
Granino A. Korn
University of Arizona

Introduction

A key obstacle to wider application of the new

microprocessors is the need to program in assembly
language with fairly cumbersome instruction sets. We
propose a new technique which will make it easy for
applications-oriented non-programmers to generate efficient
microcomputer programs without any need to learn
assembly language. The user merely specifies an analog-
computer-like block diagram whose intuitively meaningful
block-operators specify standard mathematical operations
(addition, multiplication, integration, etc.) and input/
output operations (e.g., analog/digital conversion, switch-
ing, sensing). These standard operations are implemented as

subroutines in the microcomputer read-only memory

(ROM). An interactive editor/translator program running
on a small minicomputer translates block-diagram specifica-
tions into a simple address table and loads it into the
microcomputer memory (RAM, PROM, or ROM). This
address table represents the block-diagram operation
sequence and specifies successive jumps to the correct
standard subroutines in ROM and data fetching/storing
operations in the random-access memory.

*A paper based on the material presented here was presented at
Wescon 75.

October 1975

The proposed minicomputer-based programming system
is essentially independent of the type of microcomputer
used and will also permit convenient and realistic
interactive simulation of microcomputer program execu-
tion. This will save substantial time and money in checkout
and debugging operations.

We believe that the proposed new microcomputer
program-development system can significantly enhance
usage of microcomputers by applications-oriented non-
programmers.

The New Microcomputers
Microcomputers are small digital computers' made from

a few LSI chips. A central processor may comprise a single
LSI chip (microprocessor chip) or several such chips. In
addition, a microcomputer system requires some memory
for programs and data; clock circuits; and input/output
interface selectors, registers, and control circuits (Figure
1). As LSI circuit costs decrease with improved
manufacturing yields, microcomputers are replacing much
hardwired special-purpose logic in engineering systems.
Substitution of computer programming for logic design and
design changes, where appropriate, can reduce engineering
and production costs. The shortened design cycle is of
possibly even greater importance for improved capital
utilization and may provide marketing advantages.2

43

I I I I

(to additional memory and
interface circuits, if needed)

START

SERIAL DATA
To/from master
computer, terminal,
modem, etc.

MEMORY CHIPS

*

r - --1-
IBUS
I EXTENDER I
L - _ __ j

t
U

ASYNCHRONOUS BUS

(8 data, 16 address lines,
control signals)

PARALLEL-
INTER FACE
CHIP

PARALLEL
INTERFACE DATA,
CONTROL SIGNALS

PARALLEL-
'

INTER FACE
CHIP

Figure 1. A microcomputer system

The Microcomputer Software Problem

As with all widely applied computers, the cost of
producing many thousands of useful applications programs
is a very important consideration. Most microcomputers
will serve "dedicated" applications-i.e., they will not be
used for general-purpose or "end-user" computation. Some
dedicated applications may require rare program changes,
and their programs will be frozen into safe and relatively
inexpensive ROMs. Any other dedicated applications-e.g.,
instrument and process controllers-will employ micro-
computers precisely because of the possibility of
reprogramming them for different applications or condi-
tions, or to change a manufacturer's product line in
response to competitive products or market conditions.
Depending on the situation, new programs may simply
require new plug-in ROMs, or one may use electrically
programmable ROMs (PROMs), or even random-access
memories (RAMs), or a mixture of these.

Unfortunately, microcomputers must usually be pro-
grammed in assembly language (or even in machine

44

language), with instruction sets determined more often than
not by chip-hardware constraints rather than by program-
ming simplicity. Most frequently, assembly-language pro-
grams will be translated by a cross-assembler written in
FORTRAN and running on a larger digital computer. One
microprocessor manufacturer has also implemented a
compiler language (a fixed-point subset of PL-1), but little
is known about the efficiency of the resulting microproces-
sor machine code. This code had better be as efficient as
possible, for one would like to optimize execution speed
and also minimize the use of memory within the still rather
rigid hardware constraints of the small processor. There is,
thus, -an important requirement for a microcomputer
programming system which will permit engineers and
scientists to program and reprogram microcomputers
without the use of assembly language. Such a programming
system ought to satisfy the following requirements:

1. The language should be easy to learn and understand;
it should build up complex operations from simple
elementary operations well known to engineers and

COMPUTER

scientists-i.e., simple mathematical operations and
simple I/O operations.

2. The language should be entirely independent of the
specific microcomputer used.

3. The programming system should generate micro-
processor code as efficient in the use of time and
memory as that generated by a good assembly-
language programmer.

4. From point of view of cost and program safety, it
- would be good to program as many standard
elementary procedures as possible in ROM.

This paper proposes new microcomputer programming
systems meeting the above requirements. In order to begin
with a nicely defined problem area, we propose these
programming systems for microcomputer instrumentation
controllers intended to schedule, control, and process
measurements in physics, chemistry, biology, or electrical
engineering. Actually, the new programming systems apply
equally well to computer process control. They are, in fact,
not restricted to microcomputer programming but will also
generate efficient and fast executing programs for
minicomputers. Much of the proposed programming system
is, indeed, based on our experience with efficient
minicomputer block-diagram programming systems,3 and
the proposed research will contribute in this area as well.

ANALOG
INPUTUT

ADC MULT SUB

Xi X2 X3

Gl

(A)

Figure 2. Block diagram (a) and sorted block-diagram-language
program (b) for a simple digitally-implemented filter for
analog voltages. The program involves input/output as

well as mathematical operations. Note that the MULT
operator occurs twice, with different arguments and
results.

A Block-Diagram Programming System

Figure 2 illustrates the proposed programming technique
by a simple, concrete example. Figure 2a is an

analog-computer-like block diagram which describes the
action of a simple microprocessor acting as a primitive
digital filter with analog input and analog output. An
analog-to-digital converter (ADC) produces a digital sample
Xl of its analog input X(T) every DT seconds, an I/O

operation which will automatically synchronize the digital
computation with real time. Next, multiplier (MULT),
subtractor (SUB), and integrator (INT) block operators are

October 1975

connected to produce samples of a low-pass filtered output
quantity

1 d
G2 G3 dt-+ 1

which is then reconverted into an analog output Y(T) by a

digital-to-analog converter (DAC). Such a block diagram
represents a complex operation in terms of simpler
elementary block operators. This type of model representa-
tion is familiar and acceptable to many engineers and
scientists.

For digital computer programming, the block diagram of
Figure 2a is represented in Figure 2b by an ordered list of
all the block operators together with their input and output
variables, outputs first. Figure 2b then represents our

program in a block diagram language. Note that the block
operators are in "procedural order" with the state-variable-
producing integrator last. Some block-diagram program-
ming systems, such as DARE II and DARE/ELEVEN,4'
will automatically sort block statements into procedural
order-i.e., so that each block input appearing in the
program has been properly computed by a block operator
appearing above it. However, this can also be done by hand,
if desired.

(B)

Note that the variables Xl, X2, X3, Yl in our block
diagram vary with the time variable T and must be updated
every DT seconds. The complete sequence of block-opera-
tions of Figure 2 is, therefore, repeated every DT seconds
(possibly twice or more per DT interval if we employ, say,
Runge-Kutta integration4 '5). A block-diagram program-
ming system, then, includes "canned" routines INIT and
RUN which will start the program at the time T = 0, repeat
it every DT seconds, and then terminate operation at a time
T = TMAX. INIT comprises a run-time data-input routine,
which permits us to supply the program with the required
parameters GI, G2, G3, with the initial value of the

45

DAC DUMMY, Y1
ADC xi
MULT X2, X1, G1
SUB X3,X2,Y1
MULT X4,X3,G2
INT Y1, X4, G3

)

integrator output Y, and with the parameters DT and
TMAX.

To translate the block-diagram program of Figure 2 for
execution by a digital computer, the programming system
must supply the canned routine RUN, which repeatedly
calls the sequence ("derivative file") of Figure 2b. Each
block operator in the list could be considered as an
assembly-language macro' which generates corresponding
assembly-language statements like

LOAD ACCUMULATOR WITH
CONTENTS OF X2

SUBTRACT CONTENTS OF Y1 SUB X3, X2, Yl

STORE RESULT IN X3)

SKIP IF ADC CONVERSION
COMPLETE

JUMP BACK ONE STEP ADC Xl

READ ADC (
STORE RESULT IN xi

This is, indeed, a good method for minicomputers with
plenty of memory and without user microprogramming.i5
To save memory when block operators (like MULT in
Figure 2) recur, we can represent each operator by a
subroutine, or by a subroutine in control memory
(microprogram).' 2 In either case, subroutines for standard
block operators can be implemented in read-only memory
for efficient, high speed storage, and program safety. For
machines capable of fast microprogram execution, repre-
sentation of block operators by microprograms is especially
efficient,2 since it will save references to slower main
memories. Even where standard operator subroutines are
stored in ROM, it is still possible to add special-purpose
subroutines in random-access memory.

Note now that the block-diagram language program in
Figure 2 neither involves assembly-language programming
nor does it refer to a specific computer implementation.
Standard block-operator subroutines or microprograms for
a given computer would be written once and for all by a
system programmer. They could then be sold in various
combinations on ROM chips; it is only necessary to access
them and to provide them with inputs and outputs as
efficiently as possible. This will be the job of our language
translating system.

An Efficient Technique for Calling
Block-Operator Subroutines

To generate a subroutine sequence representing the
block diagram of Figure 2, our translator might produce
macros which generate conventional subroutine calls within
calling sequences,' thus

JUMP TO SUBROUTINE INIT

G2

G3

YINIT

JUMP TO SUBROUTINE

DT

-TMAX

JUMP TO SUBROUTINE

Y1

JUMP TO SUBROUTINE

xl

JUMP TO SUBROUTINE

xl

Gi

RUN

DAC

ADC

MULT

X2

where G1, G2,. . are addresses of data locations in RAM.
But the block-diagram programming techniqu'e of Figure

3 (suggested by University of Arizona graduate student S.
Conley in the course of a study of minicomputer
block-diagram programs) is more elegant and especially well
suited to microcomputer implementations.

Referring to Figure 3, we can see that the ordered
block-operator macros of Figure 2 now generate not
subroutine calls and calling sequences, but simply a table of
the addresses where the appropriate subroutines and data
are kept. The entire program, then, is represented by an
address table loaded into the microcomputer RAM. Here
the addresses ADC, SUB,. are addresses of our canned,
standard subroutines, while addresses like Y1, Xi, X2, . . .
are addresses pointing to a data table prepared in RAM by
the translator. This table contains block-operator inputs
and outputs generated during each cycle through the block
diagram or input from terminals, digiswitches, or dials prior
to computation. Output data may also be placed into the
data table, which can be regarded as a COMMON area for
the subroutines (since each data item may be referred to
more than once).

To access subroutines and data, we initially load an
index register with the starting address of our address table.
Each subroutine, referring again to Figure 3, fetches
successive data items with the operation

LOAD ACCUMULATOR, INDIRECT VIA INDEX
REGISTER

INCREMENT INDEX REGISTER

COMPUTER

Gl

46

ADDRESS TABLE

Y 1

x 1

G 1

X 2

X 3

.

0

0 VW,

mu.

ADC I DAC

SUBB INTT

IN IT

which may involve a single instruction (PDP-11-like
machines) or several instructions. Data are stored with the
simi-larly pre-indexed indirect STORE operation

STORE ACCUMULATOR, INDIRECT VIA INDEX
REGISTER

M U L T

Figure 3.

INCREMENT INDEX REGISTER

To access succeeding routines, each subroutine ends with

JUMP, INDIRECT VIA INDEX REGISTER

INCREMENT INDEX REGISTER

October 1975

R U-N

R A M

R O M

Li..
Complete program section to run the filter of Figure 2 in
terms of "canned" subro,utines DAC, ADC, MULT, SUB,
and INT in the read-only memory of a microcomputer.
RUN is another canned ROM routine,,,which initializes
and then repeats the entire sequence between T = 0, and T
- TMAX. The specific program for the fijter is a simple
address table containing successive jump and. data
addresses in RAM; also in RAM there, is a table for all
variable data and parameters needed by the program.

Each subroutine ends with a pre-indexed indirect jump to
the next subroutine. Data are fetched and stored witb
pre-indexed' indirect fetches and stores, and the index
register increments after each operation. Thus, indeed,,
indirect. jumps and data moving operations step through
the correctly ordered address table to implement and
repeat the program.

47

DATA TABLE

Note that only address and data table need be entered
into the RAM of our microcomputer, with all standard,
pure-procedure block-operator subroutines and the initiali-
zation and RUN subroutines stored permanently in ROM.
To enter a new program, a new address table will be loaded
into the microcomputer, probably most often through a
serial I/O interface (available on a single chip for many
microcomputers, Figure 1). The required address table
program may come from a minicomputer, from a keyboard
terminal, from cassette or paper-tape storage, or even from
a larger digital computer through a serial communication
link. For a dedicated microcomputer, the address table can
also be stored in ROM.

To initialize an experiment or instrument operation, the
INIT subroutine can read initial data into their proper
data-table locations from their typed or stored input or
from interface registers interrogated by this routine-e.g.,
from dials or digiswitches. Computer operation is then
started with the first access to the RUN subroutine, either
manually or by an interrupt. The correct references to the
data table (YI, Xl, Gl, X2, .;..) in Figure 3 are also
generated by the translator.

Minicomputer-Based Programming Systems

We propose microprocessor block-diagram programming
systems running on a small minicomputer (16-24K 16-bit
words, disk, cassette-tape or floppy-disk operating system)
with a simple alphanumeric CRT terminal for program
entry and editing. Such a programming system comprises

1. an editor program, which permits interactive creation
and editing of block-diagram programs by typing on
the CRT screen, with optional hardcopy output;

2. a file-handling system, (really part of the editor)
which permits storage and retrieval of named
programs or parts of programs;

3. a block-diagram translator, which translates block-
operator statements into the required microcomputer
address and data tables;

4. a microcomputer loader, which loads the translated
object program (address and data tables) into the
microcomputer RAM (for more firmly dedicted
operation, the address table is loaded into iprogram-
mable ROMs (PROMs) through a PROM-loader unit);

5. a run-time system for simulated execution of
microcomputer programs on the minicomputer, with
appropriate CRT or hardcopy output (see below).

Our concepts of block-diagram programming and
translation are closely related to our earlier NSF-supported
studies of interactive simulation and instrumentation-
control systems for minicomputers. In particular, DARE/
ELEVEN (Ref. 5 and Appendix A) is a new minicomputer
simulation/instrumentation system which incorporates all
the above-listed program features with the exception of a
microcomputer loader. As shown in Appendix A,
DARE/ELEVEN is more elaborate than we need for our
microcomputer-programming application. But DARE/
ELEVEN is carefully constructed from independent
subprogram modules and could be readily cut down to

48

size, while a suitable microcomputer loader is added.
Application of DARE/ELEVEN would produce useful
results very quickly.

MICRODARE, A New Simplified
Block Diagram Programming System-

MICRODARE, still in the paper-study stage in the
course of an earlier NSF study grant, is a much simpler
block-diagram programming system, which seems especially
well suited for the microcomputer programming applica-
tion. While DARE/ELEVEN implements its editing,
translation, loading, and run-time phases as successive
overlays under a disk operating system, MICRODARE is
developed from a conventional EXTENDED BASIC system
which, as is well known,1 permits simple interactive editing
and file manipulation, as well as computation and I/O.
Additions to the BASIC system perform the block-
diagram-translation and microcomputer-loading operations.
Fast minicomputer simulation of microcomputer block-
diagram program execution is also possible. MICRODARE,
less elaborate than DARE/ELEVEN, will not require
multiple microcomputer core overlays, so that no elaborate
disk operating system is needed.

Machine-independent Simulation of
Microprocessor Operation for
Program Development and Checkout

The larger microprocessor manufacturers have developed
simulation programs which simulate microprocessor pro-
gram execution on a large (usually timeshared) digital
computer. The big machine is fed the microprocessor
assembly-language program and then simulates its execu-
-tion, producing suitable error diagno'stics. Input/output
operations are not easily simulated in this manner, and the
elaborate simulation program must be written all over again
for each new microprocessor.

By contrast, once the standard block operators are
available in ROM or RAM, all microprocessors look exactly
alike to our minicomputer programming system. Specifi-
cally, every microprocessor looks like a standard block-
diagram operation. Also, the minicomputer block-diagram
programming system can readily execute the block-diagram
program (including suitable I/O operations) itself and at the
same time provide convenient oscilloscope or recorder
output of block-operator-output time histories, indicate
overloads, and display error diagnostics. (In fact, such
simulation/instrumentation operations were the original
purpose of the block-diagram systems developed in our
laboratory.)

Our minicomputer programming system will thus
provide a neat, machine-independent technique for
interactive development and checkout of microprocessor
programs written in terms of specified block operations.

Minicomputer block-diagram programming systems like
DARE/ELEVEN and MICRODARE also make it quite easy
to develop and test new types of block operations.3 5 The
new routines will then have to be written for the

COMPUTER

microprocessor, typically using a cross-assembler. But this
work would ordinarily be done by a system programmer
rather than by applications-oriented microprocessor users.

Proposed Approach

Since the software translation system is the same for any
type of microprocessor, it will be economically possible to
try the new programming systems with several different
types of microprocessors. We suggest starting with
second-generation 8-bit processors like Intel 8080 or
Motorola 6800, both of which have very convenient I/O
chips and byte-organized memories. We should like to
implement-as a radically different and very interesting
system-block operator subroutines as microprograms using
the four-bit-slice architecture and writable control store of
a National Semiconductor IMP-16L which will permit
experimentation with a complete microprocessor version of
a MICRODARE system.2 Finally, Western Digital Corpora-
tion PDP-1 1-emulating microprocessors would be eminently
well suited to instrumentation control because of their
flexible instruction set.'

The programming system will require a minimal size
PDP- 11/40 processor to translate block-diagram programs;
at least one microprocessor cross-assembler (Motorola
6800) also runs on PDP- 11.

Possible Follow-on Programs
and Related Studies

A number of small but potentially very fruitful
follow-on studies involve the development of block
operators for special instrumentation applications. We
should be particularly interested in on-line Fourier analysis,
amplitude-distribution analysis, and the computation of
correlation functions and spectra, with the associated
display operations. CAMAC (standardized instrument
interface) crate controllers for parallel or serial data
transfers will be an especially useful and cost-saving
microprocessor applicaton.
A simple translator refinement is a provision for killing

data-fetch operations made redundant by the fact that a
preceding block-operator has left the desired block output
in the accumulator. This can save substantial execution
time, because most microprocessors fetch 16-bit data words
in two separate 8-bit bytes.

The block-diagram operations discussed here are all
fixed-point operations, ordinarily using a two's-complement
fraction code to represent analog quantities. Floating-point
operations are perfectly possible, but would require more
time and computer memory.

The most interesting follow-on work would involve
multiple-microprocessor systems. The minicomputer
initially employed for inexpensive program translation
could serve as a control processor for a system of several
microprocessors operating in data acquisition and process
control, all using the original block-diagram programming
methods. .

Granino Arthur Korn has an international
reputation in the area of computer systems
based both on his 27 years as a researcher and
professor at the University of Arizona and as
author of numerous widely used text books.
These include Computer Handbook (Korn &
Korn), Digital Computer Users Handbook and
Minicomputers for Engineers and Scientists
(McGraw-Hill, 1973). His recent research
includes developing parallel processing systems

for simulation and instrumentation.

References

1. Korn, G. A., Minicomputers for Engineers and Scientists,
McGraw-Hill, N. Y., 1973.

2. Collins, D. C., E. Garen, and G. A. Korn, Seminar Notes on
Minicomputers and Microcomputers, Technology Service Corp.,
Santa Monica, Calif., 1974.

3. Korn, G. A., "Ultra-fast Mini-computation with a Simple
Microprogrammed Block-diagram Language," COEDIASEE
Transactions, March, 1974.

4. Aus, H. M., and G. A. Korn, "The Future of Continuous-system
Simulation," Proc. AFIPS/FJCC, 1969.

5. Martinez, R., DARE/ELEVEN, Ph.D. Dissertation, Electrical
Engineering Dept., The University of Arizona, 1974.

6. Halling, H., "CAMAC Serial System with Programmable Crate
Controller," Proc. CAMAC Symposium, Commission des
Communautes Europeenes, 1974.

Appendix A
Summary of DARE/ELEVEN

Operation and Features

The operating-system command RUN DARE loads DARE/
ELEVEN, beginning with the editor overlay. The user can now use
his terminal interactively to create or modify a simulation or
experiment-controlling program. He can load, recall, type, and/or
edit a set of files which specify

* up to two set of differential equations and system equations
(floating-point arithmetic);

* up to two system block diagrams (fixed-point arithmetic for
fast real-time operations);

* tabulated functions of one and two variables;

* parameter and initial values ("data file");
* a FORTRAN program for controlling multiple run studies;

. a simulation-output program (listings, displays, plots, saving
time histories for comparison with later runs);

* FORTRAN subroutines and assembly-language subroutines
and macros for appropriate use by experienced programmers.

A user's stored files will be linked to his sign-on user number and
user-group number for protection. Files for a complete problem will
be entered into the active file list (AFL) associated with a problem
identification code (PIC). Such a problem specification might
involve only a set of differential equations and a data file for a
simple application, or it might include any combination of the
above files. Since DARE systems will always default to the simplest
possible situation, the more sophisticated language features need not
be seen or known by users interested only in simple applications.

On the other hand, experienced programmers can easily create
new block-diagram operations, including real-time operations on

49October 1975

(control/software processor)

PDP- 1 1/40
with FPP firmware

(fast arithmetic processors)

bipolar control
16-bit memory

L~~~1~I __IL_ .

bipolar control
16-bit memory

I P immr

(a)

Figure A-1. Proposed research installation

lb) W 77M II

Figure A-2. Program entry (a), and probability-density display (b) for a DARE II MonteCarlo simulation

50

SYSTEM
DISK

GRAPHICS

SYSTEM
KEYBOARD

printer

paper-tape
reader/punch

laboratory
interfaces

analog
computer

COMPUTE R

Figure A-3. DARE study of a sampled-data system

external equipment, as assembly-language macros and can even
modify the DARE system itself by entering appropriate program
segments under DARE subprogram names. This will not disturb
these DARE system programs permanently; for permanent changes,
DARE system files must be accessed through the disk operating
system, using a special user number. DARE/ELEVEN is written in
terms of modular subroutines, so that substitution of new
subprograms is easy.

The keyboard command CO(MPILE) will, in several overlays,
translate (precompile) the active files of a problem into
FORTRAN and/or assembly language, compile and/or assemble,
link programs and library routines, and load the resulting object
program as a part of the DARE/ELEVEN run-time system.

Switch options entered with the COMPILE command produce
translator output, listings, and load maps. Block-diagram system
users also have a choice between faster assembly and somewhat
slower execution, and slower (optimized) assembly and faster
execution.

In this overlay, the user can still display or print the data file
(parameters and initial values), display, enter, and change
parameters and initial values, call or suppress disk storage of
solution time histories, and change integration methods without
recompilation.

A simulation run, or a FORTRAN-controlled sequence of runs
(simulation study), is now obtained through the keyboard command
RUN. There will be a run-time display if one was programmed; more
elaborate output can be programmed or be obtained in response to
keyboard commands in the output overlay.

Note that parameters, initial conditions, and integration methods
can be changed without recompilation before a new RUN command
is given.

Appendix B
Pre-indexed, Indirect Operations

for Motorola 6800

Introduction This appendix shows program segments imple-
menting the pre-indexed, indirect operations required for the
block-diagram programming technique described above. Unfor-
tunately, the 6800 has no indirect addressing. Therefore, 5 to 8
bytes and 18 to 23 cycles for eacy 16-bit load, store, etc., operation
are the price of the pure-procedure code used in our ROM
subroutines. A machine with true pre-indexed, indirect operations

October 1975 Reader Service Number 1024

r---------------- ------

I NEW! I

| O1 PRINCIPLES OF DATA BASE l
I MANAGEMENT - James
I Martin. approx. 320 pp. cloth
I (70891-7) $18.50.
| E YOUR COMPUTER AND THE LAW -
I Robert P. Bigelow and Susan
I Nycum. approx. 256 pp. cloth I

(97798-3) $18.95. I

I o DIGITAL NETWORKS - Janusz Brzozowski
I and Michael Yoeli. approx. 416

pp. cloth (21418-9) $18.95.
O STRUCTURED COMPUTER

I ORGANIZATION - Andrew S.
I Tanenbaum. approx. 480 pp. cloth
I (85450-5) $18.50.

on HANDBOOK OF CIRCUIT ANALYSIS
I LANGUAGES AND TECHNIQUES -

Randall Jensen and Lawrence P.
McNamee. approx. 624 pp. cloth I

(37264-9) $32.50.
I o PRINCIPLES OF DIGITAL COMPUTER I

DESIGN - A.M. Abd-Alla and Arnold I

Meltzer. approx. 624 pp. cloth
! (70152-4) $18.50.
I
I
I

I

I
I
I
I
I
I
I
I
I

I

l ENGINEERING SIMULATION USING SMALL
SCIENTIFIC COMPUTERS - Manesh
Shah. approx. 336 pp. cloth
(27942-2) $14.95,

o A GUIDE TO USING CSMP - Frank H.
Speckhart and Walter Green. approx.
450 pp. cloth (37173-7) $11,95.

O APPLIED COMPUTATION THEORY -

Raymond T. Yeh. approx. 624 pp. cloth
(03930-5) $22.50.

To order, or to obtain
more information on any
of these titles please
contact your local P-H
representative, or write
to: Robert Jordan, Dept.
J316, College Division,
Prentice-Hall, Englewood
Cliffs, New Jersey 07632.

L__--------------

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

76
m

would, of course, do much better. The PDP-11, for instance, needs and to store accumulators A and B, we use
only single 1-word instructions:

JMP @ (R 1)+

MOV @ (R1)+,R0 ; load

MOV RO, @ (R1)+ ;store

A National Semiconductor PACE or IMP would also be more
convenient, especially since the latter permits not only indirect
addressing and 16-bit operations, but also microprogrammed
multiplication.

Note also that, unlike those in the PDP-1 1, our 6800 programs
increment the pointer before each operation.

Address Pointer in Memory Define byte locations IX, IX+ 1 on
page 0 as a pointer. IX contains the most-significant byte of the
16-bit address. Note that IX and IX+1 are "direct," one-byte
addresses.

LDX IX ; get pointer
INX ; increment pointer
INX ; again
STX IX ; store it
LDX 0,X ; indirect address

Bytes Cycles
2 4

1 4

1 4

2 5
2 6

8 23

STAA 0,X ; most significant
STAB 1,X

Bytes Cycles
2 6
2 6

12 35

For 16-bit addition into accumulators A and B, we use

ADDB 0,X ; least significant
ADCA 1,X

Total

2 5
2 5

12 33

Subtraction is similar; using SUBB and SBCA.
Use of Stack Pointer as Address Pointer If the 6800 stack

pointer is not used for subroutine or interrupt return-address storage
(and this is indeed the case in many of our block-diagram programs),
we can employ it as the address-table pointer. Thus the indexing
sequence is replaced by

INS

INS

TSX

; increment pointer
; again
; transfer to index

LDX 0,X ; indirect address

1 4

1 4

1

2

4

6

We can then do a pre-indexed, indirect jump:

JMP 0,X

total

2 4

10 27

This can be replaced, by JSR SUBR in the main program together
with RTS in each subroutine for greater efficiency.

But pre-indexed, indirect load, and store will be more efficient
than subroutine calling sequences, since these would still require
pre-indexed, indirect operations, plus transfers between stack
pointer and index register. To load a 16-bit word into accumulators
A and B, we use

LDAA 0,X ; most significant
LDAB 1,X

2 5

2 5

5 18

In this case, bytes and cycles needed are reduced to

Jump
Load
Store

Add, Subtract

Bytes
7

9
9
0

Cycles
22

28

30
28

Note that it will now be more necessary to employ the pre-indexed,
indirect jump rather than JSR/RTS, since the stack pointer is no
longer available.

Complete Macros As an example, a complete macro for adding
two 16-bit numbers from memory into accumulators A and B, and
storing the result in memory, would combine the above program
segments as follows:

SUM
LOAD

ADD

STORE
RTS

(b) Using Stack Pointer as Address Pointer

SUM LOAD
ADD

STORE
JUMP

Bytes Cycles
3

12

12

12
1n

9
33

33

35

5

40 115

12

12

12

10

33

33

35
27

46 128
It appears that the pointer-in-memory method is preferable in

this case, and in any routine involving not more than four
memory-reference operations such as load, store, add, etc. Note
finally, that the overhead due to the pre-indexed, indirect operations
will be less serious in routines such as multiplication, which also
involve only two operands but a more complicated operation.

; jump

12 33 (a) Pointer in Memory
JSR

SUM

Consultant WQnted
* To prepare detailed specifications.
* To permit annual bidding of pre-

ventive maintenance, diagnostics and
servi.ce of IBM 360/145 computer system.

* To request more details and to
express qualifications, write to:

Mr. John Garber, Purchasing Agent
Middlesex County
841 Georges Road

North Brunswick, NJ 08902

52 COMPUTER

