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Section 4.1 Traditional Design Methods

4.1 Traditional Design Methods

PID Controllers

Importance: 95% controllers in practice are PID controllers
Ideal PID:

u(t) = Kc

[
e(t) +

1

TI

∫
e(t)dt + TD

de(t)

dt

]
Kc—Gain
TI—Integral constant
TD—Derivative constant

e(t)—Error
u(t)—Controller output

Assume that C (s) is the transfer function from e(s) to u(s). Using
the Laplace transform, we have

C (s) = Kc

(
1 +

1

TI s
+ TDs

)
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Section 4.1 Traditional Design Methods

Practical PID Forms

Ideal PID: Has a pure differentiator in it and therefore is not
physically realizable
An important method for realizing an improper transfer
function: Introduce a low-pass transfer function to it
Three practical forms:

C (s) = Kc

(
1 +

1

TI s
+

TDs

TF s + 1

)
C (s) = Kc

(
1 +

1

TI s

)
TDs + 1

TF s + 1

C (s) = Kc

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

Usually TF = 0.1TD in a PID
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Section 4.1 Traditional Design Methods

Tuning Rules

Assume that the step response model is

G (s) =
K

τs + 1
e−θs

and the ultimate cylce model is Ku and Tu

Table: Frequently used tuning methods.

Tuning methods R-C method C-C method Z-N method

KKc 1.2(θ/τ)−1 1.35(θ/τ)−1 + 0.27 0.6KKu

TI/τ 2(θ/τ)
2.5(θ/τ)[1 + (θ/τ)/5]

1 + 0.6(θ/τ)
0.5Tu/τ

TD/τ 0.5(θ/τ)
0.37(θ/τ)

1 + 0.2(θ/τ)
0.125Tu/τ
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Section 4.1 Traditional Design Methods

RZN Tuning

Z-N method: The most widely used method
Disadvantage: The resulting PID controller usually gives
excessive overshoot

A solution: Refined Z-N (RZN) method. Perhaps the most
famous improved method
The modified PID controller is

u(t) = Kc

{
[βr(t)− y(t)] +

1

µTI

∫
e(t)dt + TD

de(t)

dt

}
β and µ are determined by extensive simulation studies. Define

Normalized gain:Kn = KKu,Normalized time delay:θn = θ/τ
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Section 4.1 Traditional Design Methods

When 2.25 < Kn < 15 and 0.16 < θn < 0.57, for a 10% overshoot:

β =
15− Kn

15 + Kn
, µ = 1

and for a 20% overshoot:

β =
36

27 + 5Kn
, µ = 1

If 1.5 < Kn < 2.25 and 0.57 < θn < 0.96,

β =
8

17

(
4

9
Kn + 1

)
, µ =

4

9
Kn

Z-N/RZN usually gives very bad response for the plant with large
time delay. Hence, some designers believe that PID cannot be used
for the plant with large time delay. Actually, with proper design
methods PID can be applied to such systems
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Section 4.2 H∞ PID Controllers for the First-Order Plant

4.2 H∞ PID Controllers for the First-Order Plant

New Design Method

Traditional design method: The control structure is first fixed to
be a PID and then the parameters are determined by empirical
tuning rules
New design method: An optimal performance index is first
defined, and then both the PID control structure and parameters
are analytically derived

Figure: Unity feedback control loop
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Section 4.2 H∞ PID Controllers for the First-Order Plant

Consider the unity feedback control system. According to the Youla
parameterization, all stabilizing controllers can be expressed as

C (s) =
Q(s)

1− G (s)Q(s)

where Q(s) is a stable transfer function. If the model is exact, the
transfer function from d(s) to y(s) is given by

S(s) = 1− G (s)Q(s)

Take the performance index as

min ‖W (s)S(s)‖∞

where W (s) is a weighting function. It should be chosen so that
the 2-norm boundary of the system input is normalized by unity
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Section 4.2 H∞ PID Controllers for the First-Order Plant

It is impossible to design a controller for any inputs. Assume that
the input is a step, i.e. d(s) = 1/s. One can take W (s) = 1/s.
Consider the first-order plant with time delay:

G (s) =
Ke−θs

τs + 1

Many plants can be described by the model. With the 1/1 Pade
approximant

e−θs ≈ 1− θs/2

1 + θs/2

the approximate plant is

G (s) ≈ K
1− θs/2

(τs + 1)(1 + θs/2)

Basic idea: Design the controller for the approximate plant and
then use it for the original plant
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Section 4.2 H∞ PID Controllers for the First-Order Plant

Theorem (Maximum Modulus Theorem)

Assume that Ω is a nonempty region in the complex plane and
F (s) is a function that does not have poles in Ω. If F (s) is not a
constant, then |F (s)| does not attain its maximum value at an
interior point of Ω.

Assume that Ω equals the open RHP. W (s)S(s) should not have
poles in Ω. By Theorem we have

‖W (s)S(s)‖∞ = ‖W (s)[1− G (s)Q(s)]‖∞
= sup

Res>0
|W (s)[1− G (s)Q(s)]|

G (s) has a zero at s = 2/θ in the open RHP. Accordingly

sup
Res>0

|W (s)[1− G (s)Q(s)]| ≥ |W (s)[1− G (s)Q(s)]|s=2/θ| = θ/2
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Section 4.2 H∞ PID Controllers for the First-Order Plant

There exist two constraints on Q(s):

1 Q(s) should be stable for internal stability

2 To make the controller physically realizable, Q(s) should be
proper

3 To have a finite ∞-norm, Q(s) should satisfy

lim
s→0

S(s) = lim
s→0

[1− G (s)Q(s)] = 0

This constraint is also required for asymptotic tracking

Idea: Drop the requirement of properness first and find the optimal
Q(s), namely Qopt(s). Then roll Qopt(s) off at high frequencies

The minimum of ‖W (s)S(s)‖∞ is θ/2. This gives the following
unique optimal solution:

Qopt(s) =
W (s)− θ/2

W (s)G (s)
=

(τs + 1)(1 + θs/2)

K
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Section 4.2 H∞ PID Controllers for the First-Order Plant

Qopt(s) is improper. A low-pass filter must be introduced to roll
Qopt(s) off at high frequencies. Choose the following filter:

J(s) =
β0

(λs + 1)2

β0—A constant
λ—A positive real number
The filter should not violate the constraint for the asymptotic
property:

lim
s→0

[1− G (s)Qopt(s)J(s)] = 0

Elementary computations give β0 = 1. Then the suboptimal
proper Q(s) is

Q(s) = Qopt(s)J(s) =
(τs + 1)(1 + θs/2)

K (λs + 1)2
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Section 4.2 H∞ PID Controllers for the First-Order Plant

λ is an adjustable parameter called performance degree. It
closely relates to the closed-loop performance:

Smaller λ <=> Fast response

Larger λ <=> Slow response

λ→ 0 <=> The optimal ‖W (s)S(s)‖∞

The controller of the corresponding unity feedback loop is

C (s) =
Q(s)

1− G (s)Q(s)
=

1

K

(τs + 1)(1 + θs/2)

λ2s2 + (2λ+ θ/2)s

This is a PID controller

An important feature: It cancels two poles of the approximate
model, or equivalently, two dominant poles of the original model
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Section 4.2 H∞ PID Controllers for the First-Order Plant

Compare the H∞ PID controller with the practical PID controller
of the form

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

Parameters of the H∞ PID controller are

TF =
λ2

2λ+ θ/2
,TI =

θ

2
+ τ,TD =

θτ

2TI
,KC =

TI

K (2λ+ θ/2)

If the practical PID is in the form of

C (s) = KC

(
1 +

1

TI s
+

TDs

TF s + 1

)
parameters of the H∞ PID controller are

TF =
λ2

2λ+ θ/2
,TI =

θ

2
+ τ − TF ,TD =

θτ

2TI
− TF ,KC =

TI

K (2λ+ θ/2)
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Section 4.2 H∞ PID Controllers for the First-Order Plant

When the practical PID controller is

C (s) = KC

(
1 +

1

TI s

)
TDs + 1

TF s + 1

parameters of the H∞ PID controller are

TF =
λ2

2λ+ θ/2
,TI = τ(or

θ

2
),TD =

θ

2
(or τ),KC =

TI

K (2λ+ θ/2)

In practice, a low-order controller is preferred to a high-order
controller. There are two ways to obtain a low-order controller:

1 Design a controller for the high-order model and then reduce
the order of the resulting controller

2 Reduce the order of the model and then design a controller

This section adopts the latter
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Section 4.3 H∞ PID controller and the Smith Predictor

4.3 H∞ PID controller and the Smith Predictor

For a very long time, the PID controller and the Smith predictor
had been regarded as two irrelevant methods: The Smith predictor
was an efficient scheme for plants with large time delays while the
PID controller was not. In this section, the internal relationship
between the two controllers will be discussed

Assume that G̃ (s) is the real plant, its model is described by

G (s) = Go(s)e−θs

where Go(s) is the delay-free part of G (s). When the model is
exact and there is no disturbance, the system output is

y(s) = C (s)Go(s)e−θse(s)
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Section 4.3 H∞ PID controller and the Smith Predictor

This signal is delayed, whereas the desired feedback signal is

yo(s) = C (s)Go(s)e(s)

This is possible if R(s) is substituted for C (s) and the following
quantity is added to the open-loop response y(s):

ys(s) = R(s)Go(s)e(s)− R(s)Go(s)e−θse(s)

since

ys(s) + y(s) = yo(s)

The implication of adding ys(s) to the signal y(s) is shown in
Figure. It is seen that ys(s) is generated by introducing a simple
local loop
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Structure of the Smith predictor

R(s) differs from C (s) in the unity feedback loop:

C (s) =
R(s)

1 + [Go(s)− G (s)]R(s)

If the plant is rational, R(s) reduces to C (s)
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Equivalent structure of the Smith predictor

It is seen in the figure that R(s) and Q(s) are related through

Q(s) =
R(s)

1 + Go(s)R(s)
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Section 4.3 H∞ PID controller and the Smith Predictor

For the H∞ PID controller given in the last section we have

Q(s) =
(τs + 1)(1 + θs/2)

K (λs + 1)2

The controller of the Smith predictor can be obtained by the
inverse relationship:

R(s) =
Q(s)

1− Go(s)Q(s)
=

1

K

(τs + 1)(1 + θs/2)

λ2s2 + (2λ− θ/2)s

R(s) is a PID controller when λ > θ/4

Conclusions

The Smith predictor and the PID controller are approximately
equivalent.This implies that the PID controller can also be used to
control plants with large time delays, provided it is appropriately
designed
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Section 4.3 H∞ PID controller and the Smith Predictor

Example

Consider the paper-making machine shown in Figure. The
paper-making machine is divided into five sections: head, table and
pressing, drying, calenderstack, and reel. Not shown on this figure
is the stock preparation system. In this system, fibers are dispersed
in water, various other materials in the paper-making suspension
are added, and the suspension is delivered to the mixing tank. In
the mixing tank and the head-box, the thick stock is mixed with
the recycled water. Then the head-box delivers the diluted
suspension of fibers to the wire with small fine holes. The wire
continuously moves over the table where most of the water is
removed by draining through the wire. This produces a wet mat of
fibers on the wire, which will become a finished sheet of paper
after pressed and dried
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Paper-making process (From Zhang et al., 2001. Reprinted by
permission of the John Wiley & Sons)

In the system, there are many control objectives, of which the
most important is basis weight
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Section 4.3 H∞ PID controller and the Smith Predictor

Example (ctd.1)

By mechanistic analysis and identification, a low-order model has
been developed for basis weight control:

G (s) =
5.15

1.8s + 1
e−2.8s

That is, K = 5.15, τ = 1.8, θ = 2.8. Then the H∞ controller is

Q(s) =
(1.8s + 1)(1.4s + 1)

5.15(λs + 1)2

A little algebra yields the following PID controller:

C (s) =
(1.8s + 1)(1.4s + 1)

5.15[λ2s2 + (2λ+ 1.4)s]
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Section 4.3 H∞ PID controller and the Smith Predictor

Example (ctd.2)

The equivalent Smith predictor is

R(s) =
(1.8s + 1)(1.4s + 1)

5.15[λ2s2 + (2λ− 1.4)s]

Nominal response: Take λ = 0.4θ. A unit step reference is
added at t = 0 and a step load (that is, the disturbance at the
plant input) with the magnitude -0.1 is added at t = 50. The
nominal response of the closed-loop system is shown in Figure. It
is seen that the response of the system is fast and steady.
Robust performance: Assume that there exists 50% error in
estimating θ, that is, θ varies in [1.4, 4.2]. Figure shows the system
response. If the performance degree is λ = 0.7θ, the response
becomes slightly slower, but a better robustness is obtained
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Nominal response of the closed-loop system
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Response of the uncertain system with λ = 0.4θ
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Section 4.3 H∞ PID controller and the Smith Predictor

Figure: Response of the uncertain system with λ = 0.7θ
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Section 4.4 Quantitative Performance and Robustness

4.4 Quantitative Performance and Robustness

Goal: Show how a quantitative performance or robustness can be
obtained by adjusting the performance degree

Case 1: If the real plant were the approximate model, the
closed-loop transfer function of the system would be

T (s) =
1− θs/2

(λs + 1)2

The disturbance transfer function of the system would be

S(s) =
λ2s2 + (2λ+ θ/2)s

(λs + 1)2

In this case, the performance degree can be freely selected. When
λ→ 0, the system tends to be optimal: ‖W (s)S(s)‖∞ → θ/2
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Section 4.4 Quantitative Performance and Robustness

Figure: Frequency response of the closed-loop system

The system with the approximate plant had a steady responses
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Section 4.4 Quantitative Performance and Robustness

Case 2:
In the last section, the real plant is in the form of the first-order
plant with time delay and the Pade approximation was used to
treat the time delay. When the obtained controller is applied to the
real plant, the response of the closed-loop system fluctuates near
the break frequency, which is caused by the error from the Pade
approximation.

Regard the error as a kind of known uncertainty and let

|∆m(jω)| ≥ K

∣∣∣∣ e−θjω

τ jω + 1
− 1− θjω/2

(τ jω + 1)(1 + θjω/2)

∣∣∣∣
The robust stability of the closed-loop system can be tested by

‖∆m(s)T (s)‖∞ < 1
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Section 4.4 Quantitative Performance and Robustness

The performance degree relates the stability and the performance
of the closed-loop system in a monotonous manner:

1 When the performance degree decreases, |T (jω)| increases in
the higher frequency range and |S(jω)| decreases in the lower
frequency range. Such a system has a larger bandwidth. This
implies better performance and poor robustness.

2 When the performance degree increases, |T (jω)| decreases in
the higher frequency range and |S(jω)| increases in the lower
frequency range. The system has a smaller bandwidth, and
thus performance is sacrificed for robustness.

The nominal performance and the robustness of a system conflict
with each other. By choosing an appropriate performance degree,
one can easily trade off between the nominal performance and the
robustness. The monotonicity of the performance degree makes the
trade-off procedure, or the controller tuning procedure, very simple
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Figure: Relationship between the closed-loop frequency response and λ
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Will the Design Cause Stability Problems?

In Section 2.2, an example is given to illustrate that the direct use
of rational approximations for stability analysis may lead to an
incorrect result. There exists a possibility that the controller
stabilizes the approximate model, but cannot stabilize the original
model.

Solution in the new design method: The controller is designed
for the approximate model, and then used for the original model.
That is, the approximate model is regarded as the nominal plant
and the approximate error is regarded as the uncertainty. The
existence of the approximate error imposes a lower bound on the
performance degree for stability. As long as the performance
degree is greater than the lower bound, the closed-loop system is
stable. The lower bound is about 0.0735θ
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Case 3:
A frequently encountered situation is that the plant is uncertain:

G̃ (s) =
K̃ e−θ̃s

τ̃s + 1

Then the uncertainty profile is

∆m(ω) ≥

∣∣∣∣∣ K̃ e−θ̃jω

τ̃ jω + 1
− K (1− θjω/2)

(τ jω + 1)(1 + θjω/2)

∣∣∣∣∣
which consists of two parts: The approximate error and the real

uncertainty. Then the closed-loop system is stable if and only if

‖∆m(s)T (s)‖∞ < 1

This implies that the robust stability can almost always be
guaranteed by increasing the performance degree
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Tuning for Quantitative Responses

As stated in Section 3.5, there are two classes of design
specifications

Case 1: The design specification involving the requirement on
robustness is given for the nominal system. In this case, only the
nominal performance is considered
In the design in Section 4.2, the error introduced by the Pade
approximation is clear. Hence, the performance degree has a
definite effect on the nominal performance. With the help of
numerical methods it can be obtained easily

An important feature: All indices are closely relates to λ/θ
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Figure: Effect of the performance degree on the overshoot

e.g., 5% overshoot − > λ = 0.5θ
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Figure: Effect of the performance degree on the rise time

The sudden change is due to the different definitions for systems
with overshoots and without overshoots
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Figure: Effect of the performance degree on the resonance peak

e.g., 2dB − > λ = 0.37θ
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Figure: Effect of the performance degree on the perturbation peak

The disturbance response relates not only to λ/θ, but also to θ/τ
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Figure: Bode plot of the H∞ PID control system
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Figure: Nyquist plot of the H∞ PID control system
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Figure: Effect of the performance degree on the gain margin
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Figure: Effect of the performance degree on the phase margin
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Figure: Effect of the performance degree on ISE
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Quantitative Tuning for Robust Performance

Case 2: The design specification is given for the uncertain system.
Then, there exists uncertainty in addition to the approximate error

Exact tuning: If the uncertainty profile is obtained, an exact
performance degree can be calculated by utilizing the sufficient and
necessary condition for robust performance
Problems: The uncertainty profile is not always exactly known due
to technical and economic reasons. Even if the uncertainty profile
is available, the calculation is involved

A simple tuning method: Without loss of generality, assume that
the specification is that the closed-loop system has an overshoot
less than 5% in any case, that is, the worst case overshoot is 5%
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The tuning procedure is as follows:

1 Design the controller for the nominal plant. For a 5%
overshoot, λ = 0.5θ.

2 Substitute the nominal plant by the worst case plant (that is,
the gain and the time delay take their maximum value and the
time constant takes its minimum value).

3 Increase the performance degree monotonically with a small
step until the overshoot equals 5%.

The first step can be omitted. In this case, the initial value of the
performance degree is set to be 0. A typical step is 0.01θ or
smaller. If the time delay is very small, for instance, θ ≤ 0.1τ , the
time constant can be used to determine the step. For example, the
step can be taken as 0.01τ or smaller
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General Tuning Rules

Both the nominal performance and the robust performance can be
quantitatively tuned through such a procedure: Increase the
performance degree monotonically until the required
response is obtained

Recommendation

In many cases, the performance degree can be chosen within the
range 0.1θ − 1.2θ. A slightly conservative performance degree is
recommended for a real system. Although the response is slower,
the system can tolerate larger uncertainty

Zhang, W.D., CRC Press, 2011 (No.1 SJTU) Version 1.0 48/71



Section 4.5 H∞ PID Controllers for the Second-Order Plant

4.5 H∞ PID Controllers for the Second-Order Plant

Section 4.2: Utilize 1/1 Pade approximant to design PID
controllers for the first-order plant with time delay
This section: Utilize the first-order Taylor Series expansion to
design PID controllers for the second-order plant with time delay

Assume that the plant model is

G (s) =
Ke−θs

(τ1s + 1)(τ2s + 1)

where τ1 and τ2 are two time constants. With the first-order
Taylor series expansion, we have

e−θs ≈ 1− θs
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Section 4.5 H∞ PID Controllers for the Second-Order Plant

The approximate model is

G (s) ≈ K (1− θs)

(τ1s + 1)(τ2s + 1)

Take the performance index as

min ‖W (s)S(s)‖∞

Assume that the system input is a unit step. Then W (s) = 1/s.
By Maximum Modulus Theorem and the definition of the ∞-norm

‖W (s)S(s)‖∞ = ‖W (s)[1− G (s)Q(s)]‖∞ ≥ |W (1/θ)|

for all Q(s)s. Minimizing the left-hand side of the equation yields:∥∥∥∥1

s

[
1− K (1− θs)

(τ1s + 1)(τ2s + 1)
Q(s)

]∥∥∥∥
∞

= θ
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It is now clear that the unique optimal solution is

Qopt(s) =
(τ1s + 1)(τ2s + 1)

K

The degree of the numerator polynomial of Qopt(s) is higher by
two than that of the denominator polynomial. Since the
asymptotic property requires that

lim
s→0

[1− G (s)Q(s)] = 0

the following filter is introduced to roll Qopt(s) off:

J(s) =
1

(λs + 1)2

A proper Q(s) is then obtained:

Q(s) = Qopt(s)J(s) =
(τ1s + 1)(τ2s + 1)

K (λs + 1)2
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The controller of the unity feedback loop is:

C (s) =
Q(s)

1− G (s)Q(s)
=

1

K

(τ1s + 1)(τ2s + 1)

λ2s2 + (2λ+ θ)s

This is a PID controller. If it is realized in the form of

C (s) = KC

(
1 +

1

TI s
+ TDs

)
1

TF s + 1

controller parameters are as follows:

TF =
λ2

2λ+ θ
, TI = τ1 + τ2,

TD =
τ1τ2
τ1 + τ2

, KC =
τ1 + τ2

K (2λ+ θ)
.

Usually λ is chosen within the range 0.2θ − 1.2θ
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The H∞ PID controller of the second-order plant possesses similar
features to that of the first-order plant. Since there are two time
constants in the plant model, the relationship between the
performance degree and the system response is complicated.

The roots of the plant are at −1/τ1 and −1/τ2:

If both 1/τ1 and 1/τ2 are positive real, one can reduce the
model to the first-order one and then design the controller

When 1/τ1 and 1/τ2 are conjugate imaginary roots, the
controller should be designed for the second-order model

The nominal performance and the robust performance can also be
quantitatively tuned through the procedure given in Section 4.4:

Increase the performance degree monotonically until the required
response is obtained
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Example

The task of a heat exchanger is to transfer heat from one flow of
medium to another. Heat transfer takes place through the
thermally conductive material used to separate the two media, one
cold and the other hot. Figure describes an industrial heat
exchanger in which steam is used to heat the liquid product. The
requirement on the control system is to retain the product
temperature at 55 degrees centigrade. To satisfy the need of the
latter processes, the flow rate of the product regularly changes
within 1.5− 3.0 L/min. Fix the flow rate of the product at 2.1
L/min. The transfer function from the steam flow rate to the
product temperature is obtained by carrying out step tests:

G (s) =
0.54e−15s

(15s + 1)2
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Figure: Industrial heat exchanger
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Example (ctd.1)

The time delay depends on the flow rate of the product. When the
flow rate changes in the prescribed range, the time delay changes
within 10− 20 seconds
The design requirement is that the overshoot does not exceed 10%
for the worst case. The controller of the second-order plant is
obtained as follows:

C (s) =
1

0.54

(15s + 1)2

λ2s2 + (2λ+ 15)s

The parameter is taken as λ = 0.9θ. For the sake of comparison, a
plant of reduced-order is computed:

G (s) =
0.54e−21s

25s + 1
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Example (ctd.2)

and λ = 0.78θ is taken for the controller of the first-order plant:

C (s) =
1

0.54

(25s + 1)(11.5s + 1)

λ2s2 + (2λ+ 11.5)s
.

A unit step reference is added at t = 0 and a unit step load is
added at t = 200. The nominal responses of the closed-loop
system are shown in Figure. Since the two roots of the plant are
real, the responses given by the two controllers are similar.
Assume that the flow rate of the product decreases to the lowest
so that the time delay becomes 20 seconds. Responses of this
worst case are shown in Figure. The overshoot of the closed-loop
system increases to 10% by the square
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Figure: Responses of the nominal plant
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Figure: Responses of the worst case
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4.6 All Stabilizing PID Controllers for Stable Plants

One might encounter such a case in practice: Even when the
parameters of a PID controller are chosen in random, the
closed-loop system still works well. Unfortunately, not every time
one can find appropriate parameters, since it is not clear the range
of the PID parameters for which the feedback system is stable

Goal of this section: Determine the set of controller parameters
that guarantees the stability of the closed-loop system

The attention here is put on the first-order plant with time delay:

G (s) =
Ke−θs

τs + 1

To simplify matters, the standard PID controller is considered:

C (s) = KC +
KI

s
+ KDs
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Theorem

The plant can be stabilized by the PID controller if and only if the
controller parameters satisfy

− 1

K
< KC < KT

where

KT =
1

K

[τ
θ
α1 sin(α1)− cos(α1)

]
and α1 is the solution of the equation

tan(α) = − τ

τ + θ
α

in the interval (0, π).
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Theorem (ctd.1)

The complete stabilizing region is given by

1 For KC ∈ (−1/K , 1/K ], the stabilizing region of the integral
constant and the derivative constant is the trapezoid in Figure.

2 For KC ∈ (1/K ,KT ), the stabilizing region of the integral
constant and the derivative constant is the quadrilateral in
Figure.

Here

z = θω

m(z) =
θ2

z2

b(z) = − θ

Kz

[
sin(z) +

τ

θ
z cos(z)

]
w(z) =

z

Kθ

{
sin(z) +

τ

θ
z [cos(z) + 1]

}
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Theorem (ctd.2)

and zj(j = 1, 2, ...) are the positive real roots of

KKC + cos(z)− τ

θ
z sin(z) = 0

These roots are arranged in increasing order of magnitude.

Figure: Stabilizing region for KC ∈ (−1/K , 1/K ](From Silva et al.,
2002. Reprinted by permission of the IEEE)
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Figure: Stabilizing region for KC ∈ (1/K ,KT )(From Silva et al., 2002.
Reprinted by permission of the IEEE)

Proof.

The proof is only sketched. The characteristic polynomial of the
system is in the form of a quasi-polynomial:

δ(s) = K (KI + KC s + KDs
2)e−θs + (1 + τs)s
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Proof ctd.1.

Since eθs does not have any finite zeros, the following
quasi-polynomial is considered instead:

δ∗(s) = K (KI + KC s + KDs
2) + (1 + τs)seθs

δ∗(s) and δ(s) are equivalent for stability analysis. Rewrite δ∗(s) as

δ∗(jω) = δr (ω) + jδi (ω)

where δr (ω) and δi (ω) represent the real part and imaginary part
of δ∗(jω), respectively.

δr (ω) = KKI − KKDω
2 − ω sin(θω)− τω2 cos(θω)

δi (ω) = ω[KKC + cos(θω)− τω sin(θω)]
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Proof ctd.2.

It can be seen that KC only affects the imaginary part of δ∗(jω)
whereas KI and KD only affect the real part of δ∗(jω). It can be
proved that δ∗(s) is stable if and only if

1 δr (ω) and δi (ω) have only simple real roots and these roots
interlace.

2 E (ω0) := δ′i (ω0)δr (ω0)− δi (ω0)δ′r (ω0) > 0 for some ω0 in
(−∞,+∞).

In what follows it will be examined when the two conditions hold.
First, check the second condition. Since z = θω, the real part and
the imaginary part of δ∗(jω) can be, respectively, expressed as

δr (z) = KKI −
KKD

θ2
z2 − 1

θ
z sin(z)− τ

θ2
z2 cos(z)

δi (z) =
z

θ
[KKC + cos(z)− τ

θ
z sin(z)]
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Proof ctd.3.

Take ω0 = z0 = 0. Then δr (z0) = KKI and δi (z0) = 0. On the
other hand,

E (z0) =
KKC + 1

θ
KKI

If pick KI > 0,KC > −1/K or KI < 0,KC < −1/K , then

E (z0) > 0

Now check the first condition. Plotting the terms involved in the
equation δi (z) = 0 and graphically examining the nature of the
solution, it can be obtained that the roots are all real if and only if
KC ∈ (−1/K ,KT ).
Furthermore, compute the roots of the imaginary part by letting
δi (z) = 0. Evidently, one root is z0 = 0.
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Proof ctd.4.

The other roots zj(j = 1, 2, ...) are given by the equation

KKC + cos(z)− τ

θ
z sin(z) = 0.

Arrange these roots in increasing order of magnitude. By
evaluating δr (z) at zj(j = 0, 1, ...), it can be proved that KI and
KD for the roots of δr (z) and δi (z) to interlace are determined by

KI > 0

(−1)jKD < (−1)jm(zj)KI + (−1)jb(zj), j = 1, 2, ...

It is now shown that all these regions do have a nonempty
intersection.
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Proof ctd.5.

First, it is observed that the slopes m(zj) of the boundary lines of
these regions decrease with zj . The limit is

lim
j→∞

m(zj) = 0

With this in mind, the following observations are obtained:With
this in mind, the following observations are obtained:

1 When KC ∈ (−1/K , 1/K ), the intersection is given by the
trapezoid sketched in Figure. This is obtained by that

1 b(zj) < b(zj+2) < −τ/K for odd values of j .
2 b(zj) > τ/K and b(zj)→ τ/K as j →∞ for even values of j .
3 0 < v(zj) < v(zj+2) for odd values of j , where

v(z) =
z

Kθ

{
sin(z) +

τ

θ
z [cos(z)− 1]

}
.
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Proof ctd.6.

2 When KC ∈ (−1/K , 1/KT ), the intersection is given by the
quadrilateral sketched in Figure. This is obtained by that

1 b(zj) > b(zj+2) > −τ/K for odd values of j .
2 b(zj) < b(zj+2) < τ/K for even values of j .
3 w(zj) > w(zj+2) > 0 for even values of j .
4 b(z1) < b(z2), w(z1) > w(z2).

So far, the interlacing property, as well as that the roots of
δi (z) = 0 are all real for KC ∈ (1/K ,KT ), has been proven. The
two conditions can be used to prove that δr (z) = 0 has only real
roots.
Therefore, for (1/K ,KT ) there is a solution to the PID
stabilization problem of the first-order plant with time delay. For
those values of KC outside this range, the PID stabilization
problem does not have a solution.
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End of Chapter 4
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