Fast Simulation of Linear Operations. Modeling Analog and Digital
Filterswith Vectorized Sate Equations

by Granino A. Korn
ECE Department, University of Arizona
7750 South Lakeshore Road, Chelan, WA 98816
sites.google.com/site/gatmkorn gatmkorn@aol.com

Abstract

We present new compact programs for computer stioalaf linear operations defined
in ordinary transfer-function form. This new teciune applies to analog and digital
control systems and filters, which used to req@irgeubstantial amount of code for
multiple integration or delay operations. The ogenfce Desire program for Windows
or Linux formulates filter operations as short, isaseadable vector expressions that
compile automatically into multiple assignments.sib&s vector operations model
cascaded integrators, unit delays, or gamma deét@g lwith a single program line.
Built-in FFT operations can transform the resultitigie histories into frequency-
response plots. We show example programs and sdeuldigital and analog filters.

1. Introduction

We shall describe fast and compact computer programadeling linear operations such as
analog and digital filters. Sections 2 and 3, basedextbook references,[3,4] quickly review
dynamic-system modeling with differential and/difelience equations in scalar and vector form.
The Desire interactive-simulation progratnanslates human-readable linear or nonlineaediff

rential equations into fast machine code and perwdéctor operations for vectorized Monte
Carlo simulation and neural-network models.[1] Theport introduces new vector operations
that model cascaded integrators or delay lineirfear operators such as filters.

Sections 4 and 5 apply the new programming schemenalog filters represented in
standard transfer-function form; Sections 6 andpplyaour vectorization technique to the
cascaded delays needed to model digital filtersti®®e 8 deals with filter combinations;
cascaded small filters let you experiment withetéint pole/zero combinations.

2. A Simulation Language for Interactive Dynamic-s ystem Modeling

Desire simulation programs define dynamic-systendetoowith assignments and/or differential
equations like

! The Open Desire interactive-simulation package iee f open-source software dowloadable from
sites.google.com/site/gatmkorn . References 3 and 4 are textbooks describing rappljcationsVery fastdouble-
precision floating-point routines solve differehind/or linear or nonlinear difference equatioms {o 40,000 state
variables) in scalar or vector form). There arant8gration rules.

/NEW
/PIC '/home/korn/desire/bangstp3.src
/

- BANG-BANG SERVOMECHANISM
fixes integration by using step

and
programs DT with irule 5

R

!

Granina A K.

Figure 1. Dual-screen display showing Desire running with weoeen-editor windows. Programs in either
editor window can be run to compare models. Thgnam works under Windows and Linux.

u = alpha* sin(w * t + beta) + c
d/dt x = xdot
d/dt xdot = - a * x — b * xdot

which are screen-edited intoYNAMIC program segment (Fig. 1). Simulation studies are
controlled by typed interactive commands and/oabgxperiment-protocol script. Experiment-
control commands set and changes parameters diadl aoinditions and then call simulation
runsto exercise the dynamic-system model, as in

t0=0 | t=t0

a=-500 | x=17.1

drun

| is a statement delimitet0 is the initial value of theimulation timet and usually defaults to O.
When the experiment protocol encountersdhen statement the DYNAMIC segment is com-
piled with a fast runtime compiler and runs immeelyato produce time-history displays (Fig.
1). More elaborate experiment protocols can calltipla simulation runs with modified para-
meters and different DYNAMICsegments. [2,3]

3. Vector Operations and Delay-line Models

Desire experiment-control scripts can dechaeors like x = (x[1], x[2], ..., x[n]) andmatrices
like W = (W[1,1], W[1,2], ..., W[n, m]) with single or multipleARRAY statements such as

ARRAY x[n], a[m], b[n], c[n], y[m], W[m, n], u[n], v[n], ...

DYNAMIC program segments can then use the vectodsmaatrices irvector assignments, and
vector differential equations, say

Vectorx =a+ alpha*b*c
Vector y = tanh(W * x)
Vectr d/dt x = beta * cos (t + ¢)

which automatically compile into multiple scalarevations
x[i] =a[i] + alpha* b[i] * c[i] i=12,..n)

m

yli] = tanh(2W[i, K] * x{i]) (i=1,2,..n)
k=1
d/dt x[i] = alpha * cos (t + cJi]) i=1,2,...n)

There is no vector-loop overhead. We can also coenipner products
n

p=2 uk] v[K]
k=1

with inner-product assignments DOT p = u * v, again without program-loop overhead.

Given a vectok = (x[1], x[2], ..., x[n]) and an integek, theindex-shifted vectorx{k} is the
vector(x[1+k], x[2+K], ..., x[n+k]) where components with indices less than 1 anderéasann
are simply set to 0. In particular, repeated etienwof the assignments

Vector x = x{-1} | x[1]=u

neatly models shifting successive samples of atimma(t) into a simpletapped delay line with
tap outputsx[1], x[2], ..., x[n]. Note that the assignmerfl] = u overwrites theVector
operation’s assignment 1] .

Desire vector operations have been used for veetrMonte Carlo simulation and for
modeling neural networks, fuzzy-logic controlleemd systems involving partial differential
equations.[3] We shall now apply them to creatieieht models of analog and digital filters.

4. Modeling Analog Filters
An nth-order linear filter[1,5] with the classical msfer functio

H(s) = {bbs "+ b[n]s "1+ bin-1Js "2+ ... + b[1] Ms "+ a[n)s "+ ajn-1s "+ L+ a1y (1)

can be represented by the block diagram in Fig5PR. Practical filters are often realized as
cascaded and/or parallel combinations of simplégréi.[1] This transfer function represents a
differential-equation system, which is modeled Iy €asily readable Desire program

input = (given function of the time variable t)
output = x[n] + bb * input

d/dt x[1] = b[1] * input — a[1] * output

d/dt x[2] = x[1] + b[2] * input — a[2] * output

d/dt x[n] = x[n-1] + b[n] * input — a[n] * output (2)

Each of these assignments relates directly to kbekliagram in Fig. 2. Execution starts with
given initial conditions for each state varials[§ on the right-hand side. The initial valugs
andx[i] normally default to zero.

2 Different texts index the coefficienasi], b[i], andbb in different ways. Reference 5, for instance uses
bn = b[1], bn1 =b[2], ..., b1 =b[n], bo = bb anda, = a[1], a1 = a[2], ..., a1 = a[n].

The indexing chosen here is the most efficientviector programming. If necessary, Desire experirpeatocol
scripts can readily loop to relabel coefficients.

input bb
" output
Z >
bI1] b2] bin .
> x[1]—* x[2] > x[n]
(=i
-al] -al2] -aln]

Figure 2. Block diagram of an analog filter with the tragrsfunction

H(s) = {ob s "+ bjn]s "1+ b[n-1]s "2+ .. + b[] Yis "+ afn)s "+ a[n-1]s "2+ .. + af1]}

5. Vectorization Makes the Program Much Simpler

Instead of programming scalar differential equations, Desire can dealadémensional vectors
X, a, andb,

STATE x[n] | ARRAY a[n], b[n]
noting that differential-equation state vectore likmust be declared as separ@T&TE arrays.
We can then program our complete filter model, for any order n, in only threelines:

input = (given function of t)

output = x[n] + bb * input

Vectr d/dt x = x{-1} + b * input — a * output (3)
These three lines compile automatically into thegpam (2). Note that the last statement neatly
models a chain af cascaded integrators. There is no runtime vector-loop overhead.

To obtain the impulse response of the filter wegpaminput = 0 and set the initial value
of x[1] to 1. The amplitude/phase frequency responseeis dbtained with Desire’s built-in FFT
routine. Figure 3 shows actual programs and results

6. Modeling Digital Filters
An nth-order linear digital filter[1,5] with the clasal z transfer function
H(z) = {bb 2™+ b[njz "+ bln-12 "2 + ... + b[1] ¥iz "+ a[nz "+ aln-1]z "+ L+ a1 (4)

can be represented by the block diagram in Fi&] 4The timet is read at the sampling points
t0, t0 + COMINT, t0 + 2 COMINT, ...; the initial timet0 usually defaults to zero.

Figure 3a. Desire stripchart-type displays showing the Impulssponse and amplitude/phase
frequency response for a simple analog bandpassilth the tranfer function

H(s) = 1/(s® + 40s +20000)

——

Figure 3b. Impulse response and amplitude/phase frequenpgmee for a 3rd-order Butterworth
lowpass filter with the tranfer function

H(s) = 1/(s® + 2s® +2s + 1)

Computer simulations software solve such differezmeations byuccessive substitu-
tions, starting with given initial conditions for eactate variable(i] on the right-hand side. A
Desire program would represent the filter with tbedable assignments

-- SIMPLE BUTTERWORTH LOW-PASS FILTER
-- H=1/(s"3 +a[1]s"2 + a[2]s + a[3])

display N1 | display C7 | display Q| -- d isplay
NN=8192 | DT=0.001| TMAX=150

n=3 | STATE x[n] | ARRAY a[n],b[n]

-- array OUTPUT gets output samples for FFT
ARRAY OUTPUT[NN],OUTPUTY[NN]

-- specify the filter parameters
a[l]=1]a[2]=2 | a[3]=2 | b[1]=1| -- other a[i], b[i] defaultto O

bb=0| -- feedforward coefficient
t=0| -- (defaultinitial t would be t=1)
X[1]=1 | -- to get impulse response
scale=0.5| -- display scale

drunr | -- drunr resets t=0

write 'type go for FFT'| STOP

FFT FNN,OUTPUT,OUTPUTy
scale=100 | NN=101
drun FFT

DYNAMIC

input=0| -- for impulse response
output=x[n]

Vectr d/dt x=x{-1}+b*input-a*output

dispt output

store OUTPUT=output | -- fill FFT array

AMPLITUDE/PHASE DI SPLAY

label FFT
get xx=OUTPUT | get yy=OUTPUTy| -- FFT arra ys
r=sqgrt(xXx*xx+yy*yy)
phix10=10*atan2(yy,xx)
dispt r,phix10

Figure 3c. Complete program for the simple Butterworth filt&he experiment protocol script

sets up arrays, parameters and initial conditions calls a simulation run. The filter-output time
history is displayed and also stored in the FFlya@UTPUT. If prompted by the user, the

experiment-protocol script then computes the FFI @alls a second DYNAMIC program segment
labeledFFT to display the frequency response.

input bb

output

b[1] b[2] bn]

» x> _, | x2 x[n]

N

r

N

1

1

1
r v ¥y

-af1] -al2] - aln]

F 3

Figure4. Block diagram of a digital filter with the z traesffunction

H@) = {bb 2"+ b[njz "1+ b[n-1]z "2 + . + b[1] Mz "+ ajnjz "L+ a[n-132 "+ ... + a[1])

input = (given function of the time variable t)
output = x[n] + bb * input
(place display or store commands here)
X[1] = b[1] input — a[1] output)
X[2] = X[1] + b[2] input — a[2] output

x[n] = x[n-1] + b[n] input — a[n] output 4)

Each of these assignments again relates directthedbolock diagram in Fig. 4. The program
repeatedly executes these assignments in orddr,t\giiccessively set to= t0, t0O+COMINT,
t0+2 COMINT, ... on the right-hand side of each assignment. Thisigsdthe assignment targets
on the left for the next sampling time. Hor t0, the right-hand expressions are initialized with
the given initial values of{1], x[2], ..., Xx[n] , which usually default to O.

We remark that the order of difference-equationigassents must be carefully observed.
Placing display, print, or store commands (suchlisgt v, x[1]) just ahead of the first state-
variable updating assignmeng] = input — output) will ensure that state variablef] and
defined variables likenput are both sampled at the same sampling time

7. Vectorization Again Simplifies the Program

Simulating, say, a 50th-order digital filter woulelquire programming + 2 = 52 assignments
(4), but there is a better way. We again formultte state variableg[i], and the filter
coefficientsafi] andb[i] asn-dimensionalectors x = (x[1], x[2], ..., x[n]), a = (a[1], a[2], ...,
a[n]), b = (b[1], b[2], ..., b[n]) with

ARRAY x[n], a[n], b[n]

% Some simulation languages order scalar differertiglation systems automatically, but differencea¢iqns must
always be ordered by the programmer.

We then invoke the index-shift operation definedet. 3 to replace our+ 2 assignments with
only three program lines

input = (given function of t)
output = x[n] + bb * input
Vector x = x{-1} + b * input — a * output (5)

Our runtime-compiled vector operations again caussassignment-loop overhead.

Figures 5a and b show a complete program simulaig@-order digital filter. We ob-
tain the filter response to a unit impulse att0 = 0, we programmeithput = swtch(1 -t) . The
impulse response equals 1 fer0, t = COMINT, ..., t = (n - 1) COMINT and then goes to 0. The
Desire experiment-protocol script can also cabst Fourier transform to produce the frequency
response of the filter (Fig. 5c).

6. Combining Simple Filters

Practical filters are often realized as cascadetloarparallel combinations of simpler filters.[1]
As special cases of the program (5), we can modehle recursive filter with

H(z) = 142" + a[njz™™ + ajn-102"2 + ... + a[1]}

ARRAY x[n], a[n]

input = (given function of t)

output = x[n]

Vector x = x{-1} — a[1] * output | x[1] =input - a[l] * output (6)

Note that the final assignmentifi] overwrites the1] component of th&¥ector assigment.
A FIR (finite-impulse-response) filter is modeled with

Hz) = {bbz" +blnjz™™* +b[n-1z"2 + ... + b[1] }/z"
ARRAY x[n], b[n]

input = (given function of t)
output = x[n] + bb * input
Vector x = x{-1} + bb * input (7

Compact filter models like (5), (6), and (7) candascaded, and filter outputs can be added to
represent parallel combinations of filters. Casegdseveral small filters is useful for creating
filters with different pole/zero combinations.[1]

8. Concluding Remarks

Our new programming technique permits very convenieteractive simulation of control or
communication systems that include digital or agditiers. Our programs are not meant to
replace specialized programs[1] for optimal filtkexsign

Interestingly, the new programming scheme is nsiriced to linear and time-invariant
filters. The compact programs (3) and (5) work just as well when the filter coefficients ali], bJ[i]
are not constant parameters but simulation-program variables. This is an interesting topic for
future research.

DYNAMIC

input=swtch(1-t) | -- for impulse response; su bstitute a desired input signal
output = x[n] + bb * input

Vector x=x{-1} + b * input — a * output

dispt output

Figure5a. A complete DYNAMIC program segment modeling aegided digital filter with the z
transfer function
H(z) = {bbz" +b[njz"" + b[n-1]z"* + ... + b[1] }{z " + a[n]z"* + a[n-1]z"* + ... + a[1]}

input = swtch(1 —t) is a unitimpulsett =t0 = 0 andproduces the filter inpulse response.

-- DIGITAL FILTER

display N1 | display C8 | displayR | -- display colors
NN=4096 | -- number of samples

-- parameters fo r H = (z*n + 1)/[z"n - z*(n-1)])

;1_=20 | ARRAY x[n], a[n], b[n]

a[n]=-1|b[l]=1 | bb=1]--all othera [i], b[i] default to O

t=0 | -- initial value of t
drun | -- make a simulation run

Figure 5b. This experiment-protocol script declares vectoays and sets the parametersa[i],
b[i] , andbb for the 20th-order filter with he z transfer fumeti H = (2" - 1)/(z" - ™).

Flle EQt Go Tools Settngs Heip

E e dhd [BEE3N

specify filter parameters

aln)=-1

Name v [blll=-1 | -- other alil, blil default to 0
P Con bb<l| -- feedforvard coefficient
t=0 | -- (default initial t would be t=1)

scatesl | -- display scale
-- resets t=0

FFT F.NN
scale=20
drunr FFT

write ‘type go for amplitude/phase display' | STOP
scale=20

drun SECOND | -- amplitude/phase display

DYNAMIC

input=swtch(1-t) | -- this produces the impulse response
output=x[n]+bb*input | -- note the feedforward term
Vector x=x{-1}+b*input-a*output

dispt output

File Edit View Terminal Tahs Help
type go for amplitude/phase dispjil FL FFT arrays
Vector OUTPUT=0UTPUT{-1} | OUTPUT[1]=output

Stopped at Line 450
> go

DOoDoLoDhoonooDo@Eor

Label FFT
get xx=OUTPUT | get yy=OUTPUTy | -- FFT arrays
Stopped at Line 490 out=0.5%xx
>L outy=0.5%(yy-scale) | -- offset
— compete.src - dispt out, outy
- S 8 =5 8 £0 5
3 | @ korn... desi... [LEXA.. & fhom.. B8 @ *© [Ll oot
@ € (7 |® Granino A. Korn Mon Feb 25, 121PM o))

Figure 5c. Dual-screen display showing console, editor, dlemnfinager windows and graphs of
the amplitude and phase response for a filter thighz transfer function

Hlz) = 2" - /(2" - 2"

Desire computed the frequency response as theFfaster transform of its impulse-response
function. The orden of the filter is 20.

10

References

[1] Smith, J.:Introduction to Digital Filters, complete course text on the Web at
http://ccrma.stanford.edu/~jos/filters/

[2] Korn, G.A.: Interactive Dynamic-system Smulation under Windows, Gordon and Breach,
London, 1998.

[3] --: Advanced Dynamic-system Smulation: Model-replication Techniques and Monte Carlo
Smulation, Wiley, Hoboken, N.J., 2007.

[4] --: Neural Networks and Fuzzy-logic Control on Personal Computers and Workstations, MIT
Press, Cambridge, MA, 1995.

[5] Papoulis, A..Sgnal Analysis, McGraw-Hill, New York, 1977.
[6] Principe, J., et al.Neural and Adaptive Systems, Wiley, Hoboken, N.J., 2001.

