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Section 13.1 Controller Parameterization for MIMO Systems

13.1 Controller Parameterization for MIMO Systems

H∞ control and H2 control are two prevailing design methods

Merit of H∞ control: In Section 3.4, it was seen that the
sufficient and necessary condition for robust performance analysis
could be obtained when the system performance is specified in
terms of the ∞-norm
Merit of H2 control: For controller design, however, the 2-norm
is mathematically more convenient for treatment

Methodology of SISO quasi-H∞ control: The controller is
designed by constructing a desired closed-loop transfer function
Methodology of SISO H2 control: The controller is derived by
solving an optimization problem
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Section 13.1 Controller Parameterization for MIMO Systems

In this chapter, the SISO H2 design will be extended to the
decoupling control:

1 All stabilizing decoupling controllers are parameterized

2 Diagonal factorizations are defined for MIMO plants

3 Based on the parameterization and the factorization, the
controller and the decoupler are analytically derived in one
step

Consider the control system consisting of an n × n plant G(s) and
an n × n controller C(s).

C(s) = Q(s)[I− G(s)Q(s)]−1

where Q(s) is the IMC controller
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Section 13.1 Controller Parameterization for MIMO Systems

In the design method of H2 decoupling control in this chapter, the
plant can be proper, have time delays, have poles on the imaginary
axis, or have poles and zeros in the open RHP

It is assumed that

1 There is not any unstable hidden mode in G(s).

2 G(s) is of full normal rank.

3 G(s) does not have any finite zeros on the imaginary axis.

The first two assumptions are the same as those in the quasi-H∞
decoupling control. The third assumption is necessary for H2

decoupling control, because zeros on the imaginary axis may cause
internal instability
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Section 13.1 Controller Parameterization for MIMO Systems

Practical plants seldom have finite zeros on the imaginary axis. In
case this happens, to use the design method here a slight
perturbation can be introduced to the zeros. For example,
substitute (s + 0.01)/(s + 1) for s/(s + 1)

As we known, the closed-loop system is internally stable iff

1 Q(s) is stable

2 [I− G(s)Q(s)]G(s) is stable

Theorem

Assume that G(s) is a plant with time delays. The unity feedback
control system is internally stable if and only if

1 Q(s) is stable

2 I− G(s)Q(s) has zeros wherever G(s) has unstable poles

3 All the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed
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Section 13.1 Controller Parameterization for MIMO Systems

Proof.

It is enough to prove the equivalence between the stability of
[I− G(s)Q(s)]G(s) and the second and third conditions

Assume that [I− G(s)Q(s)]G(s) is stable. Evidently, I− G(s)Q(s)
must have zeros wherever G(s) has unstable poles and all the RHP
zero-pole cancellations in [I − G(s)Q(s)]G(s) are removed.
Otherwise, [I− G(s)Q(s)]G(s) will have unstable poles, which
contradicts the assumption

Now, assume that I− G(s)Q(s) has zeros wherever G(s) has
unstable poles and all the RHP zero-pole cancellations in
[I − G(s)Q(s)]G(s) are removed. As the only possible unstable
poles of [I− G(s)Q(s)]G(s) are those of G(s), the second
assumption implies that all the unstable poles in
[I− G(s)Q(s)]G(s) are removed by the zeros of I− G(s)Q(s)
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Section 13.1 Controller Parameterization for MIMO Systems

In multivariable systems, there exists such a possibility that
I− G(s)Q(s) has zeros wherever G(s) has unstable poles, but
there are irremovable RHP zero-pole cancellations in
[I− G(s)Q(s)]G(s). Only when there is not any irremovable
RHP zero-pole cancellation in [I− G(s)Q(s)]G(s), can the
stability of [I− G(s)Q(s)]G(s) be guaranteed

Example

This example illustrates the irremovable RHP zero-pole
cancellation in [I− G(s)Q(s)]G(s). The plant is described by the
transfer function matrix

G(s) =

[ 1
s+3

1
s−2

2
s+3

s−1
s−2

]
It has two poles at s = −3 and s = 2, and one zero at s = 3
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Section 13.1 Controller Parameterization for MIMO Systems

Example (ctd.1)

Assume that the controller is

Q(s) =

[ −(s−1)
s+1

22s+1
(s+1)2

2(s−2)
(s+3)(s+1)

−(s−2)(22s+1)
(s+3)(s+1)2

]

Q(s) is stable. Since

I− G(s)Q(s) =

[
s(s+5)

(s+3)(s+1) 0

0 s(s+29)(s−2)
(s+3)(s+1)2

]

I− G(s)Q(s) has zeros wherever G(s) has unstable poles
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Example (ctd.2)

Nevertheless,

[I− G(s)Q(s)]G(s) =

[
s(s+5)

(s+3)2(s+1)
s(s+5)

(s−2)(s+3)(s+1)
2s(s+29)(s−2)
(s+3)2(s+1)2

s(s+29)(s−1)
(s+3)(s+1)2

]

is not stable. It has a RHP pole at s = 2 and a RHP zero at s = 2.
The RHP zero-pole cancellation cannot be removed

Let the multiplicity of the unstable pole pj

(Re(pj) ≥ 0, j = 1, 2, ..., rp) be lj , and let lij be the largest
multiplicity of pj in the ith row of G(s)
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Section 13.1 Controller Parameterization for MIMO Systems

Theorem

All controllers that make the unity feedback control system
internally stable can be parameterized as

C(s) = Q(s)[I− G(s)Q(s)]−1

where Q(s) is any stable proper transfer function matrix that
satisfies

lim
s→pj

dk

dsk
det[I− G(s)Q(s)] = 0, j = 1, 2, ..., rp; k = 0, 1, ..., lj − 1

and all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed
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Section 13.1 Controller Parameterization for MIMO Systems

Proof.

To guarantee the internal stability of the closed-loop system, first,
Q(s) should be stable. This implies that Q(s) should be proper

Second, [I− G(s)Q(s)]G(s) should be stable. This implies that
I− G(s)Q(s) has to cancel all the closed RHP poles of G(s). To
achieve this Q(s) must satisfy that

lim
s→pj

dk

dsk
det[I− G(s)Q(s)] = 0, j = 1, 2, ..., rp; k = 0, 1, ..., lj − 1

The condition cannot guarantee the stability of [I−G(s)Q(s)]G(s)
unless all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s)
are removed
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Section 13.1 Controller Parameterization for MIMO Systems

Corollary

Assume that G(s) is a stable plant. All controllers that make the
unity feedback control system internally stable can be
parameterized as

C(s) = Q(s)[I− G(s)Q(s)]−1

where Q(s) is any stable proper transfer function matrix

It is noted that for stable plants the new paramerization is identical
to the Youla parameterization

When the system performance is considered, it is always desirable
that the system possesses the asymptotic tracking property
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Section 13.1 Controller Parameterization for MIMO Systems

If the system inputs are steps, the closed-loop transfer function
matrix T(s) = G(s)Q(s) should satisfy the following condition for
the asymptotic tracking property:

lim
s→0

[I− T(s)] = 0

Theorem

All controllers that make the unity feedback control system
internally stable and possess the asymptotic tracking property for
step inputs can be parameterized as

C(s) = Q(s)[I− G(s)Q(s)]−1

where

Q(s) = G−1(0)[I + sQ1(s)]
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Section 13.1 Controller Parameterization for MIMO Systems

Theorem (ctd.1)

Q1(s) is any stable transfer function matrix that makes Q(s)
proper and satisfies

lim
s→pj

dk

dsk
det[I− G(s)G−1(0)− sG(s)G−1(0)Q1(s)] = 0,

j = 1, 2, ..., rp; k = 0, 1, ..., lj − 1

and all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed

Proof.

If

lim
s→0

[I− G(s)Q(s)] = 0
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Section 13.1 Controller Parameterization for MIMO Systems

Proof ctd.1.

or equivalently,

Q(0) = G−1(0)

the closed-loop system possesses the asymptotic tracking property.
All transfer function matrices that satisfy the condition can be
written as

Q(s) = G−1(0)[I + sQ1(s)]

To guarantee the internal stability of the closed-loop system, Q(s)
should be stable. This implies that Q(s) is proper. Second,
I− G(s)Q(s) has to cancel all the closed RHP poles of G(s). To
achieve this, Q(s) must satisfy that
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Section 13.1 Controller Parameterization for MIMO Systems

Proof ctd.2.

lim
s→pj

dk

dsk
det[I− G(s)G−1(0)− sG(s)G−1(0)Q1(s)] = 0

j = 1, 2, ..., rp; k = 0, 1, ..., lj − 1

The condition cannot guarantee the stability of [I−G(s)Q(s)]G(s)
unless all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s)
are removed

It is easy to obtain the closed-loop transfer function matrix:

T(s) = G(s)Q(s) = G(s)G−1(0)[I + sQ1(s)]

In practice, it may be required that the closed-loop response is
decoupled. Let the ith element of T(s) be Ti (s)
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Section 13.1 Controller Parameterization for MIMO Systems

Corollary

Assume that the closed-loop response is decoupled. All controllers
that make the unity feedback control system internally stable and
possess the asymptotic tracking property for step inputs can be
parameterized as

C(s) = Q(s)[I− G(s)Q(s)]−1

where

Q(s) = G−1(0)[I + sQ1(s)]

Q1(s) is any stable transfer function matrix that makes Q(s)
proper and T(s) diagonal, and satisfies
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Section 13.1 Controller Parameterization for MIMO Systems

Corollary (ctd.1)

lim
s→pj

dk

dsk
[1− Ti (s)] = 0

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

and all the RHP zero-pole cancellations in [I − G(s)Q(s)]G(s) are
removed

The well-known Youla parameterization is not used here because of
several reasons:

1 It cannot be directly used for plants with time delays

2 It needs a coprime factorization, which cannot be obtained by
means of analytical methods

3 It does not directly relate to the IMC controller Q(s)

4 It cannot be directly used for decoupling control
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Section 13.2 Diagonal Factorization for H2 Control

13.2 Diagonal Factorization for H2 Control

The diagonal factorization for H2 decoupling control: The
factorization is similar to, but not exactly the same as that for
quasi-H∞ decoupling control

The introduction follows the original developing procedure of the
factorization, which explains why such a factorization is
constructed

Assume that the plant is expressed as

G(s) =

 G11(s)e−θ11s · · · G1n(s)e−θ1ns

...
. . .

...
Gn1(s)e−θn1s · · · Gnn(s)e−θnns


where Gij(s)(i , j = 1, 2, ..., n) are scalar rational transfer functions

and θij ≥ 0 are time delays
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Section 13.2 Diagonal Factorization for H2 Control

Decentralized control: In decentralized control only those
diagonal elements of the plant are treated; non-diagonal elements
are regarded as uncertainty

Along this line, it seems that the plant can be factorized into the
following form:

G(s) = GD(s)GO(s)

where

GD(s) =

 e−θ11s · · · 0
...

. . .
...

0 · · · e−θnns


GO(s) =

 G11(s) · · · G1n(s)e−(θ1n−θ11)s

...
. . .

...

Gn1(s)e−(θn1−θnn)s · · · Gnn(s)


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Section 13.2 Diagonal Factorization for H2 Control

Unfortunately, such a factorization is not feasible for controller
design, because there may be predictions in the resulting controller

SISO control: To find a feasible factorization, let us review the
SISO design first. Given a plant G (s), the ideal controller is

Qopt(s) = G−1(s)

In this case, the closed-loop transfer function is 1. The
performance is evidently optimal. However, such a controller is not
physically realizable when G (s) has a time delay

An alternative is to factorize the plant into two parts:

G (s) = GD(s)GO(s)

where GD(s) is the time delay and GO(s) is the delay-free part
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Section 13.2 Diagonal Factorization for H2 Control

If GO(s) is NMP, a further factorizing should be made:

GO(s) = GN(s)GMP(s)

where GN(s) is the all-pass part and GMP(s) is the MP part

The optimal controller can be taken as

Qopt(s) = G−1(s)GD(s)GN(s) = G−1
MP(s)

This controller is proved to be the optimal realizable inverse of
G−1(s). When Qopt(s) is improper, a filter will be introduced to
make it proper
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Section 13.2 Diagonal Factorization for H2 Control

MIMO case

The factorization for the time delay part: Let the inverse of
the plant be

G−1(s) =

 G 11(s)e−θ
11s · · · G 1n(s)e−θ

1ns

· · · . . . · · ·
Gn1(s)e−θ

n1s · · · Gnn(s)e−θ
nns


where G ji (s)e−θ

ji s(j , i = 1, 2, ..., n) are the elements of G−1(s),
and θji are the maximum time delays that can be separated from
each element.

It is conjectured that the H2 optimal decoupling controller can be
designed in a similar way to that used in the SISO system
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Section 13.2 Diagonal Factorization for H2 Control

To carry out such a design, the first step is to factorize the plant
G(s) into two parts:

G(s) = GD(s)GO(s)

where GD(s) is the time delay part. GD(s) is diagonal and should
be chosen such that:

1 it counteracts the predictions in G−1(s) so that
GO
−1(s) = G−1(s)GD(s) does not involve predictions;

2 no additional time delays are introduced in GO
−1(s).

Because the elements of GD(s) are time delays, no RHP zeros and
poles are cancelled in forming GO(s) = GD

−1(s)G(s). If GO(s) is
MP, the optimal controller can be taken as

Qopt(s) = GO
−1(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) 25/70



Section 13.2 Diagonal Factorization for H2 Control

Definition

Let θli (i = 1, 2, ..., n) be the largest prediction of the ith column of
G−1(s), that is, θli = maxj θ

ji , j = 1, 2, ..., n. The H2 diagonal
factorization for the time delay is defined as

GD(s) =

 e−θl1s · · · 0
...

. . .
...

0 · · · e−θlns


In particular, for rational plants GD(s) = I

The definition is the same as that in quasi-H∞ decoupling control.
This is because any factorization with time delays shorter than the
ones in this factorization will not thoroughly counteract the
predictions in G−1(s); an irrealizable controller will be obtained
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Section 13.2 Diagonal Factorization for H2 Control

It is easy to verify that GD
H(jω)GD(jω) = I for all ω and

GD(0) = I. The property GD
H(jω)GD(jω) = I is the generalization

of the concept all-pass

The factorization for the RHP zero part: GO(s) may be NMP.
In this case, GO(s) has to be factorized into two parts:

GO(s) = GN(s)GMP(s)

where GN(s) is a diagonal matrix and should be chosen so that:

1 it is all-pass;

2 it counteracts the RHP poles in GO
−1(s) so that

GMP
−1(s) = GO

−1(s)GN(s) is stable;

3 no additional RHP zeros are introduced in GMP
−1(s)

The GMP(s) obtained in such a way is the MP part of GO(s)
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Section 13.2 Diagonal Factorization for H2 Control

The optimal controller can be taken as

Qopt(s) = GMP
−1(s)

Assume that zj(j = 1, 2, ..., rz) are the unstable poles of GO
−1(s).

Definition

Let kij(i = 1, 2, ..., n) be the largest multiplicity of the unstable
pole zj(j = 1, 2, ..., rz) in the ith column of GO

−1(s). The H2

diagonal factorization for closed RHP zeros is

GN(s) =


rz∏
j=1

(
−s+zj
s+z̄j

)k1j

· · · 0

...
. . .

...

0 · · ·
rz∏
j=1

(
−s+zj
s+z̄j

)knj


In particular, for MP plants GN(s) = I
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Section 13.2 Diagonal Factorization for H2 Control

It can be verified that GN
H(jω)GN(jω) = I for all ω and GN(0) = I

The diagonal all-pass factorization: Let

GA(s) = GD(s)GN(s)

The diagonal all-pass factorization of G(s) can be expressed as

G(s) = GA(s)GMP(s)

The factorization is unique and has the following features:

1 GA(s) is diagonal;

2 GA(s) is stable and all-pass;

3 GMP(s) is MP
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Section 13.2 Diagonal Factorization for H2 Control

Why not Use The Inner-Outer Factorization?

Although the factorization defined in this section is similar to the
inner-outer factorization, there are two different features between
them:

1 The new factorization is diagonal

2 It is defined for both stable plants and unstable plants
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Section 13.3 H2 Optimal Decoupling Control

13.3 H2 Optimal Decoupling Control

The subject of this section: Derive the H2 optimal decoupling
controller by employing the controller parameterization in Section
13.1 and the diagonal factorization in Section 13.2 (Figure)

It will be shown that the conjecture in the last section about the
optimal controller is correct. The diagonal factorization does result
in the optimal solution

As discussed in Section 10.4, the H2 optimal control problem can
be expressed as

min ‖S(s)W(s)‖2

where W(s) = I/s is the weighting function and

S(s) = I− G(s)Q(s)
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Figure: Design procedure for H2 decoupling controller
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For decoupling control, S(s) should be diagonal. Since a fixed
weighting function is adopted, the designer is not required to select
a weighting function

The design problem here can be considered as an optimization over
the class of all stabilizing controllers with asymptotic tracking
properties

Preliminaries: Let H2 be the set of all strictly proper stable
functions, H⊥2 be the set of strictly proper transfer function
matrices without poles in the open LHP. Then L2 := H2 + H⊥2
denotes the set of all strictly proper transfer function matrices
without poles on the imaginary axis
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Given a T(s) in L2, it can be uniquely expressed as

T(s) = T1(s) + T2(s)

where T1(s) ∈ H2 and T2(s) ∈ H⊥2

Let the superscript * denote the conjugate transpose of a
system: T∗(s) = TT (−s). The reader should not confuse it with
the complex conjugate transpose, which is defined for a complex

matrix: TH(jω) = T̄
T

(jω). For complex matrices,
T∗(jω) = TH(jω)

Lemma

If T1(s) ∈ H2 and T2(s) ∈ H⊥2 , then

‖T1(s) + T2(s)‖2
2 = ‖T1(s)‖2

2 + ‖T2(s)‖2
2
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Proof.

‖T1(s) + T2(s)‖2
2

=
1

2π

∫
Trace{[T1(jω) + T2(jω)]H [T1(jω) + T2(jω)]}dω

= ‖T1(s)‖2
2 + ‖T2(s)‖2

2 +
1

2π

∫
Trace[T1

H(jω)T2(jω) + T2
H(jω)T1(jω)]dω

Consider the last term. Convert it into a contour integral by closing
the imaginary axis with an infinite radius semicircle in the LHP:

1

2π

∫
Trace[T1

H(jω)T2(jω) + T2
H(jω)T1(jω)]dω

=
1

2πj

∮
Trace[T1

∗(s)T2(s) + T2
∗(s)T1(s)]ds
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Proof ctd.1.

According to Cauchy’s theorem, if a function does not have poles
in a bounded open set, then its integral on a closed contour in the
set equals zero. Therefore, the right-hand side of the above
equation equals zero

Design problem: Using the controller parameterization developed
in Section 13.1, we have

‖S(s)W(s)‖2
2

=
∥∥s−1[I− G(s)Q(s)]

∥∥2

2

=
∥∥s−1[I− G(s)G−1(0)− sG(s)G−1(0)Q1(s)]

∥∥2

2
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Theorem

Assume that the plant with time delays can be uniquely factorized
into two parts according to Definitions in Section 132:

G(s) = GA(s)GMP(s)

where GA(s) = GD(s)GN. Then the optimal solution for H2

decoupled control is

Qopt(s) = GMP
−1(s)

Proof.

An important property of the all-pass function is that it does not
affect the value of 2-norm
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Proof ctd.1.

that is,

‖GA(s)G1(s)‖2 = ‖G1(s)‖2

for a transfer function matrix G1(s). By utilizing the diagonal
factorization given in the last section, the H2 performance index
can be written as

‖S(s)W(s)‖2
2

=
∥∥s−1[GA

−1(s)− I] + s−1{I− GMP(s)G−1(0)[I + sQ1(s)]}
∥∥2

2

Since GA(0) = I and GMP(0)G−1(0) = I, s must be a factor of
GA
−1(s)− I and I− GMP(s)G−1(0). s−1[GA

−1(s)− I] is strictly
proper. s−1{I− GMP(s)G−1(0)[I + sQ1(s)]} is also strictly proper
if Q(s) = G−1(0)[I + sQ1(s)] is proper
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Proof ctd.2.

On the other hand, in light of the definition of GA(s)
s−1[GA

−1(s)− I] is unstable. s−1{I−GMP(s)G−1(0)[I + sQ1(s)]}
is also stable. To see this, let us consider the following equality:

GA(s){I− GMP(s)G−1(0)[I + sQ1(s)]}
= (GA(s)− I) + {I− G(s)G−1(0)[I + sQ1(s)]}

As GA(s) is stable, the first term in the right-hand side is stable.
By Corollary for decoupling controller parameterization, the second
term is stable, too.
Applying Lemma, we have

‖S(s)W(s)‖2
2

=
∥∥s−1[GA

−1(s)− I]
∥∥2

2
+
∥∥s−1{I− GMP(s)G−1(0)[I + sQ1(s)]}

∥∥2

2
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Proof ctd.3.

Minimizing the right-hand side of the equation yields

Q1opt(s) = s−1G(0)GMP
−1(s)[I− GMP(s)G−1(0)]

Hence, the optimal solution is

Qopt(s) = GMP
−1(s)

It can be seen from the deriving procedure that it is the
parameterization in Section 13.1 and the factorization in Section
13.2 that make it possible to obtain an analytical solution. With
the optimal analytical solution, the optimal performance is readily
obtained as follows:

min ‖S(s)W(s)‖2 =
∥∥s−1[GA

−1(s)− I]
∥∥

2
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No matter what method is used, this is the best decoupling
performance that can be achieved, provided the performance index
is specified to minimize the 2-norm of the weighted sensitivity
function

It should be emphasized that the proving procedure is general
enough to allow general weighting functions, although only the
pre-specified weighting function is considered in this section

Sometimes, the decoupled response can also achieve the optimal
performance in a general sense, rather than diagonal optimal
performance. When the time delays in each row of G(s) are
the same, and all RHP zeros have the same multiplicities in
each row of G(s), the diagonal optimal solution is identical to
the optimal solution. Evidently, for MP plants, the results of the
optimal control and the decoupling optimal control are the same
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13.4 Analysis for H2 Decoupling Control Systems

The design procedure the MIMO H2 controller design is similar to
that for the SISO H2 controller design. The next step is to
introduce a filter J(s) to the optimal controller:

Q(s) = Qopt(s)J(s)

The main functions of the filter:

1 The optimal controller Qopt(s) is usually improper. The filter
is introduced to make it proper

2 The filter is used to tune the shape of the closed-loop response
and satisfy the performance and robustness requirements,
which was achieved by weights in many other methods
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The filter should satisfy the following requirements:

1 The closed-loop system is internally stable

2 The controller Q(s) is proper

3 Asymptotic tracking

Since the closed-loop response is decoupled, J(s) is chosen as a
diagonal matrix:

J(s) =

 J1(s) · · · 0
...

. . .
...

0 · · · Jn(s)


with

Ji (s) =
Nxi (s)

(λi s + 1)ni
, i = 1, 2, ..., n
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Here λi (i = 1, 2, ..., n) are performance degrees. Nxi (s) are
polynomials with all roots in the LHP.

It is not difficult to satisfy the first requirement on the filter. Let
the ith element of GA(s) be GAi (s)(i = 1, 2, ..., n). By Corollary
for decoupling controller parameterization, the closed-loop system
is internally stable if

lim
s→pj

dk

dsk
[1− GAi (s)Ji (s)] = 0,

i = 1, 2, ..., n; j = 1, 2, ..., rp; k = 0, 1, ..., lij − 1

Here deg{Nxi (s)} =
rp∑
j=1

lij(i = 1, 2, ..., n)
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Assume that the largest relative degree of all elements in the ith
column of Qopt(s) is αi . The second requirement can be satisfied
by choosing ni = deg{Nxi (s)}+ αi for strictly proper columns and
ni = deg{Nxi (s)}+ 1 for semi-proper columns

To track the input asymptotically, the filter should satisfy

J(0) = I

This implies that the third requirement can be satisfied by
choosing Nxi (0) = 1

Tuning: Each element of J(s) has an adjustable performance
degree λi , which should be determined by the design specification.
Since the closed-loop response is decoupled, each channel can be
independently tuned
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The ith element of the closed-loop transfer function matrix is

Ti (s) =
Nxi (s)

(λi s + 1)ni

rz∏
j=1

(
−s + zj
s + z̄j

)kij

e−θii s , i = 1, 2, ..., n

Since the performance degree is related to the nominal closed-loop
response monotonically, the system can be tuned conveniently for
quantitative responses. When there exists uncertainty, every
channel is mainly affected by the performance degree of this
channel. The tuning procedure is similar.

For stable plants, the controller can be implemented in the IMC
structure. An important advantage of the implementation is that
the decoupling property can be thoroughly preserved even
when the rational approximation is used. For unstable plants, the
controller must be implemented in the unity feedback loop
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2DOF Control

Control systems with unstable plant usually exhibit excessive
overshoot. This problem can be well solved by employing a 2DOF
structure shown in Figure

A 2DOF controller can isolate the disturbance response from the
reference response and thus make a better control possible

It is easy to design the 2DOF controller in the framework of this
section
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The controller of the disturbance loop is just the controller of the
unity feedback loop:

C1(s) = Q(s)[I− G(s)Q(s)]−1

with Q(s) = Qopt(s)J1(s). The closed-loop transfer function
matrix of the corresponding unity feedback loop is

T(s) = G(s)Q(s) = GD(s)GN(s)J1(s)

Regard T(s) as a new plant and C2(s) as the IMC controller. The
following optimal controller for the reference loop is obtained:

C2opt(s) = J1
−1(s)GN

−1(s)

Introduce a diagonal filter J2(s) to the optimal controller:

C2(s) = C2opt(s)J2(s)

J2(s) has a similar structure to J1(s)
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13.5 Design Examples for H2 Decoupling Control

The design procedure for H2 decoupling controllers can be
formulated as follows:

1 If the plant does not contain time delays (that is, GA(s) = I),
turn to 3

2 If the plant contains time delays, take the rational part GO(s)
as the nominal plant

3 If GO(s) does not have zeros in the RHP (that is, GN(s) = I),
take its inverse as Qopt(s) and turn to 5

4 If GO(s) has zeros in the RHP, construct an all-pass transfer
function matrix by using the factor that contains the zero
(that is, GN(s)) and then remove the all-pass transfer
function matrix. Take the inverse of the remainder as Qopt(s)

5 Introduce a filter J(s) to Qopt(s), compute C(s) and remove
the RHP zero-pole cancellation in C(s)
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In this section, two examples are provided to help the reader to
understand the design procedure of H2 decoupling control. In the
first example, a constructed unstable plant is used, because it is
not easy to find a proper real unstable plant for the design problem
to be illustrated. The plant in the second example is a real one

Example

The plant is described by the following transfer function matrix:

G(s) =
1

(s + 3)(s − 1)

[
s − 2 2(s − 2)

1 s − 1

]
which is NMP and unstable. The plant has two two-multiplicity
poles at s = −3 and s = 1, respectively and two zeros at s = 2
and s = 3, respectively
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Example (ctd.1)

In view of Definition in Section 13.2, G(s) is factorized into

G(s) = GD(s)GO(s)

Since G(s) is rational, GD(s) = I.
The inverse of GO(s) is

GO
−1(s) =

[
s − 1 −2(s − 2)
−1 s − 2

]
(s−2)(s−3)
(s−1)(s+3)

It has unstable poles. Hence, GO(s) has to be factorized as follows:

GO(s) = GN(s)GMP(s)

Zhang, W.D., CRC Press, 2011 (No.2 USU) 51/70



Section 13.5 Design Examples for H2 Decoupling Control

Example (ctd.2)

According to Definition in Section 13.2, we have

GN(s) =

[
−(s−2)
s+2 0

0 1

]
−(s − 3)

s + 3
,

GMP(s) =
−1

(s − 3)(s − 1)

[
−(s + 2) −2(s + 2)

1 s − 1

]
.

By Theorem in Section 13.3, the optimal controller is

Qopt(s) = GMP
−1(s) =

[
s − 1 2(s + 2)
−1 −(s + 2)

]
s+2
s−1

Since both of the largest multiplicities of the RHP poles in the first
and the second row of G(s) are 1, the following filter is chosen:
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Example (ctd.3)

J(s) =

[
β1s+1

(λ1s+1)2 0

0 β2s+1
(λ2s+1)2

]

The suboptimal controller is

Q(s) = Qopt(s)J(s) =

[
(s−1)(β1s+1)

(λ1s+1)2
2(s+2)(β2s+1)

(λ2s+1)2

−(β1s+1)
(λ1s+1)2

−(s+2)(β2s+1)
(λ2s+1)2

]
s − 1

s + 2

Simple computation gives

S(s) = I− G(s)Q(s)

=

[
1− (s−2)(s−3)(β1s+1)

(s+2)(s+3)(λ1s+1)2 0

0 1− −(s−3)(β2s+1)
(s+3)(λ2s+1)2

]

Zhang, W.D., CRC Press, 2011 (No.2 USU) 53/70



Section 13.5 Design Examples for H2 Decoupling Control

Example (ctd.4)

It is readily obtained that

β1 = 6(λ1 + 1)2 − 1, β2 = 2(λ2 + 1)2 − 1

The unity feedback controller is

C(s) =

 (s−1)(s+3){[6(λ1+1)2−1]s+1}
s[λ2

1s
2−(5+10λ1)s+60λ1+36λ2

1+20]
2(s+3){[2(λ2+1)2−1]s+1}

s(λ2
2s+6λ2

2+6λ2+1)
−(s+3){[6(λ1+1)2−1]s+1}

s[λ2
1s

2−(5+10λ1)s+60λ1+36λ2
1+20]

−(s+3){[2(λ2+1)2−1]s+1}
s(λ2

2s+6λ2
2+6λ2+1)


If λ1 = λ2 = 1, the controller is

C(s) =

[
23s3+47s2−67s−3
s(s2−15s+116)

14s2+44s+6
s(s+13)

−(23s2+70s+3)
s(s2−15s+116)

−(7s2+22s+3)
s(s+13)

]

The closed-loop responses are shown in Figures
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Figure: Closed-loop response with λ1 = λ2 = 1-1
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Figure: Closed-loop response with λ1 = λ2 = 1-2
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Example (ctd.5)

Because the plant is unstable, there are large overshoots in the
reference response

If a 2DOF structure is adopted, the controller for the disturbance
loop is

C1(s) = C(s)

The controller for the reference loop is

C2(s) =

 (λ1s+1)2

(β1s+1)(λ′1s+1) 0

0 (λ2s+1)2

(β2s+1)(λ′2s+1)



Zhang, W.D., CRC Press, 2011 (No.2 USU) 57/70



Section 13.5 Design Examples for H2 Decoupling Control

Example (ctd.6)

For 10% undershoot in each reference loop, λ′1 = 1.4 and
λ′2 = 0.8. The controller is

C2(s) =

[
s2+2s+1

32.2s2+24.4s+1
0

0 s2+2s+1
5.6s2+7.8s+1

]

The closed-loop responses are shown in Figures. Now there are not
overshoots in the reference response
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Closed-loop response with λ′1 = 1.4 and λ′2 = 0.8-1
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Closed-loop response with λ′1 = 1.4 and λ′2 = 0.8-2
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Example

Consider a heavy oil fractionator (Figure), of which the linearized
model is

G(s) =

[
4.05e−27s

27s+1
1.77e−28s

60s+1
5.39e−18s

50s+1
5.72e−14s

60s+1

]
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Example (ctd.1)

in which the time constants and time delays are expressed in
minutes. The main objective is to maintain process outputs y1 and
y2 at specification 0.0± 0.005 in the steady state, while at the
same time the process inputs u1 and u2 are subject to saturation
±0.5 with respect to every unit step reference.

The inverse of the plant is

G−1(s) =
adj[G(s)]

det[G(s)]

where

adj[G(s)] =

[
5.72e−14s

60s+1 −1.77e−28s

60s+1

−5.39e−18s

50s+1
4.05e−27s

27s+1

]
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Example (ctd.2)

det[G(s)] =

(
4.05

27s + 1

5.72

60s + 1
− 1.77

60s + 1

5.39e−5s

50s + 1

)
e−41s

It can be verified that

GD(s) =

[
e−27s 0

0 e−14s

]
GN(s) = I

Therefore,

GO(s) = GD
−1(s)G(s) =

[
4.05

27s+1
1.77e−s

60s+1
5.39e−4s

50s+1
5.72

60s+1

]
GMP(s) = GN

−1(s)GO(s) = GO(s)
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Example (ctd.3)

A little algebra gives

Qopt(s) = GMP
−1(s) =

[
4.05

27s+1
1.77e−s

60s+1
5.39e−4s

50s+1
5.72

60s+1

]−1

=

[
5.72

60s+1 −1.77e−s

60s+1

−5.39e−4s

50s+1
4.05

27s+1

]
4.05

27s+1
5.72

60s+1 −
1.77

60s+1
5.39e−5s

50s+1

This rigorously analytical controller is of infinite dimension. With
the help of fitting techniques, one obtains

4.05

27s + 1

5.72

60s + 1
− 1.77

60s + 1

5.39e−5s

50s + 1
≈ 13.6257

1193.2s2 + 67.4s + 1

For step inputs, choose the following filter:
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Example (ctd.4)

J(s) =

[ 1
λ1s+1 0

0 1
λ2s+1

]
The controller is

Q(s) = (1193.2s2 + 67.4s + 1)

[
0.4198

(60s+1)(λ1s+1) − 0.1299e−s

(60s+1)(λ2s+1)

− 0.3956e−4s

(50s+1)(λ1s+1)
0.2972

(27s+1)(λ2s+1)

]

Increase the performance degrees from small to large. It is found
that λ1 = 19 and λ2 = 26 can provide the required response. The
closed-loop responses and the manipulated variable responses are
shown in Figures. Since the IMC structure is used, the closed-loop
responses are thoroughly decoupled even for the approximate
controller

Zhang, W.D., CRC Press, 2011 (No.2 USU) 65/70



Section 13.5 Design Examples for H2 Decoupling Control

Closed-loop response with λ1 = 19 and λ2 = 26-1
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Closed-loop response with λ1 = 19 and λ2 = 26-2
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Response of manipulated variables for λ1 = 19 and λ2 = 26-1

Zhang, W.D., CRC Press, 2011 (No.2 USU) 68/70



Section 13.5 Design Examples for H2 Decoupling Control

Response of manipulated variables for λ1 = 19 and λ2 = 26-2
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End of Chapter 13
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