + 4θτ + 6τ2)
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Section 2.5 Transformation of Two Commonly Used Models

Since

b1 = −KKCθ
3 + 5KKCθ

2τ + 8KKCθτ
2 − θ3 − 5θ2τ − 12θτ2 − 12τ3

2(KKCθ2 + 4KKCθτ + 6KKC τ2 + θ2 + 4θτ + 6τ2)

b1 = 0 (the KC at this moment is Ku) gives

KKu =
θ3 + 5θ2τ + 12θτ2 + 12τ3

θ3 + 5θ2τ + 8θτ2

The ultimate gain is

Ku =
θ3 + 5θ2τ + 12θτ2 + 12τ3

K (θ3 + 5θ2τ + 8θτ2)

It can be seen that the two models can be directly converted into
each other. One may use a controller based on the step response
model when the ultimate gain and the ultimate frequency are
obtained, and vice versa.
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Section 2.6 Design Requirements and Performance Comparison

2.6 Design Requirements and Performance
Comparison

Design Requirements

The goal of this section is to clarify some plausible notions in
control system design and comparison

Overshoot: For stable plants, the overshoot larger than 50% is
rarely accepted. How large the overshoot should be depends on the
plant:

Some plants have a strict limitation on the overshoot

For some other plants, there is no strict limitation on the
overshoot. However, an excessive overshoot implies a large
error, which may cause the saturation of the actuator
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Section 2.6 Design Requirements and Performance Comparison

Rise time: It is desirable that the rise time is fast. However, in
the system with an overshoot, the rise time and the overshoot
usually conflict. To obtain a proper overshoot, the response speed
may have to be sacrificed

Settling time: It is desirable that the settling time is as short as
possible. The settling time relates the overshoot and the rise time.
Normally, in a system with an overshoot the larger the overshoot,
the faster the rise time and the longer the settling time; in a
system without an overshoot the faster the rise time, the shorter
the settling time

Disturbance response: In most cases, for the system with
overshoot the smaller the perturbation peak, the larger the
overshoot

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 56/64



Section 2.6 Design Requirements and Performance Comparison

Conclusions

The relationship among overshoot, rise time, settling time, integral
indices, the reference response, and the disturbance response
implies that they are not independent. Once the requirement on
one index is given, a restriction is imposed at the same time to
other indices.

A desired controller should provide fast and steady response. With
respect to this objective, one can take an overshoot of 5%-20% if
no other requirements are given. Such an overshoot can, normally,
provide a good trade-off between performance and robustness.
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Section 2.6 Design Requirements and Performance Comparison

Controller Comparison

Purpose of the comparison: Illustrate the advantage of the new
method

Existing problem

No unified standard. The comparison is usually unfair

Controller order: If the order of the plant is high or the plant
contains time delay, the order of the obtained controller is high.
One may have to use model reduction techniques. The order of the
controller is interrelated with the closed-loop response. It is
certainly easier for a higher-order controller than for a lower-order
controller to achieve good performance. In this case, comparison
of controllers with different orders may be unfair

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 58/64



Section 2.6 Design Requirements and Performance Comparison

Overshoot:

The controller with good performance, in many cases, has a
large overshoot. The reason is that the controller cannot
exactly cancel the zeros and poles of the plant when the plant
is of high-order or has time delay.

The performance may not be improved if the overshoot is
reduced. A reduced overshoot can usually be obtained by
sacrificing the performance (Figure)

For a fair comparison, a common basis is necessary. For example,
when the overshoots of different controllers are compared, they
should have the same rise time

Robustness consideration: A main problem in robust control is to
tradeoff between the nominal performance and the robust stability
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Section 2.6 Design Requirements and Performance Comparison

Figure: Conclusions
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Section 2.6 Design Requirements and Performance Comparison

Nominal performance: The performance of the system with an
exact model
Robust performance: The performance of the uncertain system

When the robustness of different systems are compared, it should
be considered whether they have the same nominal performance.
Good robustness may be obtained by sacrificing the nominal
performance

In addition to performance comparison, an important aspect in
evaluating a design method is the practicability
Practicability: While the performance specification is reached,

Whether the design method is easy to use

whether the design procedure and result is simple enough
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Section 2.6 Design Requirements and Performance Comparison

In many applications, the problem of practicability is even more
important than the performance problem

An example: In an ultra supercritical power plant there are more
than 100 loops. The time for configuration and tuning is very
limited. In this case, it is impossible to use complicated methods.
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Section 2.6 Design Requirements and Performance Comparison

Evaluate the Design Method in This Book

The best way to evaluate the design method in this book may be
to apply other design methods to the example given in this book
and answer the following questions:

1 With the same plant, which method gives better performance
(for example, ISE)?

2 In a real situation, which method is easier to understand and
use?

3 Which method can reach practical performance specifications
more easily?

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 63/64



End of Chapter 2
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