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Abstract

We present new techniques for modeling the feedlbamps of recurrent neural net-
works, including networks that incorporate tappedad lines or gamma delay lines.
Very fast simplified programs result. Examples pplécations include signal prediction
and dynamic-model matching. We also suggest irtiagefuture research on improved
programs for time-series recognition and clasdifica

1. Introduction

This article describes much-simplified computergoeans for interactive simulation of recurrent
neural networks. Sections 2 to 5 briefly review aync-system simulation and our open-source
software for Windows and Linux. (Korn, 1995, 199807), We employ a compact, human- and
machine-readable vector notation, including very@dul vector index-shift operations for
modeling delay lines and filters. The remaindethi$ report applies these techniques to neural-
network simulation.

Section 6 presents a simple backprapaganodel representing each neuron layer by a
one-line vector assignment. Section 7 then destribsignificant innovationa technique for
programming the time-delayed feedback in recurrent networks without the complication of
special context layers. Sections 8 to 10 next apply our simple vectorexidhift notation to
neural networks with input and feedback delay lioegamma delay lines.

Finally, Sections 11 and 12 discuss applicationsédel matching and time-history pre-
diction and suggest other applications for fut@search.

2. A Simulation Language for Interactive Dynamic-s  ystem Modeling

Desire simulation programs (Korn, 1995, 1998) matiglamic systems using a natural mathe-
matical notation for successive difference-equasissignments like

X=X+a*sin(c*t)
y =X 1)
and/or differential-equation-system assignments lik

u = alpha* sin(w *t + beta) + c
d/dt x = xdot
d/dt xdot = - a * x — b * xdot (2)

Such model definitions are screen-edited inDYANAMIC program segment (Fig. 1). Simu-
lation studies are controlled by typed interactbeenmands and/or by axperiment-protocol
script. Experiment-control commands set or change passand initial conditions and then
call simulation runs that produce time-history displays. Each simufation exercises the model
by calling the DYNAMIC program segment fiN successive time steps, as in
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Figure 1. Desire with a file manager, command window, an@édhscreen-editor windows.
Programs in different editor windows can be rurtum to compare models. The original
curves were in color.

| =10 | NN =2000 | TMAX =100
a=-5.00 | x=17.1
drun

| is a statement delimiter. When the experimentqmatencounters the firgirun statement the
DYNAMIC segment is compiled with a fast runtime qaiter and runs immediately to produce
time-history displays (Fig. 1). More elaborate expent protocols can call multiple simulation
runs with modified parameters and different DYNAMdI€gments (Korn, 1998, 2007).

3. Fast, Human- and Machine-readable Vector Operat ions*

Desire experiment-control scripts can dechamaors like x = (x[1], x[2], ..., X[n]) andmatrices
like W = (WJ[1,1], W[1,2], ..., W[n, m] ) with single or multipleARRAY statements such as

ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n], v[n], ...

DYNAMIC program segments can then use the vectodsmatrices irvector assignments, and
vector differential equation , say

Vectorx =a+alpha*b*c
Vector y = tanh(W * X)
Vectr d/dt x = beta * cos (t + ¢)

which automatically compile into multiple scalarepgtions

X[i] = al[i] + alpha* b[i] * c][i] i=1,2,..n

y[i] = tanh( ZW[i, K] * x[i]) i=1,2,...,n)
k=1

d/dt x[i] = alpha * cos (t + c]i]) i=1,2,...,n)

! References 1 (due for a new edition) and Refer@r{oet of print) refer to an early version of Desihat lacked
the new vectorizing compiler (Korn, 2007) we empheye.



MATRIX assignments similarly compile into multiple assigmts to matrix elemenw|[l,k] .[2].
All these compiler operations unroll program loogs that the resulting binary code is fast.

We can also compute vector-component sums and products like
n

n
p=2 ulk] VK] p= 2 ulk VK]
k=1 k=1
with inner-product assignments DOT p =u * 1 andDOT p = u * v, again without program-loop
overhead.

Desire vector operations permit very fast vectatik#nte Carlo simulation of engineer-
ing and biological systems and can model fuzzyedagintrollers and partial differential equati-
ons as well as the neural-networks we shall disbass (Korn, 2007).

4. Vector Index-shifting, Delay Lines, and Filters

Given ann-dimensional vectox = (x[1], x[2], ..., x[n]) and an integek, the index-shifted vector

x{k} is the n-dimensional vecto(x[1+k], x[2+K], ..., x[n+k]) , with components referring to
indices less than 1 or greater tmaget to 0. Significantly, the assignments
Vector x = x{-1} | x[1] = input 3)
compile into
X[i] = x[i — 1] i=1,2,..n) X[1] = input

This neatly models shifting successive samples foination u(t) into atapped delay line with
tap output[1] = input, x[2], ..., x[n].  Note that the assignmexjil] = input overwrites the
Vector operation’s assignmenrfl] =0 at each step.

Assignments like (3) can, for instance, model agletenth-order digital filterwith only
two program lines (Appendix A). Sections 8 to 10 will describe néuratworks incorporating
tapped delay lines and also gamma delay lines ¢ipen 2000) modeled with a similar index-
shift operation.

5. Neural-network Models

DYNAMIC program segments (1) that include diffeiahequations compute state-variable deri-
vatives. An integration routine selected by theepent-control script then combines deriva-
tive values from successive time steps to updafkerential-equation state variables(Korn,
1998).

Desire can model biological neurons with differ@nequations (e.g. pulsed integrate-
and-fire neurons) (Korn, 2007). but the neural-metwwmodels we discuss here are much
simpler. For DYNAMIC program segments without diffatial equations, the simulation time
automatically steps through= 0, 1, 2, ..., NN by default (users can, if desired, specify differe
starting times and/or time increments). Neuronvatibtns and connection weights are repre-
sented by real numbers that roughly model neurdsepates and synapse chemistry. Both are
updated with simple difference equations in sudeesime steps. Appendix B shows how we
handle problems that combine differential-equatitodels and neural networks, as in sampled-
data control systems.
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Figure2. A simple backpropagation network.

6. A Simple Backpropagation Network

Figure 2 shows a simple three-layer neural netwdbesire’s interpreted experiment-protocol
script declares the three neuron layers in turh wit

ARRAY x[nx] + x0[1] = xx v[nv], y[n]
x0[1]=1

and two connection-weight matricésl andw2 with
ARRAY W1[nv, nx + 1], W2[ny, nv]

Desire array declarations likBRRAY x[nx] + x0[1] = xx act like Fortran equivalence
statementsxx[3] is identical withx[3], andxx[nx + 1] is identical withxO[1]. As is customary,
the input layexx adjoins a one-dimensional bias vectorto the normal nx-dimensional net-
work inputx. With x0[1] set to 1, we can then conveniently represent ibages asv extra
connection weightgv1Ji, 1].

The runtime-compiled DYNAMIC program segment de$itlee network dynamics with

Vector v = tanh(W1 * xx)
Vectory =W2 *v

if we use a tanh activation function for the noalin hidden layer. To produce simple backpropa-
gation updating, we declatarget, error , and error-propagation vectors with

ARRAY target[ny], error[ny], vdelta[nv]
and program
Vector error = target — y
Vector vdelta = W2% * error * (1 — v2)
DELTA W1 =Iratel * vdelta * xx
DELTA W2 = Irate2 * error * v (4)
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Herew2% denotes the transpose of the connection-weighixmae, and
DELTA W = matrix expression is equivalent to MATRIX W = W + matrix expression

These assignments update vectors and matricesdadghcomputed earlier, starting with given
initial values. DesirdRRAY declarations initialize all subscripted variakieshe default value
zero. That is fine for the vectors; but the expentrprotocol script must initialize the connec-
tion weightsw1i]i, k] andwz2][i, k] with small random values.

In addition to declaring and initializing neuronda arrays, the experiment-protocol
script for a neural-network experiment must seapaaters and initial values of scalar state vari-
ables (if any) and then schedule training and $esulation runs withdrun statements.. The
script also selects integration rules (if any) #mel display scale and colors. For simplicity, our
text omits these housekeeping operations.

7. Simplified Recurrent-network Programming

An Elman recurrent network (Fig. 3) (Principe, 20@man, 1990) copies all or some of the
hidden network layev to acontext layer v1 that is fed back te together with the inpux. The
experiment-protocol script declares the originaleBiron layersx, v, andy and the connection
weight matricev1l andw?2 as before,

ARRAY x[nx] + X[0[1] = xx, V[nv], y[ny], W1[nv, nx + 1], W2[ny, nv]
x0[1]=1

and adds the context layer and a new connection-weight matvix.1:
ARRAY vl[nv], W11[nv, nv].
The network dynamics in the DYNAMIC program segmaatome



Vectorvl=v
Vector v = tanh(W1 * xx) + tanh(W11 * v1)
Vector y = W2 *v (5)

To updatenvll as well asvl andw2 by backpropagation now requires two error-propagat
vectorsvldelta andv2delta, and the updating program becomes more complicBigdhereis
amuch better way!

Just as we concatenated the input layand its bias layex0, we can declare a single
new input layexx that combines our hidden layewith x andxo:

ARRAY x[nx] + x0[1] + v[nv] = xx | x0[1] =1 (6)

(Fig. 4). The two connection-weight matricéd andwW11 of the Elman network in Fig. 3 can
now be replaced with a single connection-weightrxatv1,

ARRAY Wl[nv, nx + 1 + nv]

W1 feedsxx to the hidden layer just as in Fig. 2 - butx now includes the hidden-layer acti-
vationsv computed in the preceding iteratiofhe simple backpropagation-updating assign-
ments (4) for the static network of Fig. 2 then work without change for the recurrent neural
network in Fig. 3. Only the array dimensions have changed

It is just as easy to implement time-delayed feeklfeom the output layey (Jordan
recurrent network), or from bothandy. Backpropagation updating remamctly the same.
This simplified implementation of recurrent-netwddedback is by no means restricted to back-
propagation networks. This technique serves equaly for two-layer linear and nonlinear net-
works, for softmax pattern recognizers, and foraiablasis-function networks, which are all easy
to program in the Desire language (Korn, 2007)ed&ch case we simply reuse the unchanged
program for a static neural network.

8. Networks with Input Delay Lines

The earliest neural network with time-history meynaras Widrow’s adaptive filter (Principe,
2000) In Fig. 5, successive values of a singleetsmriesnput enter a delay line whose taps
feed a static neural network trained to filter,agize, or predict time-series patterns. Desire’s
compact index-shift operation (3) is exactly wisahéeded for modeling such networks.

Widrow’s original network, for example, combined@ay line with a simple linear network
layer
Vector x = x{-1} | X[1] =input
Vector y = W * x

Widrow’s network had a single outpufl] and thus implemented a linear filter that could be
trained with his new LMS algorithm to match a tdrggme series. In our notation this succes-
sive-approximation rule would be

DELTA W =Irate * (target — y) * x

Improved designs incorporate a nonlinear multilayetwork, say the backpropagation network
of Sec. 6:

Vector x = x{-1} | X[1] = input

Vector v = tanh(W1 * x)

Vectory =W2*v
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Figure 5. A static neural network Figure 6. A NARMAX network.
fed by an input delay line.

or other types of static networks. All need oniglinary static-network training.

9. NARMAX ? Networks use Delay-line Feedback

The recurrent network in Fig. 6 has a single inpptt to a delay-line layex of lengthnx as
before. The output layey has only a single outpuy[1]. The (scalar) error in this network
output is

ERROR =target - y[1]

wheretarget is a desired output time series. Successivelyyddlgdamples odERROR_are pro-
duced by a second delay-line lageror of lengthne. The delayed error samples are fed back to
the neural network.

Referring to Fig. 6, we again concatenate all iHayer vectors, in this case the two
delay linesx anderror and the biaso, into a single input layetx:

ARRAY x[nx] + x0[1] + error[ne] = xx
xx feeds the hidden layerof an ordinary backpropagation network.

The DYNAMIC program segment models each delay in#h the vector index-shift
operations introduced in Sec. 4. The complete NARM#etwork is thus programmed with

ARRAY x1[nx] + x0[1] + errorl[ne] =xx | x0[1]= 1
ARRAY v[nv], y[1], error[ne], vdelta[nv]
ARRAY W1[nv, nx + ne + 1], W2[1, nv]

DYNAMIC
Vector x1 = x1{-1} | x1[1] =input input delay l;ine

2 NARMAX stands for Nonlinear Auto-Regressive MoviAgerage with eXogenous inputs.
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Vector v = tanh(W1 * xx) hidden layer
Vectory = W2 *v output layer
ERROR =target -y output error

Vector error = error{1} | error[1] = ERROR feedback delay line
Vector vdelta=W2%*error*(1- v"2) backpropagation

DELTA W1= Iratel * vdelta * xx
DELTA W2= late2* error * v

Programmers must specify tiput andtarget time series for different applications.

Once agairthe backpropagation program is exactly the same asin Sec. 6. One can also
substitute different types of neural networks far backpropagation layers in Fig. 6.
10. Networks with Gamma Delay Lines

A simple tapped delay line of length n “remembats”input for onlyn time steps. Principe’s
gamma delay line (Principe, 2000) replaces each delay-line elemétit a simple first-order
filter. That effectively gives neural-network inpand feedback delay lines a much longer
memory, so that the networks tend to perform bettense fewer neurons. Our vector index-
shift notation models a gamma delay line with

Vector x =x + beta* (x{-1} - x) | X[1]=inpu t
which automatically compiles into
X[ij=x[i]+beta*(x[i—-1]-x[[)) ( =1,2,...n) X[1] = input

beta is a scalar filter parameter set by the experimpeotocol script; we have compactly pro-
grammed n difference equations foridentical first-order filters.3 We normally prefsuch
gamma delay lines for NARMAX networks.

11. Applications

The most common applications of recurrent netwarks
* model matching (e.g. plant models for control-systkesign)
» time-series prediction
* recognition or classification of time-series patter

3 ... .
It is convenient to progravector x = x + beta * (x{-1} - x) as Vectr delta x = mu*(x{-1} - x)
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Figure 8. Dual-screen display showing our Elman networkamiaig Narendra’s plant model (6).
Both plant and network were fed Narendra’s testtionm (7). The graphs oftarget = f andy
essentially reproduce the results Narendra obtaimigld his own 4-layer NARNAX network
(Narendra, 1990). The original graphs were in icoldne complete program is included in the
open-source Desire distribution package.

Figure 8 demonstrates a model-matching experinidrg. program can be screen-edited
and rerun immediately for truly interactive modelin’Ve programmed Elman networks with 2
and 3 hidden layers and a NARMAX network to matcle @f Narendra’s difference-equation
plant models (Narendra, 1990) described by
f = [Y(K)*Y(K-1)*Y(k-2)%input(k-1)*(Y(k-2) -1)+input(K)]/[1+Y(k-1)"2 + Y (k-2)"2)]
target(k) = Y(k)

k=0,1,2,..) (6)
The networks were trained with random-noise inmat tested with Narendra'’s test function.
s=0.5*((1- 0.2 *swtch(t - 500)) * sin (w *t) + 0.2 * swtch(t - 500) * sin(ww * t)) (7

Training typically converged in 8 out of 10 simudet runs. All three recurrent networks then
matched the plant equally well (Fig. 8).

For modeling a predictor the “present” neural-netwioput is a delayed version of a spe-
cified “future” time seriesarget :

ARRAY buffer[m]
Vector buffer = buffer{-1} | buffer[1] = target | input = buffer[m]

The neural network outpuyt is then trained to matdarget. We programmed a textbook pro-
blem (Principe, 2000) predicting the chaotic Loréknrn, 1998) and Mackey-Glass (Principe,

2000) time serie$. Our Elman and

* Desire models Mackey-Glass with only two programesi

tdelay S=D(signal, tau
d/dt signal = a * S/(1 + Sd”c) — b * signal
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Figure9. This display showsrget, y, andERROR for an Elman network predicting the Mackey-
Glass chaotic time series. The original graphsvirercolor.

NARMAX networks predicted this time series withifieav percent for 50 time steps ahead (Fig.
9). As expected, gamma delay lines worked bett@n gimple delay lines of the same length.
Prediction was still successful when we removedféeelback delay line from the NARMAX
network, resulting in the simpler model of Fig. Readers interested in the details of these
studies — or in repeating our experiments — wiltlfthe compact Desire programs for 20 model-
matching and prediction experiments included indpen-source Desire distribution file.

12. Conclusions and Future Research

The essential contribution of this article is thevel application of the Desire language’s array
declaration (6) in Sec. 7. Acting much like a Famtequivalence statemetttjs programming
trick effectivey eliminates entire neuron layers and greatly simplifies recurrent-network
updating algorithms. The resulting neural-network models are smallar,faster, and are easier
to understand.

On a 3.15 GHz 2-CPU Penryn-class personal compihierscreen-edited, runtime-com-
piled programs exhibited in this report all comgiknd produced time-history displays within 25
msec. This compilation delay is not noticeablethead truly interactive modeling is possible. The
recurrent-network programs in Figs. 8 and 9 coreengithin 1 to 3 seconds.

We demonstrated simple applications to Elman, Widrand NARMAX networks to
model matching and time-series prediction. Timeesepattern recognition (pattern classify-
cation) will be the first interesting topic for tue work. Neuron layers implementing various
softmax classifiers (Korn, 2007). will replace th@&ckpropagation network in Figs. 4 and 6The
required training procedure is again simply thatfstatic network.

Our new trick of concatenating neuron-layer arragm work equally well in other
computer languages. But Desire’s combination ofré@rpreted experiment protocol and fast

wheretdelay is a time-delay operator, aia¢gb, andtau are specified constants.



11

runtime-compiled simulation runs makes interactivedeling — which can involve hundreds of
program changes in one day — especially convenient.
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Fig. A-1. An nth-order digital filte with thez transfer function
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Fig. A-2. An nth-order analog filter with the transfer function

H(s) = {bbs"+b[n]s "L+ bn-1Js "2 + ... + b[1] ¥is "+ an]s "L+ a[n-1]s "2 + ... + a[1]}

APPENDIX A: MODELING FILTERS WITH VECTOR-SHIFT OPER ATIONS (Korn,
2009)

The following examples further show the power of maex-shift operations. Given a state vec-
tor x[n] and coefficient vectora[n], b[n] declared and filled in the experiment protoaily 2
assignments

output = x[n] + bb * input

Vector x = x{-1} + b * input — a * output

model a general digital filter of any order n (Fig. A-1). Similarly,the two assignments

output = x[n] + bb * input
Vectr d/dt x = x{-1} + b * input — a * output

model a general analog filter ~ of any order n (Fig. A-2).
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Appendix B: Models Combining Differential Equation s and Neural Networks

When a DYNAMIC program segment contains scalaremtor differential equations (statements
starting withd/dt or Vectr d/dt ) the starting value0 of the simulation time defaultst0 = 0
instead oft0 = 1, and time histories are sampledNat communication points

t=0, COMINT, 2 COMINT ..., (NN - 1)COMINT = TMAX COMINT = TMAX/(NN - 1)

Desire returns an error message is the selectetbartil of sampling points makeSOMINT
smaller that the specified integration siEp

Desire programs combining differential-equationdels with sampled-data systems like
neural networks execute program lines following>&T statement only at the sampling points.]
Note that sampled data returned to a differenttplation are “sample-hold” state variables”
starting from specified initial valués.Initial values of subscripted variables (and tiRRAY
elements in neural-network programs) default t@zktultirate sampling is also possible (Korn,
2007).
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