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Abstract 

We present new compact programs for computer simulation of linear operations defined 
in ordinary transfer-function form. This new technique applies to analog and digital 
control systems and filters, which used to require a substantial amount of code for 
multiple integration or delay operations. The open-source Desire program for Windows 
or Linux formulates filter operations as short, easily readable vector expressions that 
compile automatically into multiple assignments. Desire’s vector operations model n 
cascaded integrators, unit delays, or gamma delay lines with a single program line. 
Built-in FFT operations can transform the resulting time histories into frequency-
response plots. We show example programs and results for digital and analog filters. 

 

1. Introduction  

We shall describe fast and compact computer programs modeling linear operations such as 
analog and digital filters. Sections 2 and 3, based on textbook references,[3,4] quickly review 
dynamic-system modeling with differential and/or difference equations in scalar and vector form. 
The Desire interactive-simulation program1 translates human-readable linear or nonlinear diffe-
rential equations into fast machine code and permits vector operations for vectorized Monte 
Carlo simulation and neural-network models.[1] This report introduces new vector operations 
that model cascaded integrators or delay lines for linear operators such as filters. 

Sections 4 and 5 apply the new programming scheme to analog filters represented in 
standard transfer-function form; Sections 6 and 7 apply our vectorization technique to the 
cascaded delays needed to model digital filters. Section 8 deals with filter combinations; 
cascaded small filters let you experiment with different pole/zero combinations. 

2.  A Simulation Language for Interactive Dynamic-s ystem Modeling 

Desire simulation programs define dynamic-system models with assignments and/or differential 
equations like 

 
 

                                                      
1 The Open Desire interactive-simulation package is free open-source software dowloadable from 
sites.google.com/site/gatmkorn . References 3 and 4 are textbooks describing many applications. Very fast double-
precision floating-point routines solve differential and/or linear or nonlinear difference equations (up to 40,000 state 
variables) in scalar or vector form). There are 13 integration rules.  
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Figure 1. Dual-screen display showing Desire running with two screen-editor windows. Programs in either 
editor window can be run to compare models. The program works under Windows and Linux.   

 
u = alpha* sin(w * t + beta) + c 
d/dt x = xdot 
d/dt xdot = - a * x – b * xdot   

which are screen-edited into a DYNAMIC program segment (Fig. 1). Simulation studies are 
controlled by typed interactive commands and/or by an experiment-protocol script.  Experiment-
control commands set and changes parameters and initial conditions and then call a simulation 
runs to exercise the dynamic-system model, as in 

   t0 = 0    |    t = t0   
a = - 5.00    |    x = 17.1   
drun 

| is a statement delimiter.  t0 is the initial value of the simulation time t and usually defaults to 0. 
When the experiment protocol encounters the drun  statement the DYNAMIC segment is com-
piled with a fast runtime compiler and runs immediately to produce time-history displays (Fig. 
1). More elaborate experiment protocols can call multiple simulation runs with modified para-
meters and different DYNAMICsegments. [2,3]  

3.  Vector Operations and Delay-line Models  

Desire experiment-control scripts can declare vectors like x ≡ (x[1], x[2], …, x[n])   and matrices 
like W ≡ (W[1,1], W[1,2], …, W[n, m] )  with single or multiple ARRAY  statements such as 

 ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n],  v[n], …  

DYNAMIC program segments can then use the vectors and matrices in vector assignments, and 
vector differential equations , say 

   Vector x = a + alpha * b * c 
   Vector y = tanh(W * x)  

Vectr d/dt x = beta * cos (t + c) 

which automatically compile into multiple scalar operations 

x[i]  = a[i]  + alpha * b[i]  * c[i]  (i = 1, 2, …, n) 
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                          m 

y[i] = tanh( ΣΣΣΣW[i, k] * x[i])    (i = 1, 2, …, n) 
                         k=1 

d/dt x[i] = alpha * cos (t + c[i])  (i = 1, 2, …, n) 

There is no vector-loop overhead.  We can also compute inner products 
          n 

p = ΣΣΣΣ u[k] v[k] 
         k=1 

with inner-product assignments DOT p = u * v , again without program-loop overhead.  

Given a vector x ≡ (x[1], x[2], …, x[n]) and an integer k, the index-shifted vector x{k}  is the 
vector (x[1+k], x[2+k], …, x[n+k])  where components with indices less than 1 and greater than n 
are simply set to 0.  In particular, repeated execution of the assignments  

Vector x = x{-1}   |   x[1] = u 

neatly models shifting successive samples of a function u(t)  into a simple tapped delay line with 
tap outputs x[1], x[2], …, x[n].  Note that the assignment x[1] = u  overwrites the Vector  
operation’s assignment to x[1] .  

Desire vector operations have been used for vectorized Monte Carlo simulation and for 
modeling neural networks, fuzzy-logic controllers, and systems involving partial differential 
equations.[3]  We shall now apply them to create efficient models of analog and digital filters. 

 
4.  Modeling Analog Filters 

An nth-order linear filter[1,5]  with the classical transfer function2   

  H(s) =  {bb s n+ b[n]s n-1+ b[n-1]s n-2+ … + b[1] }/{s n+ a[n]s n-1+ a[n-1]s n-2+ … + a[1]}       (1) 

can be represented by the block diagram in Fig. 2. [5]  Practical filters are often realized as 
cascaded and/or parallel combinations of simpler filters.[1] This transfer function represents a 
differential-equation system, which is modeled by the easily readable Desire program 

input = ( given function of the time variable t) 
output = x[n] + bb * input 

d/dt x[1] = b[1] * input – a[1] * output 
d/dt x[2] = x[1] + b[2] * input – a[2] * output 
. . . . . . . . . . . . . . 
d/dt x[n] = x[n-1] + b[n] * input – a[n] * output                                                (2) 

Each of these assignments relates directly to the block diagram in Fig. 2.  Execution starts with 
given initial conditions for each state variable x[i]  on the right-hand side. The initial values t0 
and x[i] normally default to zero.  

 
                                                      
2 Different texts index the coefficients a[i] , b[i] , and bb  in different ways. Reference 5, for instance uses 

 bn = b[1] , bn-1 = b[2] , …, b1 = b[n] , b0 = bb  and an = a[1], an-1 = a[2], …, a1 = a[n] .  

The indexing chosen here is the most efficient for vector programming. If necessary, Desire experiment-protocol 
scripts can readily loop to relabel coefficients.  
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  Figure 2.  Block diagram of an analog filter with the transfer function 

      H(s) =  {bb s
n
+ b[n]s

n-1
+ b[n-1]s

n-2
+ … + b[1] }/{s

n
+ a[n]s

n-1
+ a[n-1]s

n-2
+ … + a[1]}        

5.  Vectorization Makes the Program Much Simpler  

Instead of programming n scalar differential equations, Desire can declare n-dimensional vectors 
x, a, and b, 

STATE x[n]    |    ARRAY a[n], b[n] 

noting that differential-equation state vectors like x must be declared as separate STATE arrays. 
We can then program our complete filter model, for any order n, in only three lines: 

input = ( given function of t) 
output = x[n] + bb * input 
Vectr d/dt x = x{-1} + b * input – a * output                                   (3) 

These three lines compile automatically into the program (2). Note that the last statement neatly 
models a chain of n cascaded integrators. There is no runtime vector-loop overhead. 

To obtain the impulse response of the filter we program input = 0  and set the initial value 
of x[1]  to 1.  The amplitude/phase frequency response is then obtained with Desire’s built-in FFT 
routine. Figure 3 shows actual programs and results.  

6. Modeling Digital Filters 

An nth-order linear digital filter[1,5]  with the classical z transfer function 

    H(z) = {bb z n+ b[n]z n-1+ b[n-1]z n-2 + … + b[1] }/{z n+ a[n]z n-1+ a[n-1]z n-2+ … + a[1]}       (4) 

can be represented by the block diagram in Fig. 4.[5]  The time t is read at the sampling points 
t0, t0 + COMINT, t0 + 2 COMINT,  …; the initial time t0 usually defaults to zero.   
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Figure 3a. Desire stripchart-type displays showing the Impulse response and amplitude/phase 
frequency response for a simple analog bandpass filter with the tranfer function 

H(s) = 1/(s 2  + 40s +20000) 

 

 

 
 
 
                                             
 
 
 
 
 
 
 
 
 
 
 

Figure 3b. Impulse response and amplitude/phase frequency response for a 3rd-order Butterworth 
lowpass filter with the tranfer function 

H(s) = 1/(s 3 + 2s2  + 2s + 1)                       
 

Computer simulations software solve such difference equations by successive substitu-
tions, starting with given initial conditions for each state variable x[i]  on the right-hand side. A 
Desire program would represent the filter with the readable assignments 
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  --       SIMPLE BUTTERWORTH LOW-PASS FILTER 
  --             H = 1/(s^3 + a[1]s^2 + a[2]s + a[3 ])  
  ------------------------------------------------------------------ 
  display N1 |  display C7 |  display Q |  --     d isplay 
  NN=8192 |  DT=0.001 |  TMAX=150 
  -- 
  n=3 |  STATE x[n] |  ARRAY a[n],b[n] 
  -- 
  --  array OUTPUT gets output samples for FFT 
  ARRAY OUTPUT[NN],OUTPUTy[NN] 
  ----------------------------------------------------   
  --            specify the filter parameters    
  a[1]=1 | a[2]=2 | a[3]=2 | b[1]=1 |  -- other a[i ], b[i] default to 0 
  bb=0 |  --        feedforward coefficient 
  -------------------------------------------------- 
  t=0 |  --   (default initial t would be t=1) 
  x[1]=1 |  -- to get impulse response 
  scale=0.5 |  --       display scale 
  drunr  |  --            drunr resets t=0 
  write 'type go for FFT' |  STOP 
  ----------------------------------- 
              FFT F,NN,OUTPUT,OUTPUTy 
  scale=100  |  NN=101 
  drun FFT         
  --------------------------------------------------------- 
  DYNAMIC 
  --------------------------------------------------------- 
  input=0 |  --             for impulse response 
  output=x[n]  
  Vectr d/dt x=x{-1}+b*input-a*output 
  dispt output 
  ----------                                 
  store OUTPUT=output |  --   fill FFT array  
  --      
  ----------------------------   AMPLITUDE/PHASE DI SPLAY 
     label FFT 
  get xx=OUTPUT |  get yy=OUTPUTy |  --    FFT arra ys 
  r=sqrt(xx*xx+yy*yy) 
  phix10=10*atan2(yy,xx) 
  dispt r,phix10 

 
Figure 3c.  Complete program for the simple Butterworth filter. The experiment protocol script 
sets up arrays, parameters and initial conditions and calls a simulation run. The filter-output time 
history is displayed and also stored in the FFT array OUTPUT. If prompted by the user, the 
experiment-protocol script then computes the FFT and calls a second DYNAMIC program segment 
labeled FFT to display the frequency response. 
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  Figure 4.  Block diagram of a digital filter with the z transfer function 
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input = ( given function of the time variable t)  
output = x[n] + bb * input      

 (place display or store commands here) 

x[1] = b[1] input – a[1] output)      
x[2] = x[1] + b[2] input – a[2] output 
. . . . . . . . . . . . . 
x[n] = x[n-1] + b[n] input – a[n] output                                                      (4) 

Each of these assignments again relates directly to the block diagram in Fig. 4.  The program 
repeatedly executes these assignments in order, with t successively set to t = t0, t0+COMINT, 
t0+2 COMINT, … on the right-hand side of each assignment. This updates the assignment targets 
on the left for the next sampling time.  For t = t0 , the right-hand expressions are initialized with 
the given initial values of x[1], x[2], …, x[n] , which usually default to 0.  

We remark that the order of difference-equation assignments must be carefully observed.3 
Placing display, print, or store commands (such as dispt v, x[1] ) just ahead of the first state-
variable updating assignment (x[1] = input – output ) will ensure that state variables x[i] and 
defined variables like input  are both sampled at the same sampling time t. 
 
7.  Vectorization Again Simplifies the Program  

Simulating, say, a 50th-order digital filter would require programming n + 2 = 52 assignments 
(4), but there is a better way.  We again formulate the state variables x[i] , and the filter 
coefficients a[i]  and b[i]  as n-dimensional vectors x = (x[1], x[2], …, x[n]), a = (a[1], a[2], …, 
a[n]),  b = (b[1], b[2], …, b[n]) with 

ARRAY x[n], a[n], b[n] 

                                                      
3 Some simulation languages order scalar differential-equation systems automatically, but difference equations must 
always be ordered by the programmer. 
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We then invoke the index-shift operation defined in Sec. 3 to replace our n + 2 assignments with 
only three program lines  

input = ( given function of t)  
output = x[n] + bb * input                                   
Vector x = x{-1} + b * input – a * output                                                       (5) 

Our runtime-compiled vector operations again cause no assignment-loop overhead.   

Figures 5a and b show a complete program simulating a 20th-order digital filter. We ob-
tain the filter response to a unit impulse at t = t0 = 0, we programmed input = swtch(1 - t) . The 
impulse response equals 1 for t = 0, t = COMINT, …, t = (n - 1) COMINT  and then goes to 0.  The 
Desire experiment-protocol script can also call a fast Fourier transform to produce the frequency 
response of the filter (Fig. 5c).  

6.  Combining Simple Filters 

Practical filters are often realized as cascaded and/or parallel combinations of simpler filters.[1] 
As special cases of the program (5), we can model a simple recursive filter with 

H(z) = 1/{zn + a[n]z n-1 + a[n-1]z n-2 + … + a[1]} 

ARRAY x[n], a[n] 

input = ( given function of t) 
output = x[n] 
Vector x = x{-1} – a[1] * output  |   x[1] = input – a[1] * output                       (6) 

Note that the final assignment to x[1] overwrites the x[1]  component of the Vector  assigment. 

A FIR (finite-impulse-response) filter is modeled with 

H(z) =  {bb z n + b[n]z n-1 + b[n-1]z n-2 + … + b[1] }/z n  

           ARRAY x[n], b[n] 

  input = ( given function of t) 
           output = x[n] + bb * input 
           Vector x = x{-1} + bb * input                                                                              (7) 

Compact filter models like (5), (6), and (7) can be cascaded, and filter outputs can be added to 
represent parallel combinations of filters. Cascading several small filters is useful for creating 
filters with different pole/zero combinations.[1]  
 
8.   Concluding Remarks 

Our new programming technique permits very convenient interactive simulation of control or 
communication systems that include digital or analog filters.  Our programs are not meant to 
replace specialized programs[1] for optimal filter design 

Interestingly, the new programming scheme is not restricted to linear and time-invariant 
filters. The compact programs (3) and (5) work just as well when the filter coefficients a[i] , b[i]  
are not constant parameters but simulation-program variables. This is an interesting topic for 
future research. 
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 DYNAMIC 

  ------------------------------------------------------------------------------------------------------------- 
  input=swtch(1-t)  | --  for impulse response;  su bstitute a desired input signal 
  output = x[n] + bb * input 

 Vector x=x{-1} + b * input – a * output 
  dispt output  
   

Figure 5a.  A complete DYNAMIC program segment modeling any desired digital filter with the z 
transfer function 

           H(z) =  {bb z n + b[n]z n-1 + b[n-1]z n-1 + … + b[1] }/{z n + a[n]z n-1 + a[n-1]z n-2 + … + a[1]}    

input = swtch(1 – t)  is a unit impulse at t = t0 = 0 and produces the  filter inpulse response.  
 
 

 --                                                                   DIGITAL FILTER 
  --------------------------------------------------------------------------------- 
  display N1  |   display C8  |  display R  |  --   display colors 
  NN=4096   | --                                          number of samples 
  --  
              --                      parameters fo r  H = (z^n + 1)/[z^n - z^(n-1)])   
              -- 
  n=20   |   ARRAY x[n], a[n], b[n] 
  --   
   a[n] = -1 | b[1] = 1  |  bb = 1 | -- all other a [i], b[i] default to 0 
  ----------------------------------------------------------------------------------- 
  t = 0  |  --                                                           initial value of t  
  drun  |  --                                               make a simulation run 

  
Figure 5b. This experiment-protocol script declares vector arrays and sets the parameters n, a[i] , 
b[i] , and bb  for the 20th-order filter with he z transfer function  H = (zn - 1)/(zn - zn-1). 

 

 
Figure 5c. Dual-screen display showing console, editor, and filemanager windows and graphs of 
the amplitude and phase response for a filter with the z transfer function 

    H[z) = (zn – 1)/(zn – zn-1)  

Desire computed the frequency response as the fast Fourier transform of its impulse-response 
function. The order n of the filter is 20.  
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