Errata for Optimal Control for Chemical Engineers
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Page 1, line 9 “An optimal control_is a function that optimizes ...

Page 7
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Page 12, Figure 1.7 Replace the labels “monomer:” and “polymer:” by
“Initiator:” and “monomer:”, respectively.

Page 39, line 9,11

ahih
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Page 41, line 3
e dy and dy’ are the functions h(x) and h/(z), respectively.

Page 41, last sentence of Example 2.9 “Upon substituting y = —z and
the corresponding ...”

Page 66
OH
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Page 67, line 6
1. the state equation, Equation (3.25), obtained from & = H) and the
initial condition z(0) = 0;



Page 67, 2nd last equation
te n te
J= /(F—FZ)\Z-Gi) dt = /f(y,y,u,)\)dt
0 i=1 0

Page 90, the line before Equation (4.2) Remove the extra “the” before
“constraint K (y) = kg, ...”

Page 101, the equation before Equation (4.13)
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Page 103, 2nd last line of Example 4.3 “exists at least one set of varia-
tions (01, dx,du) at each ¢ ...”

Page 106, line 13—-17 For consistency, use u instead of v as follows:

te 1

te
M(gw = I+ [ Y pihlgwae =7+ [ b wa
o =1 0

where ¥ denotes the state vector that satisfies state equations for any
admissible control vector u and p is the vector of time dependent La-
grange multipliers

() p2(t) ... Hl(t)}T

Page 108, line 12
J[ﬁ(ko + Ako)} = J[ﬁ(ko)] + dJ[ﬂ(ko), ﬁkOAko] + dJ[ﬂ(ko), 6] + 61(A/€05u)

Page 111, 2nd last line
uw > 0, wt—cg) = 0 at

complementary slackness condition

Page 114, line 9
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Page 124, line 16
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Page 154, line 14,15 Sum the terms containing du; separately as follows:
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Page 158, the equation after Equation (6.11)
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B= [#1 M2 ... ,uz}
Page 160, 3rd equation
M 2(\1 — A)ayy /T
Ao | = [ (14 X2 — Ag)age®?/T
A3 (=14 A3)azefs/T
—H,

Page 166, line 8 Remove explicit ¢ from the arguments as follows:

fily,u) <0, i=1,2,...,1 or f(y,u)<0

Page 167, last equation

A 2(\1 — Xo)ayy e/ A1 0

Aol == [(14 Xy — A3)age2/T |, | Xy| = |0

A3 (=14 A3)azefs/T Asf, |0
T,

Page 168, last equation of Example 6.9 Remove the subscript ¢t = 0 as

follows:
-
0 —T + Tin 0
H > and H =
2 0 M2 T - Tmax 0
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Page 169, 1st equation Remove explicit ¢ from the argument as follows:
te

/Fi(y,u)dt:ki, i=1,2,...,1
0
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Page 170, Example 6.10 For consistency, use (y — y*) instead of (y* — y).

Page 176, 3rd equation from bottom

H,=14+X =0

Page 177, 2nd equation
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Page 178, Example of Section 6.7 For notational consistency in case of
partial time derivatives, use ¢, dc;, A\; and 0)\; instead of ¢, d¢, A and

8\, respectively.

Page 182 AL, ) =0,

Page 182, 1st item of Bibliography

0<t<t
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Page 204, 2nd and 3rd equations
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Page 208, line 1,2 “and the final costates, A4(1) = 0 and”
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Page 212, line 15,16 *...the optimal objective functional was —4.46, which

corresponds to the final product concentration of 4.46 g/cm3.”

Page 215, 3rd line from bottom “increased from 60 to 64.1 min.”
Page 219, 2nd last paragraph, line 4,5 ©...the value of E was4.0x10~".”

Page 227, 1st two equations
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Page 227, 3rd line after Results “shows the initial and optimal states and
controls. The convergence ...”
Page 232, Exercise 7.3, 1st and 3rd equations

dys
dt

a2y1

m) — (51 +0.5a1)u, y1(0) =y1,0

=—-2y1 —a1+ (y2 + al)exp<
te
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Page 242, the equation before Equation (8.3)

Hy, Ay —y1) — Aoy 0

Hy, A2 0

Page 246, Table 8.1 y; is 3.56 g/cm® and ko is 102 (cm®/g)” /min.



Page 247, Figures 8.1 and 8.2
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Page 247, 3rd line from bottom “...production rate of 7.8x10~2 g/(cm?®-min).”

«

Page 247, last line to the 1st line of next page “...maximized the av-

erage production rate to 0.17 g/(cm?-min).”

Page 248, Figure 8.3
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