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Abstract 

We present new techniques for modeling the feedback loops of recurrent neural net-
works, including networks that incorporate tapped delay lines or gamma delay lines. 
Very fast simplified programs result. Examples of applications include signal prediction 
and dynamic-model matching. We also suggest interesting future research on improved 
programs for time-series recognition and classification. 

 
1. Introduction  

This article describes much-simplified computer programs for interactive simulation of recurrent 
neural networks. Sections 2 to 5 briefly review dynamic-system simulation and our open-source 
software for Windows and Linux. (Korn, 1995, 1998, 2007),  We employ a compact, human- and 
machine-readable vector notation, including very powerful vector index-shift operations for 
modeling delay lines and filters. The remainder of this report applies these techniques to neural-
network simulation. 

            Section 6 presents a simple backpropagation model representing each neuron layer by a 
one-line vector assignment. Section 7 then describes a significant innovation: a technique for 
programming the time-delayed feedback in recurrent networks without the complication of 
special context layers. Sections 8 to 10 next apply our simple vector index-shift notation to 
neural networks with input and feedback delay lines or gamma delay lines. 

 Finally, Sections 11 and 12 discuss applications to model matching and time-history pre-
diction and suggest other applications for future research. 

2.  A Simulation Language for Interactive Dynamic-s ystem Modeling 

Desire simulation programs (Korn, 1995, 1998) model dynamic systems using a natural mathe-
matical notation for successive difference-equation assignments like 

   x = x + a * sin(c * t) 
   y = x                 (1) 

and/or differential-equation-system assignments like 

u = alpha* sin(w * t + beta) + c 
d/dt x = xdot  
d/dt xdot = - a * x – b * xdot                    (2)  

Such model definitions are screen-edited into a DYNAMIC program segment (Fig. 1).  Simu-
lation studies are controlled by typed interactive commands and/or by an experiment-protocol 
script. Experiment-control commands set or change parameters and initial conditions and then 
call simulation runs that produce time-history displays. Each simulation run exercises the model 
by calling the DYNAMIC program segment for NN successive time steps, as in 



 2 

 

 

 

 

 

 
Figure 1. Desire with a file manager, command window, and three screen-editor windows. 
Programs in different editor windows can be run in turn to compare models. The original 
curves were in color. 

t0 = 0  |  t = t0  |  NN = 2000  |  TMAX = 100 
a = - 5.00  |  x = 17.1  
drun  

| is a statement delimiter. When the experiment protocol encounters the first drun  statement the 
DYNAMIC segment is compiled with a fast runtime compiler and runs immediately to produce 
time-history displays (Fig. 1). More elaborate experiment protocols can call multiple simulation 
runs with modified parameters and different DYNAMIC segments (Korn, 1998, 2007). 

3.  Fast, Human- and Machine-readable Vector Operat ions 1 

Desire experiment-control scripts can declare vectors like x ≡ (x[1], x[2], …, x[n])   and matrices 
like W ≡ (W[1,1], W[1,2], …, W[n, m] )  with single or multiple ARRAY  statements such as 

 ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n],  v[n], …  

DYNAMIC program segments can then use the vectors and matrices in vector assignments, and 
vector differential equation , say 

   Vector x = a + alpha * b * c 
   Vector y = tanh(W * x)  

Vectr d/dt x = beta * cos (t + c) 

which automatically compile into multiple scalar operations 

x[i]  = a[i]  + alpha * b[i]  * c[i]  (i = 1, 2, …, n) 
                          m 

y[i] = tanh( ΣΣΣΣW[i, k] * x[i])    (i = 1, 2, …, n) 
                         k=1 

d/dt x[i] = alpha * cos (t + c[i])  (i = 1, 2, …, n) 

                                                   
1  References 1 (due for a new edition) and Reference 2 (out of print) refer to an early version of Desire that lacked 
the new vectorizing compiler (Korn, 2007) we employ here. 
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MATRIX assignments similarly compile into multiple assignments to matrix elements W[I,k] .[2]. 
All these compiler operations unroll program loops, so that the resulting binary code is fast. 

We can also compute vector-component sums and inner products like 
          n                  n    

p = ΣΣΣΣ u[k] v[k]     p = ΣΣΣΣ u[k] v[k] 
        k=1                          k=1       

with inner-product assignments DOT p = u * 1 and DOT p = u * v , again without program-loop 
overhead.  

Desire vector operations permit very fast vectorized Monte Carlo simulation of engineer-
ing and biological systems and can model fuzzy-logic controllers and partial differential equati-
ons as well as the neural-networks we shall discuss here (Korn, 2007).   

4.  Vector Index-shifting, Delay Lines, and Filters  

Given an n-dimensional vector x ≡ (x[1], x[2], …, x[n]) and an integer k, the index-shifted vector 
x{k}  is the n-dimensional vector (x[1+k], x[2+k], …, x[n+k]) , with components referring to 
indices less than 1 or greater than n set to 0.  Significantly, the assignments    

Vector x = x{-1}   |   x[1] = input           (3) 
compile into 

         x[i] = x[i – 1]     (i = 1, 2, …, n)                x[1] = input 

This neatly models shifting successive samples of a function u(t)  into a tapped delay line with 
tap outputs x[1] = input, x[2], …, x[n].  Note that the assignment x[1] = input  overwrites the 
Vector  operation’s assignment x[1] = 0  at each step.  

Assignments like (3) can, for instance, model a complete nth-order digital filter with only 
two program lines (Appendix A). Sections 8 to 10 will describe neural networks incorporating 
tapped delay lines and also gamma delay lines (Principe, 2000) modeled with a similar index-
shift operation. 

5.  Neural-network Models  

DYNAMIC program segments (1) that include differential equations compute state-variable deri-
vatives. An integration routine selected by the experiment-control script then combines deriva-
tive values from successive time steps to update differential-equation state variables(Korn, 
1998). 

 Desire can model biological neurons with differential equations (e.g. pulsed integrate-
and-fire neurons) (Korn, 2007). but the neural-network models we discuss here are much 
simpler. For DYNAMIC program segments without differential equations, the simulation time t 
automatically steps through t = 0, 1, 2, …, NN  by default (users can, if desired, specify different 
starting times and/or time increments). Neuron activations and connection weights are repre-
sented by real numbers that roughly model neuron pulse rates and synapse chemistry. Both are 
updated with simple difference equations in successive time steps.  Appendix B shows how we 
handle problems that combine differential-equation models and neural networks, as in sampled-
data control systems. 
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Figure 2. A simple backpropagation network. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  A simple backpropagation network. 

6. A Simple Backpropagation Network 

Figure 2 shows a simple three-layer neural network.  Desire’s interpreted experiment-protocol 
script declares the three neuron layers in turn with 

ARRAY x[nx] + x0[1] = xx v[nv], y[n]  
x0[1] = 1 

and two connection-weight matrices W1 and W2 with 

ARRAY W1[nv, nx + 1], W2[ny, nv] 

Desire array declarations like ARRAY x[nx] + x0[1] = xx  act like Fortran equivalence 
statements: xx[3]  is identical with x[3] , and xx[nx + 1]  is identical with x0[1] .  As is customary, 
the input layer xx  adjoins a one-dimensional bias vector x0 to the normal nx-dimensional net-
work input x. With x0[1]  set to 1, we can then conveniently represent input biases as nv  extra 
connection weights W1[i, 1] . 

The runtime-compiled DYNAMIC program segment defines the network dynamics with 

Vector v = tanh(W1 * xx) 
Vector y = W2 * v 

if we use a tanh activation function for the nonlinear hidden layer. To produce simple backpropa-
gation updating, we declare target , error , and error-propagation vectors with 

ARRAY target[ny], error[ny], vdelta[nv] 
and program 

Vector error = target – y                          
Vector vdelta = W2% * error * (1 – v^2)        

            DELTA W1 = lrate1 * vdelta *  xx            
DELTA W2 = lrate2 * error *  v                           (4)                                               
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    Figure 3.  A simple Elman recurrent network.        Figure 4. Modified input layer .  

Here W2% denotes the transpose of the connection-weight matrix W2, and  

        DELTA W =  matrix expression    is equivalent to    MATRIX W = W + matrix expression  

These assignments update vectors and matrices with data computed earlier, starting with given 
initial values.  Desire ARRAY  declarations initialize all subscripted variables to the default value  
zero. That is fine for the vectors; but the experiment-protocol script must initialize the connec-
tion weights W1[i, k]  and W2[i, k]  with small random values. 

In addition to declaring and initializing neuron-layer arrays, the experiment-protocol 
script for a neural-network experiment must set parameters and initial values of scalar state vari-
ables (if any) and then schedule training and test simulation runs with drun  statements.. The 
script also selects integration rules (if any) and the display scale and colors. For simplicity, our 
text omits these housekeeping operations. 

7. Simplified Recurrent-network Programming 

An Elman recurrent network (Fig. 3) (Principe, 2000, Elman, 1990) copies all or some of the 
hidden network layer v to a context layer v1 that is fed back to v together with the input xx . The 
experiment-protocol script declares the original 3 neuron layers xx , v, and y and the connection 
weight matrices W1 and W2 as before,  

ARRAY x[nx] + x[0[1] = xx, v[nv], y[ny], W1[nv, nx + 1], W2[ny, nv]   
x0[1] = 1 

and adds the context layer v1 and a new connection-weight matrix W11: 

ARRAY v1[nv], W11[nv, nv]. 

The network dynamics in the DYNAMIC program segment become 
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Vector v1 = v  
Vector v = tanh(W1 * xx) + tanh(W11 * v1)      
Vector y = W2 * v                                                   (5) 

To update W11 as well as W1 and W2  by backpropagation now requires two error-propagation 
vectors v1delta  and v2delta , and the updating program becomes more complicated. But there is 
a much better way!   

Just as we concatenated the input layer x and its bias layer x0, we can declare a single 
new input layer xx  that combines our hidden layer v with x and x0: 

ARRAY x[nx] + x0[1] + v[nv] = xx  |  x0[1] = 1         (6) 

(Fig. 4). The two connection-weight matrices W1 and W11 of the Elman network in Fig. 3 can 
now be replaced with a single connection-weight matrix W1, 

ARRAY W1[nv, nx + 1 +  nv] 

W1 feeds xx  to the hidden layer v just as in Fig. 2 - but xx  now includes the hidden-layer acti-
vations v computed in the preceding iteration. The simple backpropagation-updating assign-
ments (4) for the static network of Fig. 2 then work without change for the recurrent neural 
network in Fig. 3.  Only the array dimensions have changed. 

It is just as easy to implement time-delayed feedback from the output layer y (Jordan 
recurrent network), or from both v and y.  Backpropagation updating remains exactly the same. 
This simplified implementation of recurrent-network feedback is by no means restricted to back-
propagation networks. This technique serves equally well for two-layer linear and nonlinear net-
works, for softmax pattern recognizers, and for radial-basis-function networks, which are all easy 
to program in the Desire language (Korn, 2007). In each case we simply reuse the unchanged 
program for a static neural network. 

8.  Networks with Input Delay Lines  

The earliest neural network with time-history memory was Widrow’s adaptive filter (Principe, 
2000)  In Fig. 5, successive values of a single time-series input  enter a delay line whose taps 
feed a static neural network trained to filter, recognize, or predict time-series patterns. Desire’s 
compact index-shift operation (3) is exactly what is needed for modeling such networks.   

Widrow’s original network, for example, combined a delay line with a simple linear network 
layer 

Vector x = x{-1}   |   x[1] = input 
Vector y = W * x 

Widrow’s network had a single output y[1]  and thus implemented a linear filter that could be 
trained with his new LMS algorithm to match a target time series.  In our notation this succes-
sive-approximation rule would be 

DELTA W = lrate * (target – y) * x   

Improved designs incorporate a nonlinear multilayer network, say the backpropagation network 
of Sec. 6: 

Vector x = x{-1}   |   x[1] = input 
Vector v = tanh(W1 * x ) 
Vector y = W2 * v 
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           Figure 5.  A static neural network                   Figure 6.  A NARMAX network. 
    fed by an input delay line. 

or other types of static networks.  All need only ordinary static-network training. 

9. NARMAX2 Networks use Delay-line Feedback 

The recurrent network in Fig. 6 has a single input input  to a delay-line layer x of length nx  as 
before. The output layer y has only a single output. y[1] .  The (scalar) error in this network 
output is 

ERROR = target - y[1]  

where target  is a desired output time series. Successively delayed samples of ERROR are pro-
duced by a second delay-line layer error  of length ne. The delayed error samples are fed back to 
the neural network. 

 Referring to Fig. 6, we again concatenate all input-layer vectors, in this case the two 
delay lines x and error and the bias x0, into a single input layer xx : 

ARRAY x[nx] + x0[1] + error[ne] = xx  

xx  feeds the hidden layer v of an ordinary  backpropagation network. 

The DYNAMIC program segment models each delay line with the vector index-shift 
operations introduced in Sec. 4. The complete NARMAX network is thus programmed with 

ARRAY x1[nx] + x0[1] + error1[ne] = xx  |  x0[1] = 1 
 ARRAY v[nv], y[1], error[ne], vdelta[nv] 
 ARRAY W1[nv, nx + ne + 1], W2[1, nv] 

   . . . . . . . . . . . . . . . . 

DYNAMIC 
  Vector x1 = x1{-1}   |   x1[1] = input           input delay l;ine 
  

                                                   
2  NARMAX stands for Nonlinear Auto-Regressive Moving Average with eXogenous inputs. 
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Figure 7.  Matching a neural network to a plant or plant model. input , target , y, and error  can be 
scalars or vector functions of the time t. 

 
   Vector v = tanh(W1 * xx)    hidden layer 
   Vector y = W2 * v     output layer 

    ERROR = target - y      output error   
  Vector error = error{1} |  error[1] = ERROR feedback delay line                                  

                        Vector vdelta=W2%*error*(1- v^2)                 backpropagation  
            DELTA W1= lrate1 * vdelta * xx 
            DELTA W2= late2* error * v 

Programmers must specify the input  and target  time series for different applications. 

Once again the backpropagation program is exactly the same as in Sec. 6.  One can also 
substitute different types of neural networks for the backpropagation layers in Fig. 6.   

10.  Networks with Gamma Delay Lines  

A simple tapped delay line of length n “remembers” its input for only n time steps. Principe’s 
gamma delay line (Principe, 2000) replaces each delay-line element with a simple first-order 
filter. That effectively gives neural-network input and feedback delay lines a much longer 
memory, so that the networks tend to perform better or use fewer neurons.  Our vector index-
shift notation models a gamma delay line with 

Vector x = x + beta * (x{-1} - x)   |   x[1] = inpu t  

which automatically compiles into  

 x[i] = x[i] + beta * (x[i – 1] – x[i]) (i = 1, 2, …, n )                x[1] = input 

beta  is a scalar filter parameter set by the experiment-protocol script; we have compactly pro-
grammed n difference equations for n identical first-order filters.3  We normally prefer such 
gamma delay lines for NARMAX networks. 

11.  Applications  

The most common applications of recurrent networks are 
• model matching (e.g. plant models for control-system design) 
• time-series prediction 
• recognition or classification of time-series patterns 

                                                   
3 

 It is convenient to program Vector x = x + beta * (x{-1} - x)   as  Vectr delta x = mu*(x{-1} - x)   . 
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Figure 8.  Dual-screen display showing our Elman network matching Narendra’s plant model (6).  
Both plant and network were fed Narendra’s test function (7). The graphs of  target = f  and y 
essentially reproduce the results Narendra obtained with his own 4-layer NARNAX network 
(Narendra, 1990).  The original graphs were in color. The complete program is included in the 
open-source Desire distribution package.  

 
Figure 8 demonstrates a model-matching experiment. The program can be screen-edited 

and rerun immediately for truly interactive modeling. We programmed Elman networks with 2 
and 3 hidden layers and a NARMAX network to match one of Narendra’s difference-equation 
plant models (Narendra, 1990) described by 

       f  =  [Y(k)*Y(k-1)*Y(k-2)*input(k-1)*(Y(k-2) -1)+input(k)]/[1+Y(k-1)^2 + Y(k-2)^2)] 
       target(k) = Y(k)         

(k = 0, 1, 2, …)                    (6)     

The networks were trained with random-noise input and tested with Narendra’s test function.  

       s = 0.5 * ((1 -  0.2 * swtch(t - 500)) * sin (w * t) + 0.2 * swtch(t - 500) * sin(ww * t))          (7) 

Training typically converged in 8 out of 10 simulation runs. All three recurrent networks then 
matched the plant equally well (Fig. 8). 

For modeling a predictor the “present” neural-network input is a delayed version of a spe-
cified “future” time series target : 

ARRAY buffer[m]   
Vector buffer = buffer{-1}   |   buffer[1] = target   |   input = buffer[m] 

The neural network output y is then trained to match target .  We programmed a textbook pro-
blem (Principe, 2000) predicting the chaotic Lorenz (Korn, 1998) and Mackey-Glass (Principe, 
2000) time series.4  Our Elman and  

                                                   
4  Desire models Mackey-Glass with only two program lines 

tdelay S=D(signal, tau  
   d/dt signal = a * S/(1 + Sd^c) – b * signal 
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Figure 9.  This display shows target , y, and ERROR for an Elman network predicting the Mackey-
Glass chaotic time series.  The original graphs were in color.  

NARMAX networks predicted this time series within a few percent for 50 time steps ahead (Fig. 
9). As expected, gamma delay lines worked better than simple delay lines of the same length.  
Prediction was still successful when we removed the feedback delay line from the NARMAX 
network, resulting in the simpler model of Fig. 5.  Readers interested in the details of these 
studies – or in repeating our experiments – will find the compact Desire programs for 20 model-
matching and prediction experiments included in the open-source Desire distribution file.  

12.  Conclusions and Future Research 

The essential contribution of this article is the novel application of the Desire language’s array 
declaration (6) in Sec. 7.  Acting much like a Fortran equivalence statement, this programming 
trick effectivey eliminates entire neuron layers and greatly simplifies recurrent-network 
updating algorithms. The resulting neural-network models are smaller, run faster, and are easier 
to understand. 

 On a 3.15 GHz 2-CPU Penryn-class personal computer, the screen-edited, runtime-com-
piled programs exhibited in this report all compiled and produced time-history displays within 25 
msec. This compilation delay is not noticeable, so that truly interactive modeling is possible. The 
recurrent-network programs in Figs. 8 and 9 converged within 1 to 3 seconds.  

We demonstrated simple applications to Elman, Widrow, and NARMAX networks to 
model matching and time-series prediction. Time-series pattern recognition (pattern classify-
cation) will be the first interesting topic for future work. Neuron layers implementing various 
softmax classifiers (Korn, 2007). will replace the backpropagation network in Figs. 4 and 6The 
required training procedure is again simply that for a static network. 

Our new trick of concatenating neuron-layer arrays can work equally well in other 
computer languages.  But Desire’s combination of an interpreted experiment protocol and fast 

                                                                                                                                                                    

where tdelay  is a time-delay operator, and a, b, and tau  are specified constants. 
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runtime-compiled simulation runs makes interactive modeling – which can involve hundreds of 
program changes in one day – especially convenient. 
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   Fig. A-1.  An nth-order digital filter with the z transfer function 

      H(z) = {bb z n  + b[n] zn-1 + b[n-1]z n-2 + … + b[1] }/{z n + a[n]z n-1 + a[n-1]z n-2 + … + a[1]}  

 

   Fig. A-2. An nth-order analog filter with the transfer function 

H(s) =  {bb s n + b[n]s n-1 + b[n-1]s n-2  + … + b[1] }/{s
n + a[n]s n-1+ a[n-1]s n-2 + … + a[1]}  

APPENDIX A: MODELING FILTERS WITH VECTOR-SHIFT OPER ATIONS (Korn, 
2009) 
 
The following examples further show the power of our index-shift operations. Given a state vec-
tor x[n]  and coefficient vectors a[n] , b[n]  declared and filled in the experiment protocol, only 2 
assignments 

   output = x[n] + bb * input 
   Vector x = x{-1} + b * input – a * output  

model a general digital filter of any order n (Fig. A-1).  Similarly, the two assignments  

   output = x[n] + bb * input 
   Vectr d/dt x = x{-1} + b * input – a * output   

model a general analog filter  of any order  n (Fig. A-2).  
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Appendix B:  Models Combining Differential Equation s and Neural Networks 

When a DYNAMIC program segment contains scalar or vector differential equations (statements 
starting with d/dt  or Vectr d/dt ) the starting value t0 of the simulation time t defaults t0 = 0 
instead of  t0 = 1, and time histories are sampled at NN communication points 

    t = 0, COMINT, 2 COMINT … ,  (NN - 1)COMINT = TMAX         COMINT = TMAX/(NN - 1)                                                   

Desire returns an error message is the selected number NN of sampling points makes COMINT 
smaller that the specified integration step DT. 

 Desire programs combining differential-equation models with sampled-data systems like 
neural networks execute program lines following an OUT statement only at the sampling points.]  
Note that sampled data returned to a differential equation are “sample-hold” state variables” 
starting from specified initial values.5  Initial values of subscripted variables (and thus ARRAY  
elements in neural-network programs) default to zero. Multirate sampling is also possible (Korn, 
2007). 
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5  This is necessarily true for every dynamic-system simulation program capable of handling sampled-data systems. 
But most reference manuals ignore this problem... 


