
A New Technique for Interactive Simulation of Recurrent Neural Networks
by Granino A. Korn, ECE Department, University of Arizona

 sites.google.com/site/gatmkorn gatmkorn@aol.com

Keywords: recurrent neural networks, interactive simulation, prediction, model matching, NARMAX

Abstract

We present new techniques for modeling the feedback loops of recurrent neural net-
works, including networks that incorporate tapped delay lines or gamma delay lines.
Very fast simplified programs result. Examples of applications include signal prediction
and dynamic-model matching. We also suggest interesting future research on improved
programs for time-series recognition and classification.

1. Introduction

This article describes much-simplified computer programs for interactive simulation of recurrent
neural networks. Sections 2 to 5 briefly review dynamic-system simulation and our open-source
software for Windows and Linux. (Korn, 1995, 1998, 2007), We employ a compact, human- and
machine-readable vector notation, including very powerful vector index-shift operations for
modeling delay lines and filters. The remainder of this report applies these techniques to neural-
network simulation.

 Section 6 presents a simple backpropagation model representing each neuron layer by a
one-line vector assignment. Section 7 then describes a significant innovation: a technique for
programming the time-delayed feedback in recurrent networks without the complication of
special context layers. Sections 8 to 10 next apply our simple vector index-shift notation to
neural networks with input and feedback delay lines or gamma delay lines.

 Finally, Sections 11 and 12 discuss applications to model matching and time-history pre-
diction and suggest other applications for future research.

2. A Simulation Language for Interactive Dynamic-s ystem Modeling

Desire simulation programs (Korn, 1995, 1998) model dynamic systems using a natural mathe-
matical notation for successive difference-equation assignments like

 x = x + a * sin(c * t)
 y = x (1)

and/or differential-equation-system assignments like

u = alpha* sin(w * t + beta) + c
d/dt x = xdot
d/dt xdot = - a * x – b * xdot (2)

Such model definitions are screen-edited into a DYNAMIC program segment (Fig. 1). Simu-
lation studies are controlled by typed interactive commands and/or by an experiment-protocol
script. Experiment-control commands set or change parameters and initial conditions and then
call simulation runs that produce time-history displays. Each simulation run exercises the model
by calling the DYNAMIC program segment for NN successive time steps, as in

 2

Figure 1. Desire with a file manager, command window, and three screen-editor windows.
Programs in different editor windows can be run in turn to compare models. The original
curves were in color.

t0 = 0 | t = t0 | NN = 2000 | TMAX = 100
a = - 5.00 | x = 17.1
drun

| is a statement delimiter. When the experiment protocol encounters the first drun statement the
DYNAMIC segment is compiled with a fast runtime compiler and runs immediately to produce
time-history displays (Fig. 1). More elaborate experiment protocols can call multiple simulation
runs with modified parameters and different DYNAMIC segments (Korn, 1998, 2007).

3. Fast, Human- and Machine-readable Vector Operat ions 1

Desire experiment-control scripts can declare vectors like x ≡ (x[1], x[2], …, x[n]) and matrices
like W ≡ (W[1,1], W[1,2], …, W[n, m]) with single or multiple ARRAY statements such as

 ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n], v[n], …

DYNAMIC program segments can then use the vectors and matrices in vector assignments, and
vector differential equation , say

 Vector x = a + alpha * b * c
 Vector y = tanh(W * x)

Vectr d/dt x = beta * cos (t + c)

which automatically compile into multiple scalar operations

x[i] = a[i] + alpha * b[i] * c[i] (i = 1, 2, …, n)
 m

y[i] = tanh(ΣΣΣΣW[i, k] * x[i]) (i = 1, 2, …, n)
 k=1

d/dt x[i] = alpha * cos (t + c[i]) (i = 1, 2, …, n)

1 References 1 (due for a new edition) and Reference 2 (out of print) refer to an early version of Desire that lacked
the new vectorizing compiler (Korn, 2007) we employ here.

 3

MATRIX assignments similarly compile into multiple assignments to matrix elements W[I,k] .[2].
All these compiler operations unroll program loops, so that the resulting binary code is fast.

We can also compute vector-component sums and inner products like
 n n

p = ΣΣΣΣ u[k] v[k] p = ΣΣΣΣ u[k] v[k]
 k=1 k=1

with inner-product assignments DOT p = u * 1 and DOT p = u * v , again without program-loop
overhead.

Desire vector operations permit very fast vectorized Monte Carlo simulation of engineer-
ing and biological systems and can model fuzzy-logic controllers and partial differential equati-
ons as well as the neural-networks we shall discuss here (Korn, 2007).

4. Vector Index-shifting, Delay Lines, and Filters

Given an n-dimensional vector x ≡ (x[1], x[2], …, x[n]) and an integer k, the index-shifted vector
x{k} is the n-dimensional vector (x[1+k], x[2+k], …, x[n+k]) , with components referring to
indices less than 1 or greater than n set to 0. Significantly, the assignments

Vector x = x{-1} | x[1] = input (3)
compile into

 x[i] = x[i – 1] (i = 1, 2, …, n) x[1] = input

This neatly models shifting successive samples of a function u(t) into a tapped delay line with
tap outputs x[1] = input, x[2], …, x[n]. Note that the assignment x[1] = input overwrites the
Vector operation’s assignment x[1] = 0 at each step.

Assignments like (3) can, for instance, model a complete nth-order digital filter with only
two program lines (Appendix A). Sections 8 to 10 will describe neural networks incorporating
tapped delay lines and also gamma delay lines (Principe, 2000) modeled with a similar index-
shift operation.

5. Neural-network Models

DYNAMIC program segments (1) that include differential equations compute state-variable deri-
vatives. An integration routine selected by the experiment-control script then combines deriva-
tive values from successive time steps to update differential-equation state variables(Korn,
1998).

 Desire can model biological neurons with differential equations (e.g. pulsed integrate-
and-fire neurons) (Korn, 2007). but the neural-network models we discuss here are much
simpler. For DYNAMIC program segments without differential equations, the simulation time t
automatically steps through t = 0, 1, 2, …, NN by default (users can, if desired, specify different
starting times and/or time increments). Neuron activations and connection weights are repre-
sented by real numbers that roughly model neuron pulse rates and synapse chemistry. Both are
updated with simple difference equations in successive time steps. Appendix B shows how we
handle problems that combine differential-equation models and neural networks, as in sampled-
data control systems.

 4

Figure 2. A simple backpropagation network.

Figure 2. A simple backpropagation network.

6. A Simple Backpropagation Network

Figure 2 shows a simple three-layer neural network. Desire’s interpreted experiment-protocol
script declares the three neuron layers in turn with

ARRAY x[nx] + x0[1] = xx v[nv], y[n]
x0[1] = 1

and two connection-weight matrices W1 and W2 with

ARRAY W1[nv, nx + 1], W2[ny, nv]

Desire array declarations like ARRAY x[nx] + x0[1] = xx act like Fortran equivalence
statements: xx[3] is identical with x[3] , and xx[nx + 1] is identical with x0[1] . As is customary,
the input layer xx adjoins a one-dimensional bias vector x0 to the normal nx-dimensional net-
work input x. With x0[1] set to 1, we can then conveniently represent input biases as nv extra
connection weights W1[i, 1] .

The runtime-compiled DYNAMIC program segment defines the network dynamics with

Vector v = tanh(W1 * xx)
Vector y = W2 * v

if we use a tanh activation function for the nonlinear hidden layer. To produce simple backpropa-
gation updating, we declare target , error , and error-propagation vectors with

ARRAY target[ny], error[ny], vdelta[nv]
and program

Vector error = target – y
Vector vdelta = W2% * error * (1 – v^2)

 DELTA W1 = lrate1 * vdelta * xx
DELTA W2 = lrate2 * error * v (4)

 5

 Figure 3. A simple Elman recurrent network. Figure 4. Modified input layer .

Here W2% denotes the transpose of the connection-weight matrix W2, and

 DELTA W = matrix expression is equivalent to MATRIX W = W + matrix expression

These assignments update vectors and matrices with data computed earlier, starting with given
initial values. Desire ARRAY declarations initialize all subscripted variables to the default value
zero. That is fine for the vectors; but the experiment-protocol script must initialize the connec-
tion weights W1[i, k] and W2[i, k] with small random values.

In addition to declaring and initializing neuron-layer arrays, the experiment-protocol
script for a neural-network experiment must set parameters and initial values of scalar state vari-
ables (if any) and then schedule training and test simulation runs with drun statements.. The
script also selects integration rules (if any) and the display scale and colors. For simplicity, our
text omits these housekeeping operations.

7. Simplified Recurrent-network Programming

An Elman recurrent network (Fig. 3) (Principe, 2000, Elman, 1990) copies all or some of the
hidden network layer v to a context layer v1 that is fed back to v together with the input xx . The
experiment-protocol script declares the original 3 neuron layers xx , v, and y and the connection
weight matrices W1 and W2 as before,

ARRAY x[nx] + x[0[1] = xx, v[nv], y[ny], W1[nv, nx + 1], W2[ny, nv]
x0[1] = 1

and adds the context layer v1 and a new connection-weight matrix W11:

ARRAY v1[nv], W11[nv, nv].

The network dynamics in the DYNAMIC program segment become

 6

Vector v1 = v
Vector v = tanh(W1 * xx) + tanh(W11 * v1)
Vector y = W2 * v (5)

To update W11 as well as W1 and W2 by backpropagation now requires two error-propagation
vectors v1delta and v2delta , and the updating program becomes more complicated. But there is
a much better way!

Just as we concatenated the input layer x and its bias layer x0, we can declare a single
new input layer xx that combines our hidden layer v with x and x0:

ARRAY x[nx] + x0[1] + v[nv] = xx | x0[1] = 1 (6)

(Fig. 4). The two connection-weight matrices W1 and W11 of the Elman network in Fig. 3 can
now be replaced with a single connection-weight matrix W1,

ARRAY W1[nv, nx + 1 + nv]

W1 feeds xx to the hidden layer v just as in Fig. 2 - but xx now includes the hidden-layer acti-
vations v computed in the preceding iteration. The simple backpropagation-updating assign-
ments (4) for the static network of Fig. 2 then work without change for the recurrent neural
network in Fig. 3. Only the array dimensions have changed.

It is just as easy to implement time-delayed feedback from the output layer y (Jordan
recurrent network), or from both v and y. Backpropagation updating remains exactly the same.
This simplified implementation of recurrent-network feedback is by no means restricted to back-
propagation networks. This technique serves equally well for two-layer linear and nonlinear net-
works, for softmax pattern recognizers, and for radial-basis-function networks, which are all easy
to program in the Desire language (Korn, 2007). In each case we simply reuse the unchanged
program for a static neural network.

8. Networks with Input Delay Lines

The earliest neural network with time-history memory was Widrow’s adaptive filter (Principe,
2000) In Fig. 5, successive values of a single time-series input enter a delay line whose taps
feed a static neural network trained to filter, recognize, or predict time-series patterns. Desire’s
compact index-shift operation (3) is exactly what is needed for modeling such networks.

Widrow’s original network, for example, combined a delay line with a simple linear network
layer

Vector x = x{-1} | x[1] = input
Vector y = W * x

Widrow’s network had a single output y[1] and thus implemented a linear filter that could be
trained with his new LMS algorithm to match a target time series. In our notation this succes-
sive-approximation rule would be

DELTA W = lrate * (target – y) * x

Improved designs incorporate a nonlinear multilayer network, say the backpropagation network
of Sec. 6:

Vector x = x{-1} | x[1] = input
Vector v = tanh(W1 * x)
Vector y = W2 * v

 7

 Figure 5. A static neural network Figure 6. A NARMAX network.
 fed by an input delay line.

or other types of static networks. All need only ordinary static-network training.

9. NARMAX2 Networks use Delay-line Feedback

The recurrent network in Fig. 6 has a single input input to a delay-line layer x of length nx as
before. The output layer y has only a single output. y[1] . The (scalar) error in this network
output is

ERROR = target - y[1]

where target is a desired output time series. Successively delayed samples of ERROR are pro-
duced by a second delay-line layer error of length ne. The delayed error samples are fed back to
the neural network.

 Referring to Fig. 6, we again concatenate all input-layer vectors, in this case the two
delay lines x and error and the bias x0, into a single input layer xx :

ARRAY x[nx] + x0[1] + error[ne] = xx

xx feeds the hidden layer v of an ordinary backpropagation network.

The DYNAMIC program segment models each delay line with the vector index-shift
operations introduced in Sec. 4. The complete NARMAX network is thus programmed with

ARRAY x1[nx] + x0[1] + error1[ne] = xx | x0[1] = 1
 ARRAY v[nv], y[1], error[ne], vdelta[nv]
 ARRAY W1[nv, nx + ne + 1], W2[1, nv]

DYNAMIC
 Vector x1 = x1{-1} | x1[1] = input input delay l;ine

2 NARMAX stands for Nonlinear Auto-Regressive Moving Average with eXogenous inputs.

 8

Figure 7. Matching a neural network to a plant or plant model. input , target , y, and error can be
scalars or vector functions of the time t.

 Vector v = tanh(W1 * xx) hidden layer
 Vector y = W2 * v output layer

 ERROR = target - y output error
 Vector error = error{1} | error[1] = ERROR feedback delay line

 Vector vdelta=W2%*error*(1- v^2) backpropagation
 DELTA W1= lrate1 * vdelta * xx
 DELTA W2= late2* error * v

Programmers must specify the input and target time series for different applications.

Once again the backpropagation program is exactly the same as in Sec. 6. One can also
substitute different types of neural networks for the backpropagation layers in Fig. 6.

10. Networks with Gamma Delay Lines

A simple tapped delay line of length n “remembers” its input for only n time steps. Principe’s
gamma delay line (Principe, 2000) replaces each delay-line element with a simple first-order
filter. That effectively gives neural-network input and feedback delay lines a much longer
memory, so that the networks tend to perform better or use fewer neurons. Our vector index-
shift notation models a gamma delay line with

Vector x = x + beta * (x{-1} - x) | x[1] = inpu t

which automatically compiles into

 x[i] = x[i] + beta * (x[i – 1] – x[i]) (i = 1, 2, …, n) x[1] = input

beta is a scalar filter parameter set by the experiment-protocol script; we have compactly pro-
grammed n difference equations for n identical first-order filters.3 We normally prefer such
gamma delay lines for NARMAX networks.

11. Applications

The most common applications of recurrent networks are
• model matching (e.g. plant models for control-system design)
• time-series prediction
• recognition or classification of time-series patterns

3

 It is convenient to program Vector x = x + beta * (x{-1} - x) as Vectr delta x = mu*(x{-1} - x) .

 9

•

Figure 8. Dual-screen display showing our Elman network matching Narendra’s plant model (6).
Both plant and network were fed Narendra’s test function (7). The graphs of target = f and y
essentially reproduce the results Narendra obtained with his own 4-layer NARNAX network
(Narendra, 1990). The original graphs were in color. The complete program is included in the
open-source Desire distribution package.

Figure 8 demonstrates a model-matching experiment. The program can be screen-edited

and rerun immediately for truly interactive modeling. We programmed Elman networks with 2
and 3 hidden layers and a NARMAX network to match one of Narendra’s difference-equation
plant models (Narendra, 1990) described by

 f = [Y(k)*Y(k-1)*Y(k-2)*input(k-1)*(Y(k-2) -1)+input(k)]/[1+Y(k-1)^2 + Y(k-2)^2)]
 target(k) = Y(k)

(k = 0, 1, 2, …) (6)

The networks were trained with random-noise input and tested with Narendra’s test function.

 s = 0.5 * ((1 - 0.2 * swtch(t - 500)) * sin (w * t) + 0.2 * swtch(t - 500) * sin(ww * t)) (7)

Training typically converged in 8 out of 10 simulation runs. All three recurrent networks then
matched the plant equally well (Fig. 8).

For modeling a predictor the “present” neural-network input is a delayed version of a spe-
cified “future” time series target :

ARRAY buffer[m]
Vector buffer = buffer{-1} | buffer[1] = target | input = buffer[m]

The neural network output y is then trained to match target . We programmed a textbook pro-
blem (Principe, 2000) predicting the chaotic Lorenz (Korn, 1998) and Mackey-Glass (Principe,
2000) time series.4 Our Elman and

4 Desire models Mackey-Glass with only two program lines

tdelay S=D(signal, tau
 d/dt signal = a * S/(1 + Sd^c) – b * signal

 10

Figure 9. This display shows target , y, and ERROR for an Elman network predicting the Mackey-
Glass chaotic time series. The original graphs were in color.

NARMAX networks predicted this time series within a few percent for 50 time steps ahead (Fig.
9). As expected, gamma delay lines worked better than simple delay lines of the same length.
Prediction was still successful when we removed the feedback delay line from the NARMAX
network, resulting in the simpler model of Fig. 5. Readers interested in the details of these
studies – or in repeating our experiments – will find the compact Desire programs for 20 model-
matching and prediction experiments included in the open-source Desire distribution file.

12. Conclusions and Future Research

The essential contribution of this article is the novel application of the Desire language’s array
declaration (6) in Sec. 7. Acting much like a Fortran equivalence statement, this programming
trick effectivey eliminates entire neuron layers and greatly simplifies recurrent-network
updating algorithms. The resulting neural-network models are smaller, run faster, and are easier
to understand.

 On a 3.15 GHz 2-CPU Penryn-class personal computer, the screen-edited, runtime-com-
piled programs exhibited in this report all compiled and produced time-history displays within 25
msec. This compilation delay is not noticeable, so that truly interactive modeling is possible. The
recurrent-network programs in Figs. 8 and 9 converged within 1 to 3 seconds.

We demonstrated simple applications to Elman, Widrow, and NARMAX networks to
model matching and time-series prediction. Time-series pattern recognition (pattern classify-
cation) will be the first interesting topic for future work. Neuron layers implementing various
softmax classifiers (Korn, 2007). will replace the backpropagation network in Figs. 4 and 6The
required training procedure is again simply that for a static network.

Our new trick of concatenating neuron-layer arrays can work equally well in other
computer languages. But Desire’s combination of an interpreted experiment protocol and fast

where tdelay is a time-delay operator, and a, b, and tau are specified constants.

 11

runtime-compiled simulation runs makes interactive modeling – which can involve hundreds of
program changes in one day – especially convenient.

 12

 Fig. A-1. An nth-order digital filter with the z transfer function

 H(z) = {bb z n + b[n] zn-1 + b[n-1]z n-2 + … + b[1] }/{z n + a[n]z n-1 + a[n-1]z n-2 + … + a[1]}

 Fig. A-2. An nth-order analog filter with the transfer function

H(s) = {bb s n + b[n]s n-1 + b[n-1]s n-2 + … + b[1] }/{s
n + a[n]s n-1+ a[n-1]s n-2 + … + a[1]}

APPENDIX A: MODELING FILTERS WITH VECTOR-SHIFT OPER ATIONS (Korn,
2009)

The following examples further show the power of our index-shift operations. Given a state vec-
tor x[n] and coefficient vectors a[n] , b[n] declared and filled in the experiment protocol, only 2
assignments

 output = x[n] + bb * input
 Vector x = x{-1} + b * input – a * output

model a general digital filter of any order n (Fig. A-1). Similarly, the two assignments

 output = x[n] + bb * input
 Vectr d/dt x = x{-1} + b * input – a * output

model a general analog filter of any order n (Fig. A-2).

 13

Appendix B: Models Combining Differential Equation s and Neural Networks

When a DYNAMIC program segment contains scalar or vector differential equations (statements
starting with d/dt or Vectr d/dt) the starting value t0 of the simulation time t defaults t0 = 0
instead of t0 = 1, and time histories are sampled at NN communication points

 t = 0, COMINT, 2 COMINT … , (NN - 1)COMINT = TMAX COMINT = TMAX/(NN - 1)

Desire returns an error message is the selected number NN of sampling points makes COMINT
smaller that the specified integration step DT.

 Desire programs combining differential-equation models with sampled-data systems like
neural networks execute program lines following an OUT statement only at the sampling points.]
Note that sampled data returned to a differential equation are “sample-hold” state variables”
starting from specified initial values.5 Initial values of subscripted variables (and thus ARRAY
elements in neural-network programs) default to zero. Multirate sampling is also possible (Korn,
2007).

References

Korn, G.A. (1995). Neural Networks and Fuzzy-logic Control on Personal Computers and
Workstations, Cambridge, MA, MIT Press.

Korn, G.A. (1998). Interactive Dynamic-system Simulation under Windows, London, Gordon
and Breach.

Korn, G.A. (2007). Advanced Dynamic-system Simulation: Model-replication Techniques and
Monte Carlo Simulation, Hoboken, NJ, Wiley.

Korn, G.A. (2008). Fast Simulation of Digital and Analog Filters Using Vectorized State
Equations, Simulation News Europe, 18,1, April 2008 issue..

Principe, J., et al. (2000). Neural and Adaptive Systems, Wiley, Hoboken, NJ,

Elman, J.L. (1990). Finding Structure in Time, Cognitive Science, 14, 179-211.

Narendra, K.S., and K. Parthasarathy (1990). Identification and Control of Dynamic Systems
Using Neural Networks, IEEE Trans. on Neural Networks, 1, 4-27.

5 This is necessarily true for every dynamic-system simulation program capable of handling sampled-data systems.
But most reference manuals ignore this problem...

