
Fast Simulation of Linear Operations: Modeling Analog and Digital
Filters with Vectorized State Equations

by Granino A. Korn

 ECE Department, University of Arizona
7750 South Lakeshore Road, Chelan, WA 98816

sites.google.com/site/gatmkorn gatmkorn@aol.com

Abstract

We present new compact programs for computer simulation of linear operations defined
in ordinary transfer-function form. This new technique applies to analog and digital
control systems and filters, which used to require a substantial amount of code for
multiple integration or delay operations. The open-source Desire program for Windows
or Linux formulates filter operations as short, easily readable vector expressions that
compile automatically into multiple assignments. Desire’s vector operations model n
cascaded integrators, unit delays, or gamma delay lines with a single program line.
Built-in FFT operations can transform the resulting time histories into frequency-
response plots. We show example programs and results for digital and analog filters.

1. Introduction

We shall describe fast and compact computer programs modeling linear operations such as
analog and digital filters. Sections 2 and 3, based on textbook references,[3,4] quickly review
dynamic-system modeling with differential and/or difference equations in scalar and vector form.
The Desire interactive-simulation program1 translates human-readable linear or nonlinear diffe-
rential equations into fast machine code and permits vector operations for vectorized Monte
Carlo simulation and neural-network models.[1] This report introduces new vector operations
that model cascaded integrators or delay lines for linear operators such as filters.

Sections 4 and 5 apply the new programming scheme to analog filters represented in
standard transfer-function form; Sections 6 and 7 apply our vectorization technique to the
cascaded delays needed to model digital filters. Section 8 deals with filter combinations;
cascaded small filters let you experiment with different pole/zero combinations.

2. A Simulation Language for Interactive Dynamic-s ystem Modeling

Desire simulation programs define dynamic-system models with assignments and/or differential
equations like

1 The Open Desire interactive-simulation package is free open-source software dowloadable from
sites.google.com/site/gatmkorn . References 3 and 4 are textbooks describing many applications. Very fast double-
precision floating-point routines solve differential and/or linear or nonlinear difference equations (up to 40,000 state
variables) in scalar or vector form). There are 13 integration rules.

 2

Figure 1. Dual-screen display showing Desire running with two screen-editor windows. Programs in either
editor window can be run to compare models. The program works under Windows and Linux.

u = alpha* sin(w * t + beta) + c
d/dt x = xdot
d/dt xdot = - a * x – b * xdot

which are screen-edited into a DYNAMIC program segment (Fig. 1). Simulation studies are
controlled by typed interactive commands and/or by an experiment-protocol script. Experiment-
control commands set and changes parameters and initial conditions and then call a simulation
runs to exercise the dynamic-system model, as in

 t0 = 0 | t = t0
a = - 5.00 | x = 17.1
drun

| is a statement delimiter. t0 is the initial value of the simulation time t and usually defaults to 0.
When the experiment protocol encounters the drun statement the DYNAMIC segment is com-
piled with a fast runtime compiler and runs immediately to produce time-history displays (Fig.
1). More elaborate experiment protocols can call multiple simulation runs with modified para-
meters and different DYNAMICsegments. [2,3]

3. Vector Operations and Delay-line Models

Desire experiment-control scripts can declare vectors like x ≡ (x[1], x[2], …, x[n]) and matrices
like W ≡ (W[1,1], W[1,2], …, W[n, m]) with single or multiple ARRAY statements such as

 ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n], v[n], …

DYNAMIC program segments can then use the vectors and matrices in vector assignments, and
vector differential equations , say

 Vector x = a + alpha * b * c
 Vector y = tanh(W * x)

Vectr d/dt x = beta * cos (t + c)

which automatically compile into multiple scalar operations

x[i] = a[i] + alpha * b[i] * c[i] (i = 1, 2, …, n)

 3

 m

y[i] = tanh(ΣΣΣΣW[i, k] * x[i]) (i = 1, 2, …, n)
 k=1

d/dt x[i] = alpha * cos (t + c[i]) (i = 1, 2, …, n)

There is no vector-loop overhead. We can also compute inner products
 n

p = ΣΣΣΣ u[k] v[k]
 k=1

with inner-product assignments DOT p = u * v , again without program-loop overhead.

Given a vector x ≡ (x[1], x[2], …, x[n]) and an integer k, the index-shifted vector x{k} is the
vector (x[1+k], x[2+k], …, x[n+k]) where components with indices less than 1 and greater than n
are simply set to 0. In particular, repeated execution of the assignments

Vector x = x{-1} | x[1] = u

neatly models shifting successive samples of a function u(t) into a simple tapped delay line with
tap outputs x[1], x[2], …, x[n]. Note that the assignment x[1] = u overwrites the Vector
operation’s assignment to x[1] .

Desire vector operations have been used for vectorized Monte Carlo simulation and for
modeling neural networks, fuzzy-logic controllers, and systems involving partial differential
equations.[3] We shall now apply them to create efficient models of analog and digital filters.

4. Modeling Analog Filters

An nth-order linear filter[1,5] with the classical transfer function2

 H(s) = {bb s n+ b[n]s n-1+ b[n-1]s n-2+ … + b[1] }/{s n+ a[n]s n-1+ a[n-1]s n-2+ … + a[1]} (1)

can be represented by the block diagram in Fig. 2. [5] Practical filters are often realized as
cascaded and/or parallel combinations of simpler filters.[1] This transfer function represents a
differential-equation system, which is modeled by the easily readable Desire program

input = (given function of the time variable t)
output = x[n] + bb * input

d/dt x[1] = b[1] * input – a[1] * output
d/dt x[2] = x[1] + b[2] * input – a[2] * output
.
d/dt x[n] = x[n-1] + b[n] * input – a[n] * output (2)

Each of these assignments relates directly to the block diagram in Fig. 2. Execution starts with
given initial conditions for each state variable x[i] on the right-hand side. The initial values t0
and x[i] normally default to zero.

2 Different texts index the coefficients a[i] , b[i] , and bb in different ways. Reference 5, for instance uses

 bn = b[1] , bn-1 = b[2] , …, b1 = b[n] , b0 = bb and an = a[1], an-1 = a[2], …, a1 = a[n] .

The indexing chosen here is the most efficient for vector programming. If necessary, Desire experiment-protocol
scripts can readily loop to relabel coefficients.

 4

 Figure 2. Block diagram of an analog filter with the transfer function

 H(s) = {bb s
n
+ b[n]s

n-1
+ b[n-1]s

n-2
+ … + b[1] }/{s

n
+ a[n]s

n-1
+ a[n-1]s

n-2
+ … + a[1]}

5. Vectorization Makes the Program Much Simpler

Instead of programming n scalar differential equations, Desire can declare n-dimensional vectors
x, a, and b,

STATE x[n] | ARRAY a[n], b[n]

noting that differential-equation state vectors like x must be declared as separate STATE arrays.
We can then program our complete filter model, for any order n, in only three lines:

input = (given function of t)
output = x[n] + bb * input
Vectr d/dt x = x{-1} + b * input – a * output (3)

These three lines compile automatically into the program (2). Note that the last statement neatly
models a chain of n cascaded integrators. There is no runtime vector-loop overhead.

To obtain the impulse response of the filter we program input = 0 and set the initial value
of x[1] to 1. The amplitude/phase frequency response is then obtained with Desire’s built-in FFT
routine. Figure 3 shows actual programs and results.

6. Modeling Digital Filters

An nth-order linear digital filter[1,5] with the classical z transfer function

 H(z) = {bb z n+ b[n]z n-1+ b[n-1]z n-2 + … + b[1] }/{z n+ a[n]z n-1+ a[n-1]z n-2+ … + a[1]} (4)

can be represented by the block diagram in Fig. 4.[5] The time t is read at the sampling points
t0, t0 + COMINT, t0 + 2 COMINT, …; the initial time t0 usually defaults to zero.

 5

Figure 3a. Desire stripchart-type displays showing the Impulse response and amplitude/phase
frequency response for a simple analog bandpass filter with the tranfer function

H(s) = 1/(s 2 + 40s +20000)

Figure 3b. Impulse response and amplitude/phase frequency response for a 3rd-order Butterworth
lowpass filter with the tranfer function

H(s) = 1/(s 3 + 2s2 + 2s + 1)

Computer simulations software solve such difference equations by successive substitu-
tions, starting with given initial conditions for each state variable x[i] on the right-hand side. A
Desire program would represent the filter with the readable assignments

 6

 -- SIMPLE BUTTERWORTH LOW-PASS FILTER
 -- H = 1/(s^3 + a[1]s^2 + a[2]s + a[3])
 --
 display N1 | display C7 | display Q | -- d isplay
 NN=8192 | DT=0.001 | TMAX=150
 --
 n=3 | STATE x[n] | ARRAY a[n],b[n]
 --
 -- array OUTPUT gets output samples for FFT
 ARRAY OUTPUT[NN],OUTPUTy[NN]
 --
 -- specify the filter parameters
 a[1]=1 | a[2]=2 | a[3]=2 | b[1]=1 | -- other a[i], b[i] default to 0
 bb=0 | -- feedforward coefficient
 --
 t=0 | -- (default initial t would be t=1)
 x[1]=1 | -- to get impulse response
 scale=0.5 | -- display scale
 drunr | -- drunr resets t=0
 write 'type go for FFT' | STOP

 FFT F,NN,OUTPUT,OUTPUTy
 scale=100 | NN=101
 drun FFT

 DYNAMIC

 input=0 | -- for impulse response
 output=x[n]
 Vectr d/dt x=x{-1}+b*input-a*output
 dispt output

 store OUTPUT=output | -- fill FFT array
 --
 ---------------------------- AMPLITUDE/PHASE DI SPLAY
 label FFT
 get xx=OUTPUT | get yy=OUTPUTy | -- FFT arra ys
 r=sqrt(xx*xx+yy*yy)
 phix10=10*atan2(yy,xx)
 dispt r,phix10

Figure 3c. Complete program for the simple Butterworth filter. The experiment protocol script
sets up arrays, parameters and initial conditions and calls a simulation run. The filter-output time
history is displayed and also stored in the FFT array OUTPUT. If prompted by the user, the
experiment-protocol script then computes the FFT and calls a second DYNAMIC program segment
labeled FFT to display the frequency response.

 7

 Figure 4. Block diagram of a digital filter with the z transfer function

 H(z) = {bb z
n
+ b[n]z

n-1
+ b[n-1]z

n-2
 + … + b[1] }/{z

n
+ a[n]z

n-1
+ a[n-1]z

n-2
+ … + a[1]}

input = (given function of the time variable t)
output = x[n] + bb * input

 (place display or store commands here)

x[1] = b[1] input – a[1] output)
x[2] = x[1] + b[2] input – a[2] output
.
x[n] = x[n-1] + b[n] input – a[n] output (4)

Each of these assignments again relates directly to the block diagram in Fig. 4. The program
repeatedly executes these assignments in order, with t successively set to t = t0, t0+COMINT,
t0+2 COMINT, … on the right-hand side of each assignment. This updates the assignment targets
on the left for the next sampling time. For t = t0 , the right-hand expressions are initialized with
the given initial values of x[1], x[2], …, x[n] , which usually default to 0.

We remark that the order of difference-equation assignments must be carefully observed.3
Placing display, print, or store commands (such as dispt v, x[1]) just ahead of the first state-
variable updating assignment (x[1] = input – output) will ensure that state variables x[i] and
defined variables like input are both sampled at the same sampling time t.

7. Vectorization Again Simplifies the Program

Simulating, say, a 50th-order digital filter would require programming n + 2 = 52 assignments
(4), but there is a better way. We again formulate the state variables x[i] , and the filter
coefficients a[i] and b[i] as n-dimensional vectors x = (x[1], x[2], …, x[n]), a = (a[1], a[2], …,
a[n]), b = (b[1], b[2], …, b[n]) with

ARRAY x[n], a[n], b[n]

3 Some simulation languages order scalar differential-equation systems automatically, but difference equations must
always be ordered by the programmer.

 8

We then invoke the index-shift operation defined in Sec. 3 to replace our n + 2 assignments with
only three program lines

input = (given function of t)
output = x[n] + bb * input
Vector x = x{-1} + b * input – a * output (5)

Our runtime-compiled vector operations again cause no assignment-loop overhead.

Figures 5a and b show a complete program simulating a 20th-order digital filter. We ob-
tain the filter response to a unit impulse at t = t0 = 0, we programmed input = swtch(1 - t) . The
impulse response equals 1 for t = 0, t = COMINT, …, t = (n - 1) COMINT and then goes to 0. The
Desire experiment-protocol script can also call a fast Fourier transform to produce the frequency
response of the filter (Fig. 5c).

6. Combining Simple Filters

Practical filters are often realized as cascaded and/or parallel combinations of simpler filters.[1]
As special cases of the program (5), we can model a simple recursive filter with

H(z) = 1/{zn + a[n]z n-1 + a[n-1]z n-2 + … + a[1]}

ARRAY x[n], a[n]

input = (given function of t)
output = x[n]
Vector x = x{-1} – a[1] * output | x[1] = input – a[1] * output (6)

Note that the final assignment to x[1] overwrites the x[1] component of the Vector assigment.

A FIR (finite-impulse-response) filter is modeled with

H(z) = {bb z n + b[n]z n-1 + b[n-1]z n-2 + … + b[1] }/z n

 ARRAY x[n], b[n]

 input = (given function of t)
 output = x[n] + bb * input
 Vector x = x{-1} + bb * input (7)

Compact filter models like (5), (6), and (7) can be cascaded, and filter outputs can be added to
represent parallel combinations of filters. Cascading several small filters is useful for creating
filters with different pole/zero combinations.[1]

8. Concluding Remarks

Our new programming technique permits very convenient interactive simulation of control or
communication systems that include digital or analog filters. Our programs are not meant to
replace specialized programs[1] for optimal filter design

Interestingly, the new programming scheme is not restricted to linear and time-invariant
filters. The compact programs (3) and (5) work just as well when the filter coefficients a[i] , b[i]
are not constant parameters but simulation-program variables. This is an interesting topic for
future research.

 9

 DYNAMIC

 input=swtch(1-t) | -- for impulse response; su bstitute a desired input signal
 output = x[n] + bb * input

 Vector x=x{-1} + b * input – a * output
 dispt output

Figure 5a. A complete DYNAMIC program segment modeling any desired digital filter with the z
transfer function

 H(z) = {bb z n + b[n]z n-1 + b[n-1]z n-1 + … + b[1] }/{z n + a[n]z n-1 + a[n-1]z n-2 + … + a[1]}

input = swtch(1 – t) is a unit impulse at t = t0 = 0 and produces the filter inpulse response.

 -- DIGITAL FILTER

 display N1 | display C8 | display R | -- display colors
 NN=4096 | -- number of samples
 --
 -- parameters fo r H = (z^n + 1)/[z^n - z^(n-1)])
 --
 n=20 | ARRAY x[n], a[n], b[n]
 --
 a[n] = -1 | b[1] = 1 | bb = 1 | -- all other a [i], b[i] default to 0

 t = 0 | -- initial value of t
 drun | -- make a simulation run

Figure 5b. This experiment-protocol script declares vector arrays and sets the parameters n, a[i] ,
b[i] , and bb for the 20th-order filter with he z transfer function H = (zn - 1)/(zn - zn-1).

Figure 5c. Dual-screen display showing console, editor, and filemanager windows and graphs of
the amplitude and phase response for a filter with the z transfer function

 H[z) = (zn – 1)/(zn – zn-1)

Desire computed the frequency response as the fast Fourier transform of its impulse-response
function. The order n of the filter is 20.

 10

References

[1] Smith, J.: Introduction to Digital Filters, complete course text on the Web at
http://ccrma.stanford.edu/~jos/filters/

[2] Korn, G.A.: Interactive Dynamic-system Simulation under Windows, Gordon and Breach,
London, 1998.

[3] --: Advanced Dynamic-system Simulation: Model-replication Techniques and Monte Carlo
Simulation, Wiley, Hoboken, N.J., 2007.

[4] --: Neural Networks and Fuzzy-logic Control on Personal Computers and Workstations, MIT
Press, Cambridge, MA, 1995.

[5] Papoulis, A.: Signal Analysis, McGraw-Hill, New York, 1977.
[6] Principe, J., et al.: Neural and Adaptive Systems, Wiley, Hoboken, N.J., 2001.

