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Introduction

This is a very long (over 200 pages) set of 7 appendices. Their purpose is to spice the con-
ceptual coverage of the text with a little technical material for those readers and instructors
who are interested in such material.

Appendix A discusses the common units used in physics and various conversion factors
connecting them. Appendix B introduces radian as a measure of angles and covers the
connection between angle, distance, and size. Appendix C is on vectors, their algebraic
properties, and their components.

Appendix D is a large collection of examples with slightly more emphasis on numerical
and algebraic calculation than is used in the book. Every example has a reference in the
book and the textbook page on which it is referred to appears in the margin of that example.
The placement of the numerical examples (and the Math Notes in Appendix E) on the CD
makes it convenient for the reader to have both the book and the PDF file open at the
same time and refer to either as necessary. With the exception of the last part of Example
D.7.3 where a little trigonometry is used, no example uses mathematics beyond high school
algebra.

Appendix E is composed mostly of algebraic derivations of equations mentioned (or
occasionally used) in the text. Like Numerical Examples, every math note has a marginal
note indicating where in the textbook it is referred to. With the exception of the last part of
Math Note E.27.1 where a little trigonometry is used, one paragraph of Math Notes E.37.2,
E.37.4, E.38.1, and Math Notes E.37.5, E.37.6, and E.39.2 where a little calculus is used,
all math notes use mathematics at the level of high school algebra.

Appendix F is a short discussion of the technical aspects of spacetime geometry, including
the rules governing its application. Finally Appendix G is a large set of numerical exercises
which could be assigned as homework, or worked out in class by students in groups of 3 or
4 nearest neighbors, while the instructor walks around in the class answering questions.



Appendix A
Units in Physics

Physics studies the smallest particles and the largest galaxies in the universe. Being the
most quantitative of all sciences, it makes measurements profusely and in domains of various
sizes. The convenience of using different measuring apparatuses in different domains makes
the variety of units unavoidable. You cannot measure the inside of an atom with the same
yardstick that you measure the periphery of a galaxy.

Such a span of size demands a power-of-ten representation of numbers. Some of these
powers have names, which usually come as a prefix to the unit used. Table A.1 contains
the most common prefixes in use.

Prefix Definition Symbol Power of ten
giga- One billion G 109

mega- One million M 106

kilo- One thousand k 103

centi- One hundredth c 10−2

milli- One thousandth m 10−3

micro- One millionth µ 10−6

nano- One billionth n 10−9

Table A.1: Most commonly used power-of-ten prefixes.

The units of length, time, and mass are the fundamental units, because other physical
quantities can be expressed in terms of them. There are two systems of measurements in use:
Systèm International (SI) and United States Customary System (USCS) (formerly known as
the British Imperial System). The latter, which is used only in the US, measures length in
foot, weight in pound, and time in seconds. The former, also called the international system
or the metric system, measures length in meters, time in seconds, and mass in kilogram.
Table A.2 shows some common quantities in SI units and the symbols used for them.

Meter was originally taken to be 1/20,000,000 of a meridian of Earth. Once determined,
an equal length was marked off on a bar of platinum-iridium alloy. This bar is now kept in
the International Bureau of Weights and Measures in France. Second used to be defined as
1/86400 of a mean solar day. However, as the Earth is slowing down in its motion around
the Sun, such a definition was not accurate enough. So, in 1956, it was agreed to define
a second in terms of the mean solar day of the year 1900. In 1964, second was defined
to be the duration of 9,192,631,770 periods of the electromagnetic wave corresponding to
the transition between two hyperfine levels of the ground state of the cesium-133 atom. In
1997 it was added that the cesium atom is to be assumed at rest and at 0 K. With second
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Quantity Unit Symbol
Length meter m
Time second s
Mass kilogram kg
Force newton N
Charge coulomb C
Energy joule J
Temperature kelvin K

Table A.2: SI units.

so defined, the 17th Conférence générale des poids et mesures (CGPM) in 1983 adopted
the definition of meter as the length of the path travelled by light in vacuum during a
time interval of 1/299 792 458 of a second. The speed of light is now defined to be exactly
299,792,458 m/s. The reason for this exactness is that very accurate distance measurements
are much harder to ascertain than very accurate time measurements. Kilogram is defined
as the mass of one liter (0.001 m3) of water at 4◦ Celsius.

Although no other country uses the USCS, for the benefit of our American readers, we
provide the factors for converting the USCS units to SI units in Tables A.3 and A.4 .

mile foot inch gallon quart fluid ounce

USCS

5280 ft 12 in 4 qt 2 pt

1609 m 0.3048 m 0.0254 m 0.003785 m3 0.000946 m3

SI

1.609 km 30.48 cm 2.54 cm 3.785 lit 0.946 lit 29.57 cm3

Table A.3: Conversion of USCS to SI: length and volume.

pound ounce Btu

USCS

16 oz 777.6 ft lb

SI

453.6 g 28.35 g 1054.4 J

Table A.4: Conversion of USCS to SI: mass and energy.

Information about physical constants such as the universal gravitational constant, speed
of light, Planck constant, and a host of other numbers are available on the internet. Some
helpful sites are given below.

http://physics.nist.gov/cuu/Constants/index.html
http://pdg.lbl.gov/
http://pdg.lbl.gov/2009/reviews/rpp2009-rev-phys-constants.pdf
http://www.physlink.com/Reference/PhysicalConstants.cfm
http://hyperphysics.phy-astr.gsu.edu/hbase/tables/funcon.html



Appendix B
Radian, Distance, and Size

In this appendix, we summarize the relation between angles and distances, because the
distance and/or size of celestial objects are calculated using angles.

B.1 Radian

A convenient unit to use for such calculations is radian, which we describe now.

Box B.1.1. Draw any circle with center at the vertex of the angle. Measure length of
arc of circle subtended by the angle. Divide this length by the radius of the circle. This
ratio is the size of the angle in radians.

Because the arc length of the circle varies in proportion to the length of its radius, the
size of the angle in radians is independent of the circle used (see Figure B.1(a)). Radian is
usually abbreviated as rad. It turns out that

1 rad = 57.3◦

For detail see the example that follows.

O A

B

B1

B2

(a) (b)

Figure B.1: (a) The ratio of the bigger arc subtended by the angle to the bigger radius is the same as the
ratio of the smaller arc to the smaller radius. (b) As the angle gets smaller the length of the line segment
and the arc length become almost equal. While the arc AB and the line segment AB are substantially
different, the arc AB2 and the line segment AB2 are indistinguishable in the drawing.
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Angle Angle in radian Approximation
in deg
0.1 0.001745328 0.001745328
0.5 0.008726639 0.008726611
1 0.017453278 0.017453056
3 0.052359833 0.052353852
5 0.087266389 0.087238701
7 0.122172944 0.122096976
10 0.174532778 0.174311339

Table B.1: The middle column gives the size of the angle in radian. The last column uses the length of
the line segment instead of the arc length.

Example B.1.2. In going around the circle, we introduce an angle that is 360◦. The arc
associated with this angle is simply the circumference of the circle, which is 2πr. Taking
the ratio, we obtain

360◦ =
circumference

radius
=

2πr
r

= 2π rad

Therefore,

1rad =
360◦

2π
=

360◦

6.2831853
= 57.29578 degrees

which we usually round off to 57.3◦.

Because smaller and smaller arcs look more and more straight, we can replace arcs
with line segments without introducing too much error. Figure B.1(b) shows how the line
segment and the arc become almost equal when the angle gets smaller and smaller. While
the arc AB and the line segment AB are substantially different, the arc AB1 and the line
segment AB1 are equal to a better approximation, and the arc AB2 and the line segment
AB2 are almost indistinguishable in the drawing. Table B.1 compares the size of the angle
in radians when the arc length is used with the approximation in which the length of the
line segment is used instead. It is clear that, as long as the angle is small enough, the two
results are almost identical. Even for the fairly large angle of 10 degrees, there is agreement
to three significant figures.

B.2 Using Radian to Find Distances

This tells us something very useful: To find the angle (in radian) subtended by an object
at a point O, divide the size of the object by its distance from O,

angle in radian =
size

distance
(B.1)

Conversely, and more powerfully

Box B.2.1. If you know the angle in radians and the distance, you can find the size of
the distant object! If you know the angle in radians and the size of the distant object,
you can find its distance!

Let us see how this works.
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1000 ft

Figure B.2: From the distance and the angle you can find the height of the tree.

Example B.2.2. Suppose that you are standing 1000 ft away from a tree (see Figure B.2). You
decide to measure the height of the tree without getting close to it. The first thing you want to
do is measure the angular size of the tree. How? Take a sheet of paper and a long straight thin
stick. Point it to the top of the tree; mark your line of sight; point the stick to the bottom of the
tree; mark your line of sight; measure the angle between these two lines of sight with a protractor.
Suppose that this angle is 2 degrees.

To use Equation (B.1), you need to find the angle in radians. Since each radian has 57.3◦ in
it, we have

angle in radian =
2

57.3
= 0.0349

Now use Equation (B.1),

0.0349 =
size

1000
⇒ size = 0.0349× 1000 = 34.9 ft

�

Big angle,
big size!

Small angle,
samll size!

Figure B.3: The angle decreases as you move away from the tree.

Angular extent determines the apparent size of an object. As you move away from an
object (or if the object moves away from you) its size appears to decrease, because the angle
subtended by it decreases (Figure B.3). How far does it have to move before it appears as a
single point? In other words, what is the smallest angle that the human eye can measure? If
you draw two dots close together on a piece of paper, and move the paper away, the two dots
appear closer and closer together until they become so close that the eye cannot separate
them. Dividing the separation between the two dots by their distance from your eyes gives
the smallest angle (in radians) your eye can perceive, or your eye’s resolving power. It turns
out that

Box B.2.3. The resolving power of the eyes of most people is about 2 millidegrees or
3.5× 10−5 radian.

This means that an object that is so far away that it subtends an angle of 2 millidegrees
or less, will appear as a single point regardless of its shape.

Now suppose that the object is very far and moving sideways (transverse motion). If the
time is not long enough for the object to move a considerable distance,1 we will not be able

1Enough to make the angle subtended by the transverse distance 2 millidegrees or more.
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A

B

A

B

O

Figure B.4: As long as AB is much much smaller than OA or OB, the rays coming from O appear
parallel at A or B, or anywhere in between.

to detect the transverse motion. That is why the stars do not seem to be moving. They
are at such an enormous distance that the angle subtended by their transverse distance is
well below our resolving powers even for time intervals comparable to a human lifetime.

Example B.2.4. A truck 2 m high moves on a straight highway. We want to figure out how far
it has to move away from us before we see it as a single point. For this to happen, the angular
extension of the truck has to be 2 millidegrees or 3.5×10−5 radian. Using Equation (B.1), we write

3.5× 10−5 =
2 m

distance
⇒ distance =

2 m

3.5× 10−5
= 57, 143 m = 35.5 miles

where in the last step we divided by 1,610 to convert meters to miles. �

Suppose that a (point) light source is located far away sending light rays to an object
which is small compared to the distance of the light source. If AB of Figure B.4 represents
the size of the object, and AB is much much smaller than OA or OB, then, as the blow-up
of the region shows, the two rays OA and OB appear parallel. For example, suppose A is
the north pole of Earth, and B its south pole. Then the two rays OA and OB from the Sun
(represented by the point O) will appear parallel. In fact, any two Sun rays reaching any
two points on Earth will be parallel, because the angle subtended by those two rays will be
even smaller than the angle ∠AOB. Thus

Box B.2.5. The light rays coming from the Sun or any other star are all parallel as
they reach the Earth.



Appendix C
Vectors

In this appendix we introduce some simple properties of coordinate systems an vectors.
The coordinate systems we introduce include nonperpendicular systems because of their
application in relativity theory.

C.1 Coordinate Systems

A point P in space is an intrinsic entity independent of any “observer.” However, in all
applications, one chooses a coordinate system and assigns three numbers (x, y, z) to the
point, its coordinates, as in Figure C.1(a). However, almost always we confine ourselves
to a plane, the xy-plane. Then a point has only two coordinates (x, y) as in Figure C.1(b).
How are these coordinates determined? There are two ways to get the coordinates of a
point P :

• From P drop a perpendicular to each axis and measure the distance from the origin
to the foot of the perpendicular.

• From P draw a parallel line to each axis and measure the distance from the origin to
the intersection of the axis and the parallel line.

The two procedures above are, of course, equivalent. But there are situations where they
give different results.

In some cases, for instance in the special theory of relativity, it is necessary to consider
nonperpendicular axes. How does one determine the coordinates of a point P in such
cases? If one used the “perpendicular” procedure, one would have a situation shown in
Figure C.1(c), where a point on the y-axis would have a nonzero x-coordinate. Of course,
we don’t want this. So we have to use the “parallel” procedure as shown in Figure C.1(d).

C.2 Vectors

In all subsequent discussions it is helpful to go back to the most illustrative prototype of
vectors, i.e., the position vector.

Many physical quantities have not only a numerical value, indicating their strength or
magnitude, but also a direction. Such quantities are collectively called vectors. Practi-
cally every operation defined for ordinary numbers can also be defined for vectors: We can
add vectors, subtract them, multiply them, differentiate and integrate them (vector calcu-
lus), etc. In fact, because of their additional property of direction, vectors have a much
richer mathematics than ordinary numbers.
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(a) (b) (c) (d)

x

y

z

P

O

PQ

y

x

P

y

x

P
y

x

Figure C.1: (a) The point P has coordinates (4, 5.5, 7) in the coordinate system O. (b) We usually deal
with points in a plane, which require only two numbers as their coordinates. (c) For a nonperpendicular
system coordinates cannot be determined by perpendicular drops. (d) Coordinates of a point are determined
by lines parallel to the axes.

We do not intend to carry out a thorough investigation of vectors. Instead, we shall
summarize some of their most basic properties needed in our future discussions. It is helpful
to picture the displacement vector as a prototype of all vectors. There are many operations
we can perform on vectors, some of which we introduce below.
Parallel transportation: A vector is not affected if you move it parallel to itself and
do not stretch or shrink it. This process is called parallel transportation.
Length or magnitude: To every vector v is associated 1 a positive number denoted
by v, or, sometimes, |v| and called the length or magnitude of v. It is simply the length of
the line segment representing the vector.
Equality of vectors: It should be clear that two vectors are equal if and only if they
have the same length and they are parallel to one another. In other words, a vector is
determined uniquely by its length and its direction.
Multiplication by a number: Given a vector v and a number t, we define the vector
tv to have a length |t| times2 the length of v and a direction which is the same as v if t is
positive, and opposite to it if t is negative (Figure C.2).

v

3v
−2v

Figure C.2: Product of a number and a vector.

Addition of vectors: This operation is a generalization of the corresponding operation
for displacement. Suppose an object in motion starts from the point A1, goes to point A2,
then from A2 moves on to A3 (Figure C.3). The total displacement is clearly r13. But this
can also be thought of as the sum of the displacements r12 and r23. Thus one writes

r13 = r12 + r23

1It is customary to denote vectors by boldface type, and we adhere to this notation throughout the
book.

2Two vertical lines flanking a number indicate the absolute value of that number.
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Generalizing this for arbitrary vectors, we define vector addition as follows.

Box C.2.1. Given vectors v1 and v2, to find v1 + v2, parallel-transport v2 so that its
tail coincides with the tip of v1, then draw the directed line segment from the tail of v1

to the tip of v2.

Figure C.4(b) shows how addition is done. It also shows that the operation of addition
is commutative: v1 + v2 = v2 + v1. Obviously, if there are more than two vectors, we can
add them by finding the sum of the first two, then adding the third to this sum and so
on. This amounts to putting the tail of one at the head of another and continuing until all
vectors are drawn. The vector obtained by connecting the tail of the first to the head of
the last is the sum of all vectors. The sum thus obtained will not depend on the order in
which the vectors are added to one another, because at each step the order of addition is
irrelevant.

(a) (b)

r12

r13

r23

O

r1

A1

A2

A3

r2 r3

r12

r13

r23

Figure C.3: (a) Position vectors and displacements. (b) The displacement r13 is the sum of the
displacements r12 and r23.

Subtraction: To subtract v2 from v1 simply add −v2 to v1 as shown in Figure C.4(c).
Note that v1 − v2 = −(v2 − v1). Equivalently, the difference between any two vectors
is determined as follows: Draw the two vectors from a common point. This may involve
transporting the vectors parallel to themselves. Now draw the directed line segment from
the tip of the “initial vector” (i.e., the vector being subtracted) to the tip of the final vector.
In the case of displacement vector, this procedure seems “natural.” For other vectors it may
not appear as intuitive, but we note that the difference so defined has the property that
when it is added to the “initial” vector, it gives the final vector. Thus, if we add the vector
labeled v1 − v2 in the second diagram of Figure C.4(c) to v2, we get v1, as we should. For
any mathematical quantity, this is the property we expect of the difference.
Decomposition: Given a vector v, we can write it as the sum of a pair of vectors. The
pair is not unique in the sense that there are many (in fact, infinitely many) different pairs
whose sum equals the given vector. We say that v is decomposed into the two vectors,
and that each vector in a pair is a component of v. Figure C.5(a) shows a vector v being
decomposed into three different pairs. Figure C.5(b) shows the same vector being decom-
posed into its most commonly used horizontal and vertical components. The horizontal and
vertical components could be thought of as lying along the axes of a coordinate system. In
that case we speak of the x- and y-components of a vector v, and we write vx and vy instead
of vhor and vver. vx and vy are simply the projections of v on the two axes. The length of
v can be obtained from its components by using the Pythagorean theorem: |v|2 = v2

x + v2
y

or |v| =
√
v2
x + v2

y.
Given a vector and a set of axes, there is a unique way that it can be decomposed

along those axes. Stated differently, the components of a vector along the axes of a given
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v1

(b)

v2

v1+v2

v1

v2

(a)

v1+v2

v1

v2

v1

(c)

−v2

v1−v2
v1v2

v1−v2

Figure C.4: (a) Two arbitrary vectors. (b) To add, draw one vector from the tip of the other; then the
tail of the first to the tip of the second. (c) To subtract, either add the negative of the vector, or draw
both vectors from the same point; then connect the tip of the vector being subtracted to the tip of the
other vector.

coordinate system determine the vector uniquely. Thus, a vector is determined uniquely
either by its magnitude and direction, or by its components along the axes of a coordinate
system. Since a projection can never be larger than the vector itself, the maximum value a
component of v can assume is v.
Three-dimensional vectors: In the discussion above, we have implicitly assumed that
the vectors are drawn in a plane. With the exception of decomposition, all discussions
go through unchanged for vectors in space. When we are dealing with a single vector (or
even two vectors), we can do our decomposition in a plane (in the case of two vectors,
the plane defined by them). However, in general, we need three axes to decompose (or
project) vectors, because physical vectors are generally three-dimensional. Figure C.5(c)
shows such a vector with its three components (or projections) along the axes of a (three-
dimensional) coordinate system. The magnitude of the vector is obtained by using the
(three-dimensional) Pythagorean theorem: |v| =

√
v2
x + v2

y + v2
z .

(a) (b)

v

vy vx

vz

x

y

z

v v

vhor

vver

(c)

Figure C.5: (a) A vector v is decomposed into a pair of vectors in three different ways. (b) The most
common decomposition is into vertical and horizontal components. (c) A real physical vector generally has
three components.
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Numerical Examples

D.3 Numerical Examples for Chapter 3

Example D.3.1. The constant of proportionality can be determined by examining the Example of Kepler’s 3rd
law
(page 42 of the book)

motion of one of the planets, say Earth. The period of revolution T of the Earth around
the Sun is approximately one year and a quarter of a day. For later reference, we want to
use the scientific units. So, T should be converted into seconds. This is easily done

365 1
4 × 24× 3600 = 3.15576× 107 seconds

Since the orbit of the Earth is almost circular, the semimajor axis is the same as the
(average) radius of the orbit, i.e., the Earth–Sun distance, which happens to be 150 million
km, or 1.5× 1011 m. Substituting these two numbers in Kepler’s third law gives(

3.15576× 107
)2

= k ×
(
1.5× 1011

)3
or, computing the powers on both sides

9.9588× 1014 = 3.375× 1033k or k =
9.96× 1014

3.375× 1033
= 2.9508× 10−19

This k will work only if T is given in seconds and a in meters.
With k at our disposal, we can find the period of other planets if we know their semimajor

axes, or vice versa. As an example, consider Mercury, whose orbit is very elliptical. Its
closest distance to the Sun is 46 million km, but its farthest distance is 70 million km. This
gives a semimajor axis of about 58 million km. Mercury’s period can thus be found from

T 2 = 2.9508× 10−19 ×
(
5.8× 1010

)3
= 5.75728× 1013

and
T =

√
5.756× 1013 = 7.588× 106 s

Note that we had to convert the orbital radius from km to meter, and that the final answer
is in seconds. We can find this period in Earth days. Since there are 24 × 3600 = 86, 400
seconds in an Earth day, we have

TMercury =
7.588× 106

86, 400
= 87.8 Earth days.

Thus, Mercury’s years are less than a quarter of an Earth year.
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Until 1962 it was thought that Mercury’s “day” was the same length as its “year” so as
to keep the same face to the Sun much as Moon does to the Earth. But this was shown to
be false in 1965 by doppler radar observations. It is now known that Mercury spins three
times in two of its years.

The third law is sometimes written in a more convenient form by using two planets.
Let T1 and T2 be the periods of two planets and a1 and a2 their semi-major axes. Then
T 2

1 = ka3
1 and T 2

2 = ka3
2. By taking the ratio of these equations the third law becomes(

T1

T2

)2

=
(
a1

a2

)3

(D.1)

Because k is absent in this equation, one can measure T ’s and a’s in any convenient units.
For instance, T ’s could be measured in years, or days, or seconds (as long as both are
measured in the same units), and a’s in million kilometers, kilometers, or meters.

As a concrete example, let 1 refer to Mercury and 2 to Earth. Then a1 = 58 million
kilometers, T2 = 365.25 days, and a2 = 150 million kilometers. Therefore,(

T1

365.25

)2

=
(

58
150

)3

or
T 2

1

365.252
= (0.3867)3 = 0.0578

and
T1 =

√
0.0578× 365.252 = 87.8days

Note that no conversion to seconds and meters was necessary.

D.4 Numerical Examples for Chapter 4

Example D.4.1. A mad driver is moving at the rate of 35 m/s on a residential street!An example of UAM
(page 59 of the book) A cat suddenly jumps in front of the car 105 m away. The driver slams on the brakes

“immediately” with a reaction time delay of 0.2 second. The brakes cause a deceleration of
6 m/s2.

Q: Is the cat dead or alive?
A: To answer this question, we will

1. find how far the car travels before the brakes are actually applied;

2. plug in all the known quantities in the two kinematics formulas for uniformly accel-
erated motion, paying attention to the sign of the acceleration;

3. determine how long it will take for the car to come to a complete stop;

4. knowing the time of decelerated travel, we will calculate the distance the car travels
while decelerating to a complete stop, and finally

5. add the two distances to get the total distance.

1. The reaction time is the time that it takes for the act of seeing the cat in the middle of
the street to translate into applying brakes. This delay is due to the physical fact that no
signal or information travels with infinite speed. So, for the eye to transmit the sight of the
panicked cat to the brain and for the brain to analyze the situation and decide what to do,
and then transmit the decision to the muscles of the leg takes some time. In this case, 0.2
second. During this time the car travels uniformly with its initial speed. Thus, the distance
in this case is

x = vt = 35× 0.2 = 7 m
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2. With v0 = 35 and a = −6, Equations (4.3) and (4.4) yield

v(t) = 35− 6t

x(t) = 35t− 3t2.

These two equations give the speed and distance traveled for any given time t for this
particular problem.

3. For the car to come to a complete stop, v has to be zero. Therefore,

0 = 35− 6t ⇒ 6t = 35 ⇒ t =
35
6

= 5.833 s

4. Substitute this t in the equation for x(t) to find the distance:

x = 35× 5.833− 3(5.833)2 = 102 m.

5. The total distance is the sum of the two distances found in (1) and (4):

xtot = 7 + 102 = 109 m.

The cat is dead!
By the way, the reason that the driver is designated as “mad” can be appreciated by

converting the speed to mph:

35 m/s =
35

0.4472
= 78.26 mph!

On a residential street?

D.6 Numerical Examples for Chapter 6

Example D.6.1. To see the enormity of stellar distances and the minuteness of their Calculating the
minuscule star parallax
(page 76 of the book)

parallaxes, consider Epsilon Eridani, a star that is a mere 10.8 light years away. Figure D.1
(on the left) shows the Earth E moving around the Sun on a circular orbit. Two locations
of Earth six months apart are shown as E1 and E2. Two position vectors from Earth to
a star S are also shown. Note that E1E2 = S1S2, and that the Earth–Sun distance is 150
million km. Thus,

(a)

(b)

1

2

1

2

E1

E2

S2

S1

E

S

Figure D.1: (a) Earth moves around the Sun from its first position E1 to its second position E2. (b)
The star appears to have moved from S1 to S2, describing a parallax. The Earth–Sun distance is vastly
exaggerated to show the parallax. Note that E1E2 = S1S2.

E1E2 = 2× 150, 000, 000 = 300, 000, 000 = 3× 108 km
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On the other hand, noting that a light year is 9.45×1012 km, you find the distance between
Earth and Epsilon Eridani to be

10.8× 9.45× 1012 = 1.02× 1014 km

Thus, the maximum possible parallax—corresponding to the largest displacement of Earth
around the Sun—in radian (see Appendix B) is

parallax in radian =
E1E2

distance of Epsilon Eridani
=

3× 108

1.02× 1014
= 2.94× 10−6

At 57.3 degrees per radian, this is only 0.000169 degree. A minute amount indeed! If a
close star such as Epsilon Eridani has such a small maximum parallax, the other stars which
are considerably farther than Epsilon Eridani—some thousands of light years away—must
have even smaller parallaxes. No wonder there was so much resistance in accepting the
heliocentric theory of the solar system in ancient times!

Example D.6.2. A car moves east from A to B for one hour at 60 mph, and north from
B to C for 1 1

2 hours at 40 mph (see Figure D.2).

A B

C

Figure D.2: A car moves from A to C through B and returns to A along the quarter-circle.

Q: What is the distance the car travels and its average speed?
A: The distance is the length of AB plus the length of BC. ButIllustration of speed and

velocity
(page 78 of the book) AB = 1× 60 = 60 miles and BC = 1.5× 40 = 60 miles.

So, the total distance is 120 miles. The average speed is

vavg =
distance

∆t
=

120 miles
2.5 hours

= 48 mph.

Q: What is the car’s displacement and its average velocity?
A: The displacement, whose length is AC, is obtained by the Pythagoras theorem:

AC =
√

602 + 602 =
√

7200 = 84.85 miles ⇒ ∆r = 84.85 miles, northeast.

From this we calculate the average velocity:

vavg =
∆r
∆t

=
84.85 miles, northeast

2.5 hours
= 33.9 mph, northeast,

Now suppose that the car comes back from C to A in 1 1
2 hours along the quarter-circle

shown.
Q: What are the average velocity and average speed?
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(a) (b)

C

A1

A2

v1

v2

∆v

20
0 

m

∆v

20
0 

m

20 m/s

20 m/s

Figure D.3: (a) As the car moves from A1 to A2, its velocity changes slightly. (b) The change in velocity
∆v.

A: The average velocity is easily obtained,

vavg =
∆r
∆t

=
84.85 miles, southwest

1.5 hours
= 56.57 mph, southwest.

To find the average speed, we need to calculate the distance, which is the length of a
quarter-circle of radius 60 miles. This length is one fourth of the circumference of the (full)
circle:

circumference = 2πr = 2× 3.14159× 60 = 377 miles ⇒ distance =
377
4

= 94.25.

Thus,

vavg =
distance

∆t
=

94.25 miles
1.5 hours

= 62.83 mph.

Example D.6.3. A car is moving on a curved road in the shape of an arc of a circle of Acceleration of a car on
a circle
(page 82 of the book)

radius 200 m. Suppose that the car is moving eastward momentarily with a constant speed
of 20 m/s, as shown in Figure D.3(a) on page 17.

Q: What is the magnitude and direction of the centripetal acceleration of the car at
that moment?

A: The car is initially at point A1. To find the instantaneous acceleration, we have
to know the change in the velocity a short while, say a second, later. In that period, the
car has moved to A2, which is 20 m away from A1 on the circle. The angle A1CA2 is
20/200 = 0.1 radian (see Appendix B). This is the same as the angle between the velocities
v1 at A1 and v2 at A2 as shown in Figure D.3(b). Since the angle is small (about 5.7◦), we
can approximate ∆v by the arc of a circle whose radius is the length of the velocity vector.
Then the definition of radian yields

angle in radian =
arc length

radius
or 0.1 =

arc length
20 m/s

⇒ arc length = 2 m/s

Therefore, ∆v = arc length = 2 m/s southward. The specification of the direction is
important, because ∆v is a vector. Of course, ∆v does not point southward exactly (it
is slightly west of south), but for smaller and smaller angles it gets closer and closer to
southward. Since the change in the velocity took place in 1 s, the acceleration is 2 m/s2.
This turns out to be identical to the exact result obtained by using Equation (6.1).
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before after

(a)

(b)
pbef = 9 kg.m/s paft = 9 kg.m/s

pwre = 10 kg.m/s

Figure D.4: (a) The stranded astronaut with his wrench before and after the throw. The wrench moves
away from the astronaut and the spaceship. (b) The total momentum before and after the throw are equal.
For the astronaut to be able to get back to the ship, the wrench must be thrown away from the spaceship
with a momentum larger than the total momentum.

D.7 Numerical Examples for Chapter 7

Example D.7.1. An astronaut with a total mass (astronaut plus all his equipment) ofAstronaut lost in space
(page 92 of the book) 90 kg is detached from his spaceship and moves with a speed of 0.1 m/s away from it (to

the left) at a distance of 20 m [Figure D.4(a)]. The commander tells the astronaut to throw
the 0.5-kg wrench he is holding as hard as he can. The astronaut follows the order, throwing
the wrench at a speed of 20 m/s relative to the spaceship. Can the astronaut make it back
to the spaceship? Consider the astronaut plus the wrench as a system.

Q: What is the total momentum of this system before the throwing of the wrench?
A: Use the defining equation (7.1) and get

pbef = mv = 90× 0.1 = 9 kg·m/s, to the left.

This momentum is shown as an arrow in Figure D.4(b).
The momentum of this isolated system remains the same after the astronaut throws the

wrench. It should be clear that he should throw the wrench to the left if he is to have a
chance of returning to the spaceship to the right.

Q: What is the momentum of the wrench?
A: That also is given by (7.1):

pwre = mwrevwre = 0.5× 20 = 10 kg·m/s, to the left.

This momentum is also shown as an arrow in Figure D.4(b).
Q: What is the momentum of the astronaut?
A: The total momentum after the throw is the momentum of the wrench plus the

momentum of the astronaut. And this total momentum must be 9 kg·m/s to the left. Since
the wrench has a momentum of 10 kg·m/s to the left, the astronaut must have a momentum
of 1 kg·m/s to the right.

Q: What is the speed of the astronaut?
A: Well, since past = mastvast, and since past is 1 kg·m/s to the right, and mast is 89.5

kg (total mass minus the mass of the wrench), then

1 = 89.5vast or vast =
1

89.5
= 0.0112 m/s, to the right.

Q: How long does it take the astronaut to reach the spaceship?
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A: Since the distance is 20 m and the speed is 0.0112 m/s, we have

x = vt ⇒ 20 = 0.0112t ⇒ t =
20

0.0112
= 1790 s

or about half an hour.
If the astronaut had thrown the wrench with a speed too much slower than 20 m/s,

say 15 m/s, then pwre in Figure D.4(b) would have been 0.5× 15 = 7.5 kg·m/s to the left.
Since the total momentum is 9 kg·m/s to the left, the astronaut would have had to have a
momentum of 1.5 kg·m/s to the left, and away from the spaceship.

The same kind of analysis can be used to show that under no circumstances should the
wrench be thrown toward the spaceship.

Example D.7.2. A 50-gram bullet is fired on a 2-kg wooden block resting on a smooth Finding speed of a bullet
(page 92 of the book)surface. The bullet penetrates into the block and the whole system is seen to move with a

speed of 3 m/s. What was the initial speed of the bullet?
The momentum after collision is

pafter = (2 + 0.05)× 3 = 2.05× 3 = 6.15 kg·m/s

Here, we converted grams (mass of the bullet) to kg. Since the momentum of an isolated
system (here, the bullet-block system) does not change, and since the block was initially
stationary, the initial momentum of the bullet must have been 6.15 kg·m/s. Therefore,

6.15 = 0.05v or v =
6.15
0.05

= 123 m/s.

Example D.7.3. Decomposing both Fnet and a along the horizontal and vertical direc- Motion of a projectile
(page 94 of the book)tions, and (for convenience) suppressing the subscript “net”, you obtain the following two

equations:

Fhor = mahor

Fvert = mavert (D.2)

The motion of a projectile has two components: a horizontal component that has no
force, and thus no acceleration, and a vertical component that has the gravitational force,
leading to the gravitational acceleration of 9.8 m/s2 downward. Therefore the two equations
in (D.2) give ahor = 0 and, assuming that up is the positive direction, avert = −9.8 m/s2.

Let x denote the horizontal distance and y the vertical distance. Now suppose that we
throw a projectile with a horizontal speed of 3 m/s, and an initial vertical speed of 4 m/s.
The x motion is uniform, and the y motion is uniformly accelerated. Using Equations (4.1)
and (4.4), we obtain

x = 3t

y = 4t− 4.9t2 (D.3)

The first equation gives t = x/3, which, when plugged in the second equation, yields

y = 4
3x− 4.9

(x
3

)2

= −0.544x2 + 1.333x (D.4)

which is the equation of a parabola.
An interesting property of (D.4) is obtained when you write it as

y = x(−0.544x+ 1.333)
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because it now clearly shows that y = 0 (i.e., the projectile is at the ground) when x = 0
and x = 1.333/0.544 = 2.448 m. The first x corresponds to the firing of the projectile, the
second to its landing. So, 2.448 m is the range of the projectile.

It is instructive to consider a general projectile motion in which the horizontal speed is
v0x, the vertical speed is v0y, and the vertical acceleration is denoted by g. Then, Equation
(D.3) becomes

x = v0xt

y = v0yt− 1
2gt

2 (D.5)

The first equation gives t = x/v0x, which, when plugged in the second equation, yields

y =
v0y

v0x
x− 1

2g

(
x

v0x

)2

= − g

2v2
0x

x2 +
v0y

v0x
x (D.6)

which is again the equation of a (general) parabola. The range R can be obtained as before:

y = x

(
v0y

v0x
− g

2v2
0x

x

)
⇒ R =

v0y

v0x
g

2v2
0x

=
2v0xv0y

g
(D.7)

Readers familiar with trigonometry note that, if v0 is the initial velocity and θ is theFamiliarity with
trigonometry is needed

for this paragraph!
angle of the projectile, then v0x = v0 cos θ and v0y = v0 sin θ, and Equation (D.7) gives

R =
2v0xv0y

g
=

2(v0 cos θ)(v0 sin θ)
g

=
2v2

0 sin θ cos θ
g

=
v2

0 sin(2θ)
g

(D.8)

This is an interesting result. It says that for any given initial velocity, the maximum range
is obtained when sin(2θ) = 1, or θ = 45◦.

Ffric

Fapplied

Ffric

Fapplied

(a) (b)

gravity

N

gravity

N

Figure D.5: (a) When the applied force is smaller than the maximum frictional force, the latter adjusts
itself to the former. (b) Frictional force can be measured with this simple experiment.

Example D.7.4. Consider a box whose mass is 3 kg. It is observed that when a force ofFinding force of friction
(page 95 of the book) 10 N is applied to it, the box acquires an acceleration of 2 m/s2.

Q1: What is the net force on the block?
A1: From the information given and the second law, we obtain1

Fnet = ma = 2× 3 = 6 N
1In most examples in this book, we need not worry about the most general direction of vectors, because

all vectors of a given problem are usually along the same line. The present example is an illustration, and
that is why I am abandoning the boldface (vector) notation.
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(a) (b) (c)

Fdrag

Fdrag

Fdrag

mg
mg

mg

Figure D.6: The praying parachutist! (a) As soon as he opens the parachute—after falling freely for a
while—the deceleration is large. (b) After a while the speed (and with it the air drag) decreases slowing
down the process of slowing down! (c) The terminal speed is reached when the force of air drag balanced
the weight.

Q2: What is the frictional force on the block?
A2: Since the applied force and the frictional force point in opposite directions, and

since the net force is the vector (in this case, algebraic) sum of all vectors, we have

Fnet = Fapplied − Ffric

Substituting the numbers yields

6 = 10− Ffric ⇒ Ffric = 10− 6 = 4 N.

Example D.7.5. Consider the motion of a parachutist as shown in Figure D.6. Suppose Motion of a parachutist
(page 96 of the book)that the force of air drag can be written as Fdrag = 200v where v is the speed of the

parachutist, that the mass of the parachutist plus the parachute and everything else in
motion is 100 kg, and that the parachutist does not open the parachute for a while. He
falls down freely until his speed reaches 20 m/s. Now he opens the parachute. We want to
analyze his (vertical) motion.

There are two forces acting on the parachutist, the weight and the drag force. The
weight is

w = mg = 100× 9.8 = 980 N downward

The drag force—when the speed is 20 m/s—is

Fdrag = 200v = 200× 20 = 4000 N upward

because the drag force always opposes the motion. These forces are shown in Figure D.6(a).
The net force is therefore Fnet = 4000 − 980 = 3020 N upward, and the second law of
motion gives the acceleration:

Fnet = ma ⇒ 3020 N upward = 100a or a =
3020
100

= 30.2 m/s2 upward.

The acceleration is opposite to the direction of motion. Therefore, the system slows down.
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A little later we find the system moving at the rate of 10 m/s. The air drag is reduced
to Fdrag = 200× 10 = 2000 N upward, and since the weight has not changed, the net force
is now [see Figure D.6(b)]

Fnet = 2000− 980 = 1020 N upward.

Once again, the second law of motion gives the acceleration:

Fnet = ma ⇒ 1020 N upward = 100a or a =
1020
100

= 10.2 m/s2 upward.

The acceleration is still opposite to the direction of motion. Therefore, the system keeps
slowing down.

The parachutist keeps falling—and slowing—down. But the process of slowing down
cannot go on forever. In fact, once the speed is so small that the drag force exactly balances
the weight, the process stops. Why? Because if the speed gets smaller, the drag force
decreases; the weight overpowers the drag force; the net force will be pointing downward;
and the system starts to accelerates. But as soon as it accelerates, the speed increases, the
drag force increases until it is equal to the weight again. The speed at which the drag force
and the weight are equal [see Figure D.6(c)] is called the terminal speed or terminal
velocity. It is obtained by equating the weight and the general form of the drag force:

980 = 200v ⇒ v =
980
200

= 4.9 m/s.

Once this speed is reached, the parachutist will neither speed up nor slow down. Parachutes
are designed in such a way that the terminal speed is low enough to be safe for landing.

Example D.7.6. Consider the downward motion of a 50-kg person standing on a scaleMotion of an elevator
(page 97 of the book) in an elevator as shown in Figure D.7. Let us first concentrate on the motion at the very

beginning, i.e., when the elevator starts moving down with an acceleration of 4 m/s2. The
second law tells us that the net force on the person is

Fnet = ma = 50× 4 = 200 N downward.

because the acceleration is downward. This net force is the result of two forces acting on the
person, her weight acting downward and the force of the scale acting upward. The weight
is

w = mg = 50× 9.8 = 490 N downward.

Therefore, the force of scale on the person Fsp must be pointing up and have the magnitude

Fsp = 490− 200 = 290 N upward.

All these forces are shown in Figure D.7(a).
Now if the scale is exerting the force Fsp on the person upward, by the third law of

motion, the person must exert a force Fps = −Fsp on the scale downward. The reading on
the scale is precisely the force exerted on it. So, the scale reads the “weight” of the person
to be 290 N. It is everybody’s common experience that as the elevator starts to come down,
one feels slightly lifted up.

After a while the elevator will reach a constant speed, at which point the acceleration
becomes zero, the net force becomes zero, and therefore, the two forces on the person
balance each other. So, Fsp = 490 N pointing up. Therefore, the person must be pushing
down on the scale by the same force and the scale shows the true weight of the person [see
Figure D.7(b)].

Now the elevator approaches the bottom and starts slowing down with a deceleration of
2 m/s2. The net force on the person is now

Fnet = ma = 50× 2 = 100 N upward,
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Fnet

w

Fsp

w

Fsp

Fnet

w

Fsp

(a) (b) (c)

Figure D.7: The person on a scale in an elevator. (a) The elevator starts accelerating downward. (b)
The elevator has cruised to a constant speed. (c) The elevator is decelerating to stop.

because the acceleration—opposing the downward motion—is upward. This means that
Fsp must overpower the weight by 100 N. Therefore, Fsp must be 590 N pointing up. By
the third law, the person must be pushing down on the scale by the same force. So, the
scale reads the “weight” of the person to be 590 N. It is again common experience that as
the elevator starts to stop on its way down, one feels slightly pushed against the floor [see
Figure D.7(c)].

Let us go back to the beginning and suppose that, as the elevator starts descending from
the top, its acceleration is 9.8 m/s2. The net force on the person is

Fnet = ma = 50× 9.8 = 490 N downward.

Since her weight is 490 N, the other force must be zero. The scale is exerting no force on
the person. The third law prohibits the person from exerting any force on the scale. The
reading on the scale is therefore zero! She is weightless!

The reader notes that in the last case the elevator is in free fall, i.e., the supporting
cables are not holding it back. Since all objects fall at the same rate,2 the elevator and all
its occupants fall at the same rate, so there is no reason for the person to “speed up” to
the bottom of the elevator. She will float in midair!

Example D.7.7. The car of the roller coaster of Figure D.8 is upside down but not falling Looping roller coaster
(page 97 of the book)down. How can that be? Let us analyze its motion. Suppose that the mass of the car plus

its passenger is 150 kg and it is moving with a speed of 10 m/s on a circle of radius 5 m.
The acceleration of the system is

a = acent =
v2

r
=

102

5
= 20 m/s2 downward,

because acent always points toward the center and the center is just below the car. Thus,
the net force on the car is

Fnet = ma = 150× 20 = 3000 N downward.

Gravity accounts for

w = mg = 150× 9.8 = 1470 N downward
2It was Galileo who discovered this phenomenon. That is why the statement “The gravitational ac-

celeration is 9.8 m/s2.” makes sense. It is the same for all objects, heavy, light, big, small, black, or
white!
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Figure D.8: The roller coaster must have a sufficiently large speed to ensure the presence of a normal
force on the cars.

of it. The rest is the force exerted on the car by the track. This force is very important. If
the car is to stay on the track, it must push on it. The third law of motion then says that
the track must push on the car. So, as long as the force of the track on the car is nonzero,
the car will stay up without falling down. In order for this to happen, the car must be
moving fast enough.

What is the minimum speed with which the car can circle the loop without falling down?
The force of the track on the car must be nonzero, but it could be very small. Let us say
that this force is 0.0001 N. Then, at the height of the loop, the total (net) force on the car
will be the weight plus this small force, i.e., 1470.0001 N. The second law now gives

Fnet = ma ⇒ 1470.0001 = 150a or a =
1470.0001

150
= 9.80000067 m/s2 downward

But this is the centripetal acceleration which is related to speed. Invoking this relation, we
obtain

a =
v2

r
⇒ 9.80000067 =

v2

5
or v2 = 9.80000067× 5 = 49.0000033

and
v =
√

49.0000033 = 7.00000024 m/s

The two digits 24 at the end of this number come about because of the small force of the
track on the car. The smaller this force, the smaller the difference between the calculated
speed and 7 m/s. In fact, we can set the force of the track on the car equal to zero and
obtain what could be called the critical speed, vcrit. For the car to remain on its track, its
speed must exceed vcrit. This speed had better be independent of the mass of the car (plus
the passenger), otherwise heavier (or lighter) passengers may fall, their critical speed being
different! Math Note E.7.1 on page 79 of Appendix.pdf proves this fact.

D.8 Numerical Examples for Chapter 8

Example D.8.1. A ball of mass 100 grams (equal to 0.1 kg) is fired horizontally from aFinding speed of a ball
fired from a table top

(page 111 of the book)
table top 1 m high with a speed of 10 m/s. What is the speed of the ball when it reaches
the floor?
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Measure heights from the floor; i.e., let the floor be the reference level. Then, initially
the total energy is

ME = 1
2mv

2
i +mghi = 1

20.1× 102 + 0.1× 9.81× 1 = 5.981 Joules

This initial energy must equal the energy at the end of the ball’s flight where the height is
zero. Height of zero means zero PE; so, at the end, the energy is all kinetic. Setting the
total energy equal to KE at the end, we get

5.981 = 1
2mv

2
f = 0.05v2

f ⇒ v2
f =

5.981
0.05

= 119.62

or
vf =

√
119.62 = 10.94 m/s.

Example D.8.2. The roller coaster of Figure D.9 has a loop, around which the cars will Analyzing motion of a
roller coaster
(page 111 of the book)

circle. Assume that h0 = 80 m, h1 = 50 m, and h2 = 40 m. The car and its passenger have
a total mass of 100 kg, and start from rest at A. We want to find the speed of the car at
points B, C, and D. It is clear that a convenient reference height is the lowest point of the
track, i.e., point B.

The total mechanical energy of the system is obtained at point A:

ME = KEA + PEA = 0 +mgh0 = 100× 9.8× 80 = 78, 400 J

Although calculated at the specific point A, this ME will remain the same at any point of
the track.

At B, the height is zero, so we can write

ME = KEB + PEB or 78, 400 = 1
2mv

2
B + 0 = 1

2 × 100v2
B = 50v2

B

Therefore
v2
B =

78, 400
50

= 1568 and vB =
√

1568 = 39.6 m/s

At C, the height is 50 m, so

ME = KEC + PEC or 78, 400 = 1
2mv

2
C +mgh1 = 1

2 × 100v2
C + 100× 9.8× 50

or 78, 400 = 50v2
C + 49, 000 ⇒ 50v2

C = 78, 400− 49, 000 = 29, 400, giving

v2
C =

29, 400
50

= 588 and vC =
√

588 = 24.25 m/s

The car has slowed down a bit since B.
At D, the height is 40 m, so we have

ME = KED + PED or 78, 400 = 1
2mv

2
D +mgh2 = 1

2 × 100v2
D + 100× 9.8× 40

or 78, 400 = 50v2
C + 39, 200 ⇒ 50v2

D = 78, 400− 39, 200 = 39, 200, yielding

v2
D =

39, 200
50

= 784 and vD =
√

784 = 28 m/s

The car has speeded up again.
Q: What is the force exerted by the track on the car at D?
A: The (centripetal) acceleration of the car at D is

a =
v2

r
=

282

20
= 39.2 m/s2
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h0

h1 h2
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D
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P

Figure D.9: A car of a roller coaster as it starts to begin its motion.

So, from the second law, the net force is

Fnet = ma = 100× 39.2 = 3, 920 N

The weight can provide only mg = 100 × 9.8 = 980 N of the net force. The rest must be
coming from the track. So, the (downward) force of the track on the car is 3, 920 − 980 =
2, 940 N. The car pushes back on the track (remember the third law!) and will not fall (see
also Example D.7.7).

D.9 Numerical Examples for Chapter 9

Example D.9.1. An apple—or any other object—falls to the ground with an accelerationComparing acceleration
of an apple and Moon

(page 132 of the book)
of 9.81 m/s2. The Moon, at a distance of 384,400 km, circles the Earth in 27.322 days,3 or

27.322× 24× 3600 = 2.36× 106 s

and the distance it travels during this time is the circumference of its orbit, i.e.,

2πr = 2× 3.1416× 384, 400, 000 = 2.415× 109 m

It follows that the speed of the Moon as it moves around the Earth is

v =
distance

time
=

2.415× 109

2.36× 106
= 1023 m/s

Using this value for the speed in the relation a = v2/r for the centripetal acceleration, we
obtain a = 0.002725 m/s2. The acceleration at the surface of the Earth is 9.81/0.002725 =
3600 times larger than the acceleration of the Moon. On the other hand, Moon is 384, 400/6400 =
60 times farther than the apple from the center of the Earth (see Figure 9.1). From these
two numbers and the assumption that both accelerations are caused by the Earth’s gravity,
one can conclude that the gravitational acceleration falls off as the inverse square of the
distance.

Example D.9.2. We want to use Equation (9.1) to estimate G. Consider a 1-kg coconutEstimating G
(page 133 of the book)

3The actual distance and period of the Moon are slightly different from these numbers. I chose these
numbers so that the distance ratio and the acceleration ratio obtained below turn out “nice,” and have an
“obvious” relation.
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falling from a tree. We know the force F on the coconut: it is its weight. Thus,

F = weight = w = mg = 1× 9.8 = 9.8 N.

So far, we know m (it is 1 kg), and F . If we knew r and M , we could determine G. What
is r? It is the distance from the coconut to the center of the Earth. But the coconut (even
at the top of the tree, say 10 m high) is so close to the surface of the Earth (compared to
the radius of the Earth, over 6 million meter) that we can safely say that

r = R⊕ ≡ radius of Earth = 6.4× 106 m.

The last value was not only known to Newton, but also to the Greeks as early as the third
century BC (see Section 1.3.2).

M is the most difficult to determine. Nevertheless, we can estimate it by looking at a
sample of the stuff, of which the Earth is made. The lightest substance on (and in) Earth
is water. What would the mass of the Earth be if it were made up entirely of water? The
density ρ (mass of one cubic meter) of water is 1000 kg/m3. If we can determine how many
cubic meters there are in the Earth—i.e., if we know the volume of the Earth—we can
calculate its mass. The volume of a sphere of radius R is 4

3πR
3. So, if the Earth were made

up of only water, its mass would be

M = 4
3πR

3ρ = 4
3π(6.4× 106)3 × 1000 = 1.1× 1024 kg

Substituting all the known quantities in Equation (9.1), we obtain

9.8 =
G(1)(1.1× 1024)

(6.4× 106)2
⇒ G =

9.8(6.4× 106)2

1.1× 1024
= 3.65× 10−10

Now let us go to the other extreme and assume that the Earth is entirely made up of a
very heavy element, say gold with a density of about 20,000 kg/m3. In that case,

M = 4
3πR

3ρ = 4
3π(6.4× 106)3 × 20000 = 2.2× 1025 kg

and, using the same argument as above,

G =
9.8(6.4× 106)2

2.2× 1025
= 1.82× 10−11

We therefore conclude that the actual value of G must be between these two extremes:

1.82× 10−11 < G < 3.65× 10−10

Example D.9.3. You can use Equation (9.3) to obtain the speed of a satellite circulating Finding the speed of a
low-altitude satellite
(page 136 of the book)

the Earth if you know its altitude. Let’s assume that a satellite is launched into a circular
orbit at an altitude of 100 km.

Q: What is the speed of the satellite?
A: First note that r in Equation (9.3) is the distance to the center of the Earth. Thus

to find r you must add the altitude to the radius of the Earth,R⊕. This gives

r = R⊕ + h = 6, 400 km + 100 km = 6, 500 km = 6.5× 106 m

Substituting in Equation (9.3) now yields

v =

√
GM⊕
r

=

√
6.67× 10−11 × 6× 1024

6.5× 106
= 7, 847 m/s = 17, 554 mph

Thus to launch a satellite into a circular orbit at an altitude of 100 km, you must boost it
to an orbital speed of about 17,500 mph.
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Example D.9.4. Using Equation (9.4), we can weigh the Sun! All we have to do is plug
in the values of T and r for a planet such as the Earth and solve for the mass of the sum,
M�. For Earth, we have

T = 365× 24× 3600 = 3.15× 107 s, r = 150, 000, 000 km = 1.5× 1011 m

Therefore,Finding the mass of the
Sun

(page 137 of the book)

(
3.15× 107

)2
=

4π2

6.67× 10−11M�

(
1.5× 1011

)3
or

M� =
4π2 ×

(
1.5× 1011

)3
6.67× 10−11 × (3.15× 107)2 = 2× 1030 kg

Thus, the Sun is about 330,000 times heavier than the Earth.

Example D.9.5. We use Equation (9.4) to find the altitude of a synchronous satellite.Finding the altitude of a
synchronous satellite

(page 137 of the book)
Here, the period is one day or 86,400 seconds and M is the mass of the Earth, which we
found in Example 9.1.5:

(86, 400)2 =
4π2

(6.67× 10−11) (6× 1024)
r3

This yields

r3 =
(86, 400)2

(
6.67× 10−11

) (
6× 1024

)
4π2

= 7.57× 1022

or
r = 3

√
7.57× 1022 = 4.23× 107 m

which is about 6.6 times the radius of the Earth. Note that r is the distance from the
satellite to the center of the Earth. The altitude is one Earth radius less, or 5.6 Earth radii.

Example D.9.6. A star has a visible mass of 3× 1030 kg. One of its planets, at a distanceNumerical dark matter
(page 137 of the book) of 4× 1011 m, moves around it every 2.5 years.

Q1: Does the Kepler third law hold for this star-planet system?
A1: The period is 2.5 × (3.15 × 107) = 7.88 × 107 seconds. So, the left-hand side of

Kepler’s third law is (7.88× 107)2 or 6.2× 1015. On the other hand, the right-hand side is

4π2

GM
r3 =

4× (3.1416)2

(6.67× 10−11)(3× 1030)
(4× 1011)3 = 1.26× 1016

not equal to the left-hand side!
Q2: What is the best way to reconcile the discrepancy?
A2: Kepler’s third law is on such a firm theoretical and observational footing that

we have no choice but to accept it. The value of G has been determined to a very high
accuracy; so we have no room to fudge it. We are therefore left with r, M , and T . The
first and the last quantities can be measured directly and accurately. The period can be
measured by charting the planet’s position in the field of a super-powerful telescope (such
as the Hubble Space Telescope). The distance can be measured accurately by finding the
angular separation of the star and the planet once the distance of the star from Earth is
known.

The only alternative left for explaining the discrepancy is to assume that the mass of
the star in not necessarily its visible mass. If we assume the validity of Kepler’s third law,
and the accuracy of the distance and period, the mass of the star can be determined:

T 2 =
4π2

GM
r3 ⇒ M =

4π2r3

GT 2
=

4× (3.1416)2 × (4× 1011)3

(6.67× 10−11)(7.88× 107)2
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(a) (b) (c)

Figure D.10: The distribution of the invisible mass experienced by a planet (the black dot). The
dashed circle represents the boundary of the visible part of the star. (a) The entire invisible mass could be
concentrated inside the visible region of the star. It could also spread out slightly beyond the visible region,
as in (b), or all the way up to the planet (c).

or M = 6.1× 1030 kg. This suggests that more than half the mass of the star is invisible!
Q3: How is this extra mass distributed?
A3: Since r is the distance between the planet and the center of the star, the extra

mass need not be inside the visible region of the star. In fact, it could be distributed
in a sphere whose radius can be as large as r. Figure D.10 shows three of the infinitely
many possibilities for the distribution of the invisible mass experienced by a planet. The
invisible mass could be confined entirely inside the visible region [Figure D.10(a)] within a
small sphere as shown or as large a sphere as the visible region itself. It could also spread
beyond the visible region; either in a sphere only slightly larger than the visible region
[Figure D.10(b)], or in a sphere that has a radius as large as the orbital radius of the planet
[Figure D.10(c)]. All these distributions of the invisible mass give rise to the same period
(or speed) of the planet, because in all cases the distance of the planet from the center of
the star is the same.

Example D.9.7. Take an apple with a mass of 0.1 kg located 50 m above the surface of Calculating the PE of an
apple in two ways
(page 141 of the book)

the Earth. Using the approximate formula first, we have

PE = mgh = 0.1× 9.81× 50 = 49.05 Joules

This must be interpreted as the difference between the potential energy at h and at the
surface of the Earth.

Now let us calculate this difference using the exact formula. We have to substitute the
most precise values for the parameters of the equation. Using a good table of physical con-
stants, we have (note that capital letters usually denote properties of the large gravitating
body)

(PE)surface = −GM⊕m
R⊕

= −6.673× 10−11 × 5.977× 1024 × 0.1
6, 371, 000

= −6, 260, 323.5 Joules

(PE)h = −GM⊕m
r

= −6.673× 10−11 × 5.977× 1024 × 0.1
6, 371, 050

= −6, 260, 274.4 Joules

From these two values we evaluate the difference in potential energy to be

−6, 260, 274.4− (−6, 260, 323.5) = 49.1 Joules

which agrees very well with the approximate value.
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Example D.9.8. A 500-kg space probe is launched with the aid of booster rockets. WhenWhat goes up may or
may not come down

(page 142 of the book)
it reaches the altitude of 600 km, the boosters are detached, at which point the probe has
a speed of 12 km/s.

Q1: Will the probe move on forever, as it should?
A1: If the probe is to move forever, its total energy must be positive or zero. Let us

check this at the point where the boosters are detached. At that point

r = 6, 400 + 600 = 7, 000 km = 7× 106 m and v = 12, 000 m/s

because altitude plus the radius of the Earth gives the distance from the center of the Earth.
It follows from Equation (9.7) that

E = 1
2mv

2 − GMm

r
= 1

2 (500)(12, 000)2 − 6.67× 10−11(6× 1024)(500)
7× 106

= 3.6× 1010 − 2.86× 1010 = 7.4× 109 J

Since the energy is positive, the probe will move on forever.
We can find out what the speed of the probe will be when it reaches the boundary of

the solar system, i.e., Pluto’s orbit at a distance of 5.9 billion km. Again we use Equation
(9.7) with everything known except v:

7.4× 109 = 1
2 (500)v2 − 6.67× 10−11(6× 1024)(500)

5.9× 1012

or

250v2 = 7.4× 109 + 33915 ≈ 7.4× 109 ⇒ v =

√
7.4× 109

250
= 5441 m/s

This is the speed the probe will have for the rest of its journey. In fact, we saw above that
the contribution of the PE to the total energy was only 33,915 J at the orbit of Pluto;
further out, this contribution is even less. Therefore, the total energy of 7.4× 109 J is, to a
very good approximation, the KE of the probe for the rest of its journey, and for this KE,
the speed is 5441 m/s, as calculated above.

We have to emphasize that the foregoing discussion completely ignores the influence of
the Sun and other bodies in the solar system. In fact, at far enough distances, the gravity
of the Sun will overpower that of the Earth, and cannot be ignored. In actual launches,
such details must be (and are) taken into account using sophisticated mathematical and
computational techniques.

As a second example, suppose we throw straight up a 1-kg cannon ball with a speed of
10 km/s.

Q2: Will the ball move on forever or will it eventually come back? If it comes back,
what is the maximum height it reaches?

A2: At the surface of the Earth

r = 6, 400 km = 6.4× 106 m and v = 10, 000 m/s

The total energy of such a ball is therefore

E = 1
2mv

2 − GMm

r
= 1

2 (1)(10, 000)2 − 6.67× 10−11(6× 1024)(1)
6.4× 106

= 5× 107 − 6.25× 107 = −1.25× 107 J

Since E < 0, the ball must eventually stop. To find the height at which it stops, first
denote the distance from the center of the Earth to the point at which the ball stops by rs.
At this distance KE = 0, and we have

−1.25× 107 = 0− 6.67× 10−11(6× 1024)(1)
rs

or 1.25× 107 =
4× 1014

rs
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This gives

rs =
4× 1014

1.25× 107
= 3.2× 107 m

or 32,000 km. The height h is obtained by subtracting the radius of the Earth from this
distance:

h = 32, 000− 6, 400 = 25, 600 km.

Example D.9.9. We can find the numerical value of the Earth’s escape velocity by sub- Calculating escape
velocities
(page 143 of the book)

stituting the mass and the radius of the Earth in Equation (9.8):

vesc =

√
2× (6.67× 10−11) (6× 1024)

6.4× 106
=
√

1.25× 108 = 11183 m/s

which is approximately 25,000 mph.
Similarly, the escape velocity of the Moon, which has a mass of 7.35 × 1022 kg and a

radius of 1740 km, is

vmoon
esc =

√
2× (6.67× 10−11) (7.35× 1022)

1.74× 106
=
√

5.64× 107 = 2374 m/s

Example D.9.10. A satellite is circling a planet of mass M at a distance r from the Calculating the binding
energy of a satellite
(page 143 of the book)

planet’s center. From Equation (9.3), the KE of the satellite is

KE = 1
2mv

2 = 1
2m

(√
GM

r

)2

=
GMm

2r

The potential energy of the satellite is −GMm/r. So, its total energy is

E =
GMm

2r
− GMm

r
= −GMm

2r

showing that the total energy of the satellite is negative.
The minimum energy that the satellite needs to “unbind” itself from M is that which

makes the total energy zero (in which case the satellite reaches the escape velocity).

Example D.9.11. What should the radius of the Sun be if it is to act as a black hole? Radius of black holes
(page 144 of the book)The speed of light is a known physical quantity equal to 300,000 km/s or 3× 108 m/s.

The mass of the Sun was calculated in Example D.9.4 with the result that M� = 2×1030 kg.
Substituting these and the value of G in Equation (9.9) yields

2× 1030

R
≥ (3× 108)2

2× 6.67× 10−11

or

R ≤ (2× 1030)(2× 6.67× 10−11)
9× 1016

= 2964 m ≈ 3 km

This is much much smaller than the actual radius of the Sun which is 6.96× 108 m.

D.10 Numerical Examples for Chapter 10

Example D.10.1. The gravitational force Fae exerted on a 0.5-kg apple by the Earth is Force of the Sun on
apple and Moon
(page 152 of the book)

Fae =
GM⊕m

R2
⊕

=
6.67× 10−11 × 6× 1024 × 0.5

(6.4× 106)2
= 4.9 N
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What is the gravitational force Fas exerted on the same apple by the Sun? The answer to
this question is a little more subtle, because the Sun is not pulling just the apple, but the
Earth as well! If the Sun were pulling both at exactly the same rate, then no force of the
Sun on the apple would be detectable. This situation is not unlike two cars moving on a
highway at exactly the same speed in exactly the same direction: no motion of one car is
detectable by the driver of the other—no change occurs in the position vector of one car
relative to the other.

To calculate the force of the Sun on the apple, we need to find the difference in the
acceleration of the Earth and the apple by the Sun and multiply the result by the mass of
the apple. Suppose that the apple is between the Earth and the Sun, so that the apple is
closer to the Sun than (the center of the) Earth by one Earth radius. The acceleration of
the apple toward the Sun would be

gas =
GM�
r2

=
6.67× 10−11 × 2× 1030

(1.5× 1011 − 6.4× 106)2
=

1.334× 1020

2.24981× 1022
= 0.00592939

and the acceleration of the Earth toward the Sun would be

ges =
GM�
r2

=
6.67× 10−11 × 2× 1030

(1.5× 1011)2
=

1.334× 1020

2.25× 1022
= 0.00592889

Thus the Sun pulls the apple away from Earth with a force of

Fas = m(gas − ges) = 0.5(0.00592939− 0.00592889) = 2.5× 10−7 N,

over ten million times smaller than the force of Earth on the apple! If the apple happens
to be on the far side of Earth, the answer will be the same as the reader can easily verify
(the only difference is that we have a plus sign in the denominator of the first equation of
this paragraph).

For the same reason, the pull of the Sun on the Moon is obtained by calculating the
difference in the acceleration of the Earth and the Moon by the Sun. When the Moon is
located between Earth and Sun, we have

gms =
GM�
r2

=
6.67× 10−11 × 2× 1030

(1.5× 1011 − 4× 108)2
=

1.334× 1020

2.238× 1022
= 0.00596068

The acceleration of the Earth toward the Sun is the same as before. Thus the Sun pulls the
Moon away from Earth with an acceleration of4

ams = gms − ges = 0.00596068− 0.00592889 = 3.2× 10−5 m/s2
,

The Earth pulls the Moon with an acceleration of 0.0027 m/s2 (see Example D.9.1), in
excess of 80 times larger than the Sun’s acceleration of the Moon.

D.11 Numerical Examples for Chapter 11

Example D.11.1. To find the number of the fringes, refer to Figure D.11 in which is shownFinding the number of
fringes

(page 92 of
Appendix.pdf )

two coherent sources of wave S1 and S2 and the point E at the edge of the screen.
Q: How many fringes (bright lines or circles) are there on the screen?
A: It should be clear that the answer is in the path difference ∆l between S1E and

S2E, where E is the end “point” (really the edge) of the screen. The number of times the
wavelength λ fits in this path difference determines the number of fringes. For example, if
S1E−S2E = 4.5λ, there will be 4 bright spots between C0 and the (left) end of the screen;
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S1 S2

C0E

Figure D.11: Two coherent sources of wave S1 and S2 produce interference, a pattern of high and low
intensity that remain unchanged. Point E is at the edge of the screen.

and another 4 bright spots on the other side of the screen. The edges of the screen coincide
with a dark “spot.”5

If the sources are circular, this path difference creates one central spot C0 and four
circles. (The two points C1 in Figure 11.7(a) belong to the same circle that cuts through
the plane of the figure at those points.) If the sources are rectangular perpendicular to the
plane of the figure, the path difference above creates nine lines: C0 plus four on each side

Changing the path difference ∆l = S1E−S2E alters the number of fringes. For instance,
∆l changes if we move S1 relative to S2, or if we move both sources relative to the screen.
We can express the number of fringes either as the ratio ∆l/λ or in terms of time and
frequency as follows:

number of fringes =
∆l
λ

=
c∆t
λ

= f∆t (D.9)

where c is the speed of the wave and ∆t is the time that it takes the wave to travel the path
difference.

Example D.11.2. Let’s calculate the frequency of the siren of a police car when it is Finding frequency
change is a police siren
(page 169 of the book)

approaching with a speed of 34 m/s and subsequently receding with the same speed. The
original frequency of the siren is assumed to be 450 Hz and the speed of sound is taken to
be 340 m/s.

To be able to use Equation (E.10), you need the (original) wavelength of the sound. But
this is simply given by

λ =
c

f
=

340
450

= 0.756 m.

For the case of the approach, v = −34 m/s. Thus, the first equation in (E.10) gives

λdet = 0.756
(

1− 34
340

)
= 0.756(1− 0.1) = 0.756× 0.9 ≈ 0.68 m

For recession, v = +34 m/s and

λdet = 0.756
(

1 +
34
340

)
= 0.756(1 + 0.1) = 0.756× 1.1 ≈ 0.83 m

The corresponding frequencies are obtained from c = λf . So, for approach,

fapp =
c

λapp
=

340
0.68

= 500 Hz,

4We could calculate the force exerted on the Moon by Sun or Earth, but since acceleration is propor-
tional to this force (the proportionality being the mass of Moon), the acceleration gives exactly the same
information.

5The path difference is an odd (nine) multiple of a half wavelength.
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and for recession,

frec =
c

λrec
=

340
0.83

≈ 410 Hz,

The difference in frequency (or pitch) is 500 − 410 = 90 Hz, which is easily detectable by
human ear.

Example D.11.3. Let’s compare the frequency of sound when the source is approachingFinding frequency
change when detector

moves
(page 169 of the book)

the stationary detector with that when the detector is approaching the stationary source.
Suppose that instead of 34 m/s, the source is moving at half the speed of sound, or 170 m/s
while producing a sound whose frequency is 450 Hz (and whose wavelength is, therefore,
0.756 m, as found in Example D.11.2). Then the approach wavelength is [using the first
relation in Equation (E.10)]

λdet = 0.756
(

1− 170
340

)
= 0.378 m

with the corresponding frequency of fapp = 340/0.378 ≈ 900 Hz.
On the other hand, if the detector moves with the same speed, the wavelength will be

λdet =
0.756

1− (−170/340)
= 0.504 m

with the corresponding frequency of fapp = 340/0.504 ≈ 675 Hz. Substantially different
from 900 Hz!

Example D.11.4. Let us go back to Example D.11.2, but assume that the detector moves—
with the same speed of 34 m/s—rather than the source. When the detector is approaching
the police car, the wavelength is

λdet =
λ

1− (v/c)
=

0.756
1− (−34/340)

=
0.756

1 + 34/340
=

0.756
1.1

= 0.687 m,

and the frequency is fapp = 340/0.687 = 495 Hz, which is only slightly lower than the ap-Doppler effect when
detector moves slowly

(page 170 of the book)
proach frequency 500 Hz of Example D.11.2. The receding frequency can also be calculated.
First we find the corresponding wavelength:

λdet =
λ

1− (v/c)
=

0.756
1− (+34/340)

=
0.756
0.9

= 0.84 m,

and the frequency is frec = 340/0.84 = 408 Hz, which is also only slightly lower than the
receding frequency of Example D.11.2.

We thus see that—even though 34 m/s is 10% the the sound speed, and 10% is a fairly
large number—there is very little difference between the Doppler shifts caused by the motion
of the source and the motion of the detector. The reader is urged to redo this example and
Example D.11.2 using a speed of 3.4 m/s instead of 34 m/s, and see that Equations (E.10)
and (E.11) agree even better.

Example D.11.5. A policeman driving his car at 90 mph chases a speeder and sends aRadar detectors
(page 170 of the book) radar signal of wavelength 2 cm to the car. The reflected wavelength is 3× 10−10 m shorter

than the original signal.
Q1: What is the relative speed of the two cars? What is the speed of the car?. The

speed of radar waves is the same as light speed, 300,000 km/s.
A1: Since the wavelength of the reflected signal is shorter, the car is approaching the

police car. This means that the police car is gaining on the speeder. Thus, we expect
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the front car’s speed to be less than 90 mph. Substituting the (negative) value of ∆λ in
Equation (E.10), we obtain

−3× 10−10

0.02
= 2

vrel

3× 108
⇒ vrel = − (3× 10−10)(3× 108)

2× 0.02
= −2.25 m/s ≈ −5 mph

Q2: How fast is the speeder going?
A2: The police car is approaching the speeder, i.e., it is moving this much faster than

the other car. So, the speeder’s speed is 90− 5 = 85 mph.

D.12 Numerical Examples for Chapter 12

Example D.12.1. Let’s calculate the field of a point charge q at a distance r from the Finding electric field of a
point charge
(page 178 of the book)

charge. Coulomb’s law says that the force on a test charge q′ located at a distance r from
q is F = keqq

′/r2. On the other hand, by the definition of the electric field, E = F/q′.
Combine these two ideas to obtain

Electric field of a point
charge

E =
keqq

′/r2

q′
=
keq

r2

The electric field of other more complicated sources is found by summing this expression
(vectorially) over all the point charges comprising the source. Note the similarity between
the equation above and the expression for the gravitational field, g = Gm/r2 given in
Equation (9.2).

By an argument similar to the one that led to Equation (9.6), you can obtain the
mathematical expression for the potential energy of a system of two charges. This leads to

PE =
keq1q2

r
(D.10)

The negative sign of Equation (9.6)—which comes from the attractiveness of the gravita-
tional force—is absent, because the electric force can be attractive or repulsive, depending
on the relative sign of q1 and q2. If they are of opposite signs, you automatically get a neg-
ative potential as in (9.6). For two charges of the same sign, the potential will be positive,
a situation which was absent in gravity.

Example D.12.2. A 50-megawatt generator is feeding electricity to a nearby town using
10 cables, each having a resistance of 100 Ω. Suppose that the emf of the plant is 50,000
volts, and the current at the plant is divided equally among the cables. What is the heat
loss in the cables? Calculating the

transmission power loss
(page 187 of the book)

From P = iE we can find i, because we know both P (it is 50 million Watts) and E (it
is 50,000 volts):

50, 000, 000 = i× 50000 ⇒ i =
50, 000, 000

50000
= 1, 000 amps

This is the current at the generator. Each cable gets one tenth of this current or 100 amps.
So, the power loss in each cable is

P = Ri2 = 100× 1002 = 1, 000, 000 Watts,

and the total loss is ten times this or 10 megawatts, or 20% of the plant capacity.
Now suppose that the plant increases its emf to 500,000 volts. What is the heat loss in

the cables now? The current is calculated as before

50, 000, 000 = i× 500000 ⇒ i =
50, 000, 000

500000
= 100 amps
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I

i
l

d

Figure D.12: A long wire carrying a current I exerts a force on a (shorter) wire carrying current i.

and each cable carries one tenth of this or 10 amps. The power loss in each cable is now

P = Ri2 = 100× 102 = 10, 000 Watts,

and the total loss is ten times this or 100 kilowatts, or only 0.2% of the plant capacity. You
see that increasing the output voltage of the plant dramatically decreases the loss in the
transmission lines.

D.13 Numerical Examples for Chapter 13

Example D.13.1. Ampère showed that a long wire carrying current I exerts a force F onCalculating the magnetic
force between two wires

(page 195 of the book)
another wire of length l carrying current i parallel to the long wire (see Figure D.12) given
by

F = km
2Iil
d

(D.11)

where d is the distance between the two wires. The force is attractive if the currents are in
the same direction (as in Figure D.12), and repulsive if in opposite directions.

The constant km is one of the fundamental constants of electromagnetism, which can
be measured experimentally:6 If the currents in the two wires are one ampere each, the
shorter wire is one meter, and the wires are one meter apart, then the force is measured to
be 10−7 N. Thus, in the system of unit we are using, km = 10−7.

Although the magnetic force of Equation (D.11) is small when the wires are far apart
and the current is small, one sees a dramatic effect when larger currents run through the
wires and the distance between them is small. Suppose that each wire carries a current of
20 amps and they are 1 cm apart. Let the length of the shorter wire be still one meter.
Then the force between the wires will be

F = 10−7 2× 20× 20× 1
0.01

= 0.4 N

which is large enough to move the wires.
This force can easily be demonstrated using ordinary wires and batteries; however, the

large currents cause a huge production of heat [see Equation (E.17) and the discussion
surrounding it] in the wires—even possibly their meltdown.

Example D.13.2. In modern notation, the Biot-Savart law can be expressed asFinding magnetic field of
a current

(page 199 of the book) B =
2kmi
r

, (D.12)

6In reality, Equation (D.11) defines ampere as the unit of current by assigning the value 10−7 to km,
but you need not worry about such details.
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where km = 10−7 is the magnetic constant encountered before [Equation (D.11)], i is the
current of the long wire in amperes, r is the distance from the wire in meters, and B is the
magnetic field of the wire.

A power line 20 meters above the ground is carrying a current of 200 amps. What is
the magnetic field at a point on the ground directly beneath the line?

Equation (D.12) gives the answer:

B =
2× 10−7 × 200

20
= 2× 10−6 tesla = 0.02 gauss

which is much weaker than the magnetic field of the Earth. This shows that it takes a
gigantic current to produce any appreciable magnetic field.

Example D.13.3. The strength of the field inside a solenoid is Finding magnetic field of
a solenoid
(page 200 of the book)B = 4πkmni, (D.13)

where n is the number of windings per unit length. For example, if a current of 1 amp runs
through a solenoid with 1000 turns per meter, the magnetic field inside will be

B = 4× 3.1416× 10−7 × 1000× 1 = 1.26× 10−3 tesla = 12.6 gauss.

Again this shows that creating a sizable magnetic field requires enormous currents.

Example D.13.4. An electric shaver requires 1.2 volts and 1.5 amps to operate. The Transformer in an
electric shaver
(page 204 of the book)

primary coil of its transformer has 1100 turns. Assume that the shaver is plugged into a
110-volt outlet.

Q: How many turns does its secondary coil have?
A: The first formula in Equation (E.18) gives

110
1100

=
1.2
N2

or N2 = 12

Q: What is the current in the primary coil?
A: Use the first formula in Equation (E.18) to obtain

1100i1 = 12× 1.5 ⇒ i1 =
18

1100
= 0.016 amp.

Q: How much power does the shaver use?
A: The power used by the shaver is the product of its voltage and current:

P = 1.2× 1.5 = 1.8 Watts.

Note that we could have used this to find the current in the primary, because the primary
and the secondary powers are equal, and the primary voltage is given. Here is the one-liner
detail:

1.8 = 110i1 ⇒ i1 =
1.8
110

= 0.016 amp.

D.14 Numerical Examples for Chapter 14

Example D.14.1. In Chapter 11, we noted that the intensity of a wave is proportional EM wave energies of
Sun and wires
(page 218 of the book)

to the square of its amplitude (see Box 11.2.2). The same idea holds true for plane elec-
tromagnetic waves. A useful quantity related to the energy of EM waves is the energy
flux. This is the amount of energy that the wave delivers to a unit area (square meter)
per second. For example, the energy delivered by sunlight to each square meter of Earth
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is measured to be about 1400 Joules per second (1400 Watts). This is known as the solar
constant. The EM energy flux, denoted by φem is related to the fields as follows:

φem =
c

4πke
E2 =

c

4πkm
B2 (D.14)

Knowing the solar constant, we can determine the magnetic field of the sunlight using
Equation (D.14):

1400 =
3× 108

4× 3.14159× 10−7
B2 ⇒ B2 = 5.87× 10−12 or B = 2.42× 10−6 tesla

This is about 0.023 gauss or one twentieth the magnetic field of Earth.
On the other hand, from the magnetic field of a wire carrying AC electricity, we can

determine its EM energy flux. Example D.13.2 showed that the magnetic field of a huge
current of 100 amps was about 0.01 gauss. The EM energy flux of this field is

φem =
3× 108

4× 3.14159× 10−7
(0.02× 10−4)2 = 955 Watts/m2

which is about three fourths the energy flux of the Sun.
From this calculation, it is clear that even living right under a power line, one is exposed

to only three fourths the “danger” of Sun bathing. This “danger” is reduced even further,
once quantum mechanical effects, the more accurate way of calculating the energy of EM
waves, are taken into account. According to the quantum theory, it is the frequency of the
EM wave that determines its energy. Sunlight has frequencies in the range of 1013–1015 Hz,
including the harmful ultraviolet. Power line waves, on the other hand, have frequencies
in the range of 50–60 Hz. The energy of such waves are extremely small; so small that
biological tissues do not feel their presence.

D.16 Numerical Examples for Chapter 16

Example D.16.1. Instead of explicitly counting the outcomes as done above for up to threeFinding probabilities for
4 coins

(page 230 of the book)
coins, let us analyze the case of four coins in a manner that can lead easily to generalization.
First, we note, that there are

2× 2× 2× 2 = 24 = 16

possible outcomes. This can be seen by noting that there are two possibilities for the
first coin, two for the second coin, etc., and the total is simply the product of all these
possibilities.

The frequencies of various outcomes can be determined as follows. There is only one
way that we can get zero H, namely when all the coins turn up tail. There are four ways
that we can obtain one H, namely when coin number 1 is H and the rest are T, or coin
number 2 is H and the rest are T, etc. The frequency for getting two H’s is a little more
complicated. We note that for the first H we have 4 possibilities while for the second H
only 3 choices are left. Thus, the total number of choices seems to be 4× 3 = 12. However,
this is an overcount, because there is no difference between a case where we choose, say
coin #2 first and then #4, and the case in which we reverse the order of our choices. Since
there are two possibilities for reordering the first and the second choices, we must divide
the total number obtained above by 2. Hence, the total number of choices for two H’s is
12/2 = 6. For 3 H’s the calculation, at least in the case of 4 coins, becomes simple again
because three H’s are equivalent to one T, whose frequency is 4. Finally the frequency for
four H’s is obviously 1.
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D.17 Numerical Examples for Chapter 17

Example D.17.1. A mixture of oxygen molecules and helium atoms is at a temperature
of 27 ◦C. The oxygen molecule is eight times as massive as the helium atom.

Q1: On average, how much faster are the helium atoms moving than the oxygen
molecules? Finding rms speeds

(page 244 of the book)A1: Since the temperatures of both gases are equal, the average KE of their “particles”
must be the same by Equation (17.1). Let 1 stand for helium and 2 for oxygen. Then

〈KE1〉 = 〈KE2〉, or 〈 12m1v
2
1〉 = 〈 12m2v

2
2〉, or m1〈v2

1〉 = m2〈v2
2〉

But we know that m2 = 8m1. So, 〈v2
1〉 = 8〈v2

2〉.
The square root of the average of the square of a quantity is called its root mean root mean square

explainedsquare, and subscripted with “rms”. The “rms” value is a measure of the “average” of
the magnitude of a vector quantity such as velocity. In a random situation in which all
directions are equally likely, the average velocity will be zero, but the average speed is, of
course, not zero. In our present discussion, the rms value of velocity measures the average
speed. And for the mixture above,

v1rms =
√
〈v2

1〉 =
√

8〈v2
2〉 =

√
8
√
〈v2

2〉 = 2.83v2rms

Q2: Given that the helium atomic mass is 6.64 × 10−27 kg, what is the average speed
of the particles of each gas?

A2: Use Equation (17.1) to find the average speed for any particle:

1
2m〈v

2〉 = 3
2kBT or 〈v2〉 =

3kBT
m

⇒ vrms =

√
3kBT
m

(D.15)

For helium, this yields

v1rms =

√
3(1.38× 10−23)(27 + 273.16)

6.64× 10−27
= 1368 m/s

where we were careful to convert the Celsius temperature value to Kelvin. Oxygen molecules
move 2.83 times slower: v2rms = 1368/2.83 = 483 m/s.

Example D.17.2. An application of Equation (17.2) is to the study of the change in the
pressure of tires of a car at extreme seasonal temperatures. When you inflate the tires in the
summer at, say 302.6 K—equivalent to 85 ◦F—the pressure inside will be appropriate for
that temperature. In the winter, when the temperature is 266.5 K—equivalent to 20 ◦F—
the pressure of the tires will be lower. In fact it is easy to determine the ratios of the two
pressures. Since the volume of the tires changes very little with temperature, we take it
to be constant. Also, assuming very little leakage, we take the number of molecules to be
the same (this is true if you have not inflated the car in the meantime). Subscripting the
winter quantities by w and the summer ones by s, we have

PwV = NkBTw, PsV = NkTs

Dividing both sides of these equations, we obtain

PwV

PsV
=
NkBTw
NkBTs

⇒ Pw
Ps

=
Tw
Ts

Substituting the above values for the temperatures, we get

Pw
Ps

=
266.5
302.6

= 0.88 = 88%
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Thus, there is a 12% drop in the pressure of the tire in the winter.
To increase the pressure, one pumps air in the tire. This increases the number of

molecules, and since the volume is assumed constant, the result is an increase in pressure.
Q: How much air do you have to pump into the tires to restore the pressure to it original

summer value?
A: In this case the values of pressures are the same; so we write Pw = Ps ≡ P . On the

other hand the number of molecules in winter is different form that of the summer. So, we
write Nw and Ns for these two quantities. We then have

PV

PV
=
NwkTw
NskTs

⇒ 1 =
NwTw
NsTs

⇒ Ns
Nw

=
Tw
Ts

= 0.88

or
Nw
Ns

=
1

0.88
= 1.136

This corresponds to an increase of 13.6% in the amount of air in the tires.

Example D.17.3. It is known that one mole of any gas at 1 atmospheric pressure—equalFinding the Avogadro
number

(page 245 of the book)
to 1.013×105 Pascal—and 0 ◦C occupies a volume of approximately 22.4 liters or 0.0224 m3.
From this information we can calculate the Avogadro’s number. We use P = 1.013 × 105,
V = 0.0224, T = 273 K and kB = 1.3806× 10−23 in Equation (17.2) to obtain

(1.013× 105)(0.0224) = N(1.3806× 10−23)(273.15)

or

N =
(1.013× 105)(0.0224)

(1.3806× 10−23)(273.15)
= 6.023× 1023

as the Avogadro’s number.

Example D.17.4. Suppose system A has 100 particles and is at a temperature of 50Temperature of a
reservoir does not

change
(page 248 of the book)

degrees. For system B, let the number of particles be 10,000,000 and its temperature 20
degrees. Then Equation (E.39) yields

Tf =
100× 50 + 10, 000, 000× 20

10, 000, 000 + 100
=

200, 005, 000
10, 000, 100

= 20.0003,

which is very close to the temperature of the reservoir.

Example D.17.5. Consider two systems A and B initially in contact with two differentIllustration of the law of
increase of entropy

(page 250 of the book)
reservoirs with temperatures—assumed to be equal7 to the average energy—TA = 1/3 and
TB = 2/15. Assume that A has 12 coins and B has 60 coins. Thus, the total energy of A
is 12× 1/3 = 4 implying 8 positive and 4 negative coins. Similarly B has a total energy of
60× 2/15 = 8 implying 34 positive and 26 negative coins.

We now separate the two systems from their respective reservoirs and bring them in
contact with one another. After a while they will reach thermal equilibrium. The average
energy (or temperature) of the whole system will then be

T = Eavg =
total energy

total number of coins
=

4 + 8
12 + 60

=
1
6

The final total energy of A is therefore, 12 × 1/6 = 2 implying 7 positive and 5 negative
coins. Similarly, the final total energy of B is 60 × 1/6 = 10 implying 35 positive and 25
negative coins.

We now ask the question: What is the number of possibilities, or accessible states, just
before the two systems are brought together and what is this number when they reach

7We are ignoring the proportionality constant which does not affect the analysis here.
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equilibrium? The number of accessible states is simply the number of accessible states of
A times that of B:

initial # of accessible states of A = f12(8) =
12!
8!4!

= 495

initial # of accessible states of B = f60(34) =
60!

34!26!
= 6.99× 1016

Therefore, initially

total initial # of accessible states = (495)(6.99× 1016) = 3.46× 1019

Similarly, when equilibrium is reached, we have

final # of accessible states of A = f12(7) =
12!
7!5!

= 792

final # of accessible states of B = f60(35) =
60!

35!25!
= 5.19× 1016

and
total final # of accessible states = (792)(5.19× 1016) = 4.1× 1019

We see that the total number of accessible states increases when two systems at differ-
ent temperatures are put in thermal contact with one another. Since entropy is just the
(natural) logarithm of the number of accessible states, the entropy increases as well.

D.18 Numerical Examples for Chapter 18

Example D.18.1. Let us work backwards, and calculate the temperature change of the ∆T in MEH
measurement
(page 265 of the book)

water when a kilogram falls a distance of 1 meter. The work done by a mass of 1 kg falling
1 meter is 9.8 Joules (the product of the weight, which is 9.8 N and displacement, which is
1 meter). Let’s assume that there is 5 kg (about 11 pounds) of water in the bucket. We
use Equation (E.48) to calculate the temperature change. Q = 9.8 J, m = 5 kg, and, using
Table 18.1, c = 4186. Substituting all this information in Equation (E.48), we get

9.8 = 5× 4186(Tf − Ti) ⇒ Tf − Ti = 9.8/20930 = 0.000468 ◦C

This clearly shows how small the temperature change is in a typical experiment, and why Small numbers with
which Joule had to cope.the academic community of the mid 19th century was reluctant to accept Joule’s results.

By increasing the falling mass and the distance it falls, and decreasing the amount of
water, one can increase Tf − Ti. For example, if the falling mass is 5 kg and the distance is
10 meters, then the amount of work will be

5× 10× 9.8 = 490 Joules

If the amount of water in the bucket is 3 kg, the temperature difference will be given by

490 = 3× 4186(Tf − Ti) ⇒ Tf − Ti =
490

12558
= 0.039 ◦C

This is still a very small amount, especially if we recall that the 19th century instruments
were not as accurate as today’s. Nevertheless, Joule was able to measure the MEH using
various methods all of which gave approximately the same number.

Example D.18.2. A sample of copper weighing 100 grams is placed in boiling water for a Measuring c for copper
(page 266 of the book)long enough time so that it eventually acquires a temperature of 100 ◦C. When subsequently

placed in 200 grams of cold water at 10 ◦C, it is seen that the temperature of the water
eventually rises to 14 ◦C.
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Q: What is the specific heat of copper?
A: Let us label all quantities appearing in Equation (E.48) for the copper by index 1

and those for the water by index 2. Assuming no loss to the environment, we can write
Q1 + Q2 = 0 or m1c1(T1f − T1i) + m2c2(T2f − T2i) = 0. Note that since the quantity
of heat is negative for copper and positive for water and the two are equal in magnitude,
this equation makes sense. Converting grams to kg and substituting values for the known
quantities, we obtain

0.1c1(14− 100) + 0.2× 4186× (14− 10) = 0 ⇒ −8.6c1 + 3348.8 = 0

The last equation gives c1 = 3348.8/8.6 = 389.4, which is close to the value given in Table
18.1.

Example D.18.3. In this example, we compare the energy consumption of an electricHeat pump vs space
heater

(page 271 of the book)
space heater and a heat pump. Suppose the the outside temperature is −10 ◦C, and we
want to maintain the inside temperature at 22 ◦C. The amount of heat lost to the outside
is 2000 J per second (the heat power loss is 2000 Watts). To keep the inside temperature
constant, we need to replenish this heat loss.

If we want to use an electric heater, we need a 2000-Watt one; and if it runs 10 hours a
day, it will use

2000 Watt× 10 hour = 2 kiloWatt× 10 hour = 20 kWh.

At 15 cents per kWh, this will cost $3 per day.
Now consider an ideal heat pump, which as an engine, has an efficiency of

ε = 1− Tc
Th

= 1− 273.16− 10
273.16 + 22

= 0.1084.

But ε = W/Qh, where W is the work put into the heat pump (i.e., the electricity used), and
Qh is the heat delivered into the house (2000 J per second). Thus, the electric consumption
per second is

W = εQh = 0.1084× 2000 = 216.8 Watt = 0.2168 kWatt

Running this for 10 hours consumes 2.168 kWh of electricity or just a little over 30 cents.
Although the actual numbers vary to some degree, this example illustrates the advantage

of using heat pumps over electric heaters. The reason is that while an electric heater
replenishes all of the Qh directly from electricity (so that W = Qh), a heat pump “pumps”
some of the required heat—what we denoted as Qc—from the cold outside into the house
(so that W = Qh −Qc).

D.20 Numerical Examples for Chapter 20

Example D.20.1. Sun is not a perfect black body radiator, but its radiation pattern canFrom laboratory physics
to the universe

(page 287 of the book)
be approximated by a BBR curve resembling the one shown in Figure 20.2, where the
wavelength on the horizontal axis is measured in µm (micrometer, or 10−6 m). The peak
of the curve can be seen to occur at approximately 0.5 µm. This determination of the peak
leads readily to the surface temperature of Sun:

Tλmax = 0.0029 or 0.5× 10−6T = 0.0029 ⇒ T = 5800 ◦K

Now that we know the temperature, we can find Sun’s energy flux using the Stefan-
Boltzmann law,

Je = 5.67× 10−8T 4 = 5.67× 10−8 × (5800)4 = 6.4× 107 Watts/m2
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Imagine a typical table top (about one square meter); imagine spreading 640,000 one-
hundred-Watt light bulbs evenly on it. Now try to imagine how bright that surface is.
Thats how bright the Sun’s surface is!

If we know Sun’s radius, we can calculate its total power output. Actually, we do know
Sun’s radius; it is about 700,000 km. A sphere of radius r has an area of 4πr2. So, the area
of the Sun is 4π(7× 108)2 or 6.16× 1018 m2. Since each square meter of Sun’s surface gives
off 6.4× 107 Watts, the total power output of the Sun is this number time its area:

Total power output of Sun = (6.4× 107)× (6.16× 1018) = 3.94× 1026 Watts.

Where does this power come from? What fuels this colossal release of energy? The
answer to these questions had to wait the discovery of relativity and the nucleus of the
atom. It is the mass of the Sun that, in a most dramatic demonstration of the famous
E = mc2, turns into energy through a nuclear process known as thermal fusion. The
mass depletion corresponding to the above power is obtained from E = mc2:

3.94× 1026 = m× (3× 108)2 or m =
3.94× 1026

9× 1016
= 4.38× 109 kg/s.

Sun loses over 4 million tons of its mass every second to shine. So, it will eventually die, but
not when it loses all its mass. The combination of the nuclear and gravitational processes
seal the fate of the Sun far ahead of its complete annihilation. Chapter 39 discusses these
processes in some more detail.

Example D.20.2. Equating the photon energy (hf or hc/λ) to the energy required to Illustration of
photoelectric effect
(page 294 of the book)

“unglue” the electron from the metal (this is the work function W ) plus the (maximum)
kinetic energy of the electron, Einstein obtained

In terms of frequency hf = W +KEmax or hf = W + eVstop

In terms of wavelength
hc

λ
= W +KEmax or

hc

λ
= W + eVstop (D.16)

Zinc has a work function of about 3.5 eV. The EM radiation with the longest wavelength
that can release photoelectrons from the surface of a zinc plate is that λ for which KEmax

is as small as possible. Thus as long as

hc

λ
> W or λ <

hc

W

we will have some electrons coming out. Thus, the (borderline) longest wavelength is given
by

λ =
hc

W
=

(6.626× 10−34)(3× 108)
3.5× (1.6× 10−19)

= 3.55× 10−7 m

or 0.355 µm (micrometer) or 355 nm (nanometer), which is in the ultraviolet region of the
EM spectrum. Notice how we were careful to change the unit of W from eV to J in the
formula above.

If UV light of wavelength 150 nm strikes the surface of zinc, what is the maximum KE
of the electrons released? To answer this question, we use (D.16):

(6.626× 10−34)(3× 108)
150× 10−9

= 3.5× (1.6× 10−19)︸ ︷︷ ︸
conversion of eV to J

+KEmax

This yields KEmax = 7.65 × 10−19 J or 4.78 eV. If we are interested in the speed of such
electrons, we can use the definition of KE and the fact that the mass of an electron is
9.11× 10−31 kg:

KE = 1
2mv

2 ⇒ 7.65× 10−19 = 1
2 (9.11× 10−31)v2
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or

v =

√
2× 7.65× 10−19

9.11× 10−31
= 1.3× 106 m/s

D.21 Numerical Examples for Chapter 21

Example D.21.1. The electron in a hydrogen atom makes a transition from the third toWavelength of light
emitted by hydrogen

(page 305 of the book)
the second orbit.

Q: What is the wavelength of the photon emitted?
A: The initial energy is Ei = E3 = −13.6/32 = −1.51 eV. The final energy is Ef =

E2 = −13.6/22 = −3.4 eV. Thus, the photon energy is

Eγ = Ei − Ef = −1.51− (−3.4) = 1.89 eV

or 1.89 × (1.6 × 10−19) = 3 × 10−19 J. To find the wavelength, we use the Planck relation
E = hc/λ. This yields

3× 10−19 =
(6.626× 10−34)(3× 108)

λ
or λ =

1.988× 10−25

3× 10−19
= 6.6× 10−7 m

or 0.66 µm. This is a visible red photon.

D.25 Numerical Examples for Chapter 25

Example D.25.1. In this example we want to show that if an object moves with uniformRelatively inertial frames
(page 366 of the book) velocity relative to one observer, then it moves with uniform velocity relative to all other

observers moving uniformly relative to the original observer. Refer to Figure D.13 where
we have labeled the origin of RF1 by O, that of RF2 by B, and the object moving relative
to RF2 by A. We have also assumed, for simplicity, that all points coincide at the initial
time, t = 0. The snapshots of motion at four subsequent times, separated equally, say by
one second, is also shown in the figure. After one second B goes to B1 and A goes to A1

so that A has moved a distance of B1A1 in one second. After two seconds, B is found at
B2 and A at A2. Note that B2A2 = 2B1A1 because A is assumed to be moving uniformly
relative to B. Similarly, B3A3 = 3B1A1, etc. It is an easy exercise in geometry to show
that A,A1, A2, and A3 all lie along a single straight line and that

OA1 = A1A2 = A2A3 = . . .

so that A moves with constant velocity relative to O.

D.26 Numerical Examples for Chapter 26

Example D.26.1. The spaceship Viking is a super fast cosmic explorer that can attainPossibility of space
travel

(page 383 of the book)
a speed of 0.999c. This spaceship is charged with exploring the star system Zeta Leporis
located at a distance of 70 light years from Earth.8

Q: How long does it take Viking to reach (one of the planets of) Zeta Leporis (a)
according to the Earth clock, and (b) according to the spaceship clock?

A: For (a), we simply use

time =
distance

speed
=

70 light years
0.999c

=
70 years · c

0.999c
=

70
0.999

years = 70.07 years

8A light year is a distance obtained by multiplying a year by the speed of light. Multiplying 3.15×107—
the number of seconds in a year—by 3× 108 m/s, the speed of light, one obtains the result that 1 light year
= 9.45× 1015 m. In some calculations it is more convenient to write light year as year · c.
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Figure D.13: An RF inertial relative to an inertial RF is inertial.

So, as expected, it takes a little over 70 years for Viking to get to Zeta Leporis, as seen by
ground observers.

To obtain (b), we note that the spaceship clock measures a proper time between two
events: spaceship leaves the Earth (event E1), and spaceship lands on Zeta Leporis (event
E2), and the clock is present at both of these. We thus write

∆t =
∆τ√

1− (v/c)2
⇒ 70.07 years =

∆τ√
1− (0.999)2

or

∆τ = 70.7 years×
√

1− (0.999)2 = 70.7 years×
√

0.001999
= 70.07 years× 0.0447 = 3.13 years

So, it takes a little over 3 years for the crew of Viking to reach Zeta Leporis!

Example D.26.2. The spaceship Enterprise is charged with an exploratory mission that Father younger than
daughter
(page 383 of the book)

takes it to a planet in a star system far away. The captain of the ship, who has just had a
baby, is 30 years old when Enterprise takes off with a speed of 0.98c. It takes the crew of
the spaceship 5 years to get to their destination. They spend 6 months on the planet and
then head back home with a speed of 285, 000 km/s.

The journey can be naturally divided into three parts: moving at 0.98c toward the
planet; landing and staying on the planet on which their speed is zero (or very small);
heading back home with a speed of 285, 000 km/s. When using Equation (26.1), you have
to apply it separately to the three portions of the journey.

Q1: How old is the baby when her father lands on the distant planet?
A1: The proper time interval—measured by the crew—between take off from Earth

and landing on the planet is 5 years. The time interval between the same two events as
measured by Earth people is

∆t =
∆τ√

1− v2/c2
=

5√
1− (0.98)2

= 25.13 years
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Q2: How far is the planet from Earth?
A2: It takes 25.13 years for the ship to get there while moving at 98% light speed.

Therefore, is

distance = speed× time = 0.98c× 25.13 years = 24.63 c · yr = 24.63 ly

Q3: According to the “baby” how long does it take the captain to travel from the planet
back to Earth?

A3: Now we have the distance and the speed (285,000 km/s is 0.95c); therefore, we can
find the time interval:

time =
distance

speed
=

24.63 l/ y
0.95c/

= 25.93 years

Q4: How long does it take the captain to travel from the planet back to Earth?
A4: The crew measures the proper time again. We have the coordinate time ∆t and

we want to find ∆τ :

∆τ = ∆t
√

1− (v/c)2 = 25.93
√

1− (0.95)2 = 8.1 years

Q5: How old is the “baby” when her father arrives back on Earth?
A5: We simply add the time intervals, keeping in mind that the 6 months that the crew

spends on the planet is the same for Earth observers. This is because the spaceship is not
moving relative to Earth,9 i.e., it belongs to Earth’s RF. Thus,

age of the “baby” = 25.13 + 0.5 + 25.93 = 51.56 years

Q6: How old is the captain when he arrives back on Earth?
A6: Again, we just add the time intervals to his initial age:

age of the captain = 30 + 5 + 0.5 + 8.1 = 43.6 years

The father is almost 8 years younger than his daughter!

Example D.26.3. Going back to Example D.26.2, we can now see why Enterprise can“Explaining” why space
travel is possible

(page 384 of the book)
cover the Earth-planet distance in 5 years. On their way to their destination, the Enterprise
passengers see this distance in motion, and they measure it to be

L = L0

√
1− (v/c)2 = 24.63

√
1− (0.98)2 = 4.9 ly

Since they are moving with a speed of 0.98c, their travel time is

time =
distance

speed
=

4.9 l/ y
0.98c/

= 5 years

as given in the statement of Example D.26.2.
On their way back, they measure the same distance as

L = L0

√
1− (v/c)2 = 24.63

√
1− (0.95)2 = 7.69 ly

and with a speed of 0.95c, their travel time is

time =
distance

speed
=

7.69 l/ y
0.95c/

= 8.1 years

which is what we found in Example D.26.2 using time-dilation formula.
9We ignore the small speed the planet may have relative to Earth.
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Example D.26.4. As a concrete example, let us apply Equation (E.72) of Math Note
E.26.5 to the calculation of the shrinkage of a length. In the hope that we will be able to
see the relativistic effect, we take the fastest vehicle of Table 26.1 and build the longest
satellite possible. Let’s assume that the length is of the order of a football field, about
100 m. Then from the first equation in (E.72) and the fifth column of the table, we obtain

L0 − L = 1
2 (v/c)2L0 = 3.5× 10−10 × 100 = 3.5× 10−8 m

which is the size of a molecule!
A jet plane flies for 10 hours according to a clock on the ground. Using Table 26.1,

estimate the amount by which the plane’s clock goes slower. Smallness of length
contraction and time
dilation
(page 387 of the book)

The difference between the time intervals ∆t and ∆τ is found by using the second
formula in (E.72):

∆t−∆τ = 1
2 (v/c)2∆t = (4× 10−13)× (10× 3600) = 2.88× 10−8 sec

Although this is too small a time interval to measure by ordinary clocks, it is easily mea-
surable by atomic clocks. In fact, a test very similar to this was done in 1975 and the result
agreed perfectly with the prediction of the STR.

Example D.26.5. The crew of Apollo 23 goes to the Moon with a speed of 15 km/s. It
spends 10 hours exploring the Moon, and comes back with the same speed. The captain of
the spaceship has just had a baby when he leaves on the mission. The whole trip takes 24
hours for the crew.

To feel the enormity of Apollo’s speed, estimate its travel time from New York to Los
Angeles (a distance of about 5000 km): Time dilation for a

Moon trip
(page 387 of the book)time =

distance
speed

=
5000
15

= 333.33 s = 5.55 min

An extraordinarily fast vehicle by any human standard!
Q1: How many hours does the captain spend on the way from Earth to Moon?
A1: The round-trip travel time is 24 − 10 = 14 hours. Since the speed is the same

outbound and inbound, the time for each leg of the trip is half this amount, i.e., 7 hours or
7× 3600 = 25, 200 s.

Q2: How many more seconds does it take the baby for her father to reach the Moon?
A2: Here we are seeking the difference between the proper and the coordinate time.

Since the speed is small compared to light speed (the ratio v/c is 15/300,000 or 0.00005),
we can use the second equation in (E.72). Since the right-hand side of this equation is very
small, the difference between ∆t and ∆τ is very small, i.e., ∆t ≈ ∆τ . Thus, we use ∆τ
instead of ∆t on the right-hand side, because we know ∆τ (it is 7 hours or 25,200 s):

∆t−∆τ ≈ 1
2 (v/c)2∆τ = 1

2 (0.00005)2 × 25, 200 = 0.0000315 s

So, it will take the captain 25,200 s to get to the Moon, during which time the baby has
aged 25200.0000315 s.

Q3: How many more seconds has the baby aged than her father when Apollo 23 returns?
A3: The time difference develops only when the spaceship is in motion.10 Therefore, the

aging difference is twice the difference for each leg of the trip, or 2×0.0000315 = 0.000063 s.
Q4: How far is Moon from Earth according to the Earth observers?
A4: Since we know the speed and the time, we can find the distance by multiplying:

distance = speed× time = 15× 25, 200.0000315 = 378000.00045 km
10Strictly speaking, this is not true! While in ultrarelativistic cases we could ignore the motion of the

planet, here the speed of the Moon is comparatively not as small as the speed of the planet relative to the
spaceship. Nevertheless, it is small enough that we can ignore it.
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Q5: What is the Earth-Moon distance according to the crew?
A5: We use the same formula:

distance = speed× time = 15× 25, 200 = 378000 km

The Earth-Moon distance has shrunk by only 0.00045 km or 0.45 m (less than a foot and
a half) for the crew!

D.27 Numerical Examples for Chapter 27

Example D.27.1. Observer O spots a light beam at x1 at time t1 (event E1). A littleSpacetime distance of
zero

(page 398 of the book)
later he finds the beam at x2 at time t2 (event E2).

Q: What is the spacetime distance for this light beam?
A: Since light travels from x1 to x2 with speed c, we have

x2 − x1 = c(t2 − t1) or ∆x = c∆t

Therefore,
∆s =

√
c2(∆t)2 − (∆x)2 =

√
c2(∆t)2 − (c∆t)2 = 0

which holds for any light signal, as the two events above are quite general.
Another observer O′ sees these two events as (x′1, ct

′
1) and (x′2, ct

′
2). The invariance of

the spacetime distance tells us that for her ∆s is also zero. Therefore,

0 = ∆s =
√
c2(∆t′)2 − (∆x′)2 ⇒ c(∆t′) = ∆x′ or

∆x′

∆t′
= c

i.e., she measures the speed of the light signal to be c, consistent with the second principle
of relativity.

Example D.27.2. The time of the occurrence of event E2 (or E3) according to Karl is theQuantitative analysis of
tunnel and train

(page 400 of the book)
segment E1E3 (see Figure D.14). Furthermore, rule 2 of Box F.0.2 gives E2E3/E1E3 = β.
But E2E3 is just AB = 500 m. Thus, E1E3 = 500/0.75 = 667 m. This is the projection of
E1E2—a segment on Emmy’s time axis—onto Karl’s time axis; so by rule 4 of Box F.0.3,
E1E2 = E1E3/γ = 667/1.51 = 441 m. This is the time of occurrence of the coincidence of
B and D (times the speed of light) according to Emmy.

What is the time of occurrence of the coincidence of A and C (times the speed of light)
according to Emmy? It is the line segment DG, which is the projection of E1E3 onto the
ct-axis. Again, by rule 4 of Box F.0.3,

DG = γE1E3 = 1.51× 667 = 1007 m.

Therefore, E3 occurs 1007− 441 = 566 m or 566
3×108 = 1.9× 10−6 s later than E2 according

to Emmy.
The stretch factor is 1.51

√
1 + 0.752 = 1.89. This means that the ticks used on Emmy’s

axes should be 1.89 times farther apart than those used for Karl. The stretched units (of
100 m each) used in Figure D.14 to measure the length of the train takes this fact into
account.

Example D.27.3. To stop the execution, we need to find an observer for whom “now” (17Trying to stop Bruno’s
execution

(page 402 of the book)
February 2003) and Bruno’s execution are simultaneous, i.e., they both lie on the x-axis of
the observer. We look among our Galactic Explorers and find observer O 500 light years
away, far enough that with the proper speed will have an x-axis that passes through the
event E, Bruno’s death [see Figure D.15(a)].

Q1: What speed should O have? In which direction?



Appendix D.27 Numerical Examples for Chapter 27 49
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Figure D.14: The spacetime diagram of the train and the tunnel.

A1: Figure D.15(a) shows that O should be moving away from us, because the ct-axis
makes an acute angle with the x′-axis. The same figure shows that β = EO′/O′O or
β = c × 403 years/(500 ly) = 0.806; so O must be moving with 80.6% the speed of light
away from us.

Q2: How far away is Bruno’s execution taking place from O?
A2: By rule 4 of Box F.0.3, O′O = γEO. But γ = 1/

√
1− 0.8062 = 1.69. Therefore,

EO = O′O/γ = 500/1.69 = 296 light years, too far away to prevent the execution.

(a) (b) (c)
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ct
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172.4
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′x
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′O

ct
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x
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Figure D.15: (a) Spacetime diagram for rescuing Bruno by finding an observer whose present time is
Bruno’s execution. (b) The coordinates of E in the nonperpendicular coordinate system O. (c) The events
B and E as seen by O.

It appears that γ determines how close we can get to the execution; the larger the γ, the
closer we might get. Since the enormity of γ is determined by β, we try to choose β closer
to 1. So we call on another observer who is 404 light years away. The required β—that
which ensures that the x-axis of the observer passes through B—is β = 403/404 = 0.99752,
giving γ = 14.22. In this case, EO = O′O/γ = 404/14.22 = 28.4 light years, still too far
away to prevent the execution.

Q3: Is there any way that we can get to E?
A3: To answer this question, we write EO in terms of EO′. We do this by simply
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noting that EO = O′O/γ and O′O = EO′/β. Then,

EO =
O′O

γ
=
EO′/β

γ
=
EO′

βγ

and thus, for EO to be very small, γ has to be very large; and unless we go at the speed of
light, we can never shrink EO to zero! Although we can find observers for whom Bruno’s
death occurs NOW, we can never find an observer who is present at the location of the
execution.

Since we can “go back” in time, why not go further back, to a time before the event
of interest happened and “wait” for the event? Let’s try this and go back 10 years prior
to Bruno’s execution, to event B of Figure D.15(b). In this case, the x-axis is the line
OB, with the corresponding ct-axis drawn at equal angle from the light world line, as done
before. Assume that O is 414 light years away. This gives

β =
BO′

O′O
=

413
414

= 0.99758 and γ =
1√

1− 0.997582
= 14.4

where β was found using rule 2 of Box F.0.2. To see if E can be prevented, we need to
know where the location of E is in the spacetime plane of O.

Q4: When is E happening according to O?
A4: Draw a line from E parallel to the x-axis to cut the ct-axis at A. Then OA is the

time coordinate of E in O. By rule 4 of Box F.0.3,

OA = γBE = 14.4× 10 = 144 ly

So the execution is happening 144 years from now according to O.
Q5: What is the x-coordinate of E according to O?
A5: Draw a line from E parallel to the ct-axis to cut the x-axis at C. Then −OC is

the x-coordinate of E in O. But OC = EA. To find EA, draw a line from A parallel to the
x′-axis to cut the ct′-axis at A′. Then the length of EA as measured by an ordinary ruler
by O′ is given by the Pythagoras theorem:

EA =
√

(EA′)2 + (A′A)2 =
√

(EA′)2 + (EA′/β)2 =
EA′

β

√
1 + β2

where the second equality follows from rule 2 of Box F.0.2. By rule 5 of Box F.0.3, the real
length of EA as measured by O is obtained by dividing EA by the stretch factor γ

√
1 + β2.

Therefore, denoting the x-coordinate of E by xE , we get

xE = − EA

γ
√

1 + β2
= −EA

′

γβ
(D.17)

The only thing that is left now is to find EA′, which is the sum of EO′ and O′A′. The
first one is given, and the second one can be obtained from OA by another application of
the rule 4 of Box F.0.3:

O′A′ = γOA = 14.4× 144 = 2074 ly

Equation (D.17) now yields

xE = − 403 + 2074
(14.4)(0.99758)

= −172.4 ly

Thus, according to O, the execution will happen 144 years from now at a distance of
172.4 ly (in the negative x-direction). Any probe sent from O must have a fractional speed
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′x

c ′t

′O

ct

O

x T

Figure D.16: Spacetime diagram for “traveling” to the future. T stands for tomorrow. OT must be the
x-axis, because T has to happen NOW for O.

of 172.4/144; i.e., it must travel 1.2 times faster than light! Even a laser pulse sent with
the purpose of stunning the executioner will not be able to make it in time!

For the sake of completeness, we also calculate the coordinates of B relative to O.
Clearly, B has zero time coordinate. Its x-coordinate xB is obtained by rule 4 of Box F.0.3:
OO′ is 414 ly and is γ times OB. Therefore,

xB = −OB = −OO
′

γ
= − 414

14.4
= −28.75 ly

Figure D.15(c) shows the two events B and E in the coordinate system O.

Example D.27.4. So far, we have been trying to travel to the past, without success. Time traveling to future
(page 402 of the book)Would we have a better luck with “future” travel? Tomorrow is “only one day away;” it

is probably not too much to ask the theory of relativity to help us get there. Utilizing the
experience we gained in the case of Bruno’s death, we find observer O who is only 24.5 light
hours away.11

Q1: What speed should O have? In which direction?
A1: Figure D.16 shows that O should be moving toward us (because the ct-axis,

the worldline of O, is bending towards the ct′-axis), and that β = TO′/O′O = c ×
24 hours/(24.5 light hours) = 0.9796; so O must be moving with 97.96% the speed of
light toward us.

Q2: How far away is “tomorrow” taking place from O?
A2: First we calculate γ: γ = 1/

√
1− β2 = 1/

√
1− 0.97962 = 4.975. By rule 4 of

Box F.0.3, O′O = γTO. Therefore, TO = O′O/γ = 24.5/4.975 = 4.9 light hours, or
4.9 × 3600 × (3 × 108) = 5.3 × 1012 m, or 3.3 billion miles! Again, “tomorrow” is too far
away.

Example D.27.5. This example calculates the time difference between the explosion of Finding time interval for
one observer when
simultaneous for another
(page 403 of the book)

the two firecrackers on the train as measured by Karl when Emmy sees them simultaneously
(see Figure 25.6 of Chapter 25). Let Karl be O′ and Emmy O, and assume that right is
positive. Thus, Emmy is moving in the positive direction implying a positive β. Suppose
E1 is the explosion of A and E2 the explosion of B. Let the origin of Emmy’s coordinate
system be where she is located, i.e., the middle of the train, whose length is L. Also let
the time of explosion be when Emmy’s clock starts ticking, i.e., the explosions occur at
time zero. Under these assumptions, E1 and E2 have respective coordinates (−L/2, 0) and
(+L/2, 0) according to Emmy.

If we take ∆x to be x2−x1 then ∆x = +L/2−(−L/2) = L and ∆t = t2−t1 = 0−0 = 0.
The second of the ∆-equations of Box F.4.1 yields

c∆t′ = t′2 − t′1 = γβ∆x = γβL

11A light hour is the distance that light travels in one hour. For comparison, Saturn is about 1.25 light
hours away from Sun.
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For example, if the train moves at half the speed of light and the car is 30 m long, then
β = 0.5, γ = 1/

√
1− (0.5)2 = 1.155, and

c∆t′ = 1.155× 0.5× 30 = 17.32 m

or
∆t′ = t′2 − t′1 =

17.32
3× 108

= 5.8× 10−8 s,

i.e., t′2 = t′1 + 5.8 × 10−8 s. This shows that t′2, the time of the occurrence of B according
to Karl is larger than t′1, the time of the occurrence of A. Thus, Karl sees A before B, as
explained in Chapter 25.

Example D.27.6. This example shows that the Lorentz transformation implies time dila-Time dilation and length
contraction from

Lorentz transformation
(page 403 of the book)

tion and length contraction. If ∆x = 0, then ∆t is the proper time between the two events.
The second of the ∆-equations of Box F.4.1 gives

c∆t′ = γ(0 + c∆t) or ∆t′ =
∆t√

1− (v/c)2

which is the relation between proper and coordinate time as given in Equation (26.1).
For length contraction, first we have to determine how to measure the length of an

object that is moving. To measure the length of such an object, we have to spot the two
ends of the object at the same time, i.e., we can call ∆x′ “the length of the object” only if
∆t′ = 0. This happens only if β∆x + c∆t = 0 or c∆t = −β∆x. Substituting this in the
first ∆-equation of Box F.4.1 yields

∆x′ = γ(∆x− β2∆x) =
1√

1− β2
(1− β2)∆x =

√
1− β2∆x

which is the length contraction formula once we identify β as v/c. We could have ob-
tained the same formula if we had started with the Lorentz transformation having the O′

coordinates on the right-hand side.

Example D.27.7. The year is 2163, and the American delegation to the IntergalacticLorentz transformation
and time travel

(page 403 of the book)
Space Federation, stationed on Earth, is submitting a proposal to use the laws of relativity
to stop the assassination of President Kennedy. The ISF accepts the proposal and starts to
seek reference frames in which the assassination takes place NOW (in 2163). It finds the
Spaceship Diracus 210 light years (ly) away, which is just passing one of the ISF outposts
there.

Q1: How fast is Diracus moving relative to Earth (or the outpost)?
A1: Let the RF of Diracus be O and the Earth’s RF be O′. The two events of interest

are E1, the assassination of President Kennedy (on Earth) in Earth year 1963, and E2,
the passage of Diracus by the outpost in Earth year 2163. These events are shown in
Figure D.17 in the Earth reference frame O′. E1 has coordinates (0,−200 ly) because we
are assuming that NOW is the year 2163.12 Similarly, E2 has coordinates (210 ly, 0).

In the language of the ∆-equations of Box F.4.1, ∆x′ = 210 ly, c∆t′ = 200 ly, and since∆x′ ≡ x′2 − x′1 is
positive because

x′2 = 210 ly and x′1 = 0;
c∆t′ is positive because
t′2 = 0 and t′1 = −200

years.

we want the two events to be simultaneous on Diracus, ∆t = 0. Thus, the two ∆-equations
in Box F.4.1 reduce to

210 ly = γ∆x, 200 ly = γβ∆x = β(γ∆x) (D.18)

To find the relative speed, substitute the left-hand side of the first equation in the right-hand
side of the second:

200 ly = β(210 ly) or
200
210

= β or β = 0.9524

12Recall that c× year is the same as light year. So the second coordinate of E1 is −200 ly.
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E1

E2

′x
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Figure D.17: The events E1 and E2 in the Earth RF. Note that the time of the origin (and thus the
time of all the events on the x′-axis) is NOW which is the year 2163.

Thus, Diracus must be moving at slightly over 95% the speed of light. Since β is positive,
Diracus must be moving away from Earth.

Q2: According to the Diracus crew, how far away is the assassination taking place?
A2: Now that we have the relative speed, we can find the distance ∆x between the two

events for the Diracus crew by using either of the two equations in (D.18). But we need γ

first: γ = 1/
√

1− β2 = 1/
√

1− (0.9524)2 = 3.28. Using the first equation in (D.18) yields

∆x =
210 ly
γ

=
210
3.28

= 64 ly

So, although the Diracus crew knows that Kennedy’s assassination is taking place now, it
can do nothing about it, because it is taking place 64 light years away. Kennedy cannot be
saved!

Going further back in time
Having gained experience from the failure of their attempt in the previous example, the

ISF looks for another RF for which 1961 is NOW. That way, argues ISF’s project director,
the crew will have two extra years to “prepare” for the event. Their plan is to aim at the
building from which the shooting takes place. The Spaceship Diracus II, 205 ly away, seems
to be a good candidate. The commander of Diracus II consults the chief physicist of the
mission, and asks her the following questions. Let’s see if we can answer them.

Q1: How fast should Diracus II be moving relative to Earth (or the outpost)?
A1: As in the previous case, let the RF of Diracus II be O and the Earth’s RF be

O′. The two events of interest are E1, “the building—in Earth year 1961—in which the
shooting will take place” and E2 the “passage of Diracus II by the outpost in Earth year
2163.” These events are shown in Figure D.18(a) in the Earth reference frame O′. E1

has coordinates (0,−202 ly) because again we are assuming that NOW is the year 2163.
Similarly, E2 has coordinates (205 ly, 0).

Because there are three events to deal with, it is helpful to label the ∆ quantities. For
example, use ∆x21 to denote x2 − x1, and c∆t31 to denote ct3 − ct1, etc. Then, we have
∆x′21 = 205 ly, c∆t′21 = 202 ly, and since we want the two events to be simultaneous on
Diracus II, ∆t21 = 0. Thus, the two ∆-equations of Box F.4.1 reduce to

205 ly = γ∆x21, 202 ly = γβ∆x21 = β(γ∆x21) (D.19)

Substitute the left-hand side of the first equation on the right-hand side of the second
equation to obtain

202 = β(205) or
202
205

= β or β = 0.9854
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Figure D.18: (a) The events E1, E2, and E3 in the Earth RF. Note that the time of the origin (and
thus the time of all the events on the x′-axis) is NOW which is the year 2163. (b) The same three events
as seen by the crew of Diracus II.

Since β is positive, Diracus II must be moving away from Earth.
Q2: According to the Diracus II crew, how far away is the building in which the assassin

will be hiding?
A2: We can find the spatial distance ∆x21 between E1 and E2 for the Diracus II

crew by using either of the two equations in (D.19), for which we have to calculate γ first:
γ = 1/

√
1− β2 = 1/

√
1− (0.9854)2 = 5.87. Using the first equation in (D.19) yields

∆x21 = x2 − x1 =
205 ly
γ

=
205
5.87

= 34.9 ly

Since x2 = 0 (origin of Diracus II), x1 = −34.9 ly. Figure D.18(b) shows these two events
in the RF of Diracus II.

The chief physicist reports these results to the commander. The commander, knowing
that nothing can move as fast as light, asks him to look into the possibility of sending a
powerful laser beam to stun the assassin exactly at the time of the shooting. The chief
physicist starts to calculate. Let’s see if we can anticipate his results.

Q3: According to the Diracus II RF, what is the time and space difference between the
two events “assassination building in Earth year 1961” and “assassination building in Earth
year 1963?” Denote the latter event by E3 and designate their space and time difference
with the subscript 31.

A3: The (inverse) Lorentz transformation—i.e., the transformation with the primed
quantities on the right-hand side—gives the answer. Since O′ (the Earth RF) is moving in
the negative direction of O (the Diracus II RF), we must use −β in the formulas. Now, the
space difference between the two events is zero according to Earth RF, because they both
occur in the same building. The Earth time interval is 2 years. It follows that

∆x31 = γ(∆x′31 − βc∆t′31) = 5.87(0− 0.9854c× 2) = −11.57 ly
c∆t31 = γ(−β∆x′31 + c∆t′31) = 5.87(0 + c× 2) = 11.74 ly or ∆t31 = 11.74 yrs

Q4: According to the Diracus II RF, what are the coordinates of the event E3, “assas-
sination building in Earth year 1963?”

A4: Recall that ∆x31 = x3 − x1, and we have already calculated x1 to be −34.9 ly.
Therefore,

−11.57 = x3 − (−34.9) = x3 + 34.9, or x3 = −11.57− 34.9 = −46.47 ly.

Similarly, c∆t31 = ct3 − ct1, or 11.74 = ct3 − 0 (ct1 = 0 because E1 is happening NOW for
Diracus II). Thus, ct3 = 11.74 ly. All these events are shown in Figure D.18(b) in the RF
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of Diracus II. You may ask why we did not use the first set of equations in Box F.4.1. The
answer is that those equations require the two coordinate systems to have the same origin;
O and O′ do not.

Q5: How fast should the laser beam be moving to be present in the assassination
building in time?

A5: The beam must cover a distance of 46.47 ly in 11.74 years. Therefore, β =
∆x/c∆t = 46.47/11.74 = 3.96, i.e., it must move at about four times the speed of light! So,
although the crew of Diracus II knows that Kennedy’s assassination will take place 11.74
years from now, they can do nothing about it, because to get to the event light speed must
be surpassed, violating relativity. Once again, Kennedy cannot be saved!

The discussion above illustrates the implausibility of traveling back in time, but does
not prove the impossibility of such a travel. A simple diagrammatic version of such a proof
is given on page 402. A more tedious algebraic proof can be found in Math Note E.27.12
on page 127 of Appendix.pdf.

Example D.27.8. First let us note that each tick of Emmy’s clock is 2× 10−8 s according
to Emmy, and

∆t =
2× 10−8√
1− (0.866)2

= 4× 10−8 s

according to Earth. Next, let’s place Karl’s clock so that the emitter is at the origin, and
the mirror is 3 m away from the origin. Let E1 be the emission of light and E2 its reflection. MM clock orientation

and its time
measurement
(page 403 of the book)

Karl measures ∆x21 to be 3 m and ∆t21 to be the time it takes light to go from one end of
the clock to the other, i.e., 3/3× 108 or 10−8 s. It follows that c∆t21 is also 3 m. What is
c∆t′21, the time interval between the same two events according to Earth? With β = 0.866,
we get γ = 1/

√
1− 0.8662 = 2, and the second ∆-equation in Box F.4.1 yields

c∆t′21 = γ(β∆x21 + c∆t21) = 2(0.866× 3 + 3) = 11.196 m

giving ∆t′21 = 11.196/3 × 108 = 3.732 × 10−8 s. So, the Earth people measure the trip
of the light signal from the bottom of Karl’s clock to its top to be only slightly less than
an entire tick of Emmy’s clock. Is the second half of the light trip as long as the first?
That would be disastrous, because it would imply that according to Karl’s clock, the Earth
people must age almost twenty years,13 rather than ten years, as Emmy’s clock suggests!
Before jumping to any conclusion, let’s calculate the second half of the light signal’s trip.

Denote the event of the arrival of signal back to the bottom of the clock as E3. Then
using the same equation as above (with due consideration to signs),14 we get

c∆t′32 = γ(β∆x32 + c∆t32) = 2[0.866× (−3) + 3] = 0.804 m

yielding ∆t′32 = 0.804/3× 108 = 0.268× 10−8 s. Adding the two flight times, we get

3.732× 10−8 + 0.268× 10−8 = 4× 10−8 s

Exactly the same as the Earth measurement of the tick of Emmy’s clock!
Was the above agreement of clocks a luck of numbers? Did we choose the length and

the speed so cleverly as to make the two clocks agree? Proving that the coincidence was
not the result of numerical tricks is not that hard. Just keep the symbols in the formulas
rather than numbers. Let L be the length of the clock according to Emmy and Karl. Then
for both, a tick is 2L/c, and Emmy’s tick becomes ∆t = γ(2L/c) for Earth observers. How
does Karl’s tick appear to Earth observers?

13More than ten years not less, as we had suspected!
14We are employing the convention that ∆x32 = x3 − x2.
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The flight time from the bottom of Karl’s clock to its top is ∆t21 = L/c, or c∆t21 = L;
and the space interval is ∆x21 = +L (the plus sign indicates that the top is to the right of
the bottom). The same flight time as measured by Earth is

c∆t′21 = γ(β∆x21 + c∆t21) = γ(βL+ L) = γL(1 + β)

The flight time from the top of Karl’s clock back to its bottom is ∆t32 = L/c, or c∆t32 = L;
and the space interval is ∆x32 = −L (the minus sign indicates that the bottom is to the
left of the top). The same flight time as measured by Earth is

c∆t′32 = γ(β∆x32 + c∆t32) = γ[β(−L) + L] = γL(1− β)

A complete tick is of duration ∆t = ∆t′21 + ∆t′32. Thus,

∆t =
γL(1 + β)

c
+
γL(1− β)

c
=
γL(1 + β) + γL(1− β)

c
=

2γL
c

identical to ∆t as obtained from Emmy’s clock.

Example D.27.9. Emmy (observer O) is riding on a supertrain moving at 0.9c. She firesLorentz transformation
and addition of velocities
(page 405 of the book)

a bullet from a supergun in the forward direction. Call the “firing of the bullet” event
E1 = (x1, ct1). One microsecond later the bullet is found 250 m away from the gun. We
note (or should note) immediately that the “finding of the bullet” is a natural second event
E2 = (x2, ct2) and that

∆x = x2 − x1 = 250 m, c∆t = c(t2 − t1) = 3× 108(10−6) = 300 m

all according to Emmy. We can find the speed of the bullet relative to Emmy, because
we are given both the distance (∆x) and the travel time (∆t). Calling this vb we get
vb = ∆x/∆t = 250/10−6 = 2.5× 108 m/s or 0.83c.

Karl, standing on the platform, looks at the same two events and measures his own ∆x′

and ∆t′. These values are given by the ∆-equations of Box F.4.1, where β = v/c and v is the
speed of the train relative to the platform. In this case, β = 0.9 and γ = 1/

√
1− (0.9)2 =

2.294. Therefore,

∆x′ = γ(∆x+ βc∆t) = 2.294(250 + 0.9× 300) = 1192.9 m
c∆t′ = γ(β∆x+ c∆t) = 2.294(0.9× 250 + 300) = 1204.4 m

We can now find the speed of the bullet relative to Karl. Calling this v′b we get v′b/c =
∆x′/(c∆t′) = 1192.9/1204.4 = 0.9905, which is less than the speed of light, as it should be.

Box D.27.10. Do not confuse the speed of an object in a reference frame with the
speed of that reference frame relative to another reference frame. The speed of
the bullet calculated by Emmy and Karl in Example D.27.9 above has nothing to do with
the speed used in the Lorentz transformations.

Example D.27.11. Karl gets on a spaceship that travels to a planet of a star system 12 ly
away on a world line drawn with thick lines in Figure D.19 as seen by observer O, Emmy.
All units are in light years, and for easier reading most of the calibration of the ct-axis is
made on the worldline parallel to it.

Q1: What is the speed of the spaceship between E1 and E2? Between E2 and E3?
Between E3 and E4?
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Figure D.19: Karl moves on the heavy worldline while Emmy remains on Earth with ct-axis being her
worldline.

A1: Recall from Box F.0.2 that β is the slope of the angle between axes of the two RFs.
Since the worldline represents the time axis, β is the slope of E1E2 relative to the ct-axis,
or more intuitively, just distance divided by time:

β =
∆x
c∆t

=
12 ly

12.5 ly
= 0.96 or v = 0.96c

Similarly β = 0 for the speed between E2 and E3, and

β =
∆x
c∆t

=
12 ly
15 ly

= 0.8 or v = 0.8c

for the speed between E3 and E4.
Q2: How long is the time interval between take-off from Earth (E1) and landing on the

planet (E2) according to Emmy?
A2: The vertical axis is Emmy’s ct-axis. The (c times) time interval is shown to be 12.5

ly. Thus, c∆t = 12.5 ly; canceling the “c” and the “l” from both sides, we get ∆t = 12.5 y.
Q3: How long is the time interval between landing (E2) and departure (E3) from the

planet according to Emmy?
A3: E3 is at 15 ly mark. Therefore, c∆t = 15− 12.5 = 2.5 ly, or ∆t = 2.5 y.
Q4: How long is the time interval between departure (E3) and landing on Earth (E4)

according to Emmy?
A4: E4 is at 30 ly mark. Therefore, c∆t = 30− 15 = 15 ly, or ∆t = 15 y.
Q5: How long does the entire trip take according to Emmy?
A5: The time interval between E1 and E4 is 30 ly. Therefore, c∆t = 30 ly, or ∆t = 30 y.
Q6: What is ∆s21, the spacetime interval for the two events E1 and E2?
A6: With E1 and E2 having coordinates (0, 0) and (12, 12.5), respectively, we get

∆s21 =
√

(c∆t21)2 − (∆x21)2 =
√

12.52 − 122 = 3.5 ly

Q7: What is ∆s32, the spacetime interval for the two events E2 and E3?
A7: E2 has coordinates (12, 12.5) and E3 has coordinates (12, 15). Therefore,

∆s32 =
√

(c∆t32)2 − (∆x32)2 =
√

2.52 − 02 = 2.5 ly
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Figure D.20: Emmy moves on the heavy black worldline. Karl moves on the grey worldline first and then
joins Emmy to return home. Pat remains on Earth.

Q8: What is ∆s43, the spacetime interval for the two events E3 and E4?
A8: As in the two previous cases, we have

∆s43 =
√

(c∆t43)2 − (∆x43)2 =
√

152 − 122 = 9 ly

Q9: What is ∆s for the entire trip? How long did this trip take according to Karl?
A9: Adding the three spacetime intervals, we obtain

∆s = ∆s21 + ∆s32 + ∆s43 = 3.5 + 2.5 + 9 = 15 ly

Since the broken worldline is that of Karl and ∆s is the spacetime interval (or length) of
this worldline, ∆s is related to Karl’s proper time via ∆s = c∆τ . Thus, c∆τ = 15 ly and
∆τ = 15 y.

Q10: Who measures the proper time interval between E1 and E4, Karl or Emmy (or
both)?

A10: Since they are both present at the two events, they both measure the proper time

Example D.27.12. Karl, Emmy, and Pat are newly born triplets. Karl and Emmy are put
on two different spaceships that travel to a planet of a star system 10 ly away. Emmy lands
on the planet 10.1 years later as seen by observer O, Pat. She waits 4.9 years until Karl,
who is traveling slower, lands on the same planet (see Figure D.20). After six months they
both return home on the same spaceship and land on Earth 26 years after their departure.
All times and distances are given according to the Earth observers, and all units shown in
the figure are in light years, and for easier reading most of the calibration of the ct-axis is
made on the worldline parallel to it.

Q1: What is the speed of Emmy’s spaceship on her journey to the planet?
A1: Fractional speed is distance divided by (c times) time:

β =
∆x
c∆t

=
10 ly

10.1 ly
= 0.99 or v = 0.99c

Q2: What is the speed of Karl’s spaceship on his journey to the planet?
A2: The calculation is similar to above:

β =
∆x
c∆t

=
10 ly
15 ly

= 0.667 or v = 0.667c
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Q3: How old is Emmy when she meets Karl? How old is Karl?
A3: Emmy’s age is the spacetime length of her worldline up to her meeting with Karl,

the broken line E1E2E3 (divided by c):

∆s21 + ∆s32 =
√

(10.1)2 − (10)2 +
√

(15− 10.1)2 − (10− 10)2 = 6.3 ly

Thus, Emmy is 6.3 years old. Karl’s age is the spacetime length of E1E3, which we expect
to be longer than the broken line E1E2E3, because it is a side of the triangle E1E2E3:

∆s31 =
√

152 − 102 = 11.2 ly

making Karl 11.2 years old.
Q4: How old is Emmy when she lands back on Earth? How old is Karl? How old is

Pat?
A4: To find Emmy’s and Karl’s age when they land on Earth we have to add to their

age at event E3 the spacetime length of the broken line E3E4E5 (divided by c). This length
is

∆s43 + ∆s54 =
√

(15.5− 15)2 − (0)2 +
√

(26− 15.5)2 − (10)2 = 0.5 + 3.2 = 3.7 ly

Thus, Emmy is 6.3 + 3.7 = 10 and Karl is 11.2 + 3.7 = 14.9 years old when they land on
Earth. Pat, having been left behind, has the longest proper time and is 26 years old when
all three meet at event E5.

D.28 Numerical Examples for Chapter 28

Example D.28.1. Emmy is on a train moving at 0.9c in the positive direction of Karl’s
axis. She sees a bullet dashing by with a speed of 0.95c in the forward direction.

Q1: What are the components of the bullet’s spacetime velocity according to Emmy?
A1: Equation (28.1) gives these components

ubx =
vb√

1− (vb/c)2
=

0.95c√
1− (0.95)2

= 3.042435c

ubt =
c√

1− (vb/c)2
=

c√
1− (0.95)2

= 3.202563c

These two components satisfy

u2
bt − u2

bx = (3.202563c)2 − (3.042435c)2 = 0.99999904c2

verifying the last equation of (28.1).
Q2: What are the components of the bullet’s spacetime velocity according to Karl?
A2: Equation (28.2) gives these components in terms of Emmy’s. In that equation, γ

is given in terms of the relative speed of the two observers:

γ =
1√

1− (v/c)2
=

1√
1− (0.9)2

= 2.294157

u′bx = γ(ubx + βubt) = 2.294157(3.042435c+ 0.9× 3.202563c) = 13.592288c
u′bt = γ(ubx + βubt) = 2.294157(0.9× 3.042435c+ 3.202563c) = 13.629024c

These two components satisfy

u′ 2bt − u′ 2bx = (13.629024c)2 − (13.592288c)2 = 0.99998908c2

again verifying the last equation of (28.1), and illustrating that u2
bt−u2

bx is frame-independent.
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Example D.28.2. The impossibility of attaining light speed for massive objects is demon-
strated by the difficulty of speeding up when the object is already moving close to light
speed. Suppose that a small vehicle of mass 1000 kg is moving at 0.9999c and we want to
speed it up to 0.99999c.

Q: How much energy do we need?Energy and getting to
light speed

(page 418 of the book)
A: According to Equation (28.4), the initial energy of the vehicle is (we ignore the

subscript b)

Ei =
mc2√
1− β2

=
1000× (3× 108)2

√
1− 0.99992

= 6.36× 1021 J

and the final energy is

Ef =
1000× (3× 108)2

√
1− 0.999992

= 2.01× 1022 J

So, the energy needed is the difference between these two energies or 1.38× 1022 J.
Now suppose that we have already reached a speed of 0.999999c and we want to speed

it up to 0.9999999c. Then the energy needed will be the difference between

Ei =
1000× (3× 108)2

√
1− 0.9999992

= 6.36× 1022 J

and

Ef =
1000× (3× 108)2

√
1− 0.99999992

= 2.01× 1023 J

or 1.38× 1023 J, ten times larger than the previous energy difference. Thus, the closer you
get to the speed of light, the harder it gets to increase your speed.

It is instructive to compare these answers with the (incorrect) classical results. In the
first case the vehicle has an initial energy of

Ei = 1
2mv

2 = 1
2 (1000)(0.9999× 3× 108)2 = 4.4991× 1019 J

and a final energy of

Ef = 1
2 (1000)(0.99999× 3× 108)2 = 4.49991× 1019 J

Thus the energy needed is 8.1×1015 J. In the second case, the energy needed in the difference
between

Ei = 1
2 (1000)(0.999999× 3× 108)2 = 4.499991× 1019 J

and
Ef = 1

2 (1000)(0.9999999× 3× 108)2 = 4.4999991× 1019 J

or 8.1× 1013 J, which is only one per cent of the previous energy difference. Thus, from a
classical point of view, the closer you get to light speed, the easier it gets to speed up. In
fact, not only can you reach light speed, but also surpass it. This conclusion is of course
completely wrong as the classical physics fails drastically when objects move with speed
comparable to light speed.

Example D.28.3. Since the speed of a photon is the same for all observers, one mightNumerical example of
relativistic Doppler

formula
(page 419 of the book)

suspect that its momentum should also be the same. Math Note E.28.4 investigates this
suspicion and, as a by-product, derives the relativistic Doppler formula:

λ′ =

√
1 + β

1− β
λ (D.20)



Appendix D.28 Numerical Examples for Chapter 28 61
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Figure D.21: The relativistic conservation of momentum in this collision implies the nonconservation of
mass.

where β is positive for relative recession and negative for relative approach.
Suppose in the observation of a galaxy we find that in the spectral lines of a certain

element the green light, whose wavelength is 0.55 µm, has shifted to 1.455 µm. We wish to
calculate the speed with which this galaxy is moving away from us. If we were to use the
classical result of Equation (E.10), we would get

λdet = λ
(

1 +
v

c

)
, or 1.455 = 0.55

(
1 +

v

c

)
⇒ 1 +

v

c
=

1.455
0.55

= 2.645

which gives v/c = 1.645, a nonsensical result! Relativistic Doppler formula, on the other
hand, gives

λ′ =

√
1 + β

1− β
λ or 1.455 =

√
1 + β

1− β
0.55 ⇒

√
1 + β

1− β
=

1.455
0.55

= 2.645

Squaring both sides gives

1 + β

1− β
= 6.996 or 1 + β = 6.996(1− β) = 6.996− 6.996β

which is equivalent to 7.996β = 5.996 or β = 0.75. So, the galaxy is moving away from us
at 75% the speed of light, a possible result.

Although the nonrelativistic Doppler formula gives nonsensical results (as illustrated in
this example), when the relative speed of the source and the detector is much smaller than
the light speed, Equation (D.20) reduces to the nonrelativistic formula as shown in Math
Note E.28.5 on page 133 of Appendix.pdf . Since β is the relative motion of the source
and the detector, the same Math Note also proves that in relativity theory an absolute
frame, such as the one mentioned in Section 11.4, is meaningless.

Example D.28.4. Consider the collision situation depicted in Figure D.21: Two equal
masses are moving in opposite directions with equal speed. They collide and coalesce to
form a single mass M . Both classically and relativistically the two momenta are equal but
opposite in direction, giving a total momentum of zero. Therefore, after the collision the
momentum of M is zero. Example of

nonconservation of mass
(page 422 of the book)

Q: What is the mass M in terms of the initial mass m?
A: Classically, the mass is conserved; so M = 2m. Relativistically, it is the energy that

is conserved. The total energy before the collision is

Etot = E1 + E2 = γmc2 + γmc2 = 2γmc2

After collision, M is at rest, but its relativistic energy is not zero; it is Mc2. Equating these
two quantities, we get

Mc2 = 2γmc2 or M = 2mγ =
2m√

1− (v/c)2
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Therefore, mass is not conserved in relativistic collisions. For v much smaller than light
speed, the denominator is almost 1 and M ≈ 2m, regaining the classical conservation of
mass.

As a numerical example, let two 1-kg masses approach each other with a speed of 0.9c,
then the mass formed at the end of their collision is

M =
2m√

1− (v/c)2
=

2√
1− (0.9)2

= 4.588 kg

So 2 kg of mass has turned into 4.588 kg. Where has the extra 2.588 kg come from? It
is the kinetic energy of the colliding particles that has transformed into mass. To see this,
note that each particle has a KE of

KE =
mc2√

1− (v/c)2
−mc2 =

9× 1016√
1− (0.9)2

− 9× 1016 = 1.165× 1017 J

and the two of them carry twice this much KE or 2.33 × 1017 J. On the other hand, the
energy “hidden” in the extra mass of 2.588 kg is

2.588× (3× 108)2 = 2.33× 1017 J;

equal to the KE of the two particles! This process of the transformation of KE into mass
is the underlying principle of particle accelerators (or atom smashers).

D.29 Numerical Examples for Chapter 29

Example D.29.1. A green light of wavelength 0.5 µm is sent down from the top of Mount
Everest to its foot. The altitude of Mount Everest is 8848 m, and the gravitational acceler-
ation (field) is 9.8 m/s2. (Neglect the slight variation of the gravitational acceleration due
to the height of the mountain.)

Q: By how much does the wavelength change when it reaches the foot?
A: With hdet = 0 and hsrc = 8848 m, Equation (E.116) givesMinuteness of

gravitational Doppler
shifts

(page 433 of the book)

λdet − λsrc

λsrc
=
g(hdet − hsrc)

c2
=

9.8× (0− 8848)
(3× 108)2

= −9.6× 10−13

implying that

λdet − λsrc = −9.6× 10−13λsrc = −9.6× 10−13 × 0.5 = −4.8× 10−13 µm

a very minuscule change! The negative sign indicates that λdet is shorter than λsrc, as
expected.

Example D.29.2. Two identical clocks are synchronized at sea level. One of them is thenNumerical example of
gravitational time

dilation
(page 433 of the book)

moved to the top of Mount Everest (8848 m high). A year later they are brought together
for comparison. Neglect the slight variation of the gravitational acceleration (field) due to
the height of the mountain, and take g to be 9.8 m/s2.

Q1: Which clock runs faster? By how much?
A1: The difference between the heights (8848 m) is much smaller than the Earth radius.

Therefore, we can use the first equation in E.117. Let h1 be the height of the clock at sea
level and h2 the height of the clock at the top of the mountain. Since gravity points from
top to bottom, h2 is larger than h1. So t2 will be larger than t1, and the mountain clock
runs faster. To find by how much, just plug the numbers in Equation (E.117):

t2 − t1
t

=
g(h2 − h1)

c2
=

9.8× (8848)
(3× 108)2

= 9.6× 10−13 ⇒ t2 − t1 = 9.6× 10−13t
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Substitute 3.15×107 s for t (remember that there are 3.15×107 seconds in a year) to obtain
t2 − t1 = 3× 10−5 s.

What if we had chosen h1 to be the clock at the mountain top? Would we have concluded
that the clock at the sea level runs faster? Let’s see! In the new situation, Equation (E.117)
gives h2 − h1 = −8848 m and t2 − t1 = −3× 10−5 s. However, t2 is the time measured by
the clock at height h2, i.e., the clock at the sea level. Since the difference is negative, this
clock is running slower, same as before.

For a more pronounced difference in the running of clocks, let us take one of the clocks
to a satellite circling the Earth at an altitude of 1.86× 107 m.

Q2: By how much does the satellite clock run faster in one day?
A2: In this case, the height is so large that we have to use the second equation in E.117.

Let Φ2 be the potential of the satellite clock and Φ1 that of the Earth clock. Then, adding
the Earth radius to the height of the satellite to get r2, we obtain

Φ2 − Φ1 = −GM
r2
−
(
−GM

r1

)
= − (6.67× 10−11)× (6× 1024)

1.86× 107 + 6.4× 106
+

(6.67× 10−11)× (6× 1024)
6.4× 106

= 4.65× 107

This shows that Φ2 is larger than Φ1, and therefore, t2 is larger than t1, i.e., the satellite
clock runs faster. By how much? Equation (E.117) gives the answer:

t2 − t1
t

=
Φ2 − Φ1

c2
=

4.65× 107

(3× 108)2
= 5.1× 10−10 ⇒ t2 − t1 = 5.1× 10−10t

Substitute 24× 3600 = 86, 400 s for t to obtain ∆t = 4.4× 10−5 s. Thus, the satellite clock
runs ahead of the Earth clock in one day more than the Mount Everest clock does in one
year.

Example D.29.3. The red light emitted by a hydrogen atom has a wavelength of 0.657 µm. Doppler red shift
(page 445 of the book)This same light is received from a galaxy and is observed that its wavelength has increased

by 0.0335 µm.
Q1: How fast is the galaxy receding from us?
A1: The received wavelength is 0.657+0.0335=0.6905 µm. So the ratio λ′/λ = 0.6905/0.657 =

1.051. According to Equation (E.91), this ratio is simply
√

1 + β

1− β
. Therefore,

1 + β

1− β
= 1.0512 = 1.105 ⇒ 1 + β = 1.105− 1.105β

This yields β = +0.05, where the positive sign is indicative of the recession of the galaxy.
The actual speed is 0.05× 3× 108 = 1.5× 107 m/s.

Q2: How far is the galaxy from us if the Hubble constant is 21 km/s per Mly?
A2: In units of km/s, the speed is 15,000. Put this number on the left-hand side of

Equation (29.2) and use H = 21 km/s per Mly to obtain

15, 000 = 21d or d = 714 Mly.

Example D.29.4. Consider the Milky Way and another distant galaxy separated by a Calculating age of the
universe
(page 446 of the book)

distance d. How long did it take for the galaxy to reach this distance starting at the same
point as the Milky Way? If the galaxy is moving (and has been moving all this time) with
speed v, the time t is simply t = d/v. With v given by Hubble law (29.2), this t becomes

t =
d

v
=

d

Hd
=

1
H

(D.21)
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Note that t is independent of the distance: all galaxies have taken this much time to reach
their present position starting at the same point as the Milky Way. It follows that Equation
(D.21) gives the time in the past at which all galaxies were on top of each other. If we
calculate H in the scientific units, Equation (D.21) gives t in seconds. Now H has been
given in km/s per Mly or (km/s)/(Mly). We have to convert this unit into scientific units.
A light year (ly) is the distance light travels in one year. With 3.15× 107 seconds in a year,
light, moving at the speed of 3×108 m/s, covers a distance of 9.45×1015 m. It follows that

1(km/s)/(Mly) =
km/s

million ly
=

1000 m/s
106 × (9.45× 1015) m

= 1.06× 10−19 s−1

For H equal to 21 km/s per Mly, Equation (D.21) gives

t =
1

21× (1.06× 10−19)
s = 4.5× 1017 s or

4.5× 1017

3.15× 107
= 1.4× 1010 years,

and for H equal to 23 km/s per Mly, (D.21) yields

t =
1

23× (1.06× 10−19)
s = 4.1× 1017 s, or

4.1× 1017

3.15× 107
= 1.3× 1010 years

D.31 Numerical Examples for Chapter 31

Example D.31.1. By definition, ∆ = Mc2− (Z+N)eu, where eu is the energy equivalentDeriving mass excess
formula

(page 460 of the book)
of a unified atomic mass unit. Using Equation (31.1), we can rewrite this as

∆ = [Zmp +Nmn − (Z +N)mb]c2 − (Z +N)eu
= Zmpc

2 +Nmnc
2 − (Z +N)eb − Zeu −Neu

or
∆ = Z(mpc

2 − eu) +N(mnc
2 − eu)− (Z +N)eb

But mpc
2 = 938.27 MeV, mnc

2 = 939.57 MeV, and eu = 931.49 MeV. Therefore,

∆ = Z(938.27− 931.49) +N(939.57− 931.49)− (Z +N)eb
= 6.78Z + 8.08N − (Z +N)eb (D.22)

Example D.31.2. Iron nucleus, consisting of 26 protons and 30 neutrons has a bindingMass excess for iron
(page 460 of the book) energy per nucleon of 8.55 MeV.

Q1: What is the mass of the iron nucleus in atomic mass units?
A1: We use Equation (31.1) with Z = 26, N = 30, and eb = 8.55 MeV. First we convert

eb to the equivalent mass mb in atomic mass units:

mb =
8.55
931.5

= 0.009179 u

Next we substitute this and the masses of the proton and neutron (in u) in Equation (31.1):

M = 26× 1.007276 + 30× 1.008665− (26 + 30)0.009179 = 55.935 u

Q2: What is the mass excess of the iron nucleus in MeV?
A2: From Equation (D.22), we get

(26 + 30)× 8.55 = 6.78× 26 + 8.08× 30−∆ or 478.8 = 418.68−∆

This gives ∆ = −60.12 MeV.
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Example D.31.3. A sample of uranium ore has 1015 radioactive radium nuclei 226
88 Ra with

a half-life of 1,600 years.
Q: How many radium nuclei are left after 50 years?
A: Here N0 = 1015, thalf = 1, 600 years, and t = 50 years. Therefore, Equation (31.2)

yields

N(50 years) =
1015

250/1600
=

1015

20.03125
=

1015

1.0219
= 9.786× 1014

So, 97.86% of the sample remains, and only 2.14% of it decays. Radium and oxygen
radioactivity
(page 463 of the book)

A sample has 1015 radioactive oxygen nuclei 19
8 O with a half-life of 27 seconds.

Q: How many nuclei are left after 10 minutes?
A: Here N0 = 1015, thalf = 27 s, and t = 600 s. Therefore, Equation (31.2) yields

N(10 minutes) =
1015

2600/27
=

1015

222.22
=

1015

4.89× 106
= 2.04× 108

So, only 0.00002% of the sample remains, and 99.99998% of it decays.

Example D.31.4. The oldest “Messianic” scrolls had, in 1991, a 14C/12C ratio of approx- Estimating the age of a
Dead Sea Scroll
(page 463 of the book)

imately 9.91× 10−13.
Q: How long ago was that scroll written?
A: Since the initial 14C/12C ratio in a fresh scroll manufactured from live organic mate-

rial is 1.3×10−12, the ratio N(t)/N0 for the scroll in question is 9.91×10−13/1.3×10−12 or
0.7625. Therefore, t (the time in the past when radioactivity of 14C started) is the solution
of

0.7625 =
1

2t/5730
or 2t/5730 =

1
0.7625

= 1.311

By trial and error, we can find that 20.3907 is approximately 1.311. So

t

5730
≈ 0.3907 ⇒ t ≈ 2239

Thus the scroll must have been written 2239 years prior to 1991 or about 248 BC.

Example D.31.5. A typical natural radioactivity leading to a stable nucleus occurs in Estimating age of Earth
(page 464 of the book)several steps, at each of which other radioactive elements may be produced. However, since

these intermediate elements have short half-lives (compared to the parent nucleus), they
soon disappear and can be ignored. So assume that we start with N0 parent nuclei. After
a time t, we have Np = N0/2t/thalf parent nuclei and Nd = N0 −Np daughter nuclei. The
ratio of daughter nuclei to parent nuclei is

r =
Nd
Np

=
N0 −Np
Np

=
N0 −N0/2t/thalf

N0/2t/thalf
=

1− 1/2t/thalf

1/2t/thalf
= 2t/thalf − 1

or
2t/thalf = 1 + r or (t/thalf) ln(2) = ln(1 + r)

which gives

t =
thalf

ln(2)
ln(1 + r) (D.23)

A chemical analysis of an appropriate rock sample can determine r, and consequently t, the
age of the Earth.

The final stable by-product of 238U decay is 206Pb. In a certain rock sample, there are
as many 238U (parent) atoms as there are 206Pb (daughter) atoms, i.e., Nd = Np. This
yields r = 1 and t = thalf, which for 238U is 4.5 billion years.
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Example D.31.6. In any of the fusion reactions, if a particle appears on the right of one
equation and the left of another, it cancels from the overall outcome. The overall outcome
is what is left on the left hand turning into what is left on the right hand side.

To see the net outcome of the first proton-proton cycle, write the three reactions one
under the next, and cancel the particles that show up on both sides:

p+ p → 2
1D
/

+ e+ + ν

p+2
1 D
/
→ 3

2He
/

+ γ

p+3
2 He
/
→ 4

2He + e+ + ν

This shows that the ingoing particles are 4 protons and the final product is a helium, twoNet result of the p-p
cycle

(page 467 of the book)
positrons, two neutrinos, and a gamma particle.

For the second proton-proton cycle, we have

p+ p → 2
1D + e+ + ν

p+2
1 D → 3

2He + γ
3
2He +3

2 He → 4
2He + p+ p

The last reaction has two 3
2He while there is only one 3

2He in the previous reaction. So,
we multiply the second reaction by 2 (this means that two middle reactions should take
place before the last reaction can occur). However, this will introduce two 2

1D on the left
of the middle reaction while the first reaction has only one 2

1D on the right. So, we need to
multiply that reaction by two as well. Thus, we have

2p+ 2p → 22
1D + 2e+ + 2ν

2p+ 22
1D → 23

2He + 2γ

23
2He → 4

2He + 2p

Canceling particles, we end up with

2p+ 2p → 22
1D
/

+ 2e+ + 2ν

2p
/

+ 22
1D
/
→ 23

2He
/

+ 2γ

23
2He
/
→ 4

2He + 2p
/

indicating that the ingoing particles are 4 protons and the final product is a helium, two
positrons, two neutrinos, and two gamma particle.

D.34 Numerical Examples for Chapter 34

Example D.34.1. We first note that if x is small compared to 1, then for any positive a,Numerics of proton
decay experiment

(page 533 of the book)
ax is approximately equal to 1 + x ln a; and the approximation gets better and better as x
gets smaller and smaller. Since t is incredibly smaller than thalf (which for proton decay
is 1031), the approximation works extremely well in Equation (31.2). So, substitute t = 1,
N(t) = N0 − 100, and thalf = 1031 in Equation (31.2), and use this approximation to get

N0 − 100 =
N0

1 + (1/1031) ln 2
or (N0 − 100)(1 + 10−31 ln 2) = N0

Multiplying out yields

N0 + 10−31(ln 2)N0 − 100− 10−29 ln 2 = N0 or 10−31(ln 2)N0 = 100

This give N0 = 1033/ ln 2 or N0 = 1.44× 1033.
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Next we calculate the number of protons in a ton of water. A mole of water (equal to 18
grams, 2 grams of which is hydrogen and 16 grams oxygen) contains 6.02× 1023 molecules
of water (see Section 17.1 for the definition of a mole and the Avogadro number). Since
each molecule contains 10 protons (2 coming from the two H’s and 8 from the O), there are
6.02×1024 protons in each mole of water. Since a kilogram is 1000 grams or 1000/18 = 55.56
moles, there are 55.56×6.02×1024 = 3.3×1026 protons in a kilogram of water or 3.3×1029

protons in a ton of water. So 1000 tons of water contains 3.3× 1032 protons, which is 23%
of N0 calculated above, which should yield 23% of 100, or 23 proton decays per year. So,
as a rule, we expect 23 proton decays per year from each 1000 tons of water.

D.37 Numerical Examples for Chapter 37

Example D.37.1. The two extreme values of H—in the unit appropriate for formulas— Estimating critical
density of the universe
(page 570 of the book)

are 21 × (1.06 × 10−19) or 2.23 × 10−18 s−1 and 23 × (1.06 × 10−19) or 2.44 × 10−18 s−1.
Therefore the lower limit for the critical density is

ρc =
3× (2.23× 10−18)2

8π × (6.67× 10−11)
= 8.9× 10−27 kg/m3

and the upper limit is

ρc =
3× (2.44× 10−18)2

8π × (6.67× 10−11)
= 1.157× 10−26 kg/m3

Now suppose that the radiation contribution to the critical density can be neglected,
so that ρc is composed entirely of matter.15 The ordinary matter of the present universe
consists of atoms, and the mass of an atom is concentrated in its nucleus, which is composed
of nucleons. The mass of a nucleon is about 1.67× 10−27 kg, and ρc can be expressed as a
nucleon number density. This number density is between

8.9× 10−27

1.67× 10−27
= 5.3 nucleons/m3

and
1.157× 10−26

1.67× 10−27
= 6.9 nucleons/m3

These are both far more than the observed nucleon number density.

Example D.37.2. Use the first row of Table E.3 to trace the development of some proper- Universe when it was
1% its current size
(page 572 of the book)

ties of the universe. For example, you can find out how long after the big bang the universe
was one percent of its present size. The first equation in the first row of Table E.3 gives the
answer if you know the present matter density ρm0 of the universe. Astronomical observa-
tions put ρm0 between 2.4× 10−27 and 2.7× 10−27 kg/m3. Taking the intermediate value
of 2.5× 10−27 for ρm0, the first equality of the first row of Table E.3 gives

0.01 =
[
6π(6.67× 10−11)(2.5× 10−27)

]1/3
t2/3 = 1.465× 10−12t2/3 or t2/3 = 6.8× 109

which yields t = (6.8× 109)3/2 = 5.6× 1014 s, or 18 million years. This calculation is valid
if the universe was matter-dominated at 18 million years after the big bang. As we shall
see later, this was indeed the case.

Had you used the second equality of the first equation of Table E.3, you would have
obtained a different answer, namely, 13.7 million years instead of 18 million years. This has
to do with the uncertainty in the actual value of ρm0, to which we shall return below.

15As we shall see later, this is indeed the case, and the contribution of the radiation component to ρc is
less than 0.1 per cent of the matter contribution.
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What about the density of the universe? Since the density falls as inverse cube of the
scale of the universe, we expect the density to have been 1003 or a million times denser
than today.

Finally, the Hubble parameter had a value of

H =
2
3t

=
2

3× (5.6× 1014)
= 1.2× 10−15 s−1

In a more familiar unit,

H =
1.2× 10−15

1.06× 10−19
= 11, 200 km/s per Mly.

This is approximately 600 times larger than the present value of the Hubble parameter,
indicating the faster rate of expansion of the universe when it was much younger.

Example D.37.3. When the universe is one hour old (at which time radiation is dominant),Horizon expansion
(page 574 of the book) the horizon radius is approximately 0.000228 ly (twice the distance that light travels in one

hour), while the scale of the universe is (taking a scale of 500 Mly for the present universe)
approximately 5.4 ly,16 and the ratio of the horizon volume to the scale volume is(

0.000228
5.4

)3

= 7.5× 10−14

When the universe is one week old, the horizon radius is approximately 0.038 ly (twice
the distance that light travels in one week), while the scale of the universe is approximately
70 ly, and the ratio of the horizon volume to the scale volume is(

0.038
70

)3

= 1.6× 10−10

over 2000 times larger than the ratio at 1 hour.
Finally, when the universe is one year old, the horizon radius is 2 ly while the scale of the

universe is approximately 500 ly, and the ratio of the horizon volume to the scale volume is(
2

500

)3

= 6.4× 10−8

about 400 times larger than the ratio at 1 week and over 800,000 times larger than the ratio
at 1 hour. It is clear that the horizon covers a larger and larger fraction of the universe as
time passes, and that at the earliest times the horizon was flat.

Example D.37.4. During the times of interest in that example, the universe was dominatedSize of early universe as
a function of time

(page 578 of the book)
by radiation. Therefore, you can use the first equation of the second row of Table E.3, with

ργ0 = 8.36× 10−33T 4
0 = 8.36× 10−33(2.725)4 = 4.61× 10−31 kg/m3

to obtain

R(t)
R0

=
(

32π(6.67× 10−11)(4.61× 10−31)
3

)1/4

t1/2 = 1.79× 10−10
√
t

Assuming that R0 = 500 Mly, this gives

R(t) = 500, 000, 000× 1.79× 10−10
√
t = 0.08958

√
t ly (D.24)

16We shall see later in Example D.37.4 how to estimate the size of the universe as a function of time.
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For example, one hour after the big bang, t = 3600 s, and

R(t) = 0.08958
√

3600 = 5.375 ly

while the horizon radius rh increases as 2ct:

rh = 2× (3× 108)× (3600) = 2.16× 1012 m =
2.16× 1012

9.45× 1015
= 0.0002286 ly

One week (or 7× 24× 3600 = 604, 800 s) after the big bang,

R(t) = 0.08958
√

604, 800 = 69.66 ly

while the horizon distance becomes

rh = 2× (3× 108)× (604, 800) = 3.63× 1014 m =
3.63× 1014

9.45× 1015
= 0.0384 ly

And finally, one year (or 3.15× 107 s) after the big bang,

R(t) = 0.08958
√

3.15× 107 = 502.8 ly

while the horizon distance is two light years.

D.38 Numerical Examples for Chapter 38

Example D.38.1. Use Equation (38.1) to estimate the time passed since the big bang Age of universe at start
of 2nd epoch
(page 587 of the book)

when the second epoch starts. To find α, you need the particles present in the universe.
There are three charged leptons, three neutrinos and five quarks, each contributing a factor
of 7/8 because they are fermions, and a factor of 2 because they all have antiparticles. The
neutrinos also need a factor of 1

2 because they have only one spin orientation. There are also
a total of 8 gluons and antigluons (so no need for a factor of 2), and one photon. Therefore,

α =
7
8
× 2× (3 + 3

2 + 5)︸ ︷︷ ︸
leptons and quarks

+8 + 1 = 26.75

and

t =
2.3× 1020

√
αT 2

=
2.3× 1020

√
26.75 (1014)2 = 4.4× 10−9 s = 4.4 nanoseconds.

Example D.38.2. The major contributors to the density of the universe after µ+-µ− Density in third epoch
(page 588 of the book)annihilation are the electron, three neutrino, and photon species.17 Therefore,

α = 7
8 × 2 + 7

8 × 2× 3× 1
2︸ ︷︷ ︸

ν contribution

+1 = 5.375

Notice the introduction of 1
2 for the neutrino contribution. This is because neutrinos have

only one spin orientation (helicity). Use this value of α and T = 1011 K in the fourth row
of Table E.3 to obtain

ρ = 5.375× (8.36× 10−33)× (1011)4 = 4.5× 1012 kg/m3

A grain of sand is about a millimeter on each side. So, its volume is 0.0013 = 10−9 m3.
If this grain of sand were made of the material of this epoch, it would weigh

4.5× 1012 kg/m3 × 10−9 = 4500 kg

or 4.5 metric tons!
17The word “species” is used when we want to group each particle with its antiparticle: electron “species”

consists of both e− and e+.



70 Appendix D Numerical Examples

Example D.38.3. We can understand the inequality of proton and neutron numbers from
the Boltzmann factor discussed in Section 17.2.2. Think of protons and neutrons as two
“states” of a nucleon. A proton is a nucleon with a smaller mass (or energy Ep = mpc

2)Inequality of protons
and neutrons

(page 588 of the book)
of 938.27 MeV, and neutron a nucleon with a larger mass (or energy En = mnc

2) of
939.57 MeV. The probability of a nucleon being a proton is proportional to e−Ep/kBT , and
the probability of a nucleon being a neutron is proportional to e−En/kBT . Thus the ratio
of the two probabilities is

P (En)
P (Ep)

=
e−En/kBT

e−Ep/kBT
= e−∆E/kBT , ∆E ≡ En − Ep

Substitute for ∆E and kB to get

∆E
kB

=

∆E in Joules︷ ︸︸ ︷
(1.3× 106)(1.6× 10−19)

1.38× 10−23
= 1.5× 1010

and
P (En)
P (Ep)

= e−1.5×1010/T (D.25)

If T is much larger than 1.5× 1010 K, the exponent of Equation (D.25) is almost zero,
the exponential is 1, and the two probabilities are equal. So p and n populations are almost
equal. This is what we expect at the earlier epochs. As T drops, the negative exponent
increases in magnitude, leading to a small ratio. For example, at T = 1.5 × 1010 K,
the exponent becomes −1, P (En)/P (Ep) = 0.368, and with P (En) + P (Ep) = 1, we get
P (En) = 0.269. So, neutrons constitute about 27% and protons 73%. A detailed calculation
of n-p abundance is much more complicated than the one presented here, although the
Boltzmann factor plays a significant role in that calculation.

Example D.38.4. To find the age of the universe at the beginning of the fifth epoch, weAge of universe at 5th
epoch

(page 589 of the book)
have to know what α is. The constituents of the universe are radiation, neutrinos, and
matter. The contribution of matter to the density is very small as shown below. Therefore,
α is the sum of the contributions from radiation (which is 1) and neutrinos. Recall that
after their decoupling, neutrinos’ temperature Tν fell below the radiation temperature Tγ in

such a way that Tν = 3

√
4
11Tγ . So, in finding α, we need to take this into account. Denoting

the neutrino’s contribution to α by αν , we have

αν = 7
8 × 3× 2× 1

2 × ( 3
√

4/11)4 = 0.681

where the first factor arises from the fact that neutrinos are fermions; the second factor
because there are 3 neutrino species; the third factor because they have antiparticles; the
fourth factor because they have only one helicity; and the last factor is due to the tem-
perature difference between the radiation and neutrino gases. Adding this to the radiation
contribution yields α = 1.681. Therefore, Equation (38.1) with T = 109 K gives

t =
2.3× 1020

√
1.681 (109)2

= 177.4 s.

The matter density is negligible for the following reason. A particle is considered rel-
ativistic if its thermal energy 2.7kBT is much larger than its rest energy mc2. At a tem-
perature of 109 K, the thermal energy is 3.73 × 10−14 J. Thus, only particles whose rest
energies are much smaller than this can be considered relativistic. The rest energy of an
electron is about 8.2 × 10−14 J, which is over twice the thermal energy above. Therefore,
the electrons are nonrelativistic, and the protons and neutrons more so. It follows that
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the matter density is just the mass of a nucleon (electrons are negligibly less massive than
protons and neutrons) times the nucleonic number density nb. But nb is 1/(1.6× 109) the
photon number density, and the latter is

nγ = 2.7× 107T 3
γ = 2.7× 107(109)3 = 2.7× 1034 photons/m3

giving a value of 2.7× 1034/(1.6× 109) = 1.69× 1025 for nb. With the mass of each nucleon
being 1.67× 10−27 kg, we obtain

ρm = 1.67× 10−27nb = (1.67× 10−27)× (1.69× 1025) = 0.028 kg/m3

The radiation density can be calculated from the fourth row of Table E.3:

ργ = 8.36× 10−33T 4 = 8.36× 10−33(109)4 = 8360 kg/m3

The neutrino density is

ρν = ανργ = 0.681× 8360 = 5690 kg/m3

Therefore, the universe is radiation- and neutrino-dominated, and matter contributes next
to nothing to its density. Dark matter has not been taken into account, not because it
does not contribute to the matter density, but because we don’t know much about it.
Nevertheless, even with dark matter, radiation and neutrino dominate the density since
dark matter raises the matter contribution by at most a factor of ten.

Example D.38.5. The neutron decay, like all other decays, obeys the exponential law of Neutron decay in 5th
epoch
(page 589 of the book)

Equation (31.2). If you start with N0 neutrons, t seconds later you will have N(t) neutrons,
where

N(t) =
N0

2t/thalf

and thalf is the half-life of neutron.
The helium formation starts when the temperature reaches 950 million Kelvin, corre-

sponding to 195.5 seconds after the third epoch, in which protons outnumbered neutrons
three to one. The contribution to further reduction of the neutrons coming from their decay
can be calculated using the above formula:

N(t) =
N0

2195.5/614
= 0.80N0

This shows that 20% of the neutrons present at the end of the third epoch decay by the
beginning of the fifth epoch. If this were the only process converting neutrons to protons, we
would have 20% less neutrons than at the end of the third epoch, i.e., 20% of the 25% decay,
leaving only 0.25 × 0.80 = 0.2 or 20% neutrons, and the remaining 80% protons. Other
processes contribute as well, and reduce the 20% further down to 13% by the beginning of
the fifth epoch.

Example D.38.6. If deuterons were made too early, say when the number of protons and
neutrons were almost equal, the universe would consist only of He. That’s far too soon.
So the question is: In the absence of radiation, what is the least temperature at which
deuterons can be formed without being disintegrated by the impact of the particle content
of the universe? With 2.224 MeV as the binding energy of the deuteron, the question
turns into: Which constituent of the universe has an average KE of 2.224 MeV at the least
temperature? Electrons that have this much KE are relativistic and their KE is given by
2.7kBT , just like a photon, so that for electrons Change in H-He

abundance in absence of
radiation
(page 590 of the book)

(2.224× 106)(1.6× 10−19)︸ ︷︷ ︸
KE in Joules

= 2.7(1.38× 10−23)T or T = 9.55× 109 K
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For nucleons, 2.224 MeV is much less than their mass (times c2), and therefore, they
can be treated as nonrelativistic particles, whose KE is 3

2kBT . So

(2.224× 106)(1.6× 10−19) = ( 3
2 )(1.38× 10−23)T or T = 4.3× 109 K

which is less than the corresponding T for electrons.
We therefore conclude that, in the absence of radiation, for deuteron to be formed, the

temperature must fall just below 4.3 billion K, corresponding to the middle of the fourth
epoch. At this temperature, it turns out, there is approximately 1 neutron for every 4
protons. If deuteron (and therefore helium) were to be formed at this temperature, the
H-He abundance would be 60%-40%, in complete violation of observation! Radiation is
necessary to prevent deuteron formation at such an early time.

Example D.38.7. A typical hadron is a proton which has 3 quarks inside it. The radiusEstimating quark
confinement
temperature

(page 587 of the book)

of the proton is approximately 1 fm (1 femptometer or 1 fermi, equal to 10−15 m). This
gives a volume of

4
3πr

3 = 4
3π(10−15)3 = 4.2× 10−45 m3

for the proton. Therefore, the quark number density nq inside a proton is

nq =
3

4.2× 10−45
= 7.2× 1044 quarks/m3

As long as the quarks are separated by distances smaller than a typical hadron radius,
they are free. In other words, as long as the number density of quarks is larger than the
density calculated above, they are free. However, as soon as their separation equals this
radius or larger, i.e., as soon as their number density falls below the above density, they
become bound. Now the question is “At what temperature does the quark number density
become the above nq?” Since quarks are moving close to light speed, they act like photons,
except for some factors similar to the those associated with the density of various particles
discussed in Section 38.1. One of these factors is 3/4 (analogous to 7/8 in the calculation
of densities), which arises from replacing the minus sign in the integral of Equation (E.145)
with a plus sign due to the fermionic nature of the quarks. This replacement changes 2.404
to 1.8031, introducing a factor of 1.8031/2.404 which is about 3/4. A second factor is 2,
because quarks have antiparticles; and the last factor is 2, the number of quarks (up and
down) present near the end of the second epoch. Thus, the quark number density is the
photon number density times 3

4 × 2 × 2 = 3, i.e., nq = 3nγ . Using Equation (E.146) and
the nq calculated above, we obtain

7.2× 1044 = 3× (2× 107T 3) or T 3 =
7.2× 1044

6× 107
= 1.2× 1037

and T = 3
√

1.2× 1037 = 2.29 × 1012 K. Thus, when the temperature of the universe gets
down to about a trillion Kelvin, the quarks form hadronic traps in which they live for the
rest of their existence.

D.39 Numerical Examples for Chapter 39

Example D.39.1. Just before the decoupling of radiation from matter, when the universeBlob formation and
pressure

(page 596 of the book)
was about 3000 K hot, the pressure in the universe was dominated by radiation and neutrino
pressures. To see this, note that radiation pressure Pγ , is one third the radiation energy
density [see Equation (E.31)], which is the equivalent mass density ργ times c2. Therefore,

Pγ = 1
3ργc

2 = 1
3 (8.36× 10−33)(3× 108)2 = 0.02 Pa
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where we used the fourth row of Table E.3 for ργ . The neutrino pressure Pν is 0.681
times Pγ (see Example D.38.4). Thus, the total pressure due to radiation and neutrinos is
0.02× 1.681 = 0.0336 Pa.

The matter pressure Pm, is given by the ideal gas law, which can be written as P =
nkBT , with n = N/V being the number density of matter particles. Assuming that matter
particles are just nucleons, and that there are 0.25 nucleons per cubic meter now, we can
calculate the nucleon number density at 3000 K. In fact, since nR3 is a constant, and since
R and T are inversely proportional, we get

n

T 3
=
n0

T 3
0

or n = n0

(
T

T0

)3

= 0.25
(

3000
2.725

)3

= 3.3× 108

and
Pm = nkBT = 3.3× 108(1.38× 10−23)(3000) = 1.38× 10−11 Pa

which is about a billionth Pγ . Even if we include the dark matter, it only increases Pm by
a factor of ten.

What was MJ before decoupling? We found above that the pressure is 0.0336 Pa. The
density is given by Equation (38.1) with α = 1.681:

ρ = 1.681(8.36× 10−33T 4) = 1.405× 10−33(3000)4 = 1.14× 10−18

Putting everything together gives

MJ =
(0.0336/6.67× 10−11)3/2

(1.14× 10−18)2
= 8.7× 1048 kg

This is 4.35× 1018 solar mass, or over 10 million times the mass of the Milky Way! Such a
huge blobs were hard to find, and the clumping was next to impossible.

After the decoupling, the pressure dropped to a billionth its value before (only matter
pressure was present after decoupling), so MJ dropped by a factor of (109)3/2 = 3.16×1013

giving MJ = 2.75 × 1035 kg or about 138,000 solar mass, which is the mass of a large
globular cluster, making gravitational clumping feasible.

Example D.39.2. At the start of the dominance of matter, the universe was approximately
14800 K hot and 25,000 years old (see page 578 of the book). The horizon radius at that
point was 50,000 light years (for the first 25,000 years, the universe was radiation-dominated,
in which case rh = 2ct). Thus, two points that were farther than 100,000 light years (at
the two ends of a diameter of the horizon sphere) apart, could not communicate with one
another. These two points have flown apart due to the expansion of the universe by the
same factor as the scale R(t) has. This factor is just the ratio of the temperature then to
the present temperature: 14800/2.725 = 5430. Thus, the two points are now Causal disconnection

(page 599 of the book)
100, 000× 5430 = 5.43× 108 light years

apart. The light from these two points has been traveling for almost the age of the universe.
So the distance from these points to us is about 13.7 billion light years. The angular
separation in radian is therefore

5.43× 108

13.7× 109
= 0.04 radian or 0.04× 57.3 = 2.27◦

A very small angle indeed!
Taking the decoupling event as the starting point, when the universe was approximately

3000 K hot and 375,000 years old,the horizon radius would have been 1,125,000 light years
(the universe was clearly matter-dominated at the decoupling, therefore, rh = 3ct). Thus,
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two points that were farther than 1,125,000 light years apart, could not communicate with
one another. The present distance between these two points is 1,125,000 times the increase
in the scale factor. This factor is just the ratio of the temperatures: 3000/2.725 = 1100.
Thus, the two points are now

1, 225, 000× 1100 = 1.24× 109 light years

apart, giving an angular separation of

1.24× 109

13.7× 109
= 0.09 radian or 0.09× 57.3 = 5◦

Example D.39.3. Write Equation (E.162) asEstimating how long
Ωtot remains 1

(page 601 of the book) Ωtot(t2)− 1
Ωtot(t1)− 1

= e−2H(t2−t1) (D.26)

where t1 and t2 are two instants, between which inflation was operative. A typical value
for the start of the inflation is t1 = 10−34 s. Since H is (to within a numerical factor) 1/t,
we take it to be 1034 s−1 between t1 and t2. Let t2 be 10−32 s. Then Equation (D.26) gives

Ωtot(t2)− 1
Ωtot(t1)− 1

= e−2×1034(10−32−10−34) = e−198 = 1.02× 10−86 (D.27)

Now suppose that the universe starts substantially nonflat with Ωtot(t1) = 1.5. Then a
little later, at t2, Ωtot is given by

Ωtot(t2)− 1
1.5− 1

= 1.02× 10−86 or Ωtot(t2)− 1 = 5.1× 10−87

which is unimaginably close to flat. How close? Suppose that after the end of inflation at
t2, the universe becomes radiation-dominated.18 How long do we have to wait before the
universe has an Ωtot that is ever so slightly different from 1, say 1.0001? Denote by t3 the
time at which this happens. Then Equation (E.156) gives

Ωtot(t3)− 1
Ωtot(t2)− 1

=
t3
t2

or
0.0001

5.1× 10−87
=

t3
10−32

yielding t3 = 1.96× 1050 s or 4.5× 1032 times the present age of the universe!

Example D.39.4. Use the result of Math Note E.39.2 to calculate the expansion of theHorizon expansion in
inflationary universe

(page 601 of the book)
horizon radius during inflation. Assume, as in Example D.39.3, that inflation begins at
t1 = 10−34 s and ends at t2 = 10−32 s. Assume also—as explained in the same example—
that H = 1034 s−1. Then the horizon radius at the start of inflation is

rh(t1) =
c

H
(eHt − 1) =

3× 108

1034
(e(1034)(10−34) − 1) = 5.15× 10−26 m

By the end of inflation this radius increases to

rh(t2) =
3× 108

1034
(e(1034)(10−32) − 1) = 3× 10−26(e100 − 1) = 8× 1017 m

which is over 85 light years!

18Matter-dominance yields essentially the same result.
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Mathematical Notes

E.1 Math Notes for Chapter 1

Math Note E.1.1. Let us denote the period of the Moon by T , the time it take the Moon Finding the Earth-Sun
distance
(page 9 of the book)

to go from M1 to M3 (see Figure 1.2) by T13, and that from M3 to M1 by T31. Assuming that
the Moon is moving uniformly—and counterclockwise—around the Earth, we immediately
conclude that the ratio of T13 − T31 to T must be the same as the ratio of the difference
between the two arc lengths M1M3 and M3M1 to the circumference of the Moon orbit. The
last ratio is the same as the ratio of the difference between the two angles subtended by
M1M3 and M3M1 to the total angle of a circle (360◦ or 2π radians). Figure 1.2 shows that
this angular difference is 4α. So, we have

T13 − T31

T
=

4α
2π

=
2α
π

⇒ α =
π

2

(
T13 − T31

T

)
Aristarchus believed (erroneously) that he had measured T13 − T31 to be one day, and

based on that belief, and the fact that the period of revolution of the Moon is approximately
30 days, he calculated α to be

α =
π

2

(
1
30

)
=

π

60
rad

Since (small) angle in radian is “size” over distance, we have

π

60
=
ME

SE
⇒ SE =

60
π
ME = 19.1ME

Math Note E.1.2. Figure E.1 shows snapshots of a planet M moving around the Earth
E. For the sake of the argument, let’s greatly simplify the actual motion of the planet and Details of the epicyclic

motion
(page 13 of the book)

assume that it moves on the epicycle four times while the center of the epicycle moves
on the deferent once. The figure shows only 12 snapshots of a complete revolution of M
around E. Each revolution of M on its epicycle corresponds to a quarter of a revolution of
the epicycle’s center on the deferent. Therefore, M completes its epicyclic revolution in 3
snapshots, or a third of the revolution in one snapshot.

The planet starts at 1 (the 6 o’clock position on the epicycle); moves a third of the
circumference of the epicycle to 2, while the center of the epicycle moves from a to b, one
twelfth of the deferent. By the time M has made a complete revolution of the epicycle to 4
(back to the 6 o’clock position on the epicycle), the center of the epicycle has moved to d, a
quarter of the deferent. Continuing thusly, you can locate the planet on its epicycle in the
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E
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1
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b

(a) (b)

Figure E.1: (a) The combination of the two motions of the epicycle (smaller circle) on the deferent
(larger circle) and the planet on the epicycle results in the path of M around E. (b) The detail of the
motion between 1 and 2. The planet advances 1

12
of the epicycle from one snapshot to the next.

second, third, and fourth quarter of the deferent as shown in Figure E.1(a). Connecting all
the planet’s positions with a smooth curve, you obtain its path around the Earth.

Now from the 12 positions in Figure E.1(a) it is not by any means obvious that the path
of M around E is the curve drawn in heavy line. This is because—to avoid the cluttering
of the figure—we have shown only three “snapshots” of the epicycle for each revolution of
M . If you subdivide the motion into smaller intervals as done in Figure E.1(b), where the
movement from 1 to 2 is subdivided into four parts each showing the slight advance ( 1

12 of
the epicycle) of M toward 2, you will see that indeed the heavy curve is the correct path.

The actual paths of real planets are, of course, much more complicated than that de-
picted in Figure E.1. For example, no known planet goes around its epicycle an integer
number of times when the center of its epicycle completes a single revolution around the
Earth. Nevertheless, the simplified motion outlined above illustrates all the essential fea-
tures of the planet’s path, including the retrograde motion and the change in the brightness
during this motion.

E.3 Math Notes for Chapter 3

Math Note E.3.1. The actual motion of planets as viewed from Earth is very complicated—
that is why the geocentric model had to incorporate so many assumptions to reconcile the
theory with observation. However, to illustrate the general feature of the observed motionThe heliocentric theory

applied to Earth and
another planet

(page 38 of the book)

of a planet from the Earth point of view, I make some simplifying assumptions. To be
specific, I assume that a planet, say Mars, moves around the Sun once as the Earth moves
around four times. This is an enormous simplification, as the actual periods of revolution
of Mars and Earth do not have such a simple relation. However, the simplification does not
alter the essential features of the heliocentric theory.

To plot the path of Mars relative to Earth, I need to find positions of Mars relative to
Earth for different times. Since both planets are assumed to be moving uniformly, I can
locate them at each instant starting with their initial location which I have designated as
point 1 in Figure E.2. Now imagine taking snapshots of the location of the Earth periodically
as it moves on its orbit. Figure E.2 shows six equally spaced snapshots, but one can take
as many as one wishes, the larger the number of the snapshots, the more accurate the plot
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Figure E.2: The Earth orbit is divided into six equal parts by points numbered 1 through 6. The
corresponding locations of Mars are also numbered 1 through 6. The rest of the numbers on Mars’s orbit
correspond to the second, third, and fourth revolutions of the Earth. Each location of Earth has four
numbers corresponding to the four revolutions of the Earth.

of the path.1 I have numbered these locations 1 through 6 on the Earth orbit. As Earth
completes one revolution, Mars covers only a quarter of its orbit. So, I divide the first
quarter of the orbit of Mars into six equal parts, again numbered 1 through 6. Thus, when
Earth is, for instance, at location 4 on its orbit, Mars will be at location 4 on its orbit.
When Earth returns to its original position, Mars will be at location 7, and when Earth
goes through its second revolution—with snapshots taken at the previous locations—Mars
will go through points 7 to 13. I write these numbers by the Earth locations as well to
indicated their relation with those of Mars. I continue the process for the third and fourth
revolution of the Earth, and obtain the numbering of Figure E.2. Each snapshot location
of the Earth now has four numbers next to it, because Earth passes four time through each
point in its four revolutions.

Next I connect each location of the Earth to the corresponding location of Mars with an
arrow. This designates the location of Mars relative to Earth, or the “line of sight” of the
planet. In other words, if I were to look at Mars from Earth, I would have to look in that
direction. These arrows are drawn in Figure E.3(a), each carrying a number corresponding
to the number of the snapshot location.

Now, as we look at Mars from Earth, the Earth does not appear moving. Although
both Mars and Earth move from 1 to 2, the Earth inhabitants do not feel its motion. What
they see is that Mars is “directly above” initially, and some time later—when both move
to their corresponding locations numbered 2—Mars is farther and a little “to the right of
directly above.” This situation is depicted in Figure E.3(b), and from the Earth point of
view, Mars has moved from the tip of arrow 1 to the tip of arrow 2. Therefore, to find the
complete path of Mars, I draw all arrows from the same point and connect the tip of the
consecutive ones. This will lead to the curve shown in Figure E.3(c).

Note that this curve is exactly the same as that in Figure E.1. Thus, the heliocentric
model of Copernicus gives the same result as the geocentric model of Ptolemy, but the
heliocentric model is much simpler, and has much fewer assumptions. It should therefore
come as no surprise that Kepler, seeking a theoretical explanation for the recent observations
of his time, chose the heliocentric model as his starting point.

1From a practical point of view, one does not want too many snapshots, because, as will be seen shortly,
the diagram will be too cluttered.
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Figure E.3: (a) The positions of Mars relative to Earth are shown by arrows. (b) The first two positions
as seen from the Earth. (c) The 24 positions of Mars as seen from the Earth, and Mars’s path relative to
Earth.

E.4 Math Notes for Chapter 4

Math Note E.4.1. As discussed in the text, the distance traveled in time t is the areaFinding the distance
formula for a uniformly

accelerated motion
(page 58 of the book)

enclosed by the curve, the t-axis, the v-axis, and the vertical line at t. This area is shown
in Figure E.4(b) for the UAM, and consists of a rectangle and a triangle, the areas of both
of which are easy to calculate once we know the dimensions of the figures.

The rectangle is easier; it has a width of v0 and a length of t; so its area is v0t. The
area of the triangle is simply 1

2 (AB)(CB). But CB is just t. What about AB? Since the
slope of the line is a, we must have

a =
AB

CB
=
AB

t
or AB = at.

So, the area of the triangle is
1
2 (at)(t) = 1

2at
2

and the entire area, which is the sum of the area of the rectangle and that of the triangle,
is as given in Equation (4.4).

Math Note E.4.2. Instead of using numbers as in Example 4.3.7, we use symbols andDeriving the formula
relating speed and

distance
(page 59 of the book)

algebra to find the general formula connecting distance and speed directly. In fact, we can
be even more general and leave v as nonzero. So, let us solve Equation (4.3) for t:

v = v0 + at ⇒ at = v − v0 ⇒ t = (v − v0)/a.

Now substitute this in Equation (4.4) to find x:

x = v0

(
v − v0

a

)
+ 1

2a

(
v − v0

a

)2

=
v0v − v2

0

a
+ 1

2a

(
v2 + v2

0 − 2vv0

a2

)
=

2v0v − 2v2
0 + v2 + v2

0 − 2vv0

2a
=
v2 − v2

0

2a

This yields the useful relation
v2 − v2

0 = 2ax, (E.1)

which holds for all values of v, v0, a, and x. As a check, we recalculate the result of Example
4.3.7:

0− (44.72)2 = 2(−9.8)x ⇒ −1999.88 = −19.6x ⇒ x =
−1999.88
−19.6

= 102 m.
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Figure E.4: (a) The graph of v versus t for a uniformly accelerated motion. (b) The area under the
graph is the distance traveled in time t.

Equation (E.1) connects the distance to speed directly without involving time: For any
value of x, (E.1) determines the speed there.

E.6 Math Notes for Chapter 6

Math Note E.6.1. Suppose that an object A moves on a circle with constant speed (not Derivation of the
formula for centripetal
acceleration
(page 82 of the book)

constant velocity!) as shown in Figure E.5(a). Let us find the acceleration at A1 where
the velocity is v1. We allow the object to move to a nearby point A2 at which the velocity
becomes v2. We need ∆v = v2−v1 to calculate the acceleration a. First let us concentrate
on the direction of a, which is the same as the direction of ∆v as long as A2 is very close
to A1, a condition we have attempted to satisfy in the figure. To find ∆v we draw v1

and v2 from a common point and connect the tip of v1 to the tip of v2. This is done in
Figure E.5(b). We have also parallel-transported ∆v to A1 where a is to be calculated. It is
clear that ∆v points (almost) toward the center of the circle. The small discrepancy is due
to the “large” size of the distance between A1 and A2. The smaller we make this distance,
the more ∆v will point toward the center. When this distance becomes infinitesimally
small, ∆v will point exactly toward the center.

What about the magnitude of the acceleration? The two isosceles triangles CA1A2 (with
long sides r)2 and BDF (with long sides v) are similar because they have the same angles.
Therefore, we can write

A1A2

r
=

∆v
v

But A1A2 is the distance obtained when A moves with constant speed for a time ∆t. So,
A1A2 = v∆t, and the equation above becomes

v∆t
r

=
∆v
v

or v2∆t = r∆v or
∆v
∆t

=
v2

r

which is identical to Equation (6.1), because ∆v/∆t = a.

E.7 Math Notes for Chapter 7

Math Note E.7.1. Example D.7.7 used numbers; let us use symbols now. Denote the Calculation of the
critical speed for roller
coaster looping
(page 23 of
Appendix.pdf )

weight of the car plus the passenger by mg, the force of the track on the car by N (for

2CA1A2 is not really a triangle, because one of its sides is an arc of a circle. However, when A2 is
infinitesimally close to A1, this arc is indistinguishable from a straight line.
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Figure E.5: (a) The object A moves from A1 to the (very) nearby A2. The vectors v1 and v2 have
the same length, because the speed of the moving object is constant. (b) The change ∆v in velocity is
obtained as usual. It is also parallel-transported to A1.

normal), the speed by v, and the radius by r. If the car is to remain on the track, N must
be bigger than zero (it could be as small as possible). The net force on the car is

Fnet = mg +N

The second law gives

mg +N = ma ⇒ mg +N = m
v2

r
or v2 =

(
mg +N

m

)
r

This gives

v =

√(
mg +N

m

)
r

If we insist that N be large, we need a large speed. However, theoretically N can be as
small as we please. In particular, when N = 0, we get the critical speed. Thus,

vcrit =
√(mg

m

)
r =
√
gr

which is independent of the mass. Once the speed is larger than this critical speed, nobody
will fall!

E.8 Math Notes for Chapter 8

Math Note E.8.1. We start with the second law of motion and assume that there is onlyFinding the relation
between work and KE

(page 108 of the book)
one force acting on the object in question. Multiplying both sides of the second law by the
displacement d, we obtain

Fd = mad or W = mad = m
∆v
∆t

d = m
vf − vi

∆t
d = m(vf − vi)

d

∆t

because ∆v = vf − vi, and the denominator can be moved under any one of the factors of a
product. Now d/∆t is the average velocity during the time ∆t. Since, in that time interval,
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the initial velocity is vi and the final velocity vf , their average is their sum divided by two.
Thus,

W = m(vf − vi)
vf + vi

2
= 1

2m(vf − vi)(vf + vi) = 1
2m(v2

f − v2
i ) = 1

2mv
2
f − 1

2mv
2
i

The right-hand side will be the change in KE if we define KE to be 1
2mv

2.

Math Note E.8.2. Let us look at the car-passenger system from a general viewpoint, i.e.,
use symbols rather than numerical values. So, let m stand for the total mass. Then,

ME = KEA + PEA = 0 +mgh0 or ME = mgh0

This ME is the same at all other points of the track, such as the general point P where the
height is assumed to be h and the speed v. Thus, Showing that speed is

the same for all cars of a
roller coaster
(page 111 of the book)

ME = KEP + PEP = 1
2mv

2 +mgh

Combining the last two equations, we get

mgh0 = 1
2mv

2 +mgh or gh0 = 1
2v

2 + gh

where we divided both sides of the equation by m. It follows that

gh0 − gh = 1
2v

2 ⇒ v2 = 2gh0 − 2gh = 2g(h0 − h) and v =
√

2g(h0 − h)

This speed is independent of the mass of the system.
A relevant question in the design of a roller coaster like that in Figure D.9 is the height

h2 of the circular loop. This height cannot be too large, because the car may slow down
too much at D and fall. In order for it not to fall, the speed at D must be larger than vcrit

of Math Note E.7.1. This condition gives

v > vcrit ⇒
√

2g(h0 − h2) >
√
gr or 2g(h0 − h2) > gr ⇒ 2(h0 − h2) > r

canceling g on both sides. But r, the radius of the circle, is just 1
2h2. This yields

2(h0 − h2) > 1
2h2 or 4(h0 − h2) > h2 ⇒ 4h0 − 4h2 > h2 ⇒ 4h0 > 5h2

or h2 <
4
5h0 = 0.8h0. So, circular loops of roller coasters cannot be taller than 80% of the

height at the starting point.

Math Note E.8.3. We want to find the time that Santa has to spend in a typical chimney
for his energy consumption to be minimum. There are two kinetic energies involved: One
for chimney plunging and climbing, the other for hopping from one chimney to the next.
For his trip down the chimney, he travels 4 m carrying a mass of 112 kg (himself plus toys).
His speed is therefore 4/t, where t is the time we are after. It follows that the KE of descent
is Finding condition for

Santa’s energy to be
minimum
(page 113 of the book)

KEdown = 1
2mv

2 = 1
2 (112)(4/t)2 =

896
t2
.

When Santa climbs up the chimney, he is a little lighter (12 kg lighter for leaving the toys
behind). Therefore, his KE of ascent is

KEup = 1
2mv

2 = 1
2 (100)(4/t)2 =

800
t2
.

and the total KE for his “chimney travel” is

KEchim = KEdown +KEup =
896
t2

+
800
t2

=
1696
t2

.
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Figure E.6: The total KE that Santa consumes per house as a function of time.

To find the second KE, we note that the entire time available to Santa for going from
one house to the next is the number of seconds in one day divided by the number of houses.
This gives 86400/2.5× 107 = 3.456× 10−3 second. Out of this, 2t seconds is spent plunging
down and climbing up the chimney. So, 3.456×10−3−2t is left to cover the distance of 15 m
between two adjacent chimneys. Therefore, the second KE—the hopping kinetic energy—is

KEhop = 1
2mv

2 = 1
2 (1.5× 108)

(
15

3.456× 10−3 − 2t

)2

= (7.5× 107)
[

225
(3.456× 10−3 − 2t)2

]
=

1.69× 1010

(3.456× 10−3 − 2t)2

and the total energy as a function of t is

KE(t) = KEchim +KEhop =
1696
t2

+
1.69× 1010

(3.456× 10−3 − 2t)2
.

What value of t minimizes this? Calculus answers this question through the process of
differentiation. But we can manage without the help of calculus by simply plotting KE(t)
as a function of t and seeing where the minimum occurs. Figure E.6 shows KE(t) as a
function of t for points close to the minimum. It is clear that this minimum occurs at
0.00001265 or about 0.000013 s, or 13 microseconds, which is the same as the result one
would obtain if one used calculus. The graph also shows the minimum KE, which appears
to be about 1.4465× 1015 Joules, close to 1.43× 1015 Joules used in Section 8.1.3.

Math Note E.8.4. In Figure 8.7(a), let the area of the column of the liquid be A. TheDerivation of
P = P0 + ρgh

(page 120 of the book)
weight of the column exerts a force of mg on the base of the column. Furthermore, the
weight of the column of air on top of the column of the liquid exerts another force which is
simply P0A. The pressure at depth h, therefore is

P =
F

A
=
mg + P0A

A
=
ρV g + P0A

A
=
ρAhg + P0A

A
= P0 + ρgh

because the volume of the column is the area of its base times its height. This equation
clearly shows that pressure is independent of the area of the base, and depends only on
density, gravitational acceleration, and height (depth). It also shows that when h = 0, the
pressure reduces to P0, and that when P0 changes, the pressure at any depth h changes by
exactly the same amount.

Math Note E.8.5. At the left end of the pipe in Figure E.7, the pressure is P1, crossDerivation of Bernoulli
principle

(page 123 of the book)
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sectional area is A1, and the speed of the liquid is v1. The liquid between the two solid
dark cross sections in the figure—which we call Λ—is displaced to a new position, and is
now contained in the volume between the two light dashed cross sections. Suppose Λ is
displaced by d1 at the left end. Then the work done by the force of pressure on the left
is simply F1d1 = P1A1d1 = P1V1 where V1 is the volume of the liquid displaced on the
left. At the other end the pressure is acting against the flow,3 so that the corresponding
work is negative and equal to −P2A2d2 or −P2V2. In addition, because of the assumed
incompressibility, the amount of liquid displaced at one end, must equal that at the other.
This means that V1 = V2, and we name both volumes simply V . Therefore, the work done
on Λ due to the pressure difference is

Wpressure = P1V1 − P2V2 = P1V − P2V = (P1 − P2)V

There is also the work due to the gravitational force mg. As the fluid moves, its particles
are pulled down due to this force with the net effect that the mass on the left is moved from
the height h1 to height h2 on the right. Thus, the work due to gravity is

Wgravity = mg(h1 − h2) = ρV g(h1 − h2) = ρV gh1 − ρV gh2

Section 8.1 tells us that the total work must equal the change in KE of Λ. What is
this change? If the flow is steady—as we always assume it is—the speed of the fluid at a
given point will not change. This means that all fluid particles will have the same speed
when they reach a given point. It follows that the KE of the portion of Λ between the
dashed light cross section on the left and the solid dark cross section on the right will not
change as Λ moves from its initial position to the final position. Therefore, the change in
KE is the difference between the KE of the left displaced volume V1 and the right volume
V2 (which are of course equal). Since the volume—and therefore the mass—is the same at
both points, we get

Wtot = ∆(KE) ⇒ (P1 − P2)V + ρV gh1 − ρV gh2 = 1
2mv

2
2 − 1

2mv
2
2 = 1

2m
(
v2

2 − v2
1

)
Dividing by V and noting that density ρ is m/V , we obtain

P1 − P2 + ρgh1 − ρgh2 = 1
2

m

V

(
v2

2 − v2
1

)
= 1

2ρ
(
v2

2 − v2
1

)
which can be rewritten as Bernoulli’s equation

P1 + ρgh1 + 1
2ρv

2
1 = P2 + ρgh2 + 1

2ρv
2
2 or P + ρgh+ 1

2ρv
2 = constant (E.2)

The second equation follows from the first, which states that the quantity P + ρgh+ 1
2ρv

2

at point 1 is equal to the same quantity at point 2. But these two points are completely
arbitrary; so the quantity must remain constant throughout the motion of the fluid. In
most cases of interest, the fluid moves horizontally, so that h1 = h2. In that case, we get

P1 + 1
2ρv

2
1 = P2 + 1

2ρv
2
2 or P + 1

2ρv
2 = constant (E.3)

It is interesting to note that when the fluid is not moving, we obtain P1 + ρgh1 =
P2 + ρgh2; and if we take point 1 to be at the surface of the fluid (where pressure is now
denoted as P0), we regain the result of Math Note E.8.4, where h = h1 − h2, and P2 is
simply P .

Equation (E.2) is called Bernoulli’s equation or Bernoulli’s principle after the
Swiss mathematical physicist who discovered it first in 1738. It is a very useful relation
with many applications as illustrated in the text. In words, it says that the sum of pressure,
ρgh, and 1

2ρv
2 is the same for all points of a moving fluid.

3This can be seen by noting that the indicated portion of the fluid pushes the rest of the fluid to the
right. By the third law of motion, the reaction must be to the left.
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A1

d2

P1

P2

d1

A2

h1

h2

Figure E.7: Analysis of the flow of a fluid and Bernoulli’s equation.

E.9 Math Notes for Chapter 9

Math Note E.9.1. We want to find a relation between the period of a circulating objectDeriving Kepler’s 3rd
Law

(page 136 of the book)
and its distance from the gravitating center. We note that there is a relation between speed
and period:

v =
circumference

period
=

2πr
T

We now substitute this in Equation (9.3) and obtain

v =

√
GM

r
⇒ 2πr

T
=

√
GM

r
⇒ GM

r
=
(

2πr
T

)2

=
4π2r2

T 2

which can be rewritten as

T 2 =
4π2

GM
r3 (E.4)

In the case of the solar system, this is the third of the famous laws discovered by Kepler
prior to Newton’s discovery of the law of gravitation (see Box 3.3.1).

Math Note E.9.2. Consider a very thin spherical shell within which is a mass m atShowing absence of
gravity in a spherical

hole
(page 138 of the book)

some arbitrary point P [Figure E.8(a)]. Divide the surface of the shell into “squares”4 of
infinitesimally small sides, the cross section of one of which, labeled a, is shown in the figure.
This square attracts m with a force Gmma/r

2
a, where ma and ra are, respectively, the mass

of a and its distance from P . Extend the lines joining the vertices of the square and P until
they meet the spherical shell at four new points forming another (larger) square labeled b
in the figure. This square attracts m with a force Gmmb/r

2
b , with mb and rb being the

mass of b and its distance from P , respectively. We assume that the mass of the thin shell
is distributed uniformly, so that ma and mb are proportional to the areas of a and b.

Now note that the sides of the square (the base of the pyramid whose vertex is P ) changes
proportionately to the distance of the square from P . For example, if the distance from b to
P is three times the distance from a to P , then the sides of square b are three times longer
than those of a. Therefore, the area of b is nine times the area of a; and mb is also nine
times ma. In other words, the mass of the base of the pyramid whose vertex is P increases
as the square of the distance from P to the base. This implies that ma/r

2
a = mb/r

2
b ; and

4The edges of these squares, being drawn on a sphere, are not perfectly straight lines; but if we make
sure that squares are infinitesimally small, the sides can be made as straight at one pleases.
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(a) (b)

a

P

b

m

Figure E.8: (a) A thin spherical shell and a mass m located inside it at point P . (b) A thick shell is a
collection of many thin shells.

since the force of gravity on m is Gm times this ratio, the force exerted by b on m is equal
to the force exerted by a on m, and the two forces cancel each other. For each square (such
as a) on one side of P , there is a square (such as b) on the other side canceling the force of
the first square. Furthermore, the force of the shell on m is just the sum of the forces of all
squares. Therefore, the total force of the shell on m is zero.

What about a thick shell with a spherical hole in the middle? Any thick shell can be
thought of as a collection of many thin shells as illustrated in Figure E.8(b). The force
of gravity on a mass m inside the cavity is the sum total of the forces due to all the thin
shells. But the argument above showed that the forces coming from each thin shell is zero.
We conclude that the gravitational force inside a spherical cavity dug within a spherical
distribution of mass is zero.

Math Note E.9.3. The gravitational potential difference for two points P1 and P2 is Deriving formula for
gravitational potential
(page 142 of the book)

defined to be the difference between the gravitational potential energies of an object at
those two points divided by the mass of the object. If the distance ∆h between P1 and P2

is much smaller than the size of the gravitating body (the planet, the star, etc.), then the
difference in the potential energy of the object is mg∆h, with g the gravitational acceleration
(field) of the gravitating body at P1 (or P2, since the field is almost the same at the two
points).5 We then have

Φ2 − Φ1 =
mg∆h
m

= g∆h = gh2 − gh1

This equation tells us that Φ2 = gh2 and Φ1 = gh1, or in general, Φ = gh. So, Φ is the PE
(equal to mgh) divided by mass.

For a point that is far away at a distance r from the center of the celestial body,
PE = −GMm/r, and dividing by the mass, Φ = −GM/r. We summarize the discussion
as follows:

Φ = gh if the point is close to celestial body and at height h

Φ = −GM
r

if the point is far and at distance r from center

It is clear that larger h or r corresponds to larger potential. Furthermore, because the
direction of the gravitational field is toward the center [Figure 9.5(a)], or perpendicular to

5For instance, if P1 (and, therefore, P2) is close to the surface of the Earth, then g is simply the
gravitational acceleration of the Earth, 9.8 m/s2.
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the surface [Figure 9.5(b)], an object falls naturally from a higher potential region to a lower
one. Moreover, from the definition of the gravitational potential, m(Φ2 −Φ1) is the energy
stored in an object as it is displaced from P1 to P2. It is this stored energy that transforms
into kinetic energy as m falls in a gravitational field.

Math Note E.9.4. In Figure 9.6, take the distance from satellite to the center of theEquivalence of orbiting
and free fall

(page 145 of the book)
Earth to be r. If the satellite were moving on a straight line, t seconds later it would be at
a distance r+ h from the center of the Earth. Then, applying the Pythagorean theorem to
the triangle of Figure 9.6, we obtain

(r + h)2 = (vt)2 + r2 or r2 + 2rh+ h2 = v2t2 + r2 or 2rh+ h2 =
GM

r
t2

where in the first step, we expanded the parentheses, and in the second step, we eliminated
the r2 term on both sides of the equation, and used Equation (9.3). Now on the left-hand
side, 2rh is much larger than h2, because r is much larger than h (r is about 6.4 million
meters while h turns out to be only a few meters). So, we can ignore h2 on the left-hand
side and write

2rh =
GM

r
t2 or 2h =

GM

r2
t2 or h = 1

2

GM

r2
t2 or h = 1

2gt
2

where g is the acceleration of the satellite [see Equation (9.2)]. In fact, if r = R⊕, then
g = 9.8 m/s2. In particular, after one second, h = 4.9 meters.

E.10 Math Notes for Chapter 10

Math Note E.10.1. Assume that at time t1, a particle is moving at a point Q1 withShowing the
determinism of

Newtonian physics
(page 154 of the book)

velocity v1. We can determine its location and its velocity a short time later by applying
Newton’s second law assuming that the force F is known. Let us call this later time t2, the
position Q2 and the velocity v2. Then from the second law in the form a = F/m,

F(t1) = ma(t1) = m
∆v
∆t

= m
v2 − v1

∆t
, with ∆t = t2 − t1 very small,

we obtain

v2 − v1 ≈
F(t1)
m

∆t ⇒ v(t2) ≈ v(t1) + a(t1)∆t (E.5)

In Equation (E.5), F(t1) and a(t1) give the values of the force and acceleration at time t1,
and by definition, v1 = v(t1) and v2 = v(t2). Similarly, from the definition of velocity, we
obtain

v(t1) =
r2 − r1

∆t
, with ∆t very small.

and
r(t2) ≈ r(t1) + v(t1)∆t (E.6)

The approximations (E.5) and (E.6) assume that a and v do not change between t1
and t2; i.e., that they are constant in that time interval. This is fine as long as t2 is only
infinitesimally larger than t1, and a and v do not change abruptly. This last property is
what we call the continuity of a and v.

The objection to the assumption that a and v are constant during t2 − t1 becomes a
practical problem. Conceptually, we can let t2 to be as close to t1 as we please. In higher
mathematics, this is done regularly and a multitude of enriching conclusions ensue as a
result. A good example is the approximation of the area of a circle by that of an inscribed
regular polygon. As the number of sides of the polygon increases, its area approximates
the circular area better and better. This was actually known to Greeks long before the
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Figure E.9: The area of a circle is the limiting area of the sum of all the triangles as their number
increases (and their area decreases, of course) indefinitely.

invention of calculus in the 17th century. By increasing the number of sides of the polygon
beyond limits, they came up with the precise formula, area = πr2, for a circle of radius r
(see Figure E.9). In such a process the Greeks simultaneously dealt with infinitely large and
infinitely small: The number of triangles into which the polygon is divided grows infinitely
large while the area of each triangle diminishes to an infinitely small size. In some sense,
the two infinities compensate each other to give a finite result, the area of the circle.

The same principle can be applied to the motion of a particle under the influence of
a given force. Let us assume that we want to predict the position and the velocity of a
particle an hour from now. The position and the velocity of the particle must be known
initially, of course. This knowledge of the initial properties of the particle is called the
initial conditions. We divide the hour into say 3600 seconds. We can predict the velocity
a second later by using Equation (E.5) with ∆t = 1 second. We can also predict the position
a second later from Equation (E.6). Now that we have r(t2) and v(t2), we can predict r(t3)
and v(t3), the position and velocity a second later than t2 by the same procedure. From
r(t3) and v(t3) we can calculate r(t4) and v(t4), and so forth, until we reach the end of one
hour. Of course this would be only an approximation to the actual velocity and position
at the end of the hour, just as the area of an inscribed polygon with 3600 sides is only an
approximation to the actual area of the circle. However, just as the genius of the Greek
solved the problem of infinity for polygons more than 2000 years ago, the genius of the 17th
and 18th century mathematicians solved the problem of large scale motion as the limit of
infinitely many infinitesimal motions. The result was the birth of a whole new branch of
mathematics called differential equations.

Math Note E.10.2. To grasp the gist of the preceding Math Note, let us apply its pro- How to find orbit of
Earth around Sun
(page 154 of the book)

cedure to the motion of a planet around the Sun. The force exerted on the planet by the
Sun is F = GMm/r2 where M is the mass of the Sun, m that of the planet, and r their
separation. This force is always directed toward the Sun. The acceleration of the planet is
therefore a = F/m or a = GM/r2, also directed toward the Sun.

The line that connects the initial location of the planet to the Sun and the line along
which the planet moves initially form a plane. Call it the xy-plane, and draw the x and the
y axes in such a way that the Sun coincides with the origin, and the line joining the Sun
and the planet forms the x-axis. Since the planet has no initial speed perpendicular to this
plane by construction, and the Sun exerts no force perpendicular to the plane, the planet
will be confined to this plane for all time.

Figure E.10 shows a typical location of the planet on its path. It is convenient to
resolve the acceleration vector into its components along the two axes, and consider the
motion along these axes separately as in Equation (D.2). This means that the x coordinate,
the velocity, and acceleration in the x direction are to be considered separately from the
corresponding y quantities. In other words, Equations E.5 and E.6 are to be separated into
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a
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ay

x

y

r

Figure E.10: A typical location of the planet on its path. Note that the acceleration is always pointing
towards the Sun.

the following four equations:

vx(t2) ≈ vx(t1) + ax(t1)∆t, x(t2) ≈ x(t1) + vx(t1)∆t
vy(t2) ≈ vy(t1) + ay(t1)∆t, y(t2) ≈ y(t1) + vy(t1)∆t (E.7)

We now have to find ax(t) and ay(t).
From the similarity of the two right triangles in Figure E.10, we have

ax(t)
a(t)

= −x(t)
r(t)

or ax(t) = −x(t)
r(t)

a(t) = −x(t)
r(t)

GM

[r(t)]2
= −GMx(t)

[r(t)]3

where we used a = GM/r2, and the negative sign is introduced because ax points in the
negative x direction. The expression for ay(t) is obtained similarly:

ay(t) = −GMy(t)
[r(t)]3

If we substitute GM = (6.67 × 10−11) × (2 × 1030) = 1.33 × 1020, the above expressions
for the components of the acceleration, and r(t) =

√
[x(t)]2 + [y(t)]2 in Equation (E.7), we

obtain

vx(t2) ≈ vx(t1)− 1.33× 1020x(t1)

{[x(t1)]2 + [y(t1)]2}3/2
∆t, x(t2) ≈ x(t1) + vx(t1)∆t

vy(t2) ≈ vy(t1)− 1.33× 1020y(t1)

{[x(t1)]2 + [y(t1)]2}3/2
∆t, y(t2) ≈ y(t1) + vy(t1)∆t (E.8)

Now apply the equations above to the motion of Earth. The initial location of Earth is
described by x(0) = 1.5× 1011 m, y(0) = 0, i.e., we place the Earth on the x-axis initially
(or at t = 0). We also assume that Earth moves with a speed of 30,000 m/s perpendicular
to the x-axis initially. Therefore, vx(0) = 0, and vy(0) = 30, 000 m/s. In order to obtain
accurate results, we have to make ∆t as small as possible. For the motion of Earth, one
minute (60 seconds) is a good value for ∆t. Thus, Equation (E.8) becomes

vx(t2) ≈ vx(t1)− 8× 1021x(t1)

{[x(t1)]2 + [y(t1)]2}3/2
, x(t2) ≈ x(t1) + 60vx(t1)

vy(t2) ≈ vy(t1)− 8× 1021y(t1)

{[x(t1)]2 + [y(t1)]2}3/2
, y(t2) ≈ y(t1) + 60vy(t1) (E.9)

With Equation (E.9) as our master equation, we can now calculate the location of Earth
at different times. We set t1 = 0, t2 = 60, x(0) = 1.5 × 1011 m, y(0) = 0, vx(0) = 0, and
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vy(0) = 30, 000 m/s in the master equation and obtain

vx(60) ≈ vx(0)− 8× 1021 × 1.5× 1011

{[1.5× 1011]2 + [0]2}3/2
= 0− 0.356 = −0.356 m/s,

x(60) ≈ x(0) + 60vx(0) = 1.5× 1011 + 0 = 1.5× 1011 m

vy(60) ≈ vy(0)− 8× 1021 × 0

{[1.5× 1011]2 + [0]2}3/2
= 30, 000 m/s,

y(60) ≈ y(0) + 60vy(0) = 0 + 60× 30000 = 1800000 = 1.8× 106 m

We have thus determined the location and the velocity of Earth one minute after the start of
motion. From our new knowledge, we can locate Earth two minutes after the start of motion.
We use Equation (E.9) with t1 = 60, t2 = 120, x(60) = 1.5× 1011 m, y(60) = 1.8× 106 m,
vx(60) = −0.356, and vy(60) = 30, 000 m/s to find

vx(120) ≈ vx(60)− 8× 1021 × 1.5× 1011

{[1.5× 1011]2 + [1.8× 106]2}3/2

= −0.356− 0.356 = −0.711 m/s,

x(120) ≈ x(60) + 60vx(60) = 1.5× 1011 + 60× (−0.356)

= 1.5× 1011 − 21.36 = 1.5× 1011 m

vy(120) ≈ vy(0)− 8× 1021 × (1.8× 106)

{[1.5× 1011]2 + [1.8× 106]2}3/2

= 30, 000− 4.3× 10−6 = 30, 000 m/s,

y(120) ≈ y(60) + 60vy(60) = 1.8× 106 + 60× 30000 = 3.6× 106 m

This process can obviously be continued: from the information we have obtained for
t = 2 min, we determine the same information for t = 3 min, and from the information we
obtain for t = 3 min, we determine the corresponding information for t = 4 min, and so on
all the way to the end of Earth’s journey after a year. We don’t want to do this by hand, of
course. It would take us weeks to calculate all the numbers! A calculator can help, but it
is still too slow. However, in only a few minutes on a computer, some simple programming
can calculate the location of Earth minute by minute for a whole year. Table E.1 shows the
result of such a calculation, but instead of showing all the data (and making a long table
with over 500,000 rows), we have shown the data in intervals of 5 days. In that table the x
and y coordinates are measured in fractions of 1.5× 1011 m.

It is instructive to analyze this table in some detail. First, using r =
√
x2 + y2, one

can easily note that the Earth’s distance from the Sun is not constant, an indication of
the Keplerian fact that the path of the Earth is an ellipse. Second, note that sometime
between the last two entries, where x = 1, the y-coordinate changes sign. This means that
the Earth crosses the x-axis at the initial location of Earth. It follows that the “year” for
such an Earth is between 373 and 375 days. The real Earth, of course, has a year that
is approximately 365.25 days long. Why the disagreement? Because, the initial speed of
30,000 m/s is too large. The real Earth has a somewhat smaller speed. But how can a
smaller initial speed, the reader may ask, lead to a shorter year? Should the Earth not
cover its orbit in a longer time when it goes slower? It turns out that the slower the initial
speed, the shorter the orbit; so much shorter that, in fact, it will take Earth less time to
cover it. As an example, let us keep everything the same as before, but initially push the
Earth with a speed of 20,000 m/s instead of 30,000 m/s. Then, following exactly the same
procedure as before, we obtain Table E.2. By using r =

√
x2 + y2, one can easily note that

the Earth’s distance from the Sun varies considerably, indicating that the path of this Earth
is definitely an ellipse. Figure E.11 shows the orbits of the two Earths discussed above.
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t x y t x y t x y

0 1 0 130 −0.606 0.826 260 −0.380 −0.947
5 0.996 0.086 135 −0.672 0.774 265 −0.3 −0.975
10 0.985 0.172 140 −0.734 0.717 270 −0.217 −0.995
15 0.967 0.256 145 −0.791 0.655 275 −0.134 −1.008
20 0.941 0.339 150 −0.843 0.588 280 −0.049 −1.015
25 0.909 0.419 155 −0.889 0.518 285 0.036 −1.014
30 0.871 0.496 160 −0.928 0.444 290 0.121 −1.006
35 0.825 0.569 165 −0.962 0.367 295 0.205 −0.991
40 0.774 0.638 170 −0.989 0.288 300 0.287 −0.969
45 0.717 0.703 175 −1.009 0.206 305 0.368 −0.940
50 0.655 0.762 180 −1.023 0.124 310 0.446 −0.905
55 0.588 0.816 185 −1.03 0.04 315 0.520 −0.863
60 0.517 0.864 190 −1.03 0.044 320 0.591 −0.814
65 0.442 0.906 195 −1.023 −0.127 325 0.658 −0.760
70 0.364 0.942 200 −1.009 −0.210 330 0.72 −0.700
75 0.284 0.970 205 −0.988 −0.291 335 0.777 −0.636
80 0.201 0.992 210 −0.961 −0.371 340 0.828 −0.566
85 0.117 1.007 215 −0.927 −0.447 345 0.873 −0.493
90 0.032 1.014 220 −0.887 −0.521 350 0.911 −0.416
95 −0.053 1.014 225 −0.840 −0.591 355 0.943 −0.336
100 −0.138 1.008 230 −0.789 −0.658 360 0.968 −0.253
105 −0.221 0.994 235 −0.732 −0.719 365 0.986 −0.168
110 −0.304 0.973 240 −0.670 −0.776 370 0.997 −0.083
115 −0.384 0.946 245 −0.603 −0.828 371 0.998 −0.066
120 −0.461 0.912 250 −0.532 −0.874 373 1.00 −0.014
125 −0.535 0.872 255 −0.458 −0.914 375 1.00 0.004

Table E.1: The x and y coordinates—measured in fractions of 1.5× 1011 m—of Earth around the Sun
every five days (except for the last four entries). The year for the Earth of this table is a little longer,
because its initial speed is a little larger than the real Earth.

t x y t x y t x y

0 1 0 70 0.222 0.528 140 0.616 −0.494
5 0.996 0.058 75 0.100 0.496 145 0.692 −0.461
10 0.985 0.114 80 −0.026 0.436 150 0.758 −0.422
15 0.967 0.171 85 −0.150 0.337 155 0.816 −0.378
20 0.941 0.226 90 −0.250 0.190 160 0.865 −0.331
25 0.907 0.279 95 −0.291 0.001 165 0.907 −0.280
30 0.866 0.330 100 −0.251 −0.188 170 0.941 −0.227
35 0.816 0.377 105 −1.151 −0.336 175 0.967 −0.173
40 0.759 0.421 110 −0.280 −0.435 180 0.986 −0.116
45 0.692 0.460 115 0.099 −0.496 184 0.995 −0.071
50 0.617 0.493 120 0.221 −0.528 186 0.998 −0.048
55 0.533 0.519 125 0.334 −0.540 188 1.000 −0.025
60 0.439 0.535 130 0.438 −0.536 190 1.001 −0.002
65 0.335 0.539 135 0.532 −0.519 191 1.001 0.010

Table E.2: The x and y coordinates—measured in fractions of 1.5× 1011 m—of an Earth that is given
an initial speed of 20,000 m/s. The year for such an Earth is about 190 days.
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Figure E.11: The graph on the left shows Earth’s orbit when its initial speed is 30,000 m/s. The graph
on the right is Earth’s orbit if its initial speed were changed to 20,000 m/s.

Earth is only one of the planets circling the Sun. Thus, the analysis above shows that
the Newtonian law of gravity implies Kepler’s first law of planetary motion, i.e., the fact
that planetary orbits are elliptical. It turns out that the same gravitational law also implies
the other two Keplerian laws.

E.11 Math Notes for Chapter 11

Math Note E.11.1. To further understand interference patterns, consider two coherent Analysis of interference
(page 166 of the book)sources S1 and S2 in Figure E.12 producing waves that are in phase, meaning that the

crests or troughs of the waves occur at exactly the same time at the two sources. For
concreteness, let us assume that S1 and S2 are light sources, although the discussion and
its conclusions apply to all waves. These waves fall on a white screen, on which we can
observe the interference pattern. Point C0, which lies on the perpendicular bisector of S1S2,
is equidistant from the two sources. The crests (or the troughs) produced at the two sources
always reach C0 at exactly the same time and are added there. Therefore, C0 is a point, at
which the wave always oscillates with twice the amplitude of either waves. It follows that
C0 is a location of a constructive interference; we see a bright spot there.

S1 S2
A

C0C1 C1

B

D1E

Figure E.12: Two coherent sources of wave produce interference, a pattern of high and low intensity
that remain unchanged.

Now move away from C0 on the screen until you reach the point C1 where the difference
between S1C1 and S2C1 is one wavelength. What do you get at C1? Suppose that the two
sources produce crests at a particular time. The crest from S2 reaches A after one period
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(C1A is drawn equal to S1C1, so that S2A is equal to one wavelength). At this time the
sources produce the next crest. This new crest from S1 and the previous crest from S2

(which is now at A) travel the same distance and reach C1 at the same time and get added
there. Similarly, the trough of S2 arrives at C1 at exactly the same time that the next
trough of S1 arrives there. Therefore, C1 is also a point, at which the wave always oscillates
with twice the amplitude of either waves. It is a location of a constructive interference; we
see a bright spot there also.

You can convince yourself that the location of the next bright spot on the screen is a
point C2, where the difference between S1C2 and S2C2 is two wavelengths. In general, the
bright spots on the screen occur at points P where the difference between S1P and S2P is
an integer multiple of the wavelength.

Somewhere between C0 and C1 on the screen there is a dark spot, because as you move
away from C0 you reach a point (call it D1) for which the difference between S1D1 and
S2D1 is half a wavelength. Once again suppose that the two sources produce crests at a
particular time. The crest from S1 reaches B after half a period (D1B is drawn equal to
S2D1, so that S1B is equal to half a wavelength). At this time the sources produce a trough.
The trough from S2 and the previous crest from S1 (which is now at B) travel the same
distance and reach D1 at the same time and get algebraically added there, i.e., they cancel
each other. Similarly, the crest of S1 arrives at D1 at exactly the same time that the next
trough of S2 arrives there. Therefore, D1 is a point, at which the wave never oscillates. It
is a location of a destructive interference, a dark spot.

The location of the next dark spot on the screen is a point D2, where the difference
between S1D2 and S2D2 is three halves wavelengths. In general, the dark spots on the
screen occur at points Q where the difference between S1Q and S2Q is an odd multiple of
half a wavelength.

I have talked about bright and dark “spots,” while in reality I should talk about lines
(if the two sources are long and narrow) or circles (if the two sources are round), because
the screen is not a line as shown in Figure E.12, but a plane, of which the line in the
figure is a cross section. Similarly, the “points” on the screen are cross sections of lines or
circles. The succession of bright and dark lines or circles is called interference fringes.
One characteristic of the fringes that is frequently used is how many of them one can find
on a screen of a given length. Example D.11.1 on page 32 of Appendix.pdf shows how
to find this number.

Math Note E.11.2. Denote the speed of the source as v and that of the wave as c. SupposeDerivation of the
Doppler-shift when

source moves
(page 169 of the book)

that at a certain time the source sends its first pulse which spreads out into a sphere. The
second pulse is sent T seconds later, where T is the period of oscillation of the wave. But
during this time, the source has traveled a distance of vT . Thus, the second pulse will
have partially caught up with the first, reducing its distance from the first in the forward
direction. Similarly, the third pulse will reduce its distance from the second by exactly
the same amount because of the motion of the source. The spherical pulses are squeezed
together in the forward direction as shown in Figure 11.10(b).

The amount by which the spheres are squeezed is precisely the distance the source travels
in T . Thus the detected wavelength, denoted by λdet, is λdet = λ−vT , or λdet = λ−v(λ/c),
because λ = cT . This could also be written as λdet = λ−λ(v/c), or λdet = λ(1− v/c). The
shift ∆λ in the wavelength, defined as λdet−λ is simply −vT (from the first equation in this
paragraph). It is customary to define the Doppler shift as the fractional change in the
wavelength: ∆λ/λ, which is equal to −vT/λ, or −v/c (because λ/T = c). If the source is
receding from the detector, then λdet = λ+ vT , and the formula above will have a plus sign
instead of minus: ∆λ/λ = +v/c. Instead of carrying the + and the − in the formula, we
agree to call v negative if the distance between the source and the detector decreases, i.e., if
the source is approaching the detector. Similarly, v > 0 if the distance between the source
and the detector increases, i.e., if the source is receding from the detector. We therefore
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have the simple but important Doppler shift formula

λdet = λ
(

1 +
v

c

)
,

∆λ
λ

=
v

c
, v > 0 for receding, v < 0 for approaching (E.10)

If we are interested in the detected frequency, we use c = λf , with λ being the detected
wavelength.

Math Note E.11.3. Assume that the detector is moving with speed v relative to the Derivation of the
Doppler-shift when
detector moves
(page 169 of the book)

medium while the source is stationary. It is easiest to calculate the detected period of the
wave. First assume that the detector is approaching the source. Since the wave is moving
with speed c relative to the medium, and the detector is moving towards the source, the
wave fronts are approaching the detector with a speed of c+ v, and the distance λ between
two fronts is covered in

Tdet =
λ

c+ v
or cTdet =

cλ

c+ v
=

cλ

c(1 + v/c)
=

λ

1 + v/c

where in the first step we multiplied both sides of the equation by c, in the second step we
factored out a c in the denominator, and in the last step we canceled the common c’s in
the numerator and denominator. If the detector is moving away from the source, the wave
fronts will be approaching it with a speed of c− v.6 Thus, a minus sign will appear in the
above formulas. Now we note that cTdet is nothing but λdet. As in Math Note E.11.2, we
let v carry the algebraic sign and obtain the relation

λdet =
λ

1− v/c
, v > 0 for receding, v < 0 for approaching (E.11)

If v is much much smaller than c, then to a very good approximation

1
1 + v/c

= 1− v

c
and

1
1− v/c

= 1 +
v

c
,

i.e., the fraction is equal to just the denominator with the opposite sign. For example, if
v/c = 0.01, then

1
1− 0.01

= 1.0101 ≈ 1 + 0.01, and
1

1 + 0.01
= 0.99001 ≈ 1− 0.01

For v/c = 0.001, we get a better approximation; for v/c = 0.0001, the approximation gets
even better, and so on. For such speeds, therefore, Equation (E.11) becomes identical to
Equation (E.10), and it does not matter whether the source is moving or the detector.

Math Note E.11.4. If both the source S and the detector D are moving relative to Derivation of the
Doppler-shift when both
source and detector
move
(page 170 of the book)

the medium (Figure E.13), then the results of Math Notes E.11.2 and E.11.3 have to be
combined. Suppose S is moving with a speed vs and D with vd. The detected wavelength
is shortened by vsT , and that shortened distance is covered with a speed c − vd—because
the detector is moving away from the wave, reducing the (relative) speed of the wave and
the detector. Therefore, the detected period will be

Tdet =
λ− vsT
c− vd

or cTdet =
cλ− vscT
c− vd

=
cλ− vsλ
c− vd

where we multiplied both sides by c. The left-hand side of the last equation is λdet, and if
we divide the numerator and denominator of the right-hand side by c, we obtain

λdet = λ

(
1− vs/c
1− vd/c

)
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vd
vs

DS

Figure E.13: Both the source and the detector are moving.

The important case when vs and vd are both much much smaller than c leads to

λdet = λ
(

1− vs
c

)(
1 +

vd
c

)
= λ

(
1− vs

c
+
vs
c
− vsvd

c2

)
= λ

(
1 +

vd − vs
c

)
where we ignored the last term because it was much smaller than the other terms. [For
example if vs/c and vd/c are each 0.001, then vsvd/c2—which is the same as (vs/c)(vd/c)—
is 0.0012 or 0.000001.] Now noting that vd − vs is the speed of the source relative to the
detector, we can write

λdet = λ
(

1 +
vrel

c

)
or

∆λ
λ

=
vrel

c
(E.12)

where vrel is positive if vd > vs, i.e., the detector runs away from the source, or recedes from
it, and it is negative if vd < vs, i.e., if the source catches up with the detector, or approaches
it.

In Equation (E.12) any reference to the medium has been eliminated! In relativity no
medium is allowed for the propagation of electromagnetic waves. Therefore, only relative
velocities should enter the formulas. It turns out that a full relativistic analysis of the
Doppler effect will yield a result, whose limit—when the velocities of source and detector
are much much smaller than the speed of light—is identical to Equation (E.12).

In some situations D is at S and it detects a wave reflected from a moving object A. It
is desirable to find the wavelength of this reflected wave as measured by the detector at S.
The wave reflected from A has the same wavelength as the incident wave as measured by
A, namely that given by (E.12). When this wavelength—which we call λref—is received at
S it is shifted by the same factor. Therefore,

λref = λdet

(
1 +

vrel

c

)
= λ

(
1 +

vrel

c

)2

≈ λ
(

1 + 2
vrel

c

)
assuming, as usual, that vrel/c is very small compared to 1. This equation leads to the
following fractional change in the wavelength:

∆λ
λ

=
λref − λ

λ
= 2

vrel

c
(E.13)

where, vrel is negative if the source and the detector are approaching and positive if they
are moving apart.

6To see this, simply note that if detector is moving with the same speed c as the waves, the wave will
not catch up with it, because the wave fronts will be approaching the detector with a speed of c− c = 0.
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P1 P2

x1

x2O

Figure E.14: Electric potential difference between two points is related to the work done by the electric
field.

E.12 Math Notes for Chapter 12

Math Note E.12.1. To simplify the analysis suppose that the electric field is uniform Connection between
electric field and electric
potential
(page 181 of the book)

(constant magnitude and direction) as shown in Figure E.14. Release a positive charge at
P2, and note that it will move towards P1. The work done by the electric field in pushing
the positive charge from P2 to P1 is

We = Fe(x2 − x1) = qE(x2 − x1)

where x1 and x2 are the distances from an otherwise arbitrary origin O. This work is
positive because the displacement and the force are in the same direction. But this work is
precisely the difference in the EPE of the two points P1 and P2. So, we can write

EPE2 − EPE1 = qE(x2 − x1) or q(V2 − V1) = qE(x2 − x1)

using Equation (12.3). It now follows that

V2 − V1 = E(x2 − x1) = Ed where d = x2 − x1. (E.14)

This is also a positive quantity, meaning that V2 is larger than V1, i.e., that P2 is at a higher
electric potential than P1. We conclude that the electric field points from a higher potential
to a lower potential. It is instructive to compare Equation (E.14) with the analogous
expression for gravity: Φ2 − Φ1 = g(h2 − h1) discussed in Math Note E.9.3.

Math Note E.12.2. If you divide the energy qE by time t, you obtain a useful expression Power delivered by a
battery
(page 187 of the book)

for power:

Relation between power,
current, and emf

P =
qE

t
=
q

t
E = iE (E.15)

Thus, the power supplied by a battery (its wattage) is the product of the current in the
circuit and the voltage of the battery.

As a charge moves in a wire from a higher potential to a lower potential, it loses energy
according to Equation (12.3). If you divide both sides of that equation by time t, the left-
hand side becomes power loss P , while the q on the right-hand side gives the current as
follows:

EPE2 − EPE1

t︸ ︷︷ ︸
=P

=
q(V2 − V1)

t
=

q

t︸︷︷︸
=i

(V2 − V1)︸ ︷︷ ︸
=V

⇒ P = iV (E.16)

where V is defined to be the potential drop between the two points.
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The power loss in a resistance can be written in terms of resistance and the current it
carries. This is easily accomplished by combining Equations (E.16) and (12.5):

P = iV = i(Ri) = Ri2 (E.17)

E.13 Math Notes for Chapter 13

Math Note E.13.1. Let us start with a transformer whose primary and secondary coilsDeriving the ideal
transformer formula

(page 204 of the book)
have only one turn each. Assuming that the transformer is ideal, i.e., no magnetic flux
“escapes” the iron core, the emf in the two coils must be the same, because the two fluxes
(as well as their rate of change) are identical.

Now let’s add a third identical coil on the iron core. For exactly the same reason, we
conclude that all three coils must have the same emf. In fact, however many coils we have
on the iron core, the result is the same: All identical single-turn coils have the same emf,
regardless of their location on the iron core. So, if we have 12 coils, and we move 7 of then
to the left and 5 of them to the right, the conclusion is not altered.

Suppose there are N1 coils on the left and N2 coils on the right of the iron core, each coil
having an emf of E. Let us connect the left bunch together and do the same with the right
bunch. Then we have a coil with N1 turns and a total emf of N1E on the left. Similarly, if
we connect all the coils on the right, we have a coil with N2 turns and a total emf of N2E.
Then, we can write

total emf on left
N1

=
N1E

N1
= E =

N2E

N2
=

total emf on right
N2

,

i.e., emf per turn is equal on both sides.
If you start with a coil of N1 turns on the left having an emf E1, and a coil of N2 turns

on the right having an emf E2, then you can reason backwards: The coil on the left is
equivalent to N1 separate coils each having an emf of E1/N1, and the one on the right is
equivalent to N2 separate coils each having an emf of E2/N2; and these two quantities have
to be equal:

E1

N1
=

E2

N2
and i1N1 = i2N2 (E.18)

What happens to the current in the coils? The answer lies in the conservation of energy.
Imagine bringing two single-turn coils together. Each coil carries a current—in general

different from the other coil. These currents are in the same direction, and therefore exert
an attractive force on one another [see Equation (D.11) and the comments after it]. This
attraction lowers the energy of the system once the coils settle down in their final positions.7

The lowering of energy translates into the reduction of currents. In fact, since the product
of the current and the emf is the power, assuming conservation of energy, i.e., no heat loss
(again an ideal transformer), we conclude that the power input of the primary should equal
the power output of the secondary, or i1E1 = i2E2. This and the first equation in (E.18)
lead to the equation for currents.

E.14 Math Notes for Chapter 14

Math Note E.14.1. The left-hand side (LHS) of the equation in Figure 14.1(a) is calledExplaining Maxwell’s
first equation

(page 212 of the book)
the divergence of the electric field. The symbol ∇·E has the following operational meaning.
Pick a point in space; imagine a very small cube enclosing that point; calculate the total

7This lowering of energy is similar to the lowering of the energy of a ball—attracted to the Earth—when
it hits the ground after falling from a height. A more detailed analysis (beyond the scope of this book)
shows that, as a result of the motion toward one another, a magnetic force is exerted on the charges in each
coil causing them to slow down.
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outward electric flux through the six sides of the cube:8 If the electric field lines point out
of the cube for a side, give a positive sign to the flux through that side, and if they point
inward, give it a negative sign. Add all the six fluxes to get the LHS.9

Suppose you did all of the above and you got a positive number. That means that the
right-hand side (RHS) is also positive. But since 4πke is positive, this means that ρ, which
happens to be the electric charge (density) inside the cube, is positive. Our discussion of
electric fields and their connection with the signs of the charges (see Section 12.2) told us
that a positive charge has outgoing electric field lines. This fits perfectly with the present
discussion: If you have positive charges in the cube, their field lines diverge outward (thus
the name divergence) and the outward flux is positive.

It is obvious that if the total flux is negative, the field lines must be converging inward,
and the charge inside must be negative based on our discussion of the electric fields of
negative charges.

If the LHS of the Maxwell’s first equation turns out to be zero, then either you are in a
region where there is no electric field (E = 0), or there are as many field lines entering the
volume as leaving it, in which case either the charges are somewhere else, or there are as
many positive charges inside as there are negative. In all cases, the net charge inside will
be zero.

So, the first Maxwell’s equation connects the outward flux of the electric field through
a volume to the electric charge enclosed in that volume.

Math Note E.14.2. The LHS of the equation in Figure 14.1(c) is called the curl or Showing connection
between Maxwell’s third
equation and Faraday’s
law
(page 212 of the book)

circulation of the electric field. How do you find the curl of a field? Take a point P in space
and draw a little square around it with P at the center. Choose a direction to go around
the square, say counterclockwise. In the middle of each side, measure the component of the
field along that side. This component can be positive (if the angle between the field and
the directed side is acute), negative (if the angle between the field and the directed side is
obtuse), or zero (if the field is perpendicular to the side). If you add the components along
the four sides, you get the curl (or circulation) of the field at P .10

A good way to visualize the circulation is to imagine a whirlpool in which the water
moves around a loop. The velocity field of the water in such a situation has a nonzero
circulation. Figure E.15(a) shows a square in a whirlpool. It is clear that the components
of the field along all sides are positive, so that the total circulation is positive.11 On
the other hand, the water flowing smoothly in a river has no circulation, because for any
square traversed in some direction (say counterclockwise), and for any side of that square
that gives a positive contribution to the circulation, there is another side which gives a
negative contribution of equal magnitude. In Figure E.15(b) only two sides have nonzero
contributions to the circulation; the other two give zero contribution because the field is
perpendicular to both.

The RHS of Maxwell’s third equation, symbolizes the rate at which the magnetic field
at P changes with time. But this change in magnetic field accompanies a change in the
magnetic flux through the little square at P . Thus, Maxwell’s third equation says that the
circulation of the electric field around a small (square) loop is the same as (the negative of)
the rate of change of the magnetic flux through that loop.

Now consider a big loop (of arbitrary shape) L with magnetic field lines piercing the
area formed by it. Divide the area into a large number of very small squares and apply the
third equation to all these squares. Choose to go around the small squares counterclockwise.

8Recall from Subsection 13.4.1 that flux is the “number” of field lines piercing through an area.
9To be superprecise, you will have to divide the total flux by the volume of the cube to get the LHS,

but that is not essential for our argument here.
10Actually you have to multiply each component by the length of the corresponding side and divide the

sum by the area of the square to get the circulation, but these are minor details that do not affect the
outcome of our discussion here.

11Had you chosen a clockwise direction for the square, the circulation would have been negative.
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(a) (b) (c) (d)

Figure E.15: (a) In a whirlpool the circulation around a square is nonzero. (b) In a smoothly flowing
stream, the circulation is zero. (c) The common sides of two adjacent squares have contributions to the
circulation that are opposite in sign, so that the total circulation is that of the rectangle in (d).

Then the component of the field along the side belonging to one square has the opposite sign
to that along the same side considered as part of the adjacent square. Figure E.15(c) shows
two such squares. The right side of the left square coincides with the left side of the right
square. Since both squares are traversed in the counterclockwise direction, the common
side’s direction is up for the left square, and down for the right square. The component of
the field will be positive for one and negative for the other. So, if you add the circulations
of these two squares, the components along the common side will cancel each other, and
the two squares can be replaced by the rectangle of Figure E.15(d).

Continuing pair by pair, sum up the circulations of all the little squares. The contribu-
tion from all the squares inside L will add up to zero due to this cancellation. Only the
squares at the boundary, i.e., those one of whose sides is on L, will give a nonzero contri-
bution. The result is the circulation of the electric field on L. On the other hand, adding
all the fluxes of the little squares gives the total flux through the big loop L.

So far, we have obtained the result that if the magnetic flux through an imaginary loop
changes with time, there will be a net electric circulation—i.e., some net component of the
electric field—along that loop. Now replace the imaginary loop with a conducting wire of
the same shape. Then the changing flux will create a net electric field in the wire which
will cause the charges to move and create an electric current. We have regained Faraday’s
law as stated in Subsection 13.4.1!

Math Note E.14.3. Comparison of Figure 14.3 with Figure 11.1 shows thatCalculating speed of EM
waves

(page 214 of the book) 1
v2

=
km
ke

or v2 =
ke
km

and v =
√
ke
km

Substituting the values ke = 8.988× 109 and km = 10−7, we obtain

v =

√
8.988× 109

10−7
=
√

8.988× 1016 = 2.998× 108 m/s

which is precisely the speed of light!
I used the current values for ke and km, and obtained the current—and accurate—value

of the speed of light. The values Maxwell used were different, but accurate enough to give
a speed for the waves very close to the speed of light as measured at that time.

E.16 Math Notes for Chapter 16

Math Note E.16.1. We consider the general case of n coins. The total number of outcomesProbability of coin tosses
(page 230 of the book) is 2× 2× 2× ...× 2(n factors) = 2n. This is because each coin has 2 possible outcomes and

there are n coins.
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The frequency f for zero H is clearly 1, and for one H is n (H can be coin #1, or #2, or
#3, etc.). For two H’s, an argument similar to that of the preceding example shows that
f(2) = n(n − 1)/2. For the frequency of 3 H’s we note that there are n choices for the
first H, n − 1 choices for the second H, and n − 2 choices for the third one. So, there are
n(n− 1)(n− 2) choices. However, we must not distinguish among the three coins, i.e., our
result must not depend on which coin we called #1, which #2, and which #3. Another
way of expressing this is to say that a permutation of the three heads must give the same
result. Since there are 3× 2× 1 = 3! (read “three factorial”) ways of rearranging the three
heads, we get f(3) = n(n−1)(n−2)/3!. If we multiply the numerator and the denominator
of this fraction by (n− 3)! = 1× 2× 3× ...× (n− 3), we obtain

f(3) =
n(n− 1)(n− 2)× (n− 3)× · · · × 3× 2× 1

3!(n− 3)!
or f(3) =

n!
3!(n− 3)!

It should now be clear that the frequency for four heads is f(4) = n(n−1)(n−2)(n−3)/4!,
or multiplying the numerator and the denominator by (n− 4)!,

f(4) =
n!

4!(n− 4)!
,

and in general, the frequency of m heads in a throw of n coins is denoted by fn(m) and is
given by

fn(m) =
n!

m!(n−m)!
(E.19)

Probability is simply the ratio of the frequency to the number of outcomes, 2n. So, writing
Pn(m) for this probability, we have

Pn(m) =
fn(m)

2n
=

n!
m!(n−m)!2n

(E.20)

This probability function is symmetric about n/2; i.e., it can be shown that Pn(n2 − x) =
Pn(n2 + x). In fact, if we let m = n

2 + x, then n−m = n− (n2 + x) = n
2 − x and

Pn(m) =
n!(

n
2 + x

)
!
(
n
2 − x

)
! 2n

which is manifestly symmetric about n/2.
A convenient approximation to this equation is obtained when n is very large and m

is very close to n/2, the average number of H’s. Symbolically this means n >> 1, and
|n/2−m| << n/2. For such a situation, we have

Pn(m) =

√
2
nπ

e−
(n−2m)2

2n (E.21)

where e = 2.7182818 . . . is the base of natural logarithm, and π = 3.14159 . . .. The larger the
numbers m and n, the better the above approximation. For example, P20(9) = 0.160 using
the exact formula and P20(9) = 0.161 using the approximate formula. These two results
are already remarkably close although 20 and 9 are not large numbers. For 50 coins we get
P50(24) = 0.107957 from the exact formula, and P50(24) = 0.10841 using the approximate
formula. We see that for 50 coins the results agree much better. For n = 1, 000, 000 and
m = 498000 the two results are essentially identical. For larger m and n, the results agree
even better.

Math Note E.16.2. Recall that when both m and n are large, we can approximate the Determination of m−
and m+

(page 232 of the book)
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probability Pn(m) of getting m heads in a throw of n coins with Equation (E.21). For
m = n/2, this gives the simple result

Pn

(n
2

)
=

√
2
nπ

(E.22)

As we mentioned earlier, this is the most probable outcome in the throw of n coins, yet
for larger and larger n it becomes smaller and smaller due to the appearance of n in the
denominator! This is surprising, because on the one hand we showed that for large n, the
probability of getting anything much different from n/2 was negligible. Now, we say that
the probability of getting n/2 is also negligible! So, what do we get when we throw a large
number of coins? Nothing? Everything? We shall come back to this question later.

Let us compare (E.21) and (E.22) by constructing their ratio:

r =
Pn(m)
Pn(n/2)

= e−
(n−2m)2

2n

This shows that r becomes smaller and smaller as the quantity (n − 2m)2/2n gets larger
and larger. In other words, the ratio of probabilities decreases as the difference n − 2m
which is the same as 2(n/2−m) increases, i.e., as m moves farther and farther away from
n/2. This is the result we obtained qualitatively for a million coins.

How far do we have to move away from n/2 for the probability Pn(m) to be negligible?
To answer this question, we must first define the word “negligible.” For us, negligible
means small compared to the most probable. The latter is the the only thing we can
compare our probability with.12 Let us agree that if r is less than one millionth, 10−6,
we call the corresponding probability negligible. In words, we agree—in this book—to call
the probability of m heads in a throw of n coins negligible if Pn(m) is a million times
smaller than Pn(n/2). Notice that we are not talking about absolute probability, because,
as mentioned above, even the most probable outcome would have a negligible probability
if n is large enough. Note also that the number 10−6 is completely arbitrary. Any small
enough number is equally plausible. It turns out, however, that the argument we are about
to present will not change in quality, although quantitatively we may get slightly different
results.

As before, let us denote by m+ (respectively m−) the number of heads above (respec-
tively below) which r is less than 10−6. We can then write

e−
(n−2m±)2

2n = 10−6 ⇒ − (n− 2m±)2

2n
= ln(10−6) = −13.82

or
(n− 2m±)2 = 27.63n ⇒ n− 2m± = ±

√
27.63n = ±5.257

√
n

or
2m± = n± 5.257

√
n ⇒ m+ =

n

2
+ 2.63

√
n, m− =

n

2
− 2.63

√
n (E.23)

For example, for n = 1, 000, 000, we have

m+ = 500, 000 + 2.63
√

1, 000, 000 = 500, 000 + 2, 630 = 502, 630

and
m− = 500, 000− 2.63

√
1, 000, 000 = 500, 000− 2, 630 = 497, 370

which are very close to the numbers we obtained from the plot of the distribution of a
million coins.

12In physics, words such as “negligible”, “small”, “fast”, “large”, etc. are relative words. Something that
is small relative to the size of the Earth (Mount Everest) may seem huge to us, and something that is tiny
relative to us (a small grain of sand) may be huge relative to a molecule.
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L
x

Figure E.16: The particles of the gas move randomly in all directions, but their motion along x-direction
contributes to the pressure of the two end areas.

Math Note E.16.3. We want to estimate the time it takes the working population of the
U.S.—around 100 million—to count the number of heads showing up in 10,000 throws of a
trillion (1012) coins, assuming that each adult can count 3 coins per second.

The entire counters count 300 million coins per second. So, for each trial, we need Estimating coin
counting time
(page 234 of the book)1012

300, 000, 000
= 3, 333 seconds,

and for 10,000 trials, we need 3.333× 107 seconds. Each working day consists of

8× 3600 = 28, 800 seconds.

Thus, the time needed is
3.333× 107

28, 800
= 1157 days

or over three years!

E.17 Math Notes for Chapter 17

Math Note E.17.1. Consider a simple cylindrical container full of a gas as shown in Deriving ideal gas law
(page 243 of the book)Figure E.16. The particles of the gas move randomly in all directions, hitting the walls of

the cylinder and imparting pressure on them. Let us concentrate on one of the bases of the
cylinder, the one on the right. The force perpendicular to the base results from the change
in the momentum of the particles in the x-direction. Therefore, we need to consider the
motion in the x-direction only. Particle 1 has an x-momentum p1x. It moves toward the
right base, and after impact, bounces off and moves in the opposite direction with the same
momentum (we are assuming an elastic collision, in which the magnitude of the momentum
does not change). The change in the momentum of particle 1 is

∆p1 = p1f − p1i = −p1x − p1x = −2p1x

The momentum imparted to the cylinder is the negative of this momentum, because particle
1 and the cylinder constitute an isolated system for which the total momentum does not
change. So, for the change in the momentum of the cylinder due to the impact of particle
1, we can write ∆pcyl,1 = 2p1x.

How often does particle 1 impart this momentum to the cylinder? Right after each
impact, particle 1 moves to the left base, bounces back, and moves to the right base again.
So the time interval, ∆t1, it takes particle 1 to come back to the right cylinder after each
impact is the time it takes the particle to travel twice the length of the cylinder. Therefore,
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∆t1 = 2L/v1x; and the perpendicular force particle 1 exerts on the right base is (by the
second law of motion as stated in Box 7.2.1)

F1x =
∆pcyl,1

∆t1
=

2p1x

(2L/v1x)
=
p1xv1x

L

An identical result can be obtained for particles 2, 3, . . . . The total force on the right base
is the sum of the forces exerted by all the particles in the gas. Assuming that there are N
particles, we obtain

Fx = F1x + F2x + F3x + . . .+ FNx

=
p1xv1x

L
+
p2xv2x

L
+ · · ·+ pNxvNx

L

=
1
L

(p1xv1x + p2xv2x + . . .+ pNxvNx) (E.24)

We have so far used only the “mechanics” part of the “statistical mechanics.” And if
we were to apply solely the laws of mechanics, we would have to add the products of the
x-components of the velocities and momenta of all (trillion trillion) particles in the gas!
Fortunately, the “statistical” part comes to our rescue. We simply note that the average of
a quantity for a sample is the sum of that quantity divided by the number of the constituents
in the sample. Denoting the average by angle brackets, we can write

〈pxvx〉 =
p1xv1x + p2xv2x + . . .+ pNxvNx

N

which can also be written as

p1xv1x + p2xv2x + . . .+ pNxvNx = N〈pxvx〉

It follows from Equation (E.24) that

Fx =
1
L
N〈pxvx〉 =

N

L
〈pxvx〉 (E.25)

Although we concentrated on the x-direction, there is really nothing special about it.
In particular, the average of the product of components of momentum and velocity of all
particles should not be biased about any directions. Thus, the product of y- and the z-
components of momentum and velocity should give identical results as the x-component:
〈pyvy〉 = 〈pzvz〉 = 〈pxvx〉. Now, the product of the total momentum and total speed is the
sum of the products of their components. Therefore,13

〈pv〉 = 〈pxvx + pyvy + pzvz〉 = 〈pxvx〉+ 〈pyvy〉+ 〈pzvz〉 (E.26)

and since all these averages are equal, we have 〈pv〉 = 3〈pxvx〉 or 〈pxvx〉 = 1
3 〈pv〉, and

Equation (E.25) becomes

Fx =
N

L

(
1
3 〈pv〉

)
=

N

3L
〈pv〉

To find the pressure, we have to divide this force by the area of the base. This area combined
with the length L gives the volume V of the cylinder in the denominator:

P =
Fx
A

=
N

3LA
〈pv〉 =

N

3V
〈pv〉 (E.27)

For ordinary (nonrelativistic) particles, p = mv, and (E.27) yields

P =
N

3V
〈mv2〉 =

N

3V
〈2KE〉 =

2N
3V
〈KE〉 (E.28)

13Readers familiar with the dot product of vectors recognize the right-hand side of the first equality of
Equation (E.26) as p · v, but since p and v are in the same direction, p · v = pv, thus the left-hand side.



Appendix E.17 Math Notes for Chapter 17 103

where in the last two steps we used the definition of the KE. Later, we shall see that the
average energy (in this case, the kinetic energy) of a particle of the gas is proportional to
temperature. An exact analysis of the statistical mechanics of the gas shows that

〈KE〉 = 3
2kBT (E.29)

where T is the temperature in K (for Kelvin, the scientific unit of temperature) and kB is
the Boltzmann constant, whose value is 1.38× 10−23 J/K. Combining Equations (E.28)
and (E.29), we obtain

P =
2N
3V

3
2kBT =

N

V
kBT or PV = NkBT (E.30)

This is called the ideal gas law.
For later reference, we also derive the EM radiation pressure. As we shall see in

Section 20.3, EM waves consist of particles called photons, which (obviously) move at the
speed of light; so v = c. Furthermore, relativity tells us that the energy E of a photon is
related to its momentum via E = pc (see Section 28.3.3). Combining these results with
Equation (E.27) yields

P =
N

3V
〈pc〉 =

N

3V
〈E〉

The total energy of the “photon gas” is the number of photons times the average energy of
each photon. Thus, N〈E〉 is the total energy. Dividing the total energy by the volume gives
the energy density of the radiation, denoted by u. Therefore, we obtain the following
succinct result from the last equation:

P = 1
3u (E.31)

Math Note E.17.2. Assume that system A has n coins, system B has N coins, and the Most probable state of a
system in contact with
another system
(page 247 of the book)

number of positive coins in A and B are m and M , respectively. We then have

F (m) =
{

n!
m!(n−m)!

}{
N !

M !(N −M)!

}
(E.32)

We have written the argument of the function on the LHS of Equation (E.32) as the single
variable m because M can be calculated in terms of m. Here is how: The energy of the
combined system, E, is fixed.14 This means that the number of positive coins, M + m,
minus the number of negative coins, N + n− (M +m) must equal E. Thus,

E = M +m− {N + n− (M +m)} = 2(M +m)−N − n

and
M = 1

2 (E +N + n)−m (E.33)

From this equation and (E.32), we can calculate F (m) for given values of n,N , and E
and plot the result as a function of m. Since we are interested in large numbers, we can
approximate each factor of F (m) by an exponential function as in Equations (E.19) and
(E.21). The result is

F (m) ≈ 2n+N

√
2
nπ

√
2
Nπ

e
−

»
(n−2m)2

2n +
(N−2M)2

2N

–
(E.34)

14It would be more appropriate to introduce an elemental energy and write E as some integer times the
elemental energy. However, this will unnecessarily complicates the formulas. Think of E as the net number
of the elemental energies.
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which after using (E.33) becomes

F (m) ≈ 2n+N

√
2
nπ

√
2
Nπ

e
−

»
(n−2m)2

2n +
(E+n−2m)2

2N

–
(E.35)

Such a function has a maximum at a certain value of m, denoted by mmax, which is
the value that yields the most probable configuration. Example 17.2.3 treats the case in
which n = 5000, N = 6000, and E = 1000, and from the figure in that example you
can approximate the peak to be at mmax = 2727. This is the most probable value of m,
respecting the constraint of E = 1000. Equation (E.33), then yields

Mmax = 1
2 (1000 + 6, 000 + 5, 000)− 2727 = 3273

As indicated in Example 17.2.3, the ratios mmax/n and Mmax/N are very nearly equal:

mmax

n
=

2727
5, 000

= 0.5454,
Mmax

N
=

3273
6, 000

= 0.5455

As the numbers n, N , and E grow larger and larger, these ratios become more and more
equal. In the extremely large (“almost” infinite) values, we get the equalities15

mmax

n
=
Mmax

N
=
Mmax +mmax

N + n
(E.36)

Equation (E.36) has a significant interpretation. To appreciate this interpretation, let
us denote the energy of the system A by EA and that of B by EB . Then it is clear that

EA = m− (n−m) = 2m− n ⇒ m = 1
2 (EA + n)

and
EB = M − (N −M) = 2M −N ⇒ M = 1

2 (EB +N)

The most probable energy for the system A would be obtained when its number of positive
coins is mmax (and for B, Mmax). Thus, writing EAmax and EBmax for the most probable
energies, we get

mmax = 1
2 (EAmax + n), Mmax = 1

2 (EBmax +N)

Substituting these and (E.33) in (E.36), we get

1
2 (EAmax + n)

n
=

1
2 (EBmax +N)

N
=

1
2 (E +N + n)

N + n

where E is the total energy of the combined system. This double equality can also be
written as

EAmax
n

=
EBmax
N

=
E

N + n
(E.37)

Noting that EAmax/n is the average energy for system A (with a corresponding interpre-
tation for the other ratios), Equation (E.37) says that the most probable configuration of
two systems in contact is that for which the average energy per coin of the two systems
are equal and both have the common value of the average energy of the combined system.

15If you are familiar with calculus, you may be interested to know that these equalities are obtained by
differentiating Equation (E.35) and setting the derivative equal to zero.
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Math Note E.17.3. Let systems A and B have initial temperatures TA and TB , respec-
tively. What is the final equilibrium temperature after the two systems have been in contact
for a long enough time? The answer is in the last equation of (E.37). To use that equation,
we need the total energy, which is the sum of the two energies. Since this energy does not
change, we can obtain it by adding the initial energies of the two systems. Box 17.2.5 tells
us that

EAmax/n = kTA or EAmax = nkTA

where k is the proportionality factor. With a similar expression for system B, we obtain

E = EAmax + EBmax = nkTA +NkTB and kTf =
E

N + n
=
nkTA +NkTB

N + n

where Tf is the final equilibrium temperature. Therefore, Final temperature when
two systems are brought
together
(page 248 of the book)

Tf =
nTA +NTB
N + n

(E.38)

Regardless of the size of the two systems, the final temperature lies between the two
initial temperatures. To see this, let t = TA − TB be the difference between the two initial
temperatures. Then, TA = TB + t, and Equation (E.38) yields

Tf =
n(TB + t) +NTB

N + n
=

(n+N)TB + nt

N + n
= TB +

n

N + n
t (E.39)

If TA > TB , then t is positive and Tf > TB ; but Tf < TA, because n
N+n t < t. Therefore,

TA > Tf > TB . If TA < TB , then t is negative and Tf < TB ; but Tf > TA, because
n

N+n t > t. Therefore, TB > Tf > TA. In either case, Tf is between TA and TB .

Math Note E.17.4. We want to compare the number of accessible states when the two
systems of Math Note E.17.2 are in equilibrium with the number of accessible states when
they depart from the equilibrium. To be specific, we want the ratio F (m)/F (mmax)—which
is also the ratio of the probabilities—when m is different from mmax. We shall depart slightly
from Math Note E.17.2 in that we introduce an elemental energy ε. Then Irreversibility of

processes
(page 252 of the book)EA = (2m− n)ε and EB = (2M −N)ε (E.40)

and
M = 1

2 [(E/ε) +N + n]−m (E.41)

An interesting consequence of this equation is that M + m is fixed, because E, N , and n
are all fixed numbers. In particular, one can replace Mmax + mmax with M + m in (E.36)
and obtain

mmax =
n

N + n
(M +m) (E.42)

We shall use this result shortly.
To save writing, let α(m) stand for the (negative of the) exponent of (E.34):

α(m) ≡ (n− 2m)2

2n
+

(N − 2M)2

2N

=
N + n

2
− 2(M +m) + 2

(
m2

n
+
M2

N

)
(E.43)

Then
F (m)

F (mmax)
= eα(mmax)−α(m) (E.44)
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Since N + n and M +m are fixed, evaluating (E.43) at mmax and subtracting yields

α(mmax)− α(m) = 2
m2

max −m2

n
+ 2

M2
max −M2

N
(E.45)

From (E.36), Mmax = N
nmmax, and from (E.42)

M =
N + n

n
mmax −m =

N

n
mmax +mmax −m

Substituting these in (E.45) yields for α(mmax)− α(m)

2
n

(m2
max −m2) +

2
N

[
N2

n2
m2

max −
(
N

n
mmax +mmax −m

)2
]

=
2
n

(m2
max −m2)− 2

N

[
(mmax −m)2 + 2

N

n
(mmax −m)

]
=

2
n

(mmax −m)(mmax +m)− 2
N

(mmax −m)2 − 4
n
mmax(mmax −m)

=
2
n

(mmax −m)(mmax +m− 2m)− 2
N

(mmax −m)2

= −
(

2
n

+
2
N

)
(mmax −m)2

From Equation (E.42), we get

mmax −m =
n

N + n
(M +m)−m =

nM + nm−m(N + n)
N + n

=
nM −Nm
N + n

Substituting all these results in (E.45) and then in the exponent of (E.44), we obtain

F (m)
F (mmax)

= exp

{
−
(

2
n

+
2
N

)(
Mn−mN
n+N

)2
}

(E.46)

We now want to measure the probability of the two systems attaining two different
temperatures (while still in contact). To do this, we express the exponent of (E.46) in
terms of temperatures. The specification of the temperature means that m is the most
probable value of system A corresponding to a temperature TA and M is the most probable
value of system B corresponding to a temperature TB . Then, using k as the proportionality
constant relating temperature and energy, (E.40) yields

m =
1
2

(
EA
ε

+ n

)
=
n

2

(
kTA
ε

+ 1
)

and M =
N

2

(
kTB
ε

+ 1
)

so that
Mn−mN
n+N

=
nNk(TB − TA)

2ε(N + n)
=

k
ε (TB − TA)
2( 1
N + 1

n )

Thus, the ratio of the probability of finding the system away from its equilibrium state [with
temperature Tf given by (E.38)] to the probability of finding it at its final equilibrium state
is

P (TA)
P (Tf )

=
F (m)

F (mmax)
= exp

[
−k

2(TB − TA)2/ε2

2(1/N + 1/n)

]
≡ e−(∆T/τ)2 (E.47)

where

∆T = TB − TA and τ =
ε

k

√
2
(

1
N

+
1
n

)
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For typical values of ε = 10−19, k = 10−23, and n ≈ N ≈ 1024, we get τ ≈ 10−8. Thus,
for any reasonable finite value of ∆T , the ratio is completely negligible. For example, for
as small a temperature difference as a millionth of a degree

e−(∆T/τ)2 = e−(10−6/10−8)2 = e−10000 ≈ 1.14× 10−4343

meaning that the odds of the occurrence of even such a minute temperature difference is
about one in 104343!

E.18 Math Notes for Chapter 18

Math Note E.18.1. As a guiding example, consider the simplest kind of ideal gas (called Specific heat of an ideal
gas
(page 262 of the book)

monatomic because its particles consist of a single atom), whose internal energy is only in
the form of the kinetic energies of its particles. If there are N particles in this ideal gas, its
internal energy U is 3

2NkBT , because, by Equation (17.1), each particle has an average KE
of 3

2kBT . It follows that any change in the internal energy is expressed as a change in the
temperature of the ideal gas: ∆U = 3

2NkB∆T . Usually, the effects of work and heat on the
internal energy are considered separately. When there is only a heat exchange (i.e., when
W = 0), then the change in the internal energy is just the heat transferred: Q = 3

2NkB∆T .
Now suppose that each particle of the gas has mass µ and the total mass of the gas is

m, then N = m/µ and

Q =
m

µ

3kB
2

∆T = m

(
3kB
2µ

)
(Tf − Ti) ≡ mc(Tf − Ti) (E.48)

where Tf − Ti = ∆T , and c = 3kB

2µ is its specific heat. Although Equation (E.48) was Specific heat of an ideal
gas derivedderived for a specific ideal gas, it is a general formula that applies to many substances, gas,

liquid, or solid.
Depending on whether the final temperature is greater or less than the initial tempera-

ture, ∆T in Equation (E.48) can be positive or negative, making Q positive (when heat is
added to the system) or negative (when heat is extracted from the system).

Math Note E.18.2. The theoretical limit imposed on the efficiency of an engine comes Derivation of the
efficiency of the Carnot
engine
(page 269 of the book)

from the law of increase of entropy (Section 17.3.1). The engine and the environment in
which it operates constitute a closed system. When the engine goes through one of its
cycles, the total entropy of the engine plus the environment must not decrease. The change
in the entropy of the engine is zero because the engine comes back to its original state after a
full cycle.16 Therefore, the total change in the entropy is that occurring in the environment.

It can be shown that the change in the entropy of any thermodynamic system at tem-
perature T is

∆S =
Q

T
(E.49)

where Q is the heat transferred to the system. Depending on the sign of Q, ∆S could be
positive or negative. A negative ∆S does not violate the law of entropy increase, because
the system may not be closed (it may be in contact with another system whose entropy
change is more positive than the negative change of the original system).

What is the change in the entropy of the environment of an engine? The environment
consists of just two reservoirs. The change in the entropy of the cold reservoir is Qc/Tc
and it is positive (because heat is dumped into the cold reservoir); and the change in the
entropy of the hot reservoir is −Qh/Th. It follows that the change in the entropy of the

16That is how a cycle is defined.
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environment is Qc/Tc −Qh/Th. Setting this greater than or equal to zero (law of entropy
increase) gives

∆Stotal =
Qc
Tc
− Qh
Th
≥ 0 ⇒ Qc

Tc
≥ Qh
Th

or
Qc
Qh
≥ Tc
Th

Substituting this in Equation (18.2), we obtain

ε = 1− Qc
Qh
≤ 1− Tc

Th
(E.50)

The right-hand side is a theoretical upper limit for the efficiency of any engine. Therefore,
the most efficient (theoretical, ideal) engine, called the Carnot engine must have the
efficiency equal to the right-hand side. Tracing back the derivation of (E.50), we note that
this equality corresponds to ∆Stotal = 0.

E.20 Math Notes for Chapter 20

Math Note E.20.1. This Math Note is devoted to the derivation of Wien’s displace-Derivations of Wien and
Stefan-Boltzmann laws

(page 291 of the book)
ment law and the Stefan-Boltzmann law, and requires calculus which is beyond the intended
ability of most readers. However, the discovery of the connection between BBR formula
and the other two laws is so satisfying that it is a loss for those with calculus background
not to see it. The portions of this and the math notes that require higher mathematics are
set in a different font style.

First, we derive the Wien’s displacement law. If we substitute the numerical values for h, c,
and kB in Equation (20.5), we obtain

Φ(λ, T ) =
3.747× 10−16

λ5

1
e0.0144/λT − 1

(E.51)

Since, λ and T appear together, we define x = λT , and write the above equation as

Φ(λ, T ) =
3.747× 10−16T 5

x5

1
e0.0144/x − 1

≡ 3.747× 10−16T 5f(x)

where f(x) is the abbreviation for 1/[x5(e0.0144/x− 1)]. Since we are interested in the variation
of the curve as a function of λ, we keep T constant. It follows, that the maximum of Φ(λ, T )
can be obtained by finding the maximum of f(x). Writing f(x) as x−5(e0.0144/x − 1)−1, it is
straightforward to show that the derivative of f(x) is

f ′(x) =
0.0144e0.0144/x

x7(e0.0144/x − 1)2
− 5
x6(e0.0144/x − 1)

Setting this equal to zero and simplifying, gives

0.0144e0.0144/x

x(e0.0144/x − 1)
− 5 = 0 or e0.0144/x = 347.2x(e0.0144/x − 1)

A numerical solution—obtained by using a graphing calculator, for instance—of this last equation
yields xmax = 0.00290043, which, recalling that x = λT , is identical to the Wien’s displacement
law.

For the Stefan-Boltzmann law, we need to integrate (E.51) over all wavelengths. This gives

Je = 3.747× 10−16

∫ ∞
0

dλ

λ5(e0.0144/λT − 1)
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Once again, we use x = λT , and therefore, dx = Tdλ to obtain

Je = 3.747× 10−16

∫ ∞
0

dx/T

(x5/T 5)(e0.0144/x − 1)

= 3.747× 10−16T 4

∫ ∞
0

dx

x5(e0.0144/x − 1)

The last integral can be evaluated numerically to yield 1.51× 108. Then we get

Je = (3.747× 10−16)T 4(1.51× 108) = 5.66× 10−8T 4

which is the Stefan-Boltzmann law. The slight difference between this equation and (20.1) is
due to the fact that we did not keep sufficient significant figures in the values of h, c, and kB .

If instead of (E.51), we use (20.5), and define y = (kBT/hc)λ, then the integral over λ
could be changed to an integral over y as follows

Je = 2πc2h
∫ ∞

0

dλ

λ5(ehc/kBλT − 1)
= 2πc2h

∫ ∞
0

hc
kBT

dy

( hc
kBT

)5y5(e1/y − 1)

=
2πk4

B

h3c2
T 4

∫ ∞
0

dy

y5(e1/y − 1)︸ ︷︷ ︸
=π4/15

=
2π5k4

B

15h3c2
T 4 (E.52)

If we substitute the numerical values of the constants in the coefficient of T 4, we obtain 5.67×
10−8 as in Equation (20.1). In fact, Planck used the last equation above and the then known
Stefan-Boltzmann constant to estimate h. He obtained h = 6.56× 10−34, which is remarkably
close to the current accepted value.

Math Note E.20.2. The probability of finding a particle with energy E is proportional Derivations of Planck
relation
(page 290 of the book)

to the Boltzmann factor introduced in Section 17.2.2, which can also be written as 1/e
E

kBT .
Comparing this with the denominator of Equation (20.3) gives a clue that EM radiation
should probably be considered as “particles,” and that a/λ should be identified with E/kB :

a

λ
=

E

kB
or E =

akb
λ

On the other hand, the wavelength of an EM wave is given by λ = c/f in terms of frequency.
Therefore, the last equation can be expressed as

E =
akbf

c
=
(
akb
c

)
f

The term in the parentheses is constant, implying that the energy of an EM “particle” is
proportional to its frequency.

E.21 Math Notes for Chapter 21

Math Note E.21.1. We assume that the electron moves on a circle of radius r around the Finding the speed and
total energy of electron
in H-atom
(page 304 of the book)

nucleus. Then Newton’s second law of motion gives

F = macent or
kee

2

r2
= m

v2

r
⇒ mv2 =

kee
2

r
(E.53)

where e is the charge of the electron (and the nucleus of the H-atom) and m is the electronic
mass. We can use the last equation in (E.53) to find two important quantities: speed and
KE. The speed is

v2 =
kee

2

mr
or v =

√
kee2

mr
, (E.54)
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and the KE is

KE = 1
2mv

2 =
kee

2

2r
(E.55)

From the speed, we can find the frequency of rotation of the electron around the nucleus

v =
distance

time
=

2πr
T

= 2πrf ⇒ f =
v

2πr
(E.56)

where T is the period of revolution and f the corresponding frequency. The total energy,
which is the sum of the KE and electric potential energy, can be obtained from Equations
(E.55) and (D.10). The electric potential energy is negative because the electric force is
attractive. Therefore,

E = KE + PE =
kee

2

2r
− kee

2

r
= −kee

2

2r
(E.57)

Note that the total energy is negative. This is a characteristic of a bound system (see alsoEnergy of bound systems

Example 9.2.5), and the energy (without the sign) is called the binding energy.
Let’s put in some numbers. Suppose that the electron is moving on a circle of radius

10−10 m, a typical atomic size. Then substituting the numerical values of the charge and
mass of the electron in Equation (E.54), we get

v =

√
(9× 109)(1.6× 10−19)2

(9.1× 10−31)(10−10)
= 1.59× 106 m/s

Equation (E.56) then gives the frequency of the motion of the electron:

f =
v

2πr
=

1.59× 106

6.28× 10−10
= 2.53× 1015 Hz

The total energy of the electron at the given distance is

E = −kee
2

2r
= − (9× 109)(1.6× 10−19)2

2(10−10)
= −1.15× 10−18 J

Math Note E.21.2. Bohr’s basic assumption, for which he had absolutely no reason orSolution of Bohr model
of the H-atom

(page 305 of the book)
motivation, was that the angular momentum of the electron is an integer multiple of the
Planck constant (divided by 2π). Combining this assumption with Equation (8.5), we obtain

rmv = nh/2π ⇒ r2m2v2 = n2h2/4π2, n = 1, 2, 3, . . .

If we now substitute for v2 from Equation (E.54) of Math Note E.21.1, we obtain

r2m2

(
kee

2

mr

)
= n2h2/4π2 ⇒ r =

h2

4π2keme2
n2,

which shows that the electron has multiple orbits, and that these orbits are quantized. TheQuantization of electron
orbits and Bohr radius radius of the smallest orbit is denoted by a0, and is called the Bohr radius. Its value is

a0 =
h2

4π2keme2
=

(6.626× 10−34)2

4(3.1416)2(9× 109)(9.1× 10−31)(1.6× 10−19)2

equal to 5.3× 10−11 m. If we denote the radius of the nth orbit by rn, then

rn = n2a0, n = 1, 2, 3, . . . (E.58)

Now that we have the radii of the orbits, we can calculate the important quantity, energy.
The formula for energy is given by Equation (E.57) of Math Note E.21.1. Thus the energy
of the nth orbit is

En = − kee
2

2n2a0
= −2.17× 10−18

n2
J or En = −13.6

n2
eV (E.59)

where we inserted the numerical values of the constants to get the energy first in Joules,
and then (using the conversion factor) in eV.
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E.22 Math Notes for Chapter 22

Math Note E.22.1. De Broglie pointed out in 1924 that his assumption could explain De Broglie relation
implies Bohr assumption
(page 313 of the book)

the mysterious starting point of the Bohr theory. He argued that if electron is a wave and
it happens to be in one of the Bohr orbits, then the circumference of that orbit must be
an integer multiple of the electron’s wavelength. Figure E.17 shows why. Consider point
P on a Bohr orbit of a hydrogen atom. Imagine taking a mental snapshot of the electron
at a particular time. If the circumference of the orbit is not an integer multiple of the
wavelength as in Figure E.17(a), then the electronic wave will have two different values at
P as in Figure E.17(b). This is logically impossible. This condition is written as 2πr = nλ.
Using Equation (22.1), we get

2πr = n
h

p
or 2πrp = nh ⇒ rmv = n

h

2π

This is precisely the starting point of Math Note E.21.2.

P

P

(a) (b)

Figure E.17: (a) Electron has a unique existence at P. (b) Electron has a “double personality” at P.

E.26 Math Notes for Chapter 26

Math Note E.26.1. An MM clock is placed on the train and observed by our two observers Calculation of the tick of
a moving MM clock
(page 381 of the book)

O (on the ground) and O′ (on the train). Since there are two observers, it is convenient to
specify events and see how these observers perceive the events. In our case, we have three
events: The emission of a light beam at S, its reflection at M, and its reception at S. These
three events constitute one tick. Let us denote them by E1, E2, and E3, respectively. How
does O′ see the ticking of the clock? The clock is sitting right beside her, and she observes
the whole process of ticking as the light going straight up and coming straight down. She
concludes that the time interval, denoted by ∆τ , is simply twice the time it takes light to
travel the distance SM = L:

∆τ = 2
L

c
(E.60)

Now, let us see how O perceives the succession of these three events. Since the clock is
moving to the right, the light signal that leaves S will reach M only after M has moved to
the right. Thus, to O, the events E1 and E2 are separated not only by a vertical distance,
but also by a horizontal distance [see Figure E.18(a)]. To further clarify this, suppose that
the light signal sent by S and reflected by M is represented by a black dot. Figure E.18(a)
shows five snapshots of the clock. In the first snapshot the dot is produced at E1. A little
later (therefore a little to the right) the ball is at the middle of the clock tube. Still a little
later (and a little further to the right) the ball reaches the mirror at the top.

We argued in Section 25.4.2 that the vertical distance is unaffected by motion. So, the
length of the MM clock is still L, and because of the addition of the horizontal distance—the



112 Appendix E Mathematical Notes

E1

E2

E3

M

A

(a) (b)

v

cC

Figure E.18: (a) A moving Michelson–Morley clock. The path of light (represented by a black dot) is
not a vertical line but a slanted one due to the motion of M. (b) Law of addition of velocities applied to
the light signal in the MM clock.

line segment E1A in Figure E.18(a)—O decides that E1E2 > AM = L. The speed of light
being the same for all observers, he concludes that it takes light more than L/c to travel
E1E2. The other leg, E2E3, has exactly the same length as E1E2. Thus, to O, the total
travel time from S to M and back takes longer than 2L/c. Therefore, he concludes that the
clock on the train must tick slower!Moving clocks slow

down. We can quantify the above statement by referring to the triangle E1AE2 of Figure E.18.
Pythagorean theorem implies (

E1E2

)2
=
(
E1A

)2
+
(
AE2

)2
Let the speed of the train be v and the light beam’s travel time from S to M be t according
to O. Then E1A = vt and E1E2 = ct with c the (universal) speed of light. Putting all of
this in the above equation gives

(ct)2 = (vt)2 + L2 ⇒ c2t2 = v2t2 + L2 (E.61)

or

t2 =
v2

c2
t2 +

L2

c2
⇒ t2 − v2

c2
t2 =

L2

c2
⇒ t2

(
1− v2

c2

)
=
L2

c2

This yields

t2 =
L2/c2

1− v2/c2
⇒ t =

L/c√
1− v2/c2

Let us denote by ∆t the duration of the light’s round trip as seen by O. Then

∆t = 2t =
2L/c√

1− v2/c2
=

∆τ√
1− v2/c2

=
∆τ√

1− (v/c)2
(E.62)

where we have used Equation (E.60).
It is instructive to investigate the consequence of abandoning the second postulate of

relativity and restoring the law of addition of velocity. Figure E.18(b) shows the “new”
speed of light C as seen by O. If this law were true, then O would measure the speed of
light—as it goes from E1 to E2—to be C. Then Equation (E.61) would become

(Ct)2 = (vt)2 + L2 ⇒ C2t2 = v2t2 + L2
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But Figure E.18(b) and the Pythagorean theorem tell us that C2 = v2 + c2. Therefore,

C2t2 = v2t2 + L2 ⇒ (v2 + c2)t2 = v2t2 + L2 or c2t2 = L2

or ct = L or t = L/c, leading to

∆t = 2t = 2L/c = ∆τ,

i.e., the two observers would measure the same time interval: time would not be relative
but universal! It should now be clear that the second postulate of relativity is at the heart
of the relativity of time.

Although Equation (E.62) is derived for a single tick, it really applies to all time intervals
because any such interval is a multiple of a single tick. For instance a second is simply 106

ticks, an hour is 3.6 × 109 ticks, a week is 6 × 1011 ticks and a year is 3.15 × 1013 ticks.
If each tick is altered by a factor of

√
1− v2/c2, then a second, an hour, or a year is also

altered by the same factor. What is the difference between ∆t and ∆τ? Both measure the
time interval between two events, E1 and E3, but ∆τ measures the time interval in a RF in
which E1 and E3 occur at the same spatial point : The emission and reception of light occur
at the same point S. For this reason ∆τ is called proper time. We now rewrite Equation proper time defined

(E.62), realizing that ∆τ is the proper time between any two events, while ∆t is the time
measured by a clock relative to which the two events occur at two different spatial points

∆t =
∆τ√

1− v2/c2
(E.63)

Math Note E.26.2. Consider two points P1 and P2 both at rest relative to Karl. These Deriving length
contraction formula
(page 384 of the book)

two points can be locations of two stars, locations of two cities, or merely the two ends of
a meter stick. Karl measures the distance between the two points and calls it L0; thus,
L0 = P1P2.

Now consider Emmy moving relative to Karl with speed v (see Figure E.19). Since the
length L0 is moving along her direction of motion, the distance between P1 and P2 will
appear smaller to Emmy. To find how much smaller, we resort to time dilation. Consider
the time interval it takes Emmy to go from P1 to P2. This time interval is a proper time
interval, because her clock is present at the two events “passing by P1” and “passing by P2.”
She thus concludes that the distance between P1 and P2 is L = v∆τ . On the other hand,
Karl measures Emmy’s time of flight from P1 to P2 to be ∆t and concludes that L0 = v∆t.
Equation (26.1) now gives ∆τ = ∆t

√
1− (v/c)2, and therefore, L = v[∆t

√
1− (v/c)2] or

L = (v∆t)
√

1− (v/c)2, which yields

L = L0

√
1− v2

c2
(E.64)

L0 is the rest length, and L the moving length.

Math Note E.26.3. The spaceship clock measures the proper time for the following two Connecting traveling
twin’s birthday signals to
ground twin’s birthday
(page 385 of the book)

events: Lift-off, when Karl is zero year old, and departure of signal, when Karl is one year
old. Not aware of relativistic effects, the crew members assume that Emmy is also one; so,
they send the message “Happy first, Emmy!” on Karl’s first birthday. Let us denote the
time passed according to the Earth due to the time dilation by ∆t1. Then

∆t1 = γ∆τ =
∆τ√

1− (v/c)2

Thus, ∆t1 is when—according to the Earth—the crew in Marinarus sends the birthday
message. However, this message is sent at a very far distance. In fact, the spaceship is



114 Appendix E Mathematical Notes

P1 P2

Figure E.19: The distance between P1 and P2 is stationary relative to Karl, but in motion relative to
Emmy.

precisely at a distance of v∆t1, when the signal is issued. This signal, being an EM wave,
travels this distance with speed c. So, it takes the signal

∆t2 =
v∆t1
c

=
v

c
∆t1 =

v

c

∆τ√
1− (v/c)2

to reach the Earth after it is issued. The Earth observers will, therefore, receive the signal
after the time interval

∆t = ∆t1 + ∆t2 =
∆τ√

1− (v/c)2
+
v

c

∆τ√
1− (v/c)2

=
(

1 +
v

c

) ∆τ√
1− (v/c)2

=
1 + v/c√
1− (v/c)2

∆τ

which can be simplified as

∆t =

√
1 + v/c

√
1 + v/c√

(1− v/c)(1 + v/c)
∆τ =

√
1 + v/c

1− v/c
∆τ (E.65)

If we substitute v/c = 0.9 and ∆τ = 1 year, we get

∆t =

√
1 + 0.9
1− 0.9

× 1 year = 4.3589 years = 4 years and 131 days

which is the time interval mentioned in the text.

Math Note E.26.4. In the language of the previous Math Note, we want to calculateTime calculations
(page 385 of the book) ∆t1 in terms of ∆t. But ∆t1 = γ∆τ and Equation (E.65) can be solved for ∆τ in terms of

∆t: ∆τ =
√

(1− v/c)/(1 + v/c) ∆t. It follows that

∆t1 =
1√

1− (v/c)2

√
1− v/c
1 + v/c

∆t =
1√

(1− v/c)(1 + v/c)

√
1− v/c
1 + v/c

∆t

or, finally

∆t1 =
∆t

1 + v/c
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In the case of the example of the twins, this yields

∆t1 =
4.3589 years

1 + 0.9
= 2.2942 years

As a check, note that

∆t1 =
∆τ√

1− (v/c)2
=

1 year√
1− (0.9)2

=
1 year√

0.19
= 2.2942 years

One year of the spaceship is dilated to 2.2942 years according to the Earth clock. The
remaining time, 4.3589 − 2.2942 = 2.0647 years, is the time it takes light to reach Earth
once released from the spaceship.

Math Note E.26.5. Using a calculator, the reader may verify that
√

1− x can be approx- Approximation formulas
for gamma factor
(page 386 of the book)

imated very well by 1 − 1
2x when x is very small. Similarly, 1/

√
1− x and

√
1 + x can be

approximated by 1 + 1
2x and 1/

√
1 + x by 1− 1

2x. We write
√

1− x ≈ 1− 1
2x,

√
1 + x ≈ 1 + 1

2x

1√
1− x

≈ 1 + 1
2x,

1√
1 + x

≈ 1− 1
2x (E.66)

For example, when x = 0.1, we have (using a calculator)
√

0.9 =
√

1− 0.1 = 0.948683298,
√

1.1 =
√

1 + 0.1 = 1.048808848

for the first pair, and

1√
0.9

=
1√

1− 0.1
= 1.054092553,

1√
1.1

=
1√

1 + 0.1
= 0.953462589

for the second pair of Equation (E.66). These values are very nearly equal to 1− 0.1
2 = 0.95

and 1 + 0.1
2 = 1.05. If we decrease x further to 0.01, we get
√

0.99 =
√

1− 0.01 = 0.994987437,
√

1.01 =
√

1 + 0.01 = 1.004987562

for the first pair, and

1√
0.99

=
1√

1− 0.01
= 1.005037815,

1√
1.01

=
1√

1 + 0.01
= 0.99503719

for the second pair of Equation (E.66). These values are even closer to 1− 0.01
2 = 0.995 and

1 + 0.01
2 = 1.005.

Now let us obtain a formula for how much an object shrinks when moving with speed
v. We are seeking the difference between L0 and L. This is given by

L0 − L = L0 − L0

√
1− (v/c)2 = L0[1−

√
1− (v/c)2] (E.67)

When v is very small compared to light speed c, we can simplify the expression above. In
fact, applying the first equation in (E.66) to Equation (E.67), we obtain

L0 − L = L0[1−
√

1− (v/c)2] ≈ L0

[
1−

(
1− 1

2 (v/c)2
)]

= 1
2 (v/c)2L0 (E.68)

This equation expresses the length shrinkage in terms of L0. We can write the same shrink-
age in terms of L by using the third equation in (E.66). Here is how:

L0 − L =
L√

1− (v/c)2
− L ≈ L

(
1 + 1

2 (v/c)2
)
− L = 1

2 (v/c)2L (E.69)
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Therefore, it does not matter which length we use on the right hand side. For all man-made
vehicles, the approximation in (E.68) or (E.69) works extremely well.

The same procedure can be used to find the difference between the proper and improper
time intervals. Thus,

∆t−∆τ = ∆t−∆t
√

1− (v/c)2 = ∆t[1−
√

1− (v/c)2]

≈ ∆t
[
1−

(
1− 1

2 (v/c)2
)]

= 1
2 (v/c)2∆t (E.70)

A similar procedure as the one used in deriving Equation (E.69) shows that ∆t on the
right-hand side can be replaced by ∆τ .

Finally, applying the second of the approximations to γ − 1 (what we have called rela-
tivisticity), we obtain

γ − 1 =
1√

1− (v/c)2
− 1 ≈ 1 + 1

2 (v/c)2 − 1 = 1
2 (v/c)2, (E.71)

a useful result when we want to calculate the relativisticity of the motion of ordinary objects.
Let’s put all these formulas together:

L0 − L = 1
2 (v/c)2L0, ∆t−∆τ = 1

2 (v/c)2∆t, γ − 1 = 1
2 (v/c)2 (E.72)

where L0 on the right hand side of the first equation and ∆t on the right hand side of the
second equation could be replaced by L and ∆τ , respectively.

E.27 Math Notes for Chapter 27

Math Note E.27.1. Figure E.20 shows a point P with coordinates (x, y) in the systemTransformation rule
connecting a pair of

coordinates
(page 397 of the book)

O and (x′, y′) in O′. We want to express (x′, y′) in terms of (x, y). The origin of O has
coordinates (a, b) in O′, and its x-axis makes an angle α with x′-axis corresponding to a
slope m. All the angles marked off can be shown to be equal to α using simple high school
geometry.

Let us find x′ first. From the figure it is clear that

x′ = a+AA′ = a+OC = a+OD − CD = a+OD −QR (E.73)

We want to calculate OD and QR in terms of the coordinates in O as well as the quantity
that distinguishes O from O′, namely the slope m of the x-axis relative to x′-axis. The
right triangle ODR and the definition of the slope give

(OR)2 = (OD)2 + (DR)2 and m =
DR

OD
or DR = m(OD) (E.74)

Thus, substituting the last equation in the first, we get

(OR)2 = (OD)2 + [m(OD)]2 = (OD)2(1 +m2) or OR = OD
√

1 +m2

But OR = x; so we get
OD =

x√
1 +m2

(E.75)

The similarity of the triangles QRP and DRO implies similar relations between its corre-
sponding sides:

PQ =
PR√

1 +m2
and QR = m(PQ) or PQ =

QR

m
(E.76)
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P

O

′O

b

 a
A

B

′A

′B

Q
R

H

′H

C

α

x

y

′x

′y

D

Figure E.20: The same point P has different pairs of coordinates in different coordinate systems.

It follows that

QR

m
=

PR√
1 +m2

or QR =
mPR√
1 +m2

=
my√

1 +m2
(E.77)

because PR = y. Substituting all these in Equation (E.73), we obtain

x′ = a+
x√

1 +m2
− my√

1 +m2
= a+

1√
1 +m2

(x−my)

As for y′, we have a similar result:

y′ = b+BB′ = b+ CP = b+ CQ+QP = b+DR+ PQ (E.78)

But DR = m(OD) by Equation (E.74) and QP = QR/m by Equation (E.76). Substituting
in (E.78) for OD and QR in terms of coordinates as found in (E.75) and (E.77), respectively,
we get

y′ = b+
mx√

1 +m2
+
my/
√

1 +m2

m
= b+

1√
1 +m2

(mx+ y)

Let us put these two transformation rules together:

x′ = a+
1√

1 +m2
(x−my)

y′ = b+
1√

1 +m2
(mx+ y) (E.79)

As a check, we note that if a = 0, b = 0 (so that the two origins coincide), and m = 0
(so that 1/

√
1 +m2 = 1), then

x′ = 0 + 1(x− 0) = x and y′ = 0 + 1(0 + y) = y

as we should, because the two coordinate systems are really the same!
In most applications we assume that the two origins coincide. This corresponds to a

rotation of the axes without displacing the origin. When we are dealing with the distance
between two points—a quantity that is at the root of all coordinated geometries—the dis-
placement of the origin, expressed by a and b above, does not enter in the formulas (see
Math Note E.27.3). Therefore, most of the times we write the transformation rules of
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P1

O

′O

P2

∆x

∆y

∆ ′x

∆ ′y
′x1

′x2

′y1
′y2

′x

x

y
′y

Figure E.21: The distance P1P2 is the same for both O and O′.

Equation (E.79) as

x′ =
1√

1 +m2
(x−my)

y′ =
1√

1 +m2
(mx+ y) (E.80)

Readers familiar with trigonometry may identify m with tanα. Then

1√
1 +m2

= cosα and
m√

1 +m2
= sinα,

and Equation (E.80) can be written asA familiarity with
trigonometry is needed

for the rest of this Math
Note.

x′ = x cosα− y sinα
y′ = x sinα+ y cosα (E.81)

To check the correctness of this formula let α = 90◦. Then we know that x turns into y′ and
y into negative x′. Does Equation (E.81) agree with this conclusion? To see this, substitute
90◦ for α:

x′ = x cos(90◦)− y sin(90◦) = −y
y′ = x sin(90◦) + y cos(90◦) = x

because cos(90◦) = 0 and sin(90◦) = 1.

Math Note E.27.2. In this example, we want to calculate the distance between two pointsFinding the Euclidean
distance

(page 397 of the book)
in terms of the coordinates of the points. Figure E.21 shows two points P1 and P2; P1 has
coordinates (x1, y1) in O and (x′1, y

′
1) in O′ (only the coordinates in O′ are labeled to avoid

excessive cluttering of the figure); P2 has coordinates (x2, y2) in O and (x′2, y
′
2) in O′. P1 and

P2 form the line segment P1P2, whose length we denote by ∆r, which—using Pythagoras’
theorem—can be expressed in terms of ∆x ≡ x2 − x1 and ∆y ≡ y2 − y1 or in terms of
∆x′ ≡ x′2 − x′1 and ∆y′ ≡ y′2 − y′1:Euclidean distance

∆r ≡ P1P2 =
√

(∆x)2 + (∆y)2 =
√

(∆x′)2 + (∆y′)2 (E.82)

This is a very important relation. It states the fact that the (straight) distance between
any two points is independent of the coordinate system we choose.
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Math Note E.27.3. Let P1 and P2 be any two points. Suppose that P1 has coordinates
(x1, y1) in O and (x′1, y

′
1) in O′ and P2 has coordinates (x2, y2) in O and (x′2, y

′
2) in O′. We

use the coordinate transformation rules (E.79) of Math Note E.27.1 to write all the primed
coordinates in terms of the unprimed coordinates. To save writing, denote 1/

√
1 +m2 by

C and m/
√

1 +m2 by S (note that S2 + C2 = 1). Then we have

x′1 = a+ Cx1 − Sy1, x′2 = a+ Cx2 − Sy2

y′1 = b+ Sx1 + Cy1, y′2 = b+ Sx2 + Cy2 (E.83)

The next step is to find ∆x′ ≡ x′2− x′1 and ∆y′ ≡ y′2− y′1 in terms of ∆x ≡ x2− x1 and Space transformation
does not affect distance
(page 397 of the book)

∆y ≡ y2 − y1. But these are easy to do. For example,

∆x′ ≡ x′2 − x′1 = a+ Cx2 − Sy2 − (a+ Cx1 − Sy1)
= C(x2 − x1)− S(y2 − y1) = C(∆x)− S(∆y)

Similarly, ∆y′ = S(∆x) +C(∆y). Note that the constants a and b have disappeared. That
is why we ignored them in Equation (E.80) of Math Note E.27.1.

To find P1P2 in O′ (which we denote by ∆r′, because we “don’t know” yet that it is
equal to ∆r, the length of P1P2 in O), we square ∆x′, add it to the square of ∆y′, and take
the square root. To avoid introducing long square roots, let us calculate (∆r′)2 instead:

(∆r′)2 = (∆x′)2 + (∆y′)2 = [C(∆x)− S(∆y)]2 + [S(∆x) + C(∆y)]2

= C2(∆x)2 + S2(∆y)2 − 2SC(∆x)(∆y)

+ S2(∆x)2 + C2(∆y)2 + 2CS(∆x)(∆y)

= (∆x)2 (C2 + S2)︸ ︷︷ ︸
=1

+(∆y)2 (S2 + C2)︸ ︷︷ ︸
=1

= (∆x)2 + (∆y)2 = (∆r)2

Thus, whether we coordinatize the points in O or O′, the distance P1P2 comes out the same.

Math Note E.27.4. Let us start with Derivation of Equation
(E.79) using only
algebra
(page 397 of the book)

x′ = a+ cx+ dy, y′ = b+ ex+ fy (E.84)

where a, c, etc. are unknowns to be determined. We have assumed a linear relation (no x2,
y3, or any other functions), because we want straight lines in O to remain straight lines in
O′. For example, if x′ = 2x+ y and y′ = 18x2 + 3y, then the straight line y = x in O would
transform into a parabola as the following equation shows:

x′ = 2x+ y = 2x+ x = 3x ⇒ x =
x′

3

y′ = 18x2 + 3y = 18x2 + 3x = 18
(
x′

3

)2

+ 3
(
x′

3

)
= 2x′2 + x′

So, the equation y = x in O turns into the equation y′ = 2x′2 +x′ in O′, which is a parabola.
We don’t want this to happen.

Now take any two points P1 and P2, where P1 has coordinates (x1, y1) in O and (x′1, y
′
1) in

O′ and P2 has coordinates (x2, y2) in O and (x′2, y
′
2) in O′. By assumption these coordinates

are related via Equation (E.84) as follows:

x′1 = a+ cx1 + dy1, x′2 = a+ cx2 + dy2

y′1 = b+ ex1 + fy1, y′2 = b+ ex2 + fy2 (E.85)

Next, find ∆x′ ≡ x′2 − x′1 and ∆y′ ≡ y′2 − y′1 in terms of ∆x ≡ x2 − x1 and ∆y ≡ y2 − y1.
But these are easy to do. For example,

∆x′ ≡ x′2 − x′1 = a+ cx2 + dy2 − (a+ cx1 + dy1) = c(∆x) + d(∆y)
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P1

O

′O

∆ ′x

∆ ′y

P2

Figure E.22: Two points on the x-axis and their coordinate differences in O′.

Similarly, ∆y′ = e(∆x) + f(∆y). Put these together for future reference:

∆x′ = c(∆x) + d(∆y)
∆y′ = e(∆x) + f(∆y) (E.86)

Note again that the constants a and b have disappeared.
The next step is to demand that the two distances calculated in O and O′ be equal; i.e.,

that (∆x′)2 + (∆y′)2 = (∆x)2 + (∆y)2. Substituting for ∆x′ and ∆y′ in terms of ∆x and
∆y, we get

[c(∆x) + d(∆y)]2 + [e(∆x) + f(∆y)]2 = (∆x)2 + (∆y)2

or

c2(∆x)2 + d2(∆y)2 + 2cd(∆x)(∆y) + e2(∆x)2 + f2(∆y)2 + 2ef(∆x)(∆y)

= (∆x)2 + (∆y)2

or
(c2 + e2)(∆x)2 + (d2 + f2)(∆y)2 + 2(cd+ ef)(∆x)(∆y) = (∆x)2 + (∆y)2

If the two sides of this equation are to be equal for any values of ∆x and ∆y (corresponding
to any two points in the plane), we must have

c2 + e2 = 1, d2 + f2 = 1, cd+ ef = 0 (E.87)

When ∆y = 0, i.e., when P1 and P2 lie along the x-axis, we must get ∆y′/∆x′ = m as
Figure E.22 demonstrates. On the other hand, Equation (E.86) gives

∆x′ = c(∆x), ∆y′ = e(∆x) ⇒ ∆y′

∆x′
=
e(∆x)
c(∆x)

=
e

c

Thus, e/c = m or e = mc. The first equation in (E.87) now gives

c2 + (mc)2 = 1, or c2(1 +m2) = 1 ⇒ c = ± 1√
1 +m2

With c so determined, we can determine e: e = ±m/
√

1 +m2. Using the values of c and e
(either plus or minus) in the last equation of (E.87), we get d = −mf . Now we can decide
which sign to choose. If we choose the negative sign, then Equation (E.84) would yield
x′ = −x for m = 0, a = 0, and b = 0 (d = −mf is also zero). But this is impossible,
because for these parameters, the two coordinates should coincide. Putting d = −mf in
the middle equation, we obtain

m2f2 + f2 = 1 or f2 =
1

1 +m2
⇒ f = ± 1√

1 +m2
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O ′O ′′O

Figure E.23: Three Euclidean coordinate systems O, O′, and O′′. The thickness of the axes emphasize
the difference between the systems.

Again, we have to choose the plus sign, because otherwise Equation (E.84) would yield
y′ = −y for m = 0, a = 0, and b = 0. Substituting all the unknowns in Equation (E.84)
yields Equation (E.79).

Math Note E.27.5. To find the invariant distance of the spacetime geometry, we must
bring the Euclidean geometry closer to the spacetime geometry. Since time is a “hidden”
dimension, we “hide” one of the dimensions in the familiar Euclidean 2D space. Let us
represent this hidden, but otherwise measurable coordinate by the y-axis. We can draw
this axis in a plane (just as we can draw a time axis in a spacetime plane); we can also
draw points in the plane and assign coordinates to them, but, for instance, we don’t know
what the length of the line segment connecting two points is and how it is written in terms
of their coordinates, because we don’t have a measuring device that can determine this
distance. However, if the two points happen to lie on either of the two axes, we can tell
how far apart they are, i.e., what their distance is. Deriving spacetime

interval using a
Euclidean analogy
(page 398 of the book)

How can you measure a quantity that is “hidden?” Suppose that y represents height.
Remember, we can’t see the height of an object, but we can have an “acrometer” that
measures the height of a point. This acrometer could be built on the principle that the
strength of the impact of a falling object on a stationary object is proportional to the
height from which the first object is dropped. To measure the height of a point, simply
drop a standard object (say a mass of 1 kg) from that point on the acrometer. This enables
us to measure the height of a point without having to be aware of “height” as a dimension.
This is exactly what happens with time. We can measure time with a clock without being
aware of it as an extra dimension.

With the second dimension absent, any preconceived geometric notion that requires two
dimensions is out of our reach. For example, the notion of an angle does not exist because
it requires two crossing lines. Of course, there are many different coordinate systems that
measure different “heights” for the same point, but we are not allowed to draw these systems
as we did in Figure 27.5. The best we can do is draw one axis per “observer” and label
them differently. We can emphasize this difference by drawing the axes differently (say with
different thicknesses) as shown in Figure E.23, but in most cases we simply label them with
different letters.

How do we know physically that O′ is different from O if they are both a single horizontal
line? The property that distinguishes among different CSs is their relative slopes. How can
we determine the slope without seeing the angle that the two axes make with one another?
Remember, we don’t need y to determine a height; we have acrometers to do that. So,
observer O′ can pick two points, P1 and P2, on the (only real) axis of O, determine their
coordinates x′1 and x′2, measure their heights y′1 and y′2 using his own acrometer, and take
the ratio (x′2 − x′1)/(y′2 − y′1) = ∆x′/∆y′.17

Now we are ready to “derive” an expression for the distance in a Euclidean plane. First
we note that

17The slope is normally defined as ∆y′/∆x′. However, in preparation for the derivation of the spacetime
“distance” (our main interest here), we have switched the numerator and the denominator.
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Box E.27.6. If two points have the same x-coordinates (so that ∆x = 0), the distance
is the difference in their heights as measured by an acrometer.

We need one more piece of information before deriving the distance formula. Suppose
that the “one-dimensional” creatures living in such Euclidean spaces have discovered the
following fact:

Take points P1 and P2, which happen to lie on the y-axis of O, who measures ∆y
to be the y-difference between these two points. Another observer O′ measures the
y-difference between the same two points to be ∆y′. If the slope of these observers is
m, then the relation between ∆y and ∆y′ is given by

∆y′ =
∆y√

1 +m2
or ∆y′

√
1 +m2 = ∆y (E.88)

With this extra information we can finally derive the distance equation. By the previous
paragraph, m = ∆x′/∆y′. Substituting this in Equation (E.88) gives

∆y′
√

1 +m2 = ∆y ⇒ ∆y = ∆y′
√

1 +
(

∆x′

∆y′

)2

=
√

(∆y′)2 + (∆x′)2

Recalling that ∆y is the distance between P1 and P2,18 we have

Euclidean distance P1P2 =
√

(∆x′)2 + (∆y′)2 (E.89)

Since O′ could be any observer, this relation holds true for all observers (they measure
different ∆x′ and ∆y′, but when they square them and add them, the result will be the
same).

Having gone through the steps leading to Equation (E.89), it is easy to find the distance
in a spacetime plane. We call it the spacetime interval and denote it by ∆s. Two RFsspacetime interval

are distinguished by their relative speed v (this replaces the relative slope of the Euclidean
plane). Let E1 and E2 be two events in our spacetime plane. We need an observer O
for whom the two events occur either at the same location or at the same time. The first
choice is impossible—and this is the crucial difference between the spacetime plane and the
Euclidean plane—because O has to be present at two different places at the same time!
Thus, we have to be content with the second choice: we look for an observer O for whom
these events occur at the same location; i.e., an observer that measures the proper time ∆τ
(see Section 26.1) between the two events.

Our Euclidean analogy stated in Box E.27.6 tells us that ∆s = c∆τ (we introduce c
to make ∆s a distance). Now take any other observer O′ relative to whom O moves with
speed v. Equation (26.1) then yields

∆s = c∆τ = c∆t′
√

1− v2/c2 =
√
c2(∆t′)2(1− v2/c2) =

√
c2(∆t′)2 − v2(∆t′)2)

But since O is present at both events, v (being the speed of O relative to O′) is precisely
the distance ∆x′ covered by O in O′ divided by the time ∆t′. Therefore,

v2(∆t′)2 = (v∆t′)2 = (∆x′)2

and we obtain one of the most radical equations in physics (and mathematics):

∆s = c∆τ =
√
c2(∆t′)2 − (∆x′)2 (E.90)

We can ignore the primes, as the formula holds for all RFs.
18Because they both lie on the y-axis of O.
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P1
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′y

x

y

Figure E.24: If the Euclidean distance formula is to hold, i.e., if P1P2
2

is to equal (∆x)2 + (∆y)2, then
the x-axis must be perpendicular to the y-axis.

Math Note E.27.7. Two points P1 and P2 are located in the plane of the paper (see
Figure E.24). We can always take one coordinate system (CS) to have perpendicular axes.
The question is whether the other CS’s are necessarily perpendicular. Take x′- and y′-axes
to be perpendicular to each other. Suppose we draw the y-axis. What is the relation of the
x-axis to this y-axis? Draw an arbitrary line intersecting the y-axis and call it the x-axis.
In this (slanted) x-y coordinate system, ∆x and ∆y can be drawn by projecting P1 and P2

on the axes as shown.
Now by assumption, P1P2

2
must equal (∆x)2 + (∆y)2. This can happen only if P1P2

is the hypotenuse of a right triangle with perpendicular sides ∆x and ∆y; i.e., if the x-axis
is perpendicular to the y-axis. Although this conclusion may seem trivial in ordinary plane
geometry, it becomes highly nontrivial when applied to the spacetime geometry.

Math Note E.27.8. We note that CD = BD+CB = BD+AB−AC. But, because light
travels on a worldline that makes and angle of 45◦ with the axes, BD = BE2 andAC = AE1.
So CD = BE2 + AB − AE1 = (BE2 − AE1) + AB, or CD = (BE2 − BF ) + AB. Thus,
CD = FE2 + AB. Furthermore, FE2/FE1 = β by rule 2 of Box F.0.2, and FE1 = AB,
yielding FE2 = β AB. We, therefore, have CD = β AB + AB. Invoking rule 4 of Box
F.0.3 we get AB = γE1E2 and Finding CD of

Figure E.25(a) in terms
of v and T
(page 401 of the book)

CD = β AB + AB = (1 + β)AB = (1 + β)γE1E2

But CD = cT ′ = λ′ and E1E2 = cT = λ; therefore

λ′ = (1 + β)γλ = (1 + β)
1√

1− β2
λ =

1 + β√
(1− β)(1 + β)

λ

or

λ′ =

√
1− β
1 + β

λ (E.91)

Math Note E.27.9. From C in Figure E.25(b) draw an upward ray parallel to ct′-axis. Finding AB in terms of
E1E2 in Figure E.25(b)
(page 401 of the book)

This ray intersects E2D at F and DB at H. Also drop the perpendicular DG onto CH.
The four heavily marked angles are 45◦ and the other two marked angles have a slope β. It
is quite obvious that CF = E1E2 and CH = AB. Therefore, we can write

AB = CH = CF + FH = CF + 2(FG) = E1E2 + 2(FG) (E.92)

All that is left to do is to write FG in terms of E1E2. But FG = GD, because the triangle
DFG is isosceles. Furthermore, GD/CG = β. Thus,

FG = βCG = β(CF + FG) = βE1E2 + βFG
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Figure E.25: (a) The spacetime diagram of the Doppler effect. (b) The spacetime diagram of the
Doppler effect including reflection from a moving object. In both diagrams, the dashed lines represent light
signals.

This can be rewritten as

FG− βFG = βE1E2 or (1− β)FG = βE1E2 ⇒ FG =
β

1− β
E1E2

Substituting this in (E.92) we get our desired result:

AB = E1E2 + 2(FG) = E1E2 +
2β

1− β
E1E2 =

1 + β

1− β
E1E2

Since AB = cTref = λref and E1E2 = cT = λ, we have

λref =
1 + β

1− β
λ (E.93)

When Emmy’s speed becomes much smaller than light speed, β is very small and we
can make the following approximations:

1
1− β

≈ 1 + β and (1 + β)2 ≈ 1 + 2β

Then Equation (E.93) reduces to

λref =
1 + β

1− β
λ = (1 + β)

1
1− β

λ ≈ (1 + β)(1 + β)λ = (1 + β)2λ = (1 + 2β)λ

This is precisely Equation (E.13) when we note that β = v/c and v is the relative velocity
of the two observers.

Math Note E.27.10. Figure E.26 shows an event E with coordinates (x, ct) in O. We wantDeriving Lorentz
transformations from

spacetime diagrams
(page 163 of the book)

to calculate its coordinates (x′, ct′) in O′ in terms of x and ct. It is clear that x′ = O′A+AB.
But O′A is the projection of OD—lying on the x-axis of O—onto the x′-axis. By rule 4 of
Box F.0.3, O′A = γ OD = γx. As for AB, the figure shows that AB = CD. But rule 2 of
Box F.0.2 gives β = CD/CE, because the marked angles are all equal. Now CE = O′M
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Figure E.26: Deriving the Lorentz transformations from the diagram.

and O′M is the projection of OH onto the time axis of O′. Again by rule 2 of Box F.0.2,
O′M = γ OH = γct; so

AB = CD = βCE = βO′M = βγct

Therefore, x′ = O′A+AB = γx+ βγct = γ(x+ βct).
How is ct′ related to x and ct? We note that ct′ = O′M + MG. We have already

calculated O′M : it is equal to γct. To find MG, we note that MG = FH = DA = βO′A
(the last equality follows from rule 2 again). But we have calculated O′A above: it is equal
to γx. Therefore, MG = βγx, and

ct′ = O′M +MG = γct+ βγx = γ(βx+ ct)

We have obtained the celebrated Lorentz transformation:

x′ = γ(x+ βct)
ct′ = γ(βx+ ct) (E.94)

If we solve these two equations for x in terms of x′, t, and t′ and set them equal, we get
an equation involving x′, t, and t′. We can solve this equation for t in terms of x′ and t′.
The result is ct = γ(−βx′ + ct′). We can do the same with x and get a similar result. We
put these two equations together:

x = γ(x′ − βct′)
ct = γ(−βx′ + ct′) (E.95)

This is called the Lorentz transformation inverse to Equation (E.94). inverse Lorentz
transformationWe could have guessed (E.95) if we had noted that the only difference between O and

O′ is that O moves in the positive direction of O′, while O′ moves in the negative direction
of O. This means that the only difference in the Lorentz transformation relating one RF
to the other should be in the sign of speed v, and consequently of β. We therefore make
the following convention: In Equation (E.94), β is positive if O moves along the positive
direction of O′; it is negative if O moves along the negative direction of O′.

Most often we are interested in space and time intervals between two events. If events
E1 and E2 have respective coordinates (x1, ct1) and (x2, ct2) relative to O and (x′1, ct

′
1) and

(x′2, ct
′
2) relative to O′, then

x′1 = γ(x1 + βct1), and x′2 = γ(x2 + βct2)
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and

∆x′ = x′2 − x′1 = γ(x2 + βct2)− γ(x1 + βct1)
= γ[(x2 − x1) + βc(t2 − t1)] = γ(∆x+ βc∆t)

with a corresponding equation for time. We write both below:

∆x′ = γ(∆x+ βc∆t)
c∆t′ = γ(β∆x+ c∆t) (E.96)

To appreciate the ease and power of the geometric and diagrammatic reasoning, consult
Math Note E.27.11 for an algebraic derivation of the Lorentz transformations!

Math Note E.27.11. As in the case of Math Note E.27.4, we start with19

x′ = a+ dx+ et, t′ = b+ fx+ gt (E.97)

where a, d, etc. are unknowns to be determined. For the same reason as in Math Note
E.27.4 we have assumed a linear relation.

Now take any two events E1 and E2, where E1 has coordinates (x1, ct1) in O and
(x′1, ct

′
1) in O′ and E2 has coordinates (x2, ct2) in O and (x′2, ct

′
2) in O′. By assumption

these coordinates are related via Equation (E.97) as follows:

x′1 = a+ dx1 + et1, x′2 = a+ dx2 + et2

t′1 = b+ fx1 + gt1, t′2 = b+ fx2 + gt2 (E.98)

As in Math Note E.27.4, we next find ∆x′ and ∆t′ in terms of ∆x and ∆t:

∆x′ = d(∆x) + e(∆t)
∆t′ = f(∆x) + g(∆t) (E.99)

Note again that the constants a and b have disappeared.
The next step is to demand that the two spacetime intervals calculated in O and O′ be

equal; i.e., that (c∆t′)2 − (∆x′)2 = (c∆t)2 − (∆x)2. Substituting for ∆x′ and ∆t′ in terms
of ∆x and ∆t, we get

[cf(∆x) + cg(∆t)]2 − [d(∆x) + e(∆t)]2 = (c∆t)2 − (∆x)2

or

c2f2(∆x)2 + c2g2(∆t)2 + 2c2fg(∆x)(∆t)− d2(∆x)2 − e2(∆t)2 − 2de(∆x)(∆t)

= c2(∆t)2 − (∆x)2

or

(c2f2 − d2)(∆x)2 + (c2g2 − e2)(∆t)2 + 2(c2fg − de)(∆x)(∆t) = c2(∆t)2 − (∆x)2

If the two sides of this equation are to be equal for any values of ∆x and ∆t (corresponding
to any two events in the spacetime plane), we must have

c2f2 − d2 = −1, c2g2 − e2 = c2, c2fg − de = 0 (E.100)

19We have been using ct as the second coordinate. However, to keep the algebra simple, we prefer to
leave c out for the time being. We will reintroduce c at the end.
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When ∆x = 0, i.e., when E1 and E2 occur at the same point along x-axis, we must
get ∆x′/∆t′ = v the speed of that point on the x-axis relative to O′. On the other hand,
Equation (E.99) gives

∆x′ = e(∆t), ∆t′ = g(∆t) ⇒ ∆x′

∆t′
=
e(∆t)
g(∆t)

=
e

g
(E.101)

Thus, e/g = v or e = gv. Furthermore, since E1 and E2 occur at the same point, ∆t is
the proper time. It follows from Equation (26.1) and the second equation in (E.101) that
g = 1/

√
1− (v/c)2. With e and g so determined, the last equation in (E.100) yields

c2fg − dgv = 0, or c2f = dv or f =
dv

c2

Substituting this in the first equation of (E.100), we get

c2
(
dv

c2

)2

− d2 = −1 ⇒ d2 − d2v2

c2
= 1 or d = ± 1√

1− (v/c)2
= ±γ

Only the positive sign is acceptable, because when a = 0, b = 0, and v = 0, x′ must equal
x (the two RFs are not moving relative to one another). But, choosing the negative sign, d
becomes −1 at v = 0, and Equation (E.97) (along with the fact that e = gv = 0) leads to
x′ = −x, which is not acceptable.

We can now write Equation (E.97) as

x′ = a+ γx+ γvt, t′ = b+ γ(v/c2)x+ γt

Specializing to a = 0 and b = 0 and using β = v/c (or v = βc), we can write the first
equation as

x′ = γx+ γβct = γ(x+ βct)

Multiply both sides of the second equation by c to get

ct′ = cγ(v/c2)x+ cγt = γ(v/c)x+ γct = γ(βx+ ct)

Math Note E.27.12. Let E1 be now on Earth, E2 be the event we want to get to, and Impossibility of traveling
back in timeE3 the event in the past of E2 to which we first go to wait for E2. We can think of O—the

origin of the RF (call it Diracus) we are seeking—as an event as well [(see Figure E.27(a)].
In the following, we use prime for the coordinates of events in O′ and label the intervals
by the events they connect. For example, ∆x′10 is the space interval between E1 and O as
measured by O′ (Earth); similarly, ∆t23 is the time interval between E2 and E3 as measured
by O (Diracus).

First we find the speed β of O relative to O′ using the fact that E3 is taking place NOW
in O (so that ∆t03 = 0). By dividing both sides of the second of the two equations

∆x′03 = γ(∆x03 + βc∆t03) = γ(∆x03 + 0) = γ∆x03

c∆t′03 = γ(β∆x03 + c∆t03) = γ(β∆x03 + 0) = γβ∆x03 (E.102)

by the first, we find β:
c∆t′03

∆x′03

=
γβ∆x03

γ∆x03
or β =

c∆t′03

∆x′03

For convenience, use X for ∆x′03, T for ∆t′03 (which is also the time interval between E1

and E3, the amount of time we want to go back in the past), T1 for ∆t′12, and T2 for ∆t′23.
Then β can be written as

β =
cT

X
from which we get X =

cT

β
(E.103)
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Now let us figure out how O sees the events of interest. Figure E.27(b) shows the
situation for O. Event E3 is on Diracus’s x-axis. Its distance can be calculated from the
first equation of (E.102):

∆x03 = −∆x′03

γ
= −X

γ

The negative sign indicates that E3 is occurring left of Diracus’s origin. The intervals
between E2 and E3 as measured by Diracus are given by the inverse Lorentz transformations
obtained from Lorentz transformations by changing β to −β:

∆x23 = γ(∆x′23 − βc∆t′23) = γ(0− βc∆t′23) = −γβcT2

c∆t23 = γ(−β∆x′23 + c∆t′23) = γ(0 + c∆t′23) = γcT2 (E.104)

Therefore, the space interval ∆x20 between E2 and Diracus (which is the distance between
E3 and Diracus plus the space interval between E2 and E3) is

∆x20 = ∆x30 + ∆x23 = −X
γ
− γβcT2

and the time interval ∆t20 between E2 and Diracus’s NOW, i.e., the time that E2 will take
place in Diracus’s future is just γcT2, because ∆t20 is the same as ∆t23.

Summarizing, Diracus wants to send a probe to Earth so that it will reach Earth at the
exact time that E2 is happening. This probe has to travel a distance of −Xγ − γβcT2 in
a time interval of γcT2. Therefore, its speed should be (we ignore the negative sign of the
speed, because we are just interested in seeing how fast the probe should be moving once
its direction is determined)

βprobe =
X/γ + γβcT2

γcT2
= β +

X

γ2cT2

Substituting X from Equation (E.103) in this equation and using T = T1 + T2 and 1/γ2 =
1− β2 yields

βprobe = β +
cT/β

γ2cT2
= β +

T1 + T2

βγ2T2
= β +

1
β

(1− β2)
(

1 +
T1

T2

)
= β +

(
1
β
− β

)(
1 +

T1

T2

)
= β +

1
β

+
1
β

T1

T2
− β − β T1

T2

=
1
β

+
T1

T2

(
1
β
− β

)
The last line shows that βprobe > 1 because the first term is greater than 1 and the second
term is positive.

We have shown very generally that it is impossible to be present at an event that occurred
in the past without violating relativity. We had to undergo a lot of algebraic torture in this
Math Note to prove this. On the other hand, the proof given on page 402 uses hardly any
equations. This goes to show how much geometric and diagrammatic approach facilitates
relativistic discussions.

Math Note E.27.13. Suppose that the speed of an object (a bullet) relative to observerRelativistic law of
addition of velocities

(page 405 of the book)
O is vb. How does she measure this speed? She locates the bullet at two different times,
measures the distance between those locations, and divides by the time interval. In other
words, she picks two events E1 = (x1, ct1) and E2 = (x2, ct2) and takes the ratio of ∆x =
x2 − x1 to ∆t = t2 − t1.

Observer O′ looks at O as she makes her speed measurement. He sees the two events
as (x′1, ct

′
1) and (x′2, ct

′
2) and concludes that the speed of the bullet v′b is the ratio of ∆x′ to
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(a)

x
E1

E2

E3

O

′x

c ′t ct

x

E2

E3 O′O

(b)

Figure E.27: (a) The events as they appear to O′. (b) The relevant events as they appear to O.

∆t′, where ∆x′ and ∆t′ are related to ∆x and ∆t via the Lorentz transformations. Thus,
by Equation (E.96) we can write

v′b
c

=
∆x′

c∆t′
=
γ(∆x+ βc∆t)
γ(β∆x+ c∆t)

=
∆x+ βc∆t
β∆x+ c∆t

=
∆x/(c∆t) + βc∆t/(c∆t)
β∆x/(c∆t) + c∆t/(c∆t)

=
vb/c+ β

β(vb/c) + 1

where we divided the last equation of the first line by c∆t to get to the first equation of
the second line. Let us introduce two new but obvious notations: β′b ≡ v′b/c and βb ≡ vb/c.
Then the relation above can be written as

β′b =
βb + β

1 + ββb
(E.105)

If we multiply both sides by c and substitute for β and βb in terms of v and vb, Equation
(E.105) becomes

v′b =
vb + v

1 + vvb/c2
(E.106)

Now we can show quite generally that it is impossible to surpass the speed of light by
“adding” two smaller speeds, regardless of how close they are to light speed. Consider the
inequality βb < 1. If you multiply both sides of this inequality by the positive quantity
1− β, the inequality still holds. So,

βb(1− β) < 1− β or βb − βbβ < 1− β

Now add β + ββb to both sides to get β + βb < 1 + ββb.
It follows that the numerator of Equation (E.105) is always smaller that the denominator;

therefore, β′b < 1. Although the bullet is moving close to the speed of light in the train and
the train is also moving close to light speed, the observer on the platform will measure a
combined speed for the bullet that is smaller than light speed.

Math Note E.27.14. We want to prove that the sum of two sides of a spacetime triangle Proof of spacetime
triangle inequality
(page 406 of the book)

is less than the third side. Figure E.28 shows a spacetime triangle whose vertices are the
three events E1, E2, and E3. The space and time intervals between any two events are
shown on the corresponding axes.20 For example, the space interval between E1 and E2 is
x12 and the time interval between E2 and E3 is t23. It should be clear that x13 = x12 + x23

and t13 = t12 + t23. Denote the spacetime interval between any two events similarly. Our
20To avoid the cluttering of symbols, we are not using the ∆-notation here.
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xO

ct

E1

E2

E3

x23

ct12

ct23

x12

Figure E.28: The three events E1, E2, and E3 form a spacetime triangle.

goal is to show that s13 > s12 + s23. We first obtain the following relation among the three
spacetime intervals:

s2
13 = (ct13)2 − x2

13 = (ct12 + ct23)2 − (x12 + x23)2

= (ct12)2 + (ct23)2 + 2(ct12)(ct23)− x2
12 − x2

23 − 2x12x23

= (ct12)2 − x2
12︸ ︷︷ ︸

=s212

+ (ct23)2 − x2
23︸ ︷︷ ︸

=s223

+2[(ct12)(ct23)− x12x23]

= s2
12 + s2

23 + 2[(ct12)(ct23)− x12x23]

Since s2
12 + s2

23 = (s12 + s23)2 − 2s12s23, the last equation can be written as

s2
13 = (s12 + s23)2 + 2[(ct12)(ct23)− x12x23 − s12s23] (E.107)

Our task has now been reduced to showing that the expression in the square brackets is
positive. For this we manipulate the (square of the) last term in the square brackets:

(s12s23)2 = s2
12s

2
23 = [(ct12)2 − x2

12][(ct23)2 − x2
23]

= (ct12)2(ct23)2 + x2
12x

2
23︸ ︷︷ ︸

Call this term1

−[(ct12)2x2
23 + (ct23)2x2

12]

= [(ct12)(ct23)− x12x23]2 + 2(ct12)(ct23)x12x23︸ ︷︷ ︸
This is also term1

−[(ct12)2x2
23 + (ct23)2x2

12]

= [(ct12)(ct23)− x12x23]2 − [(ct12)x23 − (ct23)x12]2

The last line tells us that

[(ct12)(ct23)− x12x23]2 = (s12s23)2 + [(ct12)x23 − (ct23)x12]2

or, since the second term on the right-hand side is positive,

[(ct12)(ct23)− x12x23]2 > (s12s23)2

This shows that
(ct12)(ct23)− x12x23 > s12s23

proving that the expression in the square brackets of Equation (E.107) is positive.
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E.28 Math Notes for Chapter 28

Math Note E.28.1. By the definition of the spacetime velocity, we have Findingspacetime
velocity in terms of
ordinary velocity
(page 415 of the book)

ubx =
∆xb
∆τb

=
∆xb/∆tb
∆τb/∆tb

=
vb√

1− (vb/c)2
= γbvb

ubt =
c∆tb
∆τb

=
c√

1− (vb/c)2
= γbc (E.108)

where we used Equation (26.1) noting that the speed vb is that of the bullet as measured by
Emmy. It should be clear that “bullet” represents any moving object of interest, including
a light signal, for example. An important property of Equation (E.108) is

u2
bt − u2

bx = c2 (E.109)

which follows from the definition of the two components:

u2
bt − u2

bx =
(
c∆tb
∆τb

)2

−
(

∆xb
∆τb

)2

=
(c∆tb)2 − (∆xb)2

(∆τb)2
=

(∆sb)2

(∆τb)2
= c2

The components of spacetime velocity satisfy Equation (E.109) in all RFs. For instance in
the O′ frame, we get

u′2bt − u′2bx =
(
c∆t′b
∆τb

)2

−
(

∆x′b
∆τb

)2

=
(c∆t′b)

2 − (∆x′b)
2

(∆τb)2
=

(∆sb)2

(∆τb)2
= c2

One can think of u2
bt − u2

bx as the invariant length of the spacetime velocity in the 2D
spacetime geometry.

Math Note E.28.2. All we need to do is to write the first equation in (28.2) in terms of Lorentz transformations
of spacetime velocity
leads to the relativistic
law of addition of
velocities
(page 416 of the book)

v′b and vb. It is actually more convenient to write both sides in terms of the corresponding
β’s. Then the first equation in (28.2) yields

γ′bv
′
b = γ(γbvb + βγbc) = γγb(vb + βc)

or
β′bc√

1− β′2b
=

1√
1− β2

1√
1− β2

b

(βbc+ βc)

dividing both sides by c and squaring both sides yields

β′2b
1− β′2b

=
(βb + β)2

(1− β2)(1− β2
b )

We now solve for β′2b by first cross multiplying:

β′2b (1− β2)(1− β2
b ) = (1− β′2b )(βb + β)2

or
β′2b (1− β2)(1− β2

b ) = (βb + β)2 − β′2b (βb + β)2

Next we add β′2b (βb + β)2 to both sides:

β′2b [(1− β2)(1− β2
b ) + (βb + β)2]︸ ︷︷ ︸

=[1+β2β2
b +2βbβ]=(1+ββb)2

= (βb + β)2

Finally, we solve for β′2b and take its square root:

β′2b (1 + ββb)2 = (βb + β)2 ⇒ β′2b =
(βb + β)2

(1 + ββb)2
or β′b =

βb + β

1 + ββb

This is identical to Equation (E.105), giving the relativistic law of addition of velocities in
terms of β’s.
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(a)

(b)

Figure E.29: The light emitted by Emmy has a different energy and momentum than that received by
Karl.

Math Note E.28.3. If we completely neglect v/c and set γb equal to 1, we obtain pbt = mc,
which we cannot identify with any Newtonian quantity.21 So, we do the next best thing:
we approximate 1/

√
1− β2

b using Math Note E.26.5. Then, we obtainIdentification of pbt with
a known classical

quantity
(page 416 of the book) pbt =

mc√
1− β2

b

≈ mc
(
1 + 1

2β
2
b

)
= mc+ 1

2mc
(
v2
b/c

2
)

= mc+ 1
2m

v2
b

c

Multiplying both sides by c, we get

pbtc ≈ mc2 + 1
2mv

2
b

This tells us that in the Newtonian limit, pbtc−mc2 is the kinetic energy. We extrapolate
to relativity and call pbtc−mc2 the relativistic kinetic energy, and write

pbtc = mc2 + relativistic KE or pbtc = Eb

where Eb is called simply the “energy” of the bullet. It consists of a kinetic energy part
and mc2, the “rest energy” part.

Math Note E.28.4. Emmy (observer O) is moving with speed v toward Karl (observerDerivation of relativistic
Doppler formula

(page 419 of the book)
O′) in his positive direction as shown in Figure E.29(a). She emits a beam of light, whose
energy and momentum she measures to be E and p with E = pc. Karl receives this signal
and measures its energy and momentum to be E′ and p′, related to E and p via Lorentz
transformations of Equation (28.5):

p′ = γ(p+ βE/c) = γ(p+ βp) =
p+ βp√
1− β2

=

√
1 + β

1− β
p

E′ = γ(βpc+ E) = γ(βE + E) =

√
1 + β

1− β
E (E.110)

Some interesting results come out of this equation. First we note that, since E = pc,
E′ = p′c as well. This is what we expect, as the energy of a photon is its momentum times
its speed in all RFs. The second result is that p′ 6= p. Thus, although a photon moves with
the same speed in all RFs, its momentum is different. The third (and the most important)

21We can interpret the result as the momentum of the bullet when it moves with light speed, but that is
prohibited by relativity.
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result is obtained by using the Planck-Einstein relation E = hc/λ on both sides of the
second equation. The result is

hc

λ′
=

√
1 + β

1− β
hc

λ
or λ′ =

√
1− β
1 + β

λ (E.111)

The wavelength that Karl receives is smaller than that emitted by Emmy. This is the
relativistic Doppler formula, which was obtained in Math Note E.27.8 using a com-
pletely different approach. Thus we can now refute the original suspicion: because of the relativistic Doppler

formulawave property of light, a photon has different wavelengths for different observers due to the
Doppler effect. Since the wavelength is related to the energy and momentum of the photon,
we should expect these quantities to be different for different observers.

As Emmy passes Karl and moves away from him, we expect the wavelength of the photon
detected by Karl to increase. Let us see if Equation (E.110) gives us the correct answer.
The photons that Karl receives are moving in the negative direction [see Figure E.29(b)].
Therefore, we need to introduce a negative sign for p, and write (E.110) as

p′ = γ(−p+ βE/c) = γ(−p+ βp) = − p− βp√
1− β2

= −

√
1− β
1 + β

p

E′ = γ(−βpc+ E) = γ(−βE + E) =
E(1− β)√

1− β2
=

√
1− β
1 + β

E

The second equation now gives us

hc

λ′
=

√
1− β
1 + β

hc

λ
or λ′ =

√
1 + β

1− β
λ (E.112)

showing an increase in the wavelength. You can use this formula for both approach and
recession by assigning a positive value to β when the source and the detector are receding
from each other, and a negative value when they are approaching one another.

Whenever we obtain a formula in relativity, it is instructive to see if it reduces to a
familiar formula in classical physics in the limit of small velocities. Math Note E.28.5 shows
that Equations (E.111) and (E.112) indeed reduce to Equation (E.10) of Chapter 11.

Math Note E.28.5. When β is small, we can use the results of Math Note E.26.5, namely Reduction of relativistic
Doppler formula to
classical formula
(page 61 of the book)

√
1− β ≈ 1− 1

2β,
√

1 + β ≈ 1 + 1
2β

1√
1− β

≈ 1 + 1
2β,

1√
1 + β

≈ 1− 1
2β (E.113)

Then √
1− β
1 + β

=
1√

1 + β

√
1− β ≈ (1− 1

2β)(1− 1
2β) ≈ 1− β

where in the last step we neglected 1
4β

2, because it is so much smaller than β.22 With this
approximation, Equation (E.111) becomes

λ′ =

√
1− β
1 + β

λ ≈ (1− β)λ =
(

1− v

c

)
λ

22If β is 0.001, then β2 is 0.000001.
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which is Equation (E.10) with a minus sign (for approach). Similarly, if we use the approx-
imation √

1 + β

1− β
=

1√
1− β

√
1 + β ≈ (1 + 1

2β)(1 + 1
2β) ≈ 1 + β

and use it in Equation (E.112), we get

λ′ =

√
1 + β

1− β
λ ≈ (1 + β)λ =

(
1 +

v

c

)
λ

which is Equation (E.10) with a plus sign (for recession).

Math Note E.28.6. Referring to Figure 28.3, let us call the momenta before collisionConservation of
relativistic momentum

and energy
(page 421 of the book)

p1 and p2, the energies before collision E1 and E2, the momenta after collision P1 and P2

and the relativistic energies E1, E2. Then Emmy’s conservation of momentum becomes
p1 + p2 = P1 + P2. For Karl, the conservation of momentum yields p′1 + p′2 = P ′1 + P ′2.
The primed quantities are related to the unprimed quantities via Equation (28.5) (with b
replaced by 1 or 2):

p′1 = γ(p1 + βE1/c), p′2 = γ(p2 + βE2/c),
P ′1 = γ(P1 + βE1/c), P ′2 = γ(P2 + βE2/c)

Substituting these in Karl’s conservation law yields

γ(p1 + βE1/c) + γ(p2 + βE2/c) = γ(P1 + βE1/c) + γ(P2 + βE2/c)

dividing all terms by γ gives

p1 + p2 + β(E1/c+ E2/c) = P1 + P2 + β(E1/c) + E2/c)

Emmy’s conservation law equates the first two terms on the left-hand side to the first two
terms on the right-hand side. It follows that

β(E1/c+ E2/c) = β(E1/c) + E2/c) or E1 + E2 = E1 + E2

i.e., the total relativistic energy does not change in a collision.

E.29 Math Notes for Chapter 29

Math Note E.29.1. The direction of motion is specified by the velocity vector, and asDeflection angle of light
in a uniform field

(page 431 of the book)
Figure E.30(b) shows, the angle in radian is given by the velocity in the y-direction divided
by the initial velocity, which is c [see Equation (B.1) and Figure B.2]. But the motion in the
y-direction is a uniformly accelerated motion, whose velocity is given by gt [see Equation
(4.3)]. Therefore, ϕ = gt/c; and if we denote the length traveled in the x-direction by w
(for “width”), then t = w/c and

ϕ =
gw

c2
radian or ϕ = 57.3

gw

c2
degree or ϕ = 206280

gw

c2
arcsecond (E.114)

where an arcsecond is 1/3600 degree. For g = 9.8 m/s2 and w = 10 m,

ϕ = 206280
9.8× 10

(3× 108)2
= 2.25× 10−10 arcsecond

which is immeasurably small.
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ϕ
ϕ

c

vy

(a) (b)

Figure E.30: (a) A light beam bends in a gravitational field. (b) The deflection angle is the angle
between initial and final velocity vectors. The angle is exaggerated a great deal; it is very small for ordinary
gravitational fields.

On the other hand, a white dwarf is as massive as Sun, while its radius is comparable
to the Earth’s radius. The gravitational acceleration at the surface of such an object is of
the order of 106 m/s2. Suppose we send a beam of light to a point 1000 km away. Then,
with w = 106 m, Equation (E.114) gives a deflection angle of

ϕ = 206280
gw

c2
= 206280

106 × 106

(3× 108)2
= 2.3 arcseconds

which, although still very small, is much larger than the value obtained above.

Math Note E.29.2. A light beam coming from far away goes through regions of varying Derivation of deflection
angle of a light beam
(page 431 of the book)

gravitational field of a spherical body as shown in Figure E.31(a). At large distances, the
field is very weak; as the light beam approaches the body, the field becomes stronger and
stronger; when it grazes the surface, the field is the strongest; and as the beam recedes from
the body, the field gets weaker and weaker again.

The problem of finding the deflection angle in the field of Figure E.31(a), although com-
plicated, can be solved using techniques of differential equation. I am not going to solve the
problem exactly. Instead, let me make a wild approximation: I replace the inhomogeneous
field of the spherical body with a homogeneous field which is zero everywhere except for a
region equal to the diameter of the body [see Figure E.31(b)]. The strength of this field is
the same as that at the point of closest approach. By letting the homogeneous field have
the largest value, I am compensating for the fact that outside the region of width 2R, I
have set the strength of the gravity equal to zero, while in reality it is not. Now recall
from Equation (9.2) that for a celestial body of radius R and mass M , the gravitational
acceleration at the surface is g = GM/R2. This, plus the fact that w = 2R, turns Equation
(E.114) into

ϕ =
(GM/R2)2R

c2
=

2GM
Rc2

(E.115)

where ϕ is measured in radian. It is a remarkable coincidence that the exact calculation
gives an identical result!

Math Note E.29.3. We know from our discussion of the Doppler effect in Section 11.4 Doppler shift in an
accelerating rocket
(page 433 of the book)

that ∆λ/λ = vrel/c [see Equation (E.12) in Math Note E.11.4], where vrel is the speed of
the detector relative to the source; i.e., the amount by which the detector changes its speed
in the time it takes light to reach it after it leaves the flashlight. But this is precisely ∆v,
the change in the rocket speed during the light’s flight.

Let us call ∆h (the change in height) the distance that light travels, or the distance
between the flashlight and the detector; and call ∆t the time it takes light to travel this
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(a) (b)

ϕ

2R

ϕ

2R

Figure E.31: (a) A light beam bending in the weak gravitational field of a spherical body. (b) The
equivalent homogeneous gravitational field.

distance. Then it is clear that ∆t = ∆h/c. During this same time the speed of the rocket
has changed by ∆v = a∆t = a∆h/c. Putting all this together, we get

∆λ
λ

=
vrel

c
=

∆v
c

=
a∆h/c
c

=
a∆h
c2

The equivalence principle allows us to change the acceleration to the corresponding gravi-
tational field g:

∆λ
λ

=
g∆h
c2

or
λdet − λsrc

λ
=
g(hdet − hsrc)

c2
(E.116)

where λdet and hdet are the wavelength and height at the detector, and λsrc and hsrc those
at the source. By definition, gravitational field lines are directed toward lower heights.

Math Note E.29.4. To see how much gravity affects time, divide the numerator andDerivation of
gravitational time

dilation
(page 433 of the book)

denominator of the left-hand side of Equation (E.116) by c and note that c = λ/T or
T = λ/c. Then, denoting by ∆λ the difference in wavelength on the left, and by ∆h, the
difference in height on the right, we obtain

∆λ/c
λ/c

=
g∆h
c2

or
∆T
T

=
g∆h
c2

where T is the period of the wave at the source and ∆T is the change in the period when
it reaches the detector. The right-hand side of the last equation can be rewritten. Recall
that mg∆h is the gravitational potential energy difference between two points separated by
a height ∆h. Therefore, g∆h is this difference divided by the mass m. We denote the ratio
of the gravitational potential energy to mass by Φ and call it the gravitational potential
(see Math Note E.9.3 for further detail). Then, the second part of the above equation can
be written as

∆T
T

=
g∆h
c2

=
∆Φ
c2

This equation can be expressed more suggestively as follows. Since ∆T is the difference
in the period of the wave at two different points, we write it as ∆T = T2 − T1 where the
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(a)

(b)

MW G1 G2 G3G−2G−3 G−1

MW G1 G2 G3G−2G−3 G−1

Figure E.32: (a) A Milky Way (MW) observer sees galaxies G−3 through G3 move away. (b) Because
of homogeneity and isotropy, an observer on G1 must see an identical situation as MW.

subscripts 1 and 2 refer to the detector and the source, but they are really any two points
in space.23 Similarly, ∆h = h2−h1, where h1 and h2 are, respectively, the heights at which
the periods are T1 and T2. Finally, ∆Φ = Φ2 − Φ1, with Φ1 and Φ2 relating to T1 and T2.
The last equation then becomes

T2 − T1

T
=
g(h2 − h1)

c2
=

Φ2 − Φ1

c2

where T is either T1 or T2 (the difference is so small that it does not matter which one you
use in the denominator).

Now, period is a measure of time. For some radio waves the period is 10−8 s. So a
second is 100 million periods, a minute 6 billion, an hour 360 billion and a year 3.15× 1015

periods. And if period is affected by gravity, time itself is as well. We rewrite the equation
above as

t2 − t1
t

=
g(h2 − h1)

c2
, or

t2 − t1
t

=
Φ2 − Φ1

c2
, Φ ≡ −GM

r
(E.117)

where again t is either t1 or t2. For points near the Earth’s (or any other gravitating body’s)
surface,24 there is no difference between the two ways of calculating t2 − t1, but the first
formula is easier to use. If the height difference between the two points is comparable with
the radius of the gravitating body, we have to use the second formula.

Math Note E.29.5. We want to show that in an expanding homogeneous and isotropic Derivation of
proportionality of
galactic speed and
distance
(page 445 of the book)

universe, the speed of a distant galaxy relative to another is proportional to their separation.
To simplify the argument, consider the motion of galaxies along a line. Figure E.32(a) shows
only six out of billions of galaxies moving away from the Milky Way (MW). Assume that
G1 is at a distance d to the right of MW, and the distances of all the other galaxies from
MW are multiples of d: G2 is 2d to the right, G3 is 3d to the right, and all the negatively
indexed galaxies have corresponding distances to the left. Let the speed of G1 be v. Then
isotropy implies that the speed of G−1 is −v, i.e., same as G1, but in the opposite direction.
[If an observer rotates 180 degrees from G1, she sees G−1.]

How do the galaxies move as seen from another galaxy, say G1? Figure E.32(b) shows
the recession of galaxies as seen by G1. Since G1 moves away to the right as seen by MW
observers, MW at a distance d, must be moving to the left as seen by G1 observers. Isotropy
now implies that G2, which is at the same distance from G1 as is MW, must be moving
away from G1 with speed v. For this to happen, G2 must be moving at speed 2v away from
MW. Isotropy implies that G−2 must also be moving away from MW with a speed of 2v in

23You can move your source and detector to any point you desire.
24That is, points whose heights above the surface are much smaller than the radius of the gravitating

body.
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the negative direction. By jumping on G2 and observing the runaway galaxies, an observer
must measure the speed of G3 to be v relative to G2, because of isotropy and the fact that
G1 on the left is moving away with that speed. This puts the speed of G3—and by isotropy,
G−3—at 3v relative to MW. It should now be clear that galactic speeds relative to G1 are
proportional to their separation from G1.

E.31 Math Notes for Chapter 31

Math Note E.31.1. Apply the conservation of energy to a very general fission process:Rigorous calculation of
mass defect

(page 464 of the book) 1
0n + A → X + Y + neutrons.

With obvious notation write

En + EA = EX + EY + Ens

where the subscript ns refers to the total number of neutrons. Each energy consists of the
KE and the rest energy: E = KE +mc2. So, rewrite the equation above as

KEn +mnc
2 +KEA +MAc

2 = KEX +MXc
2 +KEY +MY c

2 +KEns + rMnc
2

where r is the number of neutrons produced. Now use Equation (31.1) for each nucleus,

KEn +mnc
2 +KEA + ZAmpc

2 +NAmnc
2 −BEA = KEX + ZXmpc

2 +NXmnc
2 −BEX

+KEY + ZYmpc
2 +NYmnc

2 −BEY +KEns + rMnc
2

The number of protons on the left should equal the umber of protons on the right; similarly
for neutrons. Therefore,

KEn +KEA −BEA = KEX −BEX +KEY −BEY +KEns

which can be rewritten as

BEX +BEY −BEA = KEX +KEY +KEns −KEn −KEA

The KE of the initial neutron and parent nucleus is usually very small compared to other
energies. So, we can write the last equation as

BEX +BEY −BEA = KEX +KEY +KEns

Math Note E.31.2. The initial energy of the decay of a neutron is the rest energy ofCalculating energy of
electron in a neutron

decay
(page 469 of the book)

the neutron, mnc
2. The final energy is the energy of the proton Ep plus the energy of the

electron Ee. But these energies are related to the corresponding (equal) momenta via the
relativistic energy-momentum formula (28.7) which can be written as E2 = p2c2 + m2c4.
Conservation of energy gives

mnc
2 = Ep + Ee or Ep = mnc

2 − Ee

Squaring both sides yields

E2
p = (mnc

2 − Ee)2 = m2
nc

4 + E2
e − 2mnc

2Ee

Substituting E2 = p2c2 +m2c4 for E2
p on the left and E2

e on the right gives

p2c2 +m2
pc

4 = m2
nc

4 + p2c2 +m2
ec

4 − 2mnc
2Ee or 2mnEe = m2

nc
2 −m2

pc
2 +m2

ec
2
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It follows that the energy of the electron is

Ee =
m2
n −m2

p +m2
e

2mn
c2,

and gives the unique value of 1.289 MeV once all the mass-values and the speed of light are
substituted in the right-hand side.

If instead of the neutron beta decay n → p+ + e− we consider a general nuclear beta
decay X → Y+ + e−, where X and Y are nuclei, then the electron energy will be

Ee =
m2
X −m2

Y +m2
e

2mX
c2,

which is completely determined by the masses of the nuclei.

E.32 Math Notes for Chapter 32

Math Note E.32.1. We want to calculate the minimum energy required of an impinging Energetics of an
antiproton production
(page 481 of the book)

proton to produce an antiproton upon impact with a stationary proton. One cannot convert
energy simply into an antiproton; creation of matter always accompanies creation of similar
antimatter. Thus, the antiproton must accompany a proton. Furthermore, protons cannot
turn into other particles; so the initial net number of protons must equal the final net
number. Since we start with two protons, we must end up with two net protons. The
proton and the antiproton “cancel” each other. Therefore, the final products must include
two extra protons. The reaction corresponding to the minimum energy is thus

p+ p → p+ p+ p+ p

where a bar over the symbol of a particle denotes its antiparticle.
To calculate the actual minimum energy, we observe the reaction in the center of mass

(CM). What does this mean? Suppose we move in the same direction as the initial moving
proton with half its speed. Then, the moving proton will appear to move at half its speed
in the same direction, while the stationery proton will appear to move at half its speed
in the opposite direction: in the CM reference frame, the total momentum is zero. Since
momentum does not change in a collision, the momenta of the four end particles must add
up to zero. The minimum energy corresponds to the case where all four particles remain
stationary (in the CM reference frame). In the original (laboratory) RF, they, of course,
move with the same speed—that of the center of mass RF. Since they all have the same
mass (antiparticles have identical mass to their corresponding particles), they must have
equal momenta in the lab RF. Thus, the minimum energy corresponds to the case when the
initial momentum of the moving proton is divided equally among the four final particles.

Now we are ready to calculate the minimum energy. First we note that the energy-
momentum relation, E2 = P 2c2 +m2c4, implies that the final particles have equal energy,
because they have equal masses and momenta. Label this energy ef and the corresponding
momentum pf . Label the energy and momentum of the initial moving proton E and P ,
respectively. Equating the initial total energy (including the rest energy of the stationary
proton) and momentum to the final total energy and momentum gives

E +mc2 = 4ef , P = 4pf (E.118)

where m is the mass of the proton (or antiproton). Squaring both sides of the second
equation yields P 2 = 16p2

f , or P 2c2 = 16p2
fc

2. If we replace the momentum on each side
with its corresponding energy using the energy-momentum relation, we obtain

E2 −m2c4 = 16(e2
f −m2c4) or E2 = 16e2

f − 15m2c4 (E.119)
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The first equation in (E.118) gives (E+mc2)2 = 16e2
f . Substituting this in the last equation

of (E.119) yields E2 = (E +mc2)2 − 15m2c4 or

E2 = E2 + 2mc2E +m2c4 − 15m2c4 ⇒ 0 = 2mc2E − 14m2c4 (E.120)

whose solution is E = 7mc2. This is the total energy of the impinging proton. Its kinetic
energy—its total minus its rest energy—is KE = 6mc2. For a proton, mc2 = 938.28 MeV;
therefore, the minimum KE required for the production of an antiproton is 6 times this or
5630 MeV, which is close to 6 billion eV.

Math Note E.32.2. When a particle of mass m and charge q moves with speed v on a circleRelation between
angular momentum and

magnetic moment
(page 488 of the book)

of radius r, its angular momentum L is rmv. On the other hand, the magnetic moment
µ, defined as the product of the electric current and the area of the circle, is iπr2. Now we
note that v = 2πr/T , where T is the period of the revolution of the charge. Furthermore,
since q moves around the circle in T , the current is q/T . Therefore,

L = mrv = mr
2πr
T

or LT = 2mπr2

µ = iπr2 =
q

T
πr2 or µT = qπr2

and dividing the second equation by the first yields µ/L = q/(2m) or µ = (q/2m)L.

E.37 Math Notes for Chapter 37

The Math Notes for this chapter are a little different from the other ones in that I have
been a little more liberal in using slightly more sophisticated mathematics, mostly calculus.
As I was writing these notes, the intimidation of the difficulty of the math faded next to the
sublimity of the subject matter. I thought to myself “If I have to use some simple higher
mathematics to derive an important relation, I’ll do it.” After all, we are talking about
the universe itself. And those readers who are familiar with calculus will see the power of
mathematics as seen nowhere else. It is for these readers that I have included some integrals
and differential equations. The other readers can simply skip the higher math and move on
to the rest of the math note. For your convenience, I have set the mathematical discussions
in a different font style.

Math Note E.37.1. The total energy E of m moving away with speed v at a distance RDerivation of the
Friedmann equation

(page 570 of the book)
from the center of sphere in Figure E.33 is

E = 1
2mv

2 − GMm

R

where M is the mass of the sphere. This mass can be written in terms of the uniform density
ρ of the material filling the sphere.25 The density ρ includes both matter and radiation,
because both contribute to the gravitational force; matter due to its mass, and radiation,
due to its energy, which by E = mc2, has an equivalent mass.

Now recall (see Section 8.3.1) that density is defined as mass divided by volume, and
therefore, mass is density times volume. For a sphere of radius R, the volume is 4

3πR
3.

Thus, M = 4
3πR

3ρ. Putting this in the equation above yields

E = 1
2mv

2 − 4
3GmπR

2ρ

Multiply both sides of this equation by 2 and divide by mR2 and denote E/m by e to get

2e
R2

=
( v
R

)2

− 8πG
3

ρ

25Since the universe is assumed homogeneous and isotropic, its density cannot change from point to point,
or from one angle to another.
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P1

P2

Figure E.33: Two points P1 and P2 and the sphere filled with matter and radiation between them.

When the general theory of relativity is applied to the universe, the same equation is
obtained except that the numerator of the left-hand side is replaced by −kc2, where k, like
e, is a constant, which is related to the geometry of the universe, and is called the curvature.
Borrowing this piece of information from GTR and rearranging the last equation slightly,
we get the Friedmann equation:( v

R

)2

=
8πG

3
ρ− kc2

R2
(E.121)

Depending on the sign of k, we have three kinds of universes. If k is negative, then e and
E are both positive, and Box 9.2.3 tells us that the two points P1 and P2 of Figure E.33
will move away from each other forever. Since P1 and P2 are two typical (far) points of the
universe, the universe will expand forever. This universe is called open or hyperbolic.

If k is positive, then e and E are both negative, and once again Box 9.2.3 tells us that
P2 will move away from P1 for a while, but eventually it will stop and start coming back
towards P1. Such a universe will eventually stop expanding and a contracting era will start
sometime in the future. This universe is called closed or spherical.

Finally, if k = 0, then e and E are both zero, and although P2 will move away from P1

forever, it will constantly slow down, and only at infinity will it come to a complete stop.
This universe is called flat.

Math Note E.37.2. Let M denote the mass inside the sphere of radius R0. Then M = Derivation of ρm(t) and
R(t) for a
matter-dominated
universe
(page 572 of the book)

4
3πR

3
0ρm0. This mass remains the same as the size of the sphere changes. Thus, at a later

time, M = 4
3π[R(t)]3ρm(t). Equating these two expressions for M and simplifying gives

[R(t)]3ρm(t) = R3
0ρm0 or ρm(t) =

R3
0ρm0

[R(t)]3
, (E.122)

which shows that the density of matter increases for a contracting universe as the inverse
third power of the size of the universe.

Substituting this in the Friedmann equation for a flat universe, we get[
v(t)
R(t)

]2

=
8πG

3
R3

0ρm0

[R(t)]3
or [v(t)]2 =

8πGR3
0ρm0

3
1

R(t)

and

v(t) =

√
8πGR3

0ρm0

3
1√
R(t)

(E.123)



142 Appendix E Mathematical Notes

Equation (E.123) is a differential equation, whose solution can be obtained very easily.
Ordinarily, I would just quote the solution, but since we are talking about the fate of the
universe itself, I feel obligated to share with you the simple method that finds the solution
to this “colossal” result. If you are not familiar with calculus, skip to the next paragraph.
But if you know some calculus, follow the steps and feel the universal power of math and
physics!

Anyway, let’s go back to Equation (E.123) and note that v(t) = dR/dt. Lumping all the
constants into one and calling it A, Equation (E.123) becomes

dR

dt
=

A√
R
, or R1/2dR = Adt

Integrating both sides and introducing a constant of integration gives

2
3R

3/2 = At+ C (E.124)

Since at the moment of the big bang (i.e., t = 0) the universe had zero size, C must be zero.
Therefore,

R(t) =
(

3
2At

)2/3 = A2/3
(

3
2 t
)2/3 =

(√
8πGR3

0ρm0

3

)2/3 (
3
2 t
)2/3 =

(
8πGR3

0ρm0

3

)1/3 (
3
2 t
)2/3

which can be simplified to
R(t)
R0

= (6πGρm0)1/3
t2/3 (E.125)

Now substitute t0, the age of the universe, for t and note that R(t0) = R0. Then

R0

R0
= (6πGρm0)1/3

t
2/3
0 or (6πGρm0)1/3 =

1

t
2/3
0

Substitute this in Equation (E.125) to get a useful formula:

R(t)
R0

=
1

t
2/3
0

t2/3 =
(
t

t0

)2/3

(E.126)

where t0 = 13.7 billion years, the age of the universe.
Cubing both sides of Equation (E.125) and using (E.122), we obtain

[R(t)]3

R3
0

= 6πGρm0t
2 or

[R(t)]3

R3
0ρm0

= 6πGt2

The left-hand side of the second equation is the inverse of matter density. Therefore,

ρm(t) =
1

6πGt2
(E.127)

This is usually written with t given in terms of ρm:

t =
1√

6πGρm
(E.128)

Finally, we can find a simple equation that gives the variation of H with time. Equation
(E.123) in terms of the constant A introduced above is v = A/

√
R. Hence, H = A/(R

√
R) =

A/R3/2. But Equation (E.124) with C = 0 gives us the denominator. Thus,

H =
A

R3/2
=

A
3
2At

=
2
3t

(E.129)

Note that H decreases with time, approaching zero for very large t, but never becoming
zero. The first row of Table E.3 summarizes the results of this Math Note.
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Matter

dominated
R(t)
R0

= (6πGρm0)1/3
t2/3 =

(
t

t0

)2/3

, t =
1√

6πGρm
=

126863
√
ρm0 T 3/2

, H =
2
3t

Radiation

dominated
R(t)
R0

=
(

32πGργ0

3

)1/4

t1/2, t =
√

3
32πGργ

=
2.3× 1020

T 2
, H =

1
2t

Matter
λ(t)
λ0

=
R(t)
R0

,
T (t)
T0

=
R0

R(t)
or

radiation ργ(T ) = 8.36× 10−33T 4 kg/m3
, ρ = αργ , t =

2.3× 1020

√
α T 2

dominated

ργ(t) = ργ0

[
R0

R(t)

]4

, nγ(T ) = 2× 107T 3 photons/m3
, 〈Eγ〉 = 2.7kBT

Table E.3: The collection of formulas used frequently in cosmology. Note how time is written in terms
of densities instead of densities as a function of time. The second and third equations of the fourth row
apply to the very early universe when all particles were relativistic.

Math Note E.37.3. Consider two nearby points P1 and P2 in a perfectly homogeneous
and isotropic universe separated by a distance r. By a perfectly homogeneous and isotropic
universe I mean one which is so even at small distances. Since I am interested in the change Derivation of relation

λ(t) and T (t)
(page 573 of the book)

in the wavelength due to expansion, I do not want to worry about inhomogeneity caused by
the presence of matter. Let λ(t) denote the wavelength of the EM wave as it passes by P1

at time t after the big bang. This same wave reaches P2 at time t+ ∆t after the big bang.
This means that the wave travels the distance r in ∆t seconds, so that r = c∆t. Let v be
the relative speed of the two points due to expansion, i.e., v = Hr.

Now recall from our discussion of Doppler effect that the fractional change in the wave-
length of an EM wave is simply v/c [see the second equation in (E.10)]. Thus, we can
write

∆λ
λ

=
v

c
=
Hr

c
= H

r

c
= H∆t

The Hubble parameter is related to the scale of the universe. It is the ratio of the rate of
change of the scale divided by the scale. Denoting by V the speed of increase of the scale
R, we have H = V/R and H∆t = (V∆t)/R. But V∆t is simply how much R increases in
∆t. Call this increase ∆R, and write the last equation as

∆λ
λ

=
∆R
R

(E.130)

Let’s denote the quantities at the moment that the EM wave is at P1 by a subscript 1,
and similarly for P2. Then Equation (E.131) becomes

λ2 − λ1

λ1
=
R2 −R1

R1
or

λ2

λ1
− 1 =

R2

R1
− 1 or

λ2

λ1
=
R2

R1
(E.131)

Therefore, the wavelength of an EM wave increases in proportion to the scale of the universe.
Although we have derived Equation (E.131) for two nearby points, it holds true for any two
points. The following derivation using calculus shows this.
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Write Equation (E.130) in differential form: dλ/λ = dR/R. Now integrate both sides to
get lnλ = lnR + lnC, where the constant of integration has been written as the natural log
of some number. Using the properties of the logarithms, we have lnλ = ln(CR), or λ = CR,
which shows that λ is proportional to R.

To see how the temperature of the once black-body radiation changes after decoupling,
I first modify Equation (20.5). As it stands, (20.5) gives the spectral energy flux, i.e., when
multiplied by ∆λ, it gives the amount of energy crossing a unit area per unit time. Flux
is related to density: if I multiply (20.5) by 4 and divide it by c, I get the spectral energy
density. Denote by ∆u(λ, T ) the spectral energy density i.e., the amount of energy emitted
by the black body in a cubic meter per unit time. Then

∆u(λ, T ) =
4
c

Φ(λ, T )∆λ =
8πhc
λ5

∆λ
ehc/λkBT − 1

(E.132)

Note that I have explicitly indicated the dependence of ∆u on λ and T for later use.
Now assume that λ′ is a multiple of λ, i.e., λ′ = aλ, so that λ = λ′/a with a some

constant. Substituting λ′/a for λ on the right, we get

∆u(λ, T ) =
8πhc

(λ′/a)5

∆λ′/a
ehc/(λ′/a)kBT − 1

= a4 8πhc
λ′5

∆λ′

ehc/(λ′/a)kBT − 1

= a4 8πhc
λ′5

∆λ′

ehc/λ′kB(T/a) − 1
= a4∆u(λ′, T/a) = a4∆u(aλ, T/a)

which can be summarized as

∆u(aλ, T/a) =
1
a4

∆u(λ, T ) (E.133)

Equation (E.133) carries a very significant information. Remember that ∆u(λ, T ) de-
scribes the spectral energy density of a black-body radiator. So the left-hand side of Equa-
tion (E.133) is the spectral energy density of a black-body radiator with wavelength aλ and
temperature T/a, and the message of Equation (E.133) is: a black-body radiator whose
wavelength is increased by a factor a remains a black-body radiator, but its temperature
decreases by a factor a, and its spectral energy density decreases by a factor a4. As the
universe expands, both its scale and the wavelength of the EM radiation increase by the
same factor. Denoting by t the time after the big bang and by t0 the present time, we can
express the wavelength and temperature of radiation as

λ(t)
λ(t0)

=
R(t)
R(t0)

,
T (t)
T (t0)

=
R(t0)
R(t)

(E.134)

Math Note E.37.4. In Math Note E.20.1 we calculated the total energy flux of a black-Derivation of radiation
density

(page 574 of the book)
body radiator [see Equation (E.52)]. It turns out that energy density can be obtained from
energy flux by multiplying the latter by 4 and dividing it by c. Thus, to find the total
energy density, all we need to do is multiply the result of Math Note E.20.1 by 4/c:

u =
4
c
Je =

4
c

2π5k4
B

15h3c2
T 4 =

8π5k4
B

15h3c3
T 4 (E.135)

This is the (average) amount of energy that radiation carries in every cubic meter of the
universe. We are interested in the equivalent mass density, which we denote by ργ , because
γ usually refers to EM radiation. Thus, we divide (E.135) by c2 (E = mc2 can also be
written as m = E/c2):

ργ(T ) = u/c2 =
8π5k4

B

15h3c5
T 4 (E.136)

How does the radiation density change with the scale of the universe? The last equation
in combination with Equation (E.134) gives the answer. First note that ργ(T )/ργ(T0) =
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(T/T0)4. But (T/T0)4 = (R0/R)4 by (E.134). Thus, ργ(T )/ργ(T0) = [R0/R]4. Let’s write
this in terms of time:

ργ(t)
ργ(t0)

=
[
R(t0)
R(t)

]4

or ργ(t) = ργ0

[
R0

R(t)

]4

(E.137)

where ργ0 is the same as ργ(t0), the present radiation density. We expect the density to
be proportional to inverse R3, as is indeed the case with matter density. However, while
it is true that the number density in both cases varies in inverse proportion to R3, the
energy of a photon is hc/λ—and λ is proportional to R—giving an extra factor of R in the
denominator for ργ .

Having found ργ(t), we can now use the Friedmann equation to find the variation of
the scale of the universe with time in a radiation-dominated universe. Substitute ργ(t) of
(E.137) in Equation (37.1) with k = 0 to get[

v(t)
R(t)

]2

=
8πG

3
R4

0ργ0

[R(t)]4
or [v(t)]2 =

8πGR4
0ργ0

3
1

[R(t)]2

and

v(t) =

√
8πGR4

0ργ0

3
1

R(t)
(E.138)

The differential equation (E.138) can be solved as easily as was done for Equation (E.123).
Call the constant on the right-hand side A, and write

dR

dt
=
A

R
, or RdR = Adt

Integrate both sides, and note that the constant of integration is zero as before to get

1
2R

2 = At or R =
√

2At =
√

2
(

8πGR4
0ργ0

3

)1/4 √
t (E.139)

which can be written as
R(t)
R0

=
(

32πGργ0

3

)1/4

t1/2 (E.140)

Furthermore, this, combined with Equation (E.137), gives the density of the universe as a
function of time:

ργ(t) = ργ0
R4

0

[R(t)]4
= ργ0

[(
3

32πGργ0

)1/4 1
t1/2

]4

, or ργ(t) =
3

32πGt2
(E.141)

which is usually written with t given as a function of ργ :

t =

√
3

32πGργ
(E.142)

The variation of H with time can also be found in a radiation-dominated universe.
Equation (E.138) in terms of the constant A introduced above is v = A/R. Hence, H =
v/R = A/R2. But Equation (E.139) gives us the denominator as 2At. Thus,

H =
A

R2
=

A

2At
=

1
2t

(E.143)

Note once again thatH is inversely proportional to time as in the case of a matter-dominated
universe, although with a different constant of proportionality.
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Math Note E.37.5. We have already found the spectral energy density of a black-body
radiator in Equation (E.132) of Math Note E.37.3. Since the energy of each photon is hc/λ,
if we divide Equation (E.132) by hc/λ we should get the spectral number density ∆nγ of
the black body:

∆nγ(λ, T ) =
∆u(λ, T )
hc/λ

=
8π
λ4

∆λ
ehc/λkBT − 1

(E.144)

The total number density is given by adding all the ∆nγ ’s for all the wavelengths, i.e.,Derivation of photon
number density and

average energy
(page 574 of the book)

integrating. The procedure is the same as that done in Math Note E.20.1 and yields

nγ(T ) = 8π
(
kBT

hc

)3 ∫ ∞
0

dy

y4(e1/y − 1)︸ ︷︷ ︸
=2.404

(E.145)

the numerical value of the integral is 2.404 (as indicated in the equation), so that

nγ(T ) = 8π
(
kBT

hc

)3

(2.404) = 19.232π
(
kB
hc

)3

T 3 = 2× 107T 3 photons/m3 (E.146)

where in the last step, I substituted the values of all physical and numerical constants.
Now, if the energy density is given by Equation (E.135) and the number density by

Equation (E.146), then the average energy of a photon must be the first divided by the
second. After all, the energy density is nothing but the number of photons in a cubic meter
times the average energy of each photon. Therefore,

〈Eγ〉 =
8π5k4

B

15h3c3T
4

(2.404)8π
(
kB

hc

)3
T 3

=
kBTπ

4/15
2.404

= 2.7kBT (E.147)

where as usual, angle brackets surrounding a quantity indicate the average of that quantity.
Sometimes we are interested in the number density of photons whose wavelength lies between

two given values, say λ1 and λ2. This is obtained by integrating the spectral number density
from λ1 to λ2. Denoting this number density by nγ(λ1, λ2, T ), we get

nγ(λ1, λ2, T ) = 8π
∫ λ2

λ1

dλ

λ4
(
ehc/λkBT − 1

) = 8π
(
kBT

hc

)3 ∫ y2

y1

dy

y4(e1/y − 1)
(E.148)

where y1 = kBTλ1/hc and y2 = kBTλ2/hc. Equation (E.146) is a special case of Equation
(E.148): nγ(T ) = nγ(0,∞, T ). As an example, we can ask “At a temperature of 1000 K,
what fraction of photons are visible?” Since the visible range is 0.4 µm to 0.7 µm, the two
wavelengths are λ1 = 0.4 µm and λ2 = 0.7 µm, and the question wants to know the ratio
nγ(λ1, λ2, T )/nγ(T ), which is simply the ratio of the two integrals in y. The integral of the
denominator was found to be 2.404 in Equation (E.145). For the numerator, we need

y1 =
kBTλ1

hc
=

(1.38× 10−23)(1000)(0.4× 10−6)
(6.63× 10−34)(3× 108)

= 0.02775

and y2 = 0.048567, which is found similarly to y1. Then, using a graphing calculator, we find∫ 0.048567

0.02775

dy

y4(e1/y − 1)
= 5.34× 10−7

Thus, only about 0.534 millionth of the photons at 1000 K are visible.
Another question we can ask and answer is “At what temperature the number of photons

having an energy of 13.6 eV or higher is 6 × 10−10 the total number?” This may seem a
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random question, but it is relevant to the decoupling of radiation from matter. The wavelength
corresponding to 13.6 eV is (using the Planck formula)

λ =
hc

E
=

(6.63× 10−34)(3× 108)
13.6(1.6× 10−19)

= 9.14× 10−8 m

Any wavelength shorter than this has an energy larger than 13.6 eV. Therefore, λ1 = 0 and
λ2 = 9.14× 10−8 m. The corresponding y’s are y1 = 0 and

y2 =
kBTλ2

hc
=

(1.38× 10−23)T (9.14× 10−8)
(6.63× 10−34)(3× 108)

= 0.0000063T (E.149)

We are looking for a temperature at which nγ(0, λ2, T )/nγ(T ) is 6×10−10. Since the constants
multiplying the y-integrals are the same, and the integral of the denominator is 2.204, we want
to solve the equation

nγ(0, λ2, T )
nγ(T )

= 6× 10−10 or

∫ y2

0

dy

y4(e1/y − 1)
= 2.404(6× 10−10) = 1.44× 10−9

By substituting various (small) values for y2 and calculating the integral above numerically (on
a graphing calculator, for example), you can get y2 = 0.037. Equation (E.149) now gives
T = 5873 K.

Math Note E.37.6. In Section 27.4, we saw that the spacetime interval ∆s for light was Derivation of horizon
radius
(page 574 of the book)

zero. This led to ∆x = c∆t, which simply indicated that light traveled with speed c. All
this was in the absence of gravity and universal expansion. If you include expansion, ∆x
stretches by the scale factor. It is common to denote the ratio of the scale R(t) at time t
to the present scale R0 by a(t), so that a(t) = R(t)/R0. Then the stretched ∆x is a(t)∆x,
and, in an expanding universe, time travels in such a way that a(t)∆x = c∆t. The rest of
the discussion uses calculus to find the horizon radius.

The differential form of the last equation is a(t)dx = cdt or dx = cdt/a(t), which can be
integrated to some final time tf to find the x at that time:

xf =
∫ tf

0

cdt

a(t)

To find the actual radius at time tf , you must multiply xf by a(tf ). This yields

rh(tf ) = ca(tf )
∫ tf

0

dt

a(t)
or rh(tf ) = cR(tf )

∫ tf

0

dt

R(t)
(E.150)

where in the last step, I multiplied the numerator and the denominator by R0. For the special—
but important—case in which a(t) is proportional to tn with n < 1, Equation (E.150) can be
easily solved:

rh(tf ) = ctnf

∫ tf

0

dt

tn
= ctnf

t1−n

1− n

∣∣∣∣tf
0

=
ctf

1− n
or rh(t) =

ct

1− n
(E.151)

where in the last equation the subscript f has been dropped for convenience. For a matter-
dominated universe n = 2/3 and rh(t) = 3ct; for a radiation-dominated universe n = 1/2
and rh(t) = 2ct.

Math Note E.37.7. The constancy of the mass in a given (expanding) volume—expressed Deriving a formula for
ρm(T )
(page 578 of the book)

as ρm(T )[R(T )]3 = ρm0R
3
0—plus the second equation in the third row of Table E.3, with

ρm0 = 2.5× 10−27 and t0 = 13.7 billion years (equal to 4.3× 1017 seconds), give the desired
function:

ρm(T ) = ρm0
R3

0

R3
= ρm0

T 3

T 3
0

= 1.24× 10−28T 3 kg/m3 (E.152)
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E.38 Math Notes for Chapter 38

Math Note E.38.1. As mentioned in the last chapter, the energy density is the single mostExplaining the numerical
factors

(page 584 of the book)
important quantity that determines the development of the universe. When the universe
was very young, all particles contributing to its energy density were relativistic, namely,
their kinetic energy was so much larger than their rest energy that one could assume that
they were massless. Therefore, their contribution could be calculated using the penultimate
massless example, photon.

The spectral energy density of photons is given in Equation (E.132) of Math Note
E.37.3. All the relativistic particles will have almost the same function for their spectral
energy density, except for the following two changes:

• The number 8 in (E.37.3) is replaced by 4 multiplied by the number of spin projections.
This is because for photons that 8 includes a 2 for the spin (or polarization) of photons.
Thus for a massive spin-s particle 8 changes to 4(2s + 1), and for massless particles
(except neutrinos) it does not change. For neutrinos, 8 changes to 4 because they
have only one spin orientation (see Section 33.3.3).

• The expression in the denominator, 1/(ehc/λkBT −1), is related to the average number
of particles in a state with energy hc/λ, and is valid for bosons. The negative sign
in the denominator allows the fraction to be infinite, which is fine as long as we
are dealing with bosons. Pauli’s exclusion principle does not permit more that one
particle per state for fermions. Therefore, the average number of fermions cannot
have a negative sign in the denominator. A detailed analysis leads to a surprisingly
simple solution: change the minus to a plus. Thus for fermions, the expression above
changes to 1/(ehc/λkBT + 1).

The total energy density of a relativistic fermion is obtained by integrating the spectral
energy density over all wavelengths. This is identical to what was done in Equation (E.52) of
Math Note E.20.1, except that the integral in y, whose value turned out to be π4/15, is replaced
by ∫ ∞

0

dy

y5(e1/y + 1)
=

7π4

120
=

7
8

(
π4

15

)
and that is where the fermionic factor of 7/8 comes from.

The factor of 2 associated with the distinctness of the antiparticle simply includes the
latter in the calculation. One could treat the antiparticle as a different particle and calculate
its contribution separately; but since this contribution is identical to that of the particle,
it is more convenient to talk of the particle “species,” which includes both the particle and
its antiparticle.

Let’s summarize the discussion above as follows. A relativistic particle P has a density
ρp, which is a multiple of the photon density: ρp = αpργ , where αp is the product of three
factors, αp = abfasaanti, where abf is 1 if P is a boson and 7

8 if it is a fermion; as is 1
2 if P

is a neutrino, 1 if P is a massless particle (but not a neutrino), and 2s+1
2 if P is a massive

spin-s particle; aanti is 1 if P has no antiparticle and 2 if it does.

Math Note E.38.2. The calculation of the photon and neutrino temperatures after theTγ and Tν after e+e−

annihilation
(page 588 of the book)

electrons and positrons annihilate each other requires the concept of entropy. The entropy
density (entropy per unit volume) of a gas of relativistic particles with density ρ is 4ρ/3T .
Thus, the entropy in a cube of side R (scale of the universe) is S = (4ρ/3T )R3, and this
quantity does not change as the universe evolves. Since ρ = αργ , we see that

S =
4
3
ρ

T
R3 =

4
3
R3αργ

T
=

4
3
R3α(8.36× 10−33T 4)

T
=

4
3
α(8.36× 10−33)(TR)3
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and the quantity α(TR)3 is constant:

α(TR)3 = constant (E.153)

Just before the e+e− annihilation, the neutrinos decouple, and therefore only electrons,
positrons, and photons are in thermal equilibrium.26 The α for this combination is

α = 7
8 × 2 + 1 = 11

4

After the annihilation, only photons remain, and Equation (E.153) yields

11
4

(TγR)3
bef = (TγR)3

aft or
(TγR)aft

(TγR)bef
= 3

√
11
4 = 1.401

The decoupled neutrinos cool down as the universe expands so that the product TνR is
constant (the temperature falls in inverse proportion to the scale of the universe). Thus,
(TνR)bef = (TνR)aft. But before e+e− annihilation, Tν = Tγ . Therefore, (TνR)aft =
(TγR)bef. Now, we can write

(Tγ/Tν)aft =
(TγR)aft

(TνR)aft
=

(TγR)aft

(TγR)bef
= 3

√
11
4

This ratio will be maintained throughout the history of the universe, because both photon
and neutrino temperatures fall in exactly the same way.

Math Note E.38.3. We want to find the temperature at which we have sufficient number Calculation of the
threshold T for deuteron
formation
(page 589 of the book)

of energetic photons to break up the deuterons that may be formed. “Energetic enough”
means having an energy larger than the binding energy of the deuteron, which is 2.224 MeV.
The photon-nucleon number ratio is 1.6 billion, and it does not change in the course of the
evolution of the universe. So if just 1/(1.6× 109) or 6× 10−10 of the population of photons
has energies 2.224 MeV or higher, we have one energetic photon for every nucleon.

We refer to the end of Math Note E.37.5 where we calculated the temperature at which
the ratio of the number of photons with wavelengths shorter than λ2 to the total number
of photons was 6× 10−10. Here λ2 corresponds to an energy of 2.224 MeV or 2224000 eV.
Thus,

λ2 =
hc

E
=

(6.63× 10−34)(3× 108)
2224000(1.6× 10−19)

= 5.59× 10−13 m

and

y2 =
kBTλ2

hc
=

(1.38× 10−23)T (5.59× 10−13)
(6.63× 10−34)(3× 108)

= 3.88× 10−11T

Math Note E.37.5 calculated y2 to be 0.037. Hence,

0.037 = 3.88× 10−11T or T =
0.037

3.88× 10−11
= 9.5× 108

E.39 Math Notes for Chapter 39

Math Note E.39.1. The left-hand side of Equation (37.1) is H2. Divide both sides of the Flatness problem
(page 597 of the book)equation by H2 to obtain

1 =
8πG
3H2︸ ︷︷ ︸
=1/ρc

ρ− kc2

R2H2
= Ωtot(t)−

kc2

R2H2

26The protons and neutrons are too few, and thus negligible.
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by the definition of ρc and the fact that by ρ is meant ρtot. A little rearrangement of terms
now yields

Ωtot(t)− 1 =
kc2

R2H2
(E.154)

If the universe is flat, the right-hand side is zero and Ωtot(t) = 1, i.e., Ωtot(t) is always
1, and the universe has always been flat. If the universe is not flat, then the right-hand side
is not zero, and it varies with time. The variation with time depends on which component
of the universe is dominant. For a matter domination, the first row of Table E.3 yields

R2 = R2
0

(
t

t0

)4/3

, H2 =
4

9t2

which upon substitution in Equation (E.154) gives

Ωtot(t)− 1 =
kc2[

R2
0(t/t0)4/3

]
[4/9t2]

=
9kc2t4/30

4R2
0

t2/3

Suppose that we know Ωtot at some time t′, then

Ωtot(t′)− 1 =
9kc2t4/30

4R2
0

t′2/3

and dividing both sides of the last two equations, we obtain

Ωtot(t)− 1
Ωtot(t′)− 1

=
(
t

t′

)2/3

or Ωtot(t)− 1 = [Ωtot(t′)− 1]
(
t

t′

)2/3

(E.155)

For a radiation domination, Table E.3 yields

R2 = R2
0

(
32πGργ0

3

)1/2

t, H2 =
1

4t2

which upon substitution in Equation (E.154) gives

Ωtot(t)− 1 =
kc2[

R2
0(32πGργ0/3)1/2t

]
[1/4t2]

=
kc2

R2
0(2πGργ0/3)1/2

t

Once again a knowledge of Ωtot at some time t′ leads to

Ωtot(t′)− 1 =
kc2

R2
0(2πGργ0/3)1/2

t′

and dividing both sides of the last two equations, we obtain

Ωtot(t)− 1
Ωtot(t′)− 1

=
t

t′
or Ωtot(t)− 1 = [Ωtot(t′)− 1]

t

t′
(E.156)

Now suppose that the present universe is not flat. In fact, let Ωtot be 1.5 now. Then,
with t′ = t0 and Ωtot(t′)− 1 = 0.5, Equation (E.155) yields27

Ωtot(t)− 1 = 0.5
(
t

t0

)2/3

(E.157)

27Equations (E.155) and (E.156) are valid only if the universe is flat. However, if the deviation from
flatness is small, those equations are still good approximations to the exact equations that we have not
derived.
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for the matter-dominated history of the universe. At the decoupling time, t = 375, 000
years, Equation (E.157) yields

Ωtot(t)− 1 = 0.5
(

375000
1.37× 1010

)2/3

= 0.000908

or Ωtot = 1.000908. Further back, at the dawn of matter domination, 33000 years after the
big bang,

Ωtot(t)− 1 = 0.5
(

33000
1.37× 1010

)2/3

= 0.00018

or Ωtot = 1.00018.
Earlier than 33,000 years after the big bang, the universe was radiation-dominated,

and Equation (E.156) must be used. For t′ take the onset of matter domination, so that
t′ = 33, 000 years or approximately 1012 s, and Ωtot(t′) − 1 = 0.00018. Then Equation
(E.156) yields

Ωtot(t)− 1 = 0.00018
(

t

1012

)
with t in seconds (E.158)

At the time of helium formation, when the universe was 196 seconds old,

Ωtot(t)− 1 = 0.00018
(

196
1012

)
= 3.53× 10−14

or Ωtot = 1.0000000000000353.

Math Note E.39.2. If Λ/3 is the only term on the right-hand side of Equation (39.2), Inflationary expansion
(page 600 of the book)then ( v

R

)2

=
Λ
3

or H2 =
Λ
3

or H =

√
Λ
3

(E.159)

because v/R = H. The following derivation involving calculus shows how R depends on
time.

Since v = dR/dt, the last equation in (E.159) becomes

dR/dt

R
=

√
Λ
3

or
dR

R
=

√
Λ
3
dt = Hdt

Integrating both sides gives

ln(R) = Ht+ constant = Ht+ ln(r)

where r is a constant, which could be interpreted as the scale of the universe just before inflation.
The last equation can now be written as

ln(R)− ln(r) = Ht or ln
(
R

r

)
= Ht or R = reHt (E.160)

which shows that R grows exponentially, because H is a constant.
Now that R(t) is known, Equation (E.150) can be used to find the horizon radius. Substi-

tution of (E.160) in that equation yields

rh(tf ) = creHtf
∫ tf

0

dt

reHt
= ceHtf

∫ tf

0

e−Ht dt

= ceHtf

(
− e−Ht

H

∣∣∣∣tf
0

)
=

c

H
eHtf (−e−Htf + 1)

=
c

H
(eHtf − 1)
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Neglecting the subscript for time, we get

rh(t) =
c

H
(eHt − 1) (E.161)

which gives the horizon radius as a function of time during inflation. Furthermore, with
H =

√
Λ/3 and R given by Equation (E.160), Equation (E.154) becomes

Ωtot(t)− 1 =
kc2

H2r2e2Ht
=

kc2

r2H2
e−2Ht (E.162)

Math Note E.39.3. To ignite the hydrogen fusion, the gravitational force must be strongMass needed for a star
ignition

(page 602 of the book)
enough to push the protons sufficiently close so that they can penetrate the Coulomb re-
pulsive barrier for the strong nuclear force to take over. But the gravitational force cannot
be too strong (and the star too compact) because the electrons, which obey Pauli exclusion
principle, cannot get too close to each other. The quantity that measures how close two
electrons can be is their (average) wavelength λe. So, let’s assume that a typical electron
encloses itself in a cube of length λe, inside of which no other electron is allowed. Let’s also
assume that the electrons are spread uniformly throughout the star. Then the number of
the electrons N times λ3

e should give the volume of the star (with radius R):

Nλ3
e = 4

3πR
3 or R = 0.62λeN1/3 (E.163)

Given the average wavelength of the electrons, their average momentum is determined
by the de Broglie relation: pe = h/λe. This gives rise to a speed ve = pe/me = h/meλe and
an average kinetic energy per electron of

〈KEe〉 = 1
2mev

2
e = 1

2me

(
h

meλe

)2

=
h2

2meλ2
e

The total KE is then

KEtot = N〈KEe〉 =
Nh2

2meλ2
e

(E.164)

I have to emphasize that KEtot comes directly from exclusion principle. In the absence of
that principle, R and λ of Equation (E.163) would be zero, and there would not be any
minimum size or mass for the star.

What gives rise to this KE? The gravitational potential energy PE of the star. Assuming
that the total energy starts out as zero (and, therefore, remains zero by energy conservation)
yields KEtot +PE = 0. The PE of a star of mass M turns out to be − 3

5GM
2/R. It follows

that

KEtot − 3
5

GM2

R
or

Nh2

2meλ2
e

= 3
5

G(Nmn)2

0.62λeN1/3
(E.165)

where M is just the number of nucleons (assumed to be the same as N)28 times the mass
of each nucleon mn. Equation (E.165) can be simplified to

λeN
2/3 =

h2

2Gm2
nme

(E.166)

〈KEe〉 is related to the T by 〈KEe〉 = 3
2kBT [see Equation (17.1)] or

3
2kBT =

h2

2meλ2
e

28The number of protons alone is equal to N ; and that is only 87% of the nucleons. I am ignoring the
neutrons because the extra 13% neutrons will only slightly affect the final outcome of our discussion.
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Since 3
2kBT is also the average KE of the protons, it has to be larger than the Coulomb

potential barrier Ebar for fusion to occur. This gives

h2

2meλ2
e

≥ Ebar or λe ≤
h√

2meEbar

= 1.7× 10−11 m (E.167)

Substituting this in Equation (E.166) yields

N2/3 =
h2

2Gm2
nmeλe

≥ h
√

2meEbar

2Gm2
nme

=
h
√

2Ebar

2Gm2
n

√
me

(E.168)

Inserting the numerical values of all quantities in this equation, including Ebar = 5 keV (see
Example 31.2.6), yields

N2/3 ≥ h
√

2Ebar

2Gm2
n

√
me

=
6.63× 10−34

√
2× 5000× (1.6× 10−19)

2(6.67× 10−11)(1.67× 10−27)2
√

9.1× 10−31
= 7.47× 1037

or N = (7.47× 1037)3/2 = 6.46× 1056. The minimum mass is therefore

M = Nmn = (6.46× 1056)(1.67× 10−27) = 1.08× 1030 kg = 0.5M�

The radius is obtained by combining the value for N , (E.163), and (E.167):

R = 0.62(1.7× 10−11)(6.46× 1056)1/3 = 9.1× 107 m = 0.13R�

Math Note E.39.4. Math Note E.39.3 calculated the minimum mass required for the Maximum mass
supported by radiation
(page 602 of the book)

hydrogen fusion to start. Once it starts, the fusion produces radiation at the core, which
on its way out, tends to push layers of the star outward. If the star is too massive, it
will overcome this pressure and collapse. The balance of the radiation and gravitational
pressures keeps the star alive.

The radiation pressure is given by Equation (E.31), where u is the energy density:

Pγ = 1
3u =

8π5k4
B

45h3c3
T 4 = 2.5× 10−16T 4 (E.169)

using Equation (E.135) and then substituting all the numerical constants. The gravitational
pressure is given by the (inward) pressure of other particles:

PG =
NkBT

V
=
NkBT
4
3πR

3
= 3.3× 10−24NT

R3

Equating the two pressures gives

2.5× 10−16T 4 = 3.3× 10−24NT

R3
or N = 7.6× 107(TR)3 (E.170)

Equality of the total KE (in terms of the temperature) and the gravitational PE (see Math
Note E.39.3) yields

3
2NkBT = 3

5

GM2

R
= 3

5

G(Nmn)2

R
or RT = 2

5

Gm2
nN

kB
= 5.4× 10−42N (E.171)

Using Equations (E.170) and (E.171), we get

N = 7.6× 107(5.4× 10−42N)3 or 1 = 1.2× 10−116N2 or N = 9.1× 1057 (E.172)

and a mass of

M = Nmn = (9.1× 1057)(1.67× 10−27) = 1.5× 1031 kg = 7.5M� (E.173)
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Math Note E.39.5. When gravity pushes on the star undergoing collapse, the electrons
acquire enough energy to become relativistic. The energy of such an electron is of the
order of its rest energy, mec

2. As in the case of a normal star, this energy results from the
conversion of the potential energy of the collapsing star, as discussed in Math Note E.39.3.
With N electrons in the star, the equivalent of Equation (E.165) is

Nmec
2 = 3

5

G(Nmn)2

R
= 3

5

G(Nmn)2

0.62λeN1/3
= 3

5

Gm2
nN

5/3

0.62λe
or mec

2 = 3
5

Gm2
nN

2/3

0.62λe
(E.174)

where we used (E.163) for the radius of the star.Physical properties of
white dwarfs

(page 603 of the book)
A relativistic particle has a special wavelength, called the Compton wavelength. A

heuristic argument is that v in the de Broglie relation λ = h/mv is to be replaced by c, the
special speed of relativity, in which case we obtain the Compton wavelength: λ = h/mc.
Substituting Compton wavelength for an electron in Equation (E.174), we get

mec
2 = 3

5

Gm2
nN

2/3

0.62(h/mec)
or N =

(
0.62hc

0.6Gm2
n

)3/2

= 3.67× 1058 (E.175)

Substituting this and λe = h/mec = 2.4× 10−12 m in (E.163) yields

R = 0.62(2.4× 10−12)(3.67× 1058)1/3 = 5× 107 m (E.176)

which is of the order of the radius of a planet.
The numbers obtained above are very rough estimates. A detailed and more precise

analysis yields a maximum number N = 1.68 × 1057 for a white dwarf corresponding to a
maximum mass of 1.4M�, called the Chandrasekhar mass. Stars more massive than this
will turn into neutron stars and black holes. The same precise analysis yields a radius that
is more comparable to the Earth’s.

The physics of a neutron star is very similar to that of the white dwarf. In fact, all the
formulas above apply to the neutrons with suitable substitution. For example, Equation
(E.175), being independent of the properties of the electron, directly gives the number of
neutrons. in the star. For the radius, we use Equation (E.163), except that λe should be
replaced by the corresponding neutron Compton wavelength:

λn =
h

mnc
=

6.63× 10−34

(1.67× 10−27)(3× 108)
= 1.3× 10−15 m

This yields
R = 0.62(1.3× 10−15)(3.67× 1058)1/3 = 27266 m

or about 17 miles, a very compact object indeed!

E.43 Math Notes for Chapter 43

Math Note E.43.1. To make the problem of the monkey and the typewriter simple,Chances of monkeys
typing a Hamlet phrase

(page 646 of the book)
assume that the typewriter has 26 letters and a space bar. The sentence has 28 characters
(23 letters and 5 spaces). For each of the 28 characters, the monkey has to choose from 27
keys. By randomly striking the keys on this typewriter, in how many different ways can a
monkey produce a 28-character sentence? There are 27 choices for the first letter. For each
of these 27 choices there are 27 ways of choosing the second letter. So, if the sentence were
two letters long, there would be 27×27 ways of choosing letters. For a three-letter sentence,
the number of choices would be 27× 27× 27. So, for a 28-letter long sentence there are

27× 27× 27× · · · × 27︸ ︷︷ ︸
28 times

= 1.197× 1040
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choices. So, the odds for a monkey to type the given sentence is less than one in 10,000
trillion trillion trillion!

Now assume that each keystroke takes half a second. Then, on the average, the total
amount of time elapsed before the monkey gets to the correct combination is about29

1
2 × 1.197× 1040 × 0.5 ≈ 3× 1039

seconds or 9.5× 1031 years. The age of the universe is about 1.4× 1010 years! So, there is
no hope! What if we relegate the task of the monkey to a computer. Assuming that the
computer can perform each instruction in a billionth of a second, the total time required
will be

1
2 × 1.197× 1040 × 10−9 ≈ 6× 1030

seconds or 1.9× 1023 years, or over 12 trillion times the age of the universe!

29The factor 1
2

in front of the expression is due to the fact that the success may be on the first try (very
unlikely!) or on the last one. We take the middle ground.





Appendix F
Spacetime Geometry

An event with coordinates (x, ct) [which are, by the way, determined by drawing parallel
lines to the axes (see Appendix C)] relative to O has a different set of coordinates (x′, ct′)
relative to a second observer O′. Is there a geometric (diagrammatic) way of relating these
two pairs of coordinates?

Go back to the Euclidean case and concentrate on the orientation of the axes. Figure 27.5
shows two different Euclidean coordinate systems and how one system is oriented relative to
the other. In particular, it is seen that whatever angle the x-axis of one system makes with
the x-axis of the other, the same angle is made by the corresponding y-axes, in such a way
that the x- and y-axes of each system are perpendicular. By picking two points and using
the invariance of the Euclidean distance [Equation (E.82)], one can actually “prove” that
the y- and x-axes are perpendicular. Math Note E.27.7 on page 123 of Appendix.pdf
explains how to do this. Of course, we assumed this property to derive Equation (E.82).
The point is that distance rule [Equation (E.82)] dictates the angle which the axes make
with one another.

How do the axes of a spacetime observer O appear in the spacetime plane of another Relativity requires
nonperpendicular set of
axes!

observer O′ (whose axes are assumed perpendicular)? Suppose that O moves in the positive
direction of O′. Then the worldline of O, which is inside the light cone of O′, is the ct-axis
by Box 27.2.1. Figure F.1(a) shows this axis and notes that it makes an angle of θ with the
ct′-axis. Now apply the cornerstone of relativity: that the speed of light—whose worldline
is drawn as a wavy line—is the same for all observers. For O′, this line makes a 45◦ angle
with both axes. For any other observer, the light worldline must make equal angles with
both axes.1 Therefore, the x-axis must make an angle of θ with the x′-axis as shown in
Figure F.1(a). We thus see that if the axes of an observer O′ are drawn perpendicular, then
the axes of another observer O moving relative to O′ cannot be perpendicular.

The slope of the ct-axis relative to the ct′-axis (which by definition, is ∆x′/c∆t′) is β,
the (fractional) speed of O relative to O′. Similarly, the slope of the x-axis relative to the
x′-axis is also β. Invoking the rules of finding coordinates in a nonperpendicular system of
axes—as discussed in Section C.1—we find the first three rules of spacetime geometry:

1This is because c∆t = ∆x for any two events (points) that lie on the light worldline.
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Figure F.1: (a) O is moving in the positive direction of O′. (b) O is moving in the negative direction of
O′.

Box F.0.2. (Rules of spacetime geometry) Suppose that O moves relative to O′

and the axes of O′ are drawn perpendicular.
1. The axes of O form an acute angle if O moves in the positive direction, and an
obtuse angle if O moves in the negative direction.
2. The slope between the axes of O and the corresponding axes of O′ is β = v/c.
3. Suppose that the lines drawn parallel to the axes from an event E intersect the time
axis at T and the space axis at X; then ET is the space coordinate and EX is the time
coordinate of E [Figure F.2(a)].

Our ultimate goal is to be able to find the spacetime coordinates of an event in a frame
O′ if we know its coordinates in another frame O, and vice versa. For this, we need to relate
the time intervals and lengths measured in the two coordinate systems. First consider events
E1 and E2 in Figure F.2(b), which occur at the same point relative to Emmy (observer O),
i.e., for which (one of) Emmy’s clock(s) is present at both events. It follows that t2 − t1 is
the proper time, and must be related to t′2 − t′1—the time interval between the same two
events according to Karl (observer O′)—via (26.1), our first relativistic equation.

Here we encounter the first strange phenomenon of spacetime geometry: Although E1E2Lengths are not what
they appear to be! appears longer to Karl than its projection, the projection is actually longer! In general, we

can apply the rules of ordinary geometry only to lengths measured by a single observer.
Lengths measured by two different observers are not related by the rules of ordinary geom-
etry.

What about lengths along (or parallel to) the space axes? The events E3 and E4 in
Figure F.2(b) occur simultaneously according to Emmy, i.e., E3E4 = x4 − x3 is parallel
to Emmy’s x-axis, and as such represents a length (say of her spaceship if E3 and E4

are explosions of two firecrackers at the ends of the spaceship). The same two events are
separated by x′4 − x′3 according to Karl, and we might think that, since moving lengths
shrink, x′4 − x′3 = (x4 − x3)/γ. But as Example F.0.4 shows, x′4 − x′3 = γ(x4 − x3). The
reason for the discrepancy is that x′4− x′3 does not represent the length of the spaceship for
O′. For two explosions to represent the length of the spaceship as measured by Karl, they
must occur simultaneously for Karl. E3 and E4 are not simultaneous for Karl. Example
F.0.4 also derives a rule that connects the length of the line segment E1E2 (or E3E4) as
measured by Karl (using a ruler, for example) and that measured by Emmy. We are now
ready to state the remaining rules of space time geometry.
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Figure F.2: (a) Coordinates (X, cT ) and (X′, cT ′) of E in O and O′. (b) Events E1 and E2 occur at
the same location relative to O, which is moving in the positive direction of O′. Events E3 and E4 occur
simultaneously relative to O.

Box F.0.3. (Rules of spacetime geometry) Suppose that O moves relative to O′

and the axes of O′ are drawn perpendicular.
4. If E1 and E2 occur on a worldline parallel to an axis of one observer—for whom
E1E2 is the interval on that axis—and A1 and A2 are their (parallel) projections onto
the corresponding axis of the other observer, then A1A2 = γE1E2.

5. The (Euclidean) length E1E2, as measured by O′, is longer than the interval itself
(as measured by O) by a factor of γ

√
1 + β2. This factor is called the stretch factor.

Example F.0.4. In Figure F.2(b), let ∆x = x4−x3, ∆x′ = x′4−x′3, and ∆t′ = t′4−t′3. Then
O calculates (∆s)2 and gets (∆s)2 = −(∆x)2, because ∆t = 0, as the two events are simultaneous
for O. On the other hand, O′ calculates (∆s)2 and gets

(∆s)2 = (c∆t′)2 − (∆x′)2 = (β∆x′)2 − (∆x′)2 = (β2 − 1)(∆x′)2

where we used the fact that c∆t′ = E4H, β = E4H/E3H (by rule 2 of Box F.0.2), and ∆x′ = E3H.
Since (∆s)2 is an invariant quantity, we must have

−(∆x)2 = (β2 − 1)(∆x′)2 or (∆x′)2 =
(∆x)2

1− β2
= γ2(∆x)2 or ∆x′ = γ∆x

as we had for the ct-axis.
It is also interesting to calculate the relation between Euclidean lengths as measured by O′

(using a ruler) and lengths measured by O. Take E3E4 for example (the argument for E1E2 is
identical). O′ sees this length as the hypotenuse of a right triangle and uses Pythagoras’ theorem
to find its length:

(E3E4)2O′ = E3H
2

+HE4
2

= (γE3E4)2 + [β(γE3E4)]2 = (1 + β2)γ2E3E4
2

where use was made of the facts discussed in the previous paragraph. Taking the square root of
the equation above gives

(E3E4)O′ = γ
p

1 + β2 E3E4

It needs to be emphasized that (E3E4)O′ is the Euclidean length measured by O′—by placing
a ruler on the two points E3 and E4. On the other hand, E3E4 is the difference between the
x-coordinates of E3 and E4 as measured by O. �
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Figure F.3: The event E1 occurs 2 hours after departure according to O, but 4 hours according to O′.
The length of the line segment O′E1 is 5.29 light hours. (b) Deriving the Lorentz transformations from
the diagram.

F.1 Examples of Spacetime Diagrams

The best way to understand the implications of Boxes F.0.2 and F.0.3 is to look at some
examples. First let us elaborate on the last item in the second Box. Emmy (reference frame
O) is moving at 0.866c in the positive direction of Karl (reference frame O′). At the very
moment that Emmy passes Karl, they both start counting time; thus the origins of the two
spacetime coordinate systems coincide (see Figure F.3). Event E1 occurs two years later
according to Emmy. So on her time axis, E1 is two years away from the origin. This time
interval is proper. The interval that Karl measures is given by

∆t′ =
∆t√

1− (v/c)2
=

2√
1− (0.866)2

= 4 years

This verifies the first part of rule 4 (which here translates to O′T = γOE1), because γ =
1/
√

1− (0.866)2 = 2 and OE1 = 2 years.
The slope of the angle θ is β = v/c = 0.866. Therefore, the length of the line segment

TE1 is 0.866 times the length of O′T , which is c∆t′ = c × 4 years or 4 light years (each
vertical tick represents one light year). Thus, TE1 = 4× 0.866 = 3.464 light years. Now we
can calculate the Euclidean length of O′E1 by Pythagoras’ theorem:

O′E1 =
√

(TE1)2 + (O′T )2 =
√

(3.464)2 + (4)2 = 5.29

So the actual length of the line segment O′E1 that Karl measures (when he places a ruler
on the page of the book) is 5.29 light years. The real length (as measured by Emmy) is 2
light years, of course. Therefore, the stretch factor is 5.29/2=2.645, which is identical to
what Box F.0.3 says it should be: γ

√
1 + β2 = 2

√
1 + 0.8662 = 2.645.

F.2 Simultaneity Revisited

The diagrammatic approach to relativity can elucidate some of the notions we discussed
earlier. Take the relativity of simultaneity, which was one of the first topics we encountered.
Chapter 25 showed a picture identical to Figure F.4(a), in which Karl (observer O′) detects
a simultaneous explosion of two firecrackers A and B. Emmy, on the other hand, describes
the situation as B happening before A. Let’s see if we can further unravel the succession
of these events.
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(a) (b)
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Figure F.4: (a) Karl sees the explosion of the two firecrackers at the same time that Emmy passes him
by. (b) The spacetime geometry of the events as seen by Karl (O′) and Emmy (O).

For simplicity, assume that the explosions occur—according to Karl—at exactly the
same time that Emmy passes him, and all these happen at Karl’s time zero. This zero of
time is also Emmy’s zero of time. (At the moment that they pass each other, Emmy and
Karl start their stop watches). How do we describe these events in Karl’s and Emmy’s
spacetime coordinate systems (CS)?

Start with Karl, whose CS is assumed perpendicular. Since A, B, and the passage of
Emmy all occur at time t′ = 0, they must all lie on the x′-axis (Emmy’s worldline is the
ct-axis, which crosses the x′-axis at the origin). The light signals (the wavy lines) from A
and B reach Karl at a later time; this time is shown as a solid triangle on the ct′-axis. Note
that Karl, being in the middle of the two events, receives the two signal at the same time,
as he should.

How does Emmy perceive the occurrence of the events and the reception of their signals?
Draw parallel lines to Emmy’s axes from A and B to find the coordinates of the two events.
The locations on her x-axis are designated as ovals, and she is in the middle of them as
is clear in Figure F.4(a). The times are represented by squares on the ct-axis. Note that
B occurs first, as indicated in the middle picture of Figure F.4(a). But Figure F.4(b) tells
us that B occurred before Emmy reached Karl. The middle picture of Figure F.4(a) shows
the reception of B’s light signal, not its explosion. Emmy’s reception of the light signals
are denoted by stars on her ct-axis. We see that although B explodes before Emmy reaches
Karl, its signal reaches Emmy after she passes Karl, consistent with the middle picture of
Figure F.4(a). Finally, the signal from A reaches Emmy after the reception of the signal
from B.

The discussion above, although qualitative, sheds some light on the notion of simultane-
ity as perceived by two different observers. If one knows Emmy’s speed relative to Karl and
Karl’s measurement of the length AB, one can use the figure to calculate the time difference
between the explosions, the separation between the two firecrackers, and the time of the
reception of the two signals all according to Emmy.

F.3 The Train and the Tunnel

In Figure F.5(a), Emmy’s 756-meter-long train moves at 0.75c as it approaches a tunnel.
Karl measures the contracted length of the train to be 500 m, and concludes that it should
nicely fit the 500-meter tunnel he is standing by. Emmy, on the other hand, sees a contracted
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Figure F.5: (a) Emmy’s train and the tunnel appear to have the same length according to Karl. (b) The
spacetime diagram of the train-tunnel paradox.

tunnel2 of only 331 m and concludes that there is no way she can fit a 750-meter long train
in that tunnel. What is going on?

With v = 0.75c, γ = 1/
√

1− 0.752 = 1.51, and lengths shrink by this factor. To analyze
the relative motion of the two RFs on a spacetime diagram, we label the ends of the tunnel
and the train with A, B, C, and D, as shown in Figure F.5(a). There are three conspicuous
events that we have to specify on the diagram: the coincidence of A and D corresponding
to the front of the train entering the tunnel (call it E1, assumed to be the origin of the two
RFs), the coincidence of D and B corresponding to the front of the train exiting the tunnel
(call it E2), and the coincidence of A and C corresponding to the end of the train entering
the tunnel (call it E3). To construct these events on the diagram we proceed as follows.

Draw Karl’s axes as two perpendicular lines on a sheet of paper. From Karl’s origin draw
a line making a slope of 0.75 with Karl’s x′-axis. This is Emmy’s x-axis. Emmy’s ct-axis
is the line passing through the origin and making the same slope with Karl’s ct′-axis [see
Figure F.5(b)]. Now draw the worldlines of A and B as two vertical lines, with A’s worldline
coinciding with the ct′-axis (we are assuming that Karl is standing at A). These worldlines
are separated by 500 m, the length of the tunnel according to Karl. The worldlines of C and
D are two parallel lines (because, being the two ends of the train, they move with the same
velocity, i.e., same slope), with D’s worldline coinciding with the ct-axis (we are assuming
that Emmy is sitting in the front of the train at D). Here is how to draw C’s worldline:
From the intersection of the ct-axis and the B’s worldline (event E2) draw a line parallel
to the x′-axis. This line meets the A’s worldline (the ct′-axis) at E3 (we know this because
Karl sees E2 and E3 as simultaneous). We know that C’s worldline must pass through E3.
We also know that C’s worldline must be parallel to D’s (the ct-axis). So we draw a line
through E3 parallel to the ct-axis. This is the C’s worldline.

The C’s worldline meets the x-axis at a point, which we naturally call C. The points C
and D on the x-axis are separated by 750 m as measured by Emmy. The reason that the
line segment CD appears much longer than 750 m (remember that AB is 500 m) is due to
the stretch factor mentioned in rule 4 of Box F.0.3.

It is clear from Figure F.5(b) that E3 has a time coordinate in Emmy’s RF equal to
DG,3 which is obviously larger than DE2, the time of the coincidence of B and D according
to Emmy. Therefore, the coincidence of C and A occurs after the coincidence of D and B
(event E2). This means that, although Karl sees the train completely in the tunnel, with
the end points of the two coinciding at the same time, Emmy notices that the back of the

2Because the tunnel is moving relative to Emmy; so, its length should shrink for her.
3Remember that to find the coordinates of an event, we draw lines from that event parallel to the axes.
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train is outside the tunnel when the front of the train has reached the end of the tunnel.
This is a diagrammatic representation of the relativity of simultaneity discussed in Chapter
25. The quantitative analysis of this discussion can be found in Example D.27.2.

F.4 Lorentz Transformations

It is worthwhile to introduce an algebraic recipe, which gives the coordinates of an event or
the time interval and distance between two events as seen by one observer in terms of the
same quantities of another observer. Math Note E.27.10 on page 124 of Appendix.pdf
derives this recipe,4 and obtains the following result: Lorentz transformations

Box F.4.1. If O moves with speed v relative to O′ and the origin of the two RFs
coincide at t = 0 = t′, then the coordinates of events in the two RFs are related by the
following Lorentz transformations:

x′ = γ(x+ βct) ∆x′ = γ(∆x+ βc∆t) β ≡ v/c

ct′ = γ(βx+ ct) c∆t′ = γ(β∆x+ c∆t) γ ≡ 1/
√

1− β2

β > 0 (< 0) if O moves along the positive (negative) direction of O′.

The first set of equations gives the relation between the coordinates of a single event; the
second set gives the relation between the space and time intervals of two events. ∆x and
∆t could each be positive or negative. The ∆-equations can always be used whether the
origins coincide at time zero or not; but the first set of equations does not apply when O
and O′ do not coincide. In such cases one has to use the ∆-equations for intervals and add
appropriate intervals to get to the actual coordinate values.

Suppose E1 and E2 have respective coordinates (x1, ct1) and (x2, ct2) in O and (x′1, ct
′
1)

and (x′2, ct
′
2) in O′. We can take ∆x to be x2 − x1, in which case ∆t is necessarily t2 − t1,

∆x′ is necessarily x′2− x′1, and ∆t′ is necessarily t′2− t′1. Or we can take ∆x to be x1− x2,
in which case ∆t = t1 − t2, ∆x′ = x′1 − x′2, and ∆t′ = t′1 − t′2. Sometimes to emphasize
the order of subtraction, we use a double subscript for the ∆ quantities. For example,
∆x21 = x2 − x1 and ∆t12 = t1 − t2. It should be clear that if we use double subscripts,
then all the ∆ quantities in the ∆ equations of Box F.4.1 ought to have exactly the same
subscripts.

4To appreciate the ease and power of geometric reasoning, I have also derived the Lorentz transformations
in Math Note E.27.11 using algebraic reasoning.





Appendix G
Numerical Exercises

G.1 Numerical Exercises for Chapter 1

Exercise G.1.1. You are standing 500 meter away from a tall building. You measure the
angle that your line of sight to the top make with the line of sight to the bottom. This
angle turns out to be 15 degrees. What is the height of the building? Hint: Draw a 15◦

angle; label its vertex O; from a point P on one side of the angle, draw a perpendicular
line to meet the other side at Q. The ratio of PQ to the building height is the same as the
ratio of OP to 500 (see Figure G.1).

O
P

Q

Figure G.1: The height of the building can be found from angles and distance from the building.

Exercise G.1.2. The north-south distance between Miami and New York is about 1200
miles. The circumference of the Earth is 25,000 miles.
(a) What is the difference between the angles that shadows make in Miami and in New
York?
(b) Which angle is bigger?

Exercise G.1.3. On planet Neemaz, the city of Shaar is 300 miles directly north of the
city of Havaz. The angle of the shadows in Shaar is 10 degrees larger than those in Havaz.
(a) What is the circumference of Neemaz?
(b) What is its radius?

Exercise G.1.4. Something like Figure G.2(a) was used by Aristarchus to find the Earth–
Sun distance. Suppose that the period of counterclockwise revolution of the Moon around
the Earth is 30 days, and that the time interval between the first and the third quarter
Moon (arc AB) is 1.25 hours longer than the time interval between the third and the first
quarter Moon (arc BA).
(a) How many radians do 30 days correspond to?
(b) From the figure determine how many α’s 1.25 hours correspond to.
(c) Use proportions to find α in radians.
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(d) From this value of α and the fact that the Earth–Moon distance is about 400,000 km,
determine the Earth–Sun distance.
(e) Now use the fact that the angular size of the Sun [Figure G.2(b)] is 0.5 degree to find
the diameter of the Sun.

α

E

B

A

S

α

(a) (b)

Figure G.2: (a) The difference between the arc length AB and the arc length BA is used to find the
angle α. (b) The angular size of the Sun on Earth.

Exercise G.1.5. Figure 1.5 shows snapshots of the epicycle of planet M as it goes around
the Earth E counterclockwise. Suppose that M moves around the small circle four times as
the center of the small circle moves on the big circle once. M starts at the position shown
in the figure; call it the first snapshot.
(a) On which small circle will you find M after its first revolution? Draw M on that circle.
(b) On which small circle will you find M after its second and third revolutions? Draw M
on those circles.
(c) What fraction of its epicycle does M cover from one snapshot to the next?
(d) Starting with the second snapshot, draw the location of M on all the remaining small
circles. Connect all locations of M smoothly to find its path around E.

Exercise G.1.6. A planet M moves 4 times on its epicycle while the center of the epicycle
goes around Earth once on the deferent. M starts at the 6 o’clock position of its epicycle
when the center of the epicycle is at 12 o’clock position of the deferent. All motions are
counterclockwise.
(a) When the center of the epicycle reaches the 11 o’clock position of the deferent, at what
position of its epicycle is M?
(b) When the center of the epicycle reaches the 7 o’clock position of the deferent, at what
position of its epicycle is M?
(c) When the center of the epicycle reaches the 2 o’clock position of the deferent, at what
position of its epicycle is M?
(d) When M is at 4 o’clock position on its epicycle during its first revolution, at what
position on the deferent is the center of the epicycle?
(e) When M is at 4 o’clock position on its epicycle during its second revolution, at what
position on the deferent is the center of the epicycle?
(f) When M is at 8 o’clock position on its epicycle during its third revolution, at what
position on the deferent is the center of the epicycle?
(g) When M is at 4 o’clock position on its epicycle during its fourth revolution, at what
position on the deferent is the center of the epicycle?
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G.3 Numerical Exercises for Chapter 3

Copernicus Model

Exercise G.3.1. Figure G.3 shows the circular orbits of Mars (M) and Earth (E). Suppose
that Earth’s period is 1/3 that of Mars, and that they start in the location shown in the
graph (label it 1).
(a) On M’s orbit draw the locations of M when E completes its first, second, and third
revolutions.
(b) Divide E’s orbit into 6 equal parts and label the new locations 2 through 6.
(c) Locate the position of M on its orbit when E is in positions 2 through 6.
(d) Do the same for the second and third revolutions of E, labeling the positions of M and
E on their orbits 7 through 18. E will have multiple labels for its locations.
(e) Now draw arrows from E to M on the graph.
(f) Redraw these arrows from a common center and connect the tips of the arrows to see
how M’s motion appears to E.

M

E

S

Figure G.3: The orbits of Mars (M) and Earth (E) around the Sun.

Exercise G.3.2. Figure G.3 shows the circular orbits of Mars (M) and Earth (E). Suppose
that Earth’s period is 1/4 that of Mars, and that they start in the location shown in the
graph (label it 1).
(a) On M’s orbit draw the locations of M when E completes its first, second, and third and
fourth revolutions.
(b) Divide E’s orbit into 6 equal parts and label the new locations 2 through 6.
(c) Locate the position of M on its orbit when E is in positions 2 through 6.
(d) Do the same for the second, third, and fourth revolutions of E, labeling the positions of
M and E on their orbits 7 through 24. E will have multiple labels for its locations.
(e) Now draw arrows from E to M on the graph.
(f) Redraw these arrows from a common center and connect the tips of the arrows to see
how M’s motion appears to E.

Exercise G.3.3. Figure G.4 shows the circular orbits of Venus (V) and Earth (E). Suppose
that Earth’s period is 4 times that of Venus, and that they start in the location shown in
the graph (label it 0).
(a) On E’s orbit locate the positions of E when V completes its first, second, third, and
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fourth revolutions.
(b) Divide V’s orbit into 6 equal parts and label the new five locations 1, 2, 3, 4, and 5.
(c) Locate the position of E on its orbit when V is in positions 1 through 5.
(d) Do the same for the second through sixth revolutions of V, labeling the positions of V
and E on their orbits 6 through 23. V will have multiple labels for its locations.
(e) Now draw arrows from E to V on the graph.
(f) Redraw these arrows from a common center and connect the tips of the arrows to see
how V’s motion appears to E.

V

E

S

Figure G.4: The orbits of Venus (V) and Earth (E) around the Sun.

Kepler’s Laws

Exercise G.3.4. We want to determine the constant of proportionality in Kepler’s third
law from the motion of the Earth whose orbit is almost circular and is 150 million km away
from the Sun.
(a) What is T in seconds?
(b) What is a in meters?
(c) What is the constant of proportionality?

Exercise G.3.5. The semimajor axis of the planet Mars is 228 million km.
(a) Use the constant of the previous exercise to find the period of Mars in seconds?
(b) How many Earth days are there in a Martian year?
(c) Use ratios to find the answer in (b).

Exercise G.3.6. Mercury is seen to go around Sun in 87.8 days.
(a) What is the period of Mercury in seconds?
(b) How far is Mercury from the Sun (use the constant k for the solar system)?
(c) Use ratios to find the answer in (b).

Exercise G.3.7. Pluto is seen to go around Sun in 246.7 years.
(a) What is the period of Pluto in seconds?
(b) How far is Pluto from the Sun (use the constant k for the solar system)?
(c) Use ratios to find the answer in (b).
(d) The angular size of an object decreases in proportion to the distance. How much smaller
is the angular size of the Sun as seen from Pluto than from Earth? Earth is 150 million km
away from the Sun.
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Exercise G.3.8. It takes Comet Hale-Bopp 2380 years to go around Sun. (a) What is the
semi-major axis of the orbit of Comet Hale-Bopp?
(b) Suppose that it almost grazes Sun as it approaches it. What is the farthest it gets from
the Sun?
(c) Does the comet ever go beyond Pluto’s orbit?

Exercise G.3.9. It takes Comet Faye 7.5 years to go around Sun.
(a) What is the semi-major axis of the orbit of this comet?
(b) Suppose that its distance of closest approach to Sun is 2.5×1011 m. What is the farthest
it gets from the Sun?

G.4 Numerical Exercises for Chapter 4

General Rectilinear Motion

Exercise G.4.1. Figure G.5 shows the plot of the velocity of an object versus time. The
units on the time axis are seconds and those on the velocity axis are m/s.
(a) What is the initial velocity of the object?
(b) What is the velocity after 4 seconds?
(c) What is the velocity after 7, 12, 13, 19, and 20 seconds?
(d) What is the average acceleration during the time interval t = 6 s to t = 8 s (include
sign)?
(e) What is the average acceleration during the time interval t = 11 s to t = 14 s (include
sign)?
(e) What is the average acceleration during the time interval t = 15 s to t = 18 s (include
sign)?
(f) What is the instantaneous acceleration at t = 7 s and t = 16 s (include sign)?
(g) What is the distance traveled in the first 4 seconds?
(h) What is the distance traveled in the first 8 seconds?
(i) What is the distance traveled between 5 and 12.5 seconds?
(j) What is the distance traveled between 12.5 and 20 seconds?
(k) What is the distance traveled between 18 seconds and the end of motion?
(l) What is the distance traveled during the entire motion?

t

v

Figure G.5: The plot of velocity versus time. Each tick on the horizontal axis represents one second.
Each tick on the vertical axis represents one m/s.

Exercise G.4.2. Figure G.6 shows the plot of the velocity of an object versus time. The
units on the time axis are seconds and those on the velocity axis are m/s.
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(a) What is the initial velocity of the object?
(b) What is the velocity after 4 seconds?
(c) What is the velocity after 7 seconds? After 8 seconds? After 14 seconds?
(d) What is the acceleration during the first 7 seconds (include sign)?
(e) What is the acceleration between 14 and 18 seconds (include sign)?
(f) What is the acceleration between 18 seconds and the end of motion (include sign)?
(g) What is the distance traveled in the first 4 seconds?
(h) What is the distance traveled in the first 7 seconds?
(i) What is the distance traveled between 7 and 14 seconds?
(j) What is the distance traveled between 14 and 19 seconds?
(k) What is the distance traveled between 7 seconds and the end of motion?
(l) What is the distance traveled during the entire motion?

t

v

Figure G.6: The plot of velocity versus time. Each tick on the horizontal axis represents one second.
Each tick on the vertical axis represents one m/s.

Exercise G.4.3. Figure G.7 shows the plot of the velocity of a car versus time. Suppose
that motion takes place on a straight east–west highway, and that the car is moving eastward
initially. The units on the time axis are seconds and those on the velocity axis are m/s.
(a) What is the initial velocity of the object?
(b) What is the velocity after 4 seconds? Which direction?
(c) What is the velocity after 9.5 seconds? After 12 seconds? After 19 seconds? Give
directions for all velocities.
(d) What is the acceleration during the first 6 seconds (include sign)?
(e) What is the acceleration between 6 and 12 seconds (include sign)?
(f) What is the acceleration between 9.5 seconds and the end of motion (include sign)?
(g) What is the distance and the displacement traveled in the first 4 seconds? Give a
direction for the diplacement.
(h) What is the distance and the displacement traveled in the first 9.5 seconds? Give a
direction for the diplacement.
(i) What is the distance and the displacement traveled between 7 and 14 seconds? Give a
direction for the diplacement.
(j) What is the distance and the displacement traveled between 14 and 19 seconds? Give a
direction for the diplacement.
(k) What is the distance and the displacement traveled between 7 seconds and the end of
motion? Give a direction for the diplacement.
(l) What is the distance and the displacement traveled during the entire motion? Give a
direction for the diplacement.
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v

t

Figure G.7: The plot of velocity versus time. Each tick on the horizontal axis represents one second.
Each tick on the vertical axis represents one m/s.

Uniformly Accelerated Motion

Exercise G.4.4. A car accelerates uniformly from rest to 65 mph in 5 seconds.
(a) What is the acceleration of the car in m/s2?
(b) How far does the car travel in the process?

Exercise G.4.5. A ball is thrown vertically upward with a speed of 90 mph.
(a) How long does it take the ball to reach its maximum height?
(b) What is this maximum heigh?

Exercise G.4.6. A car is moving at 50 mph on a street. A cat jumps in front of it in the
middle of the street 30 meters away. The driver, whose reflex time is 0.2 second, immediately
slams on the brakes causing a deceleration of 8 m/s2. Is the cat dead or alive? Hint: Follow
the steps of Numerical Exercise 4.4 in the text.

Exercise G.4.7. A car is moving at 40 mph on a street. A squirrel jumps in front of it
in the middle of the street 30 meters away. The driver, whose reflex time is 0.2 second,
immediately slams on the brakes causing a deceleration of 6 m/s2. Is the squirrel dead or
alive? Hint: Follow the steps of Numerical Exercise 4.4 in the text.

Exercise G.4.8. A crazy driver is moving at 70 mph on a street. A rabbit jumps in front
of the car in the middle of the street 50 meters away. The driver, whose reflex time is 0.1
second, immediately slams on the brakes causing a deceleration of 6 m/s2. Is the rabbit
dead or alive? Hint: Follow the steps of Numerical Exercise 4.4 in the text.

Exercise G.4.9. St. Speedsburgh is a little country in central Atlantis. There is no speed
limit in St. Speedsburgh, but there is an “acceleration limit.” Anyone whose magnitude of
acceleration is more than 5 m/s2 gets a ticket. Sharon is moving at 100 mph and speeds
up to 150 mph in 5 seconds. Sherlock is moving at 60 mph when he spots a goose crossing
the highway. He slams on the brakes and slows down to 20 mph in 3 seconds. Which car,
if any, will be ticketed by a lurking police at the side of the highway?

G.6 Numerical Exercises for Chapter 6

Exercise G.6.1. Consider Figure G.8 in which a car moves on a curved path.
(a) Draw the position vectors of the driver relative to the observer O when the car is in the
numbered locations.
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(b) Draw the displacement vectors r13, r25, r37, r56, and r18.
(c) In a separate diagram, draw the position vectors of the observer O relative to the
driver when the car is in the numbered locations.
(d) Sketch the path of O relative to the driver.

1

2

3

4

5

6
7

8

O

9
10

Figure G.8: The car moving on a path with certain locations specified.

Exercise G.6.2. Consider Figure G.9 in which observers A and B move relative to a third
observer (not shown). Suppose that they both start at the beginning of their corresponding
paths (which are equal in length) and reach the end 10 seconds later each moving at constant
speed.
(a) Draw points on A’s path showing his position 2, 4, 6, and 8 seconds after he starts his
motion.
(b) Draw points on B’s path showing her position 2, 4, 6, and 8 seconds after she starts her
motion.
(c) Draw arrows from A to B at 0, 2, 4, 6, 8, and 10 second into the motion.
(d) With A as the observer, draw the arrows of the prvious part and determine how B
moves realtive to A.
(e) Draw arrows from B to A at 0, 2, 4, 6, 8, and 10 second into the motion.
(f) With B as the observer, draw the arrows of the prvious part and determine how A moves
realtive to B.

A

B

Figure G.9: Observers A and B move relative to a third observer (not shown).

Exercise G.6.3. Consider Figure G.10 in which observers A and B move relative to a third
observer (not shown). Suppose that they both start at the beginning of their corresponding
paths (which are equal in length) and reach the end 10 seconds later each moving at constant
speed.
(a) Draw points on A’s path showing his position 2, 4, 6, and 8 seconds after he starts his
motion.
(b) Draw points on B’s path showing her position 2, 4, 6, and 8 seconds after she starts her
motion. (c) Draw arrows from A to B at 0, 2, 4, 6, 8, and 10 second into the motion.
(d) With A as the observer, draw the arrows of the prvious part and determine how B
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moves realtive to A.
(e) Draw arrows from B to A at 0, 2, 4, 6, 8, and 10 second into the motion.
(f) With B as the observer, draw the arrows of the prvious part and determine how A moves
realtive to B.

A

B

Figure G.10: Observers A and B move relative to a third observer (not shown).

Exercise G.6.4. Consider Figure G.11 showing the motion of Earth around the Sun.
Assuming that the location of the Earth in the figure corresponds to January first,
(a) draw points on the Earth’s orbit corresponding to the first of each of the remaining 11
months.
(b) Draw arrows from Earth to Sun at each location of the Earth.
(c) With Earth as the observer, draw the arrows of the prvious part and determine how
Sun moves realtive to Earth.

Figure G.11: Motion of Earth as seen from the Sun.

Exercise G.6.5. An ant is moving on a table top. It moves up for 4 seconds at the rate
of 5 cm/s. It suddenly changes its direction and moves to the right 10 cm for 5 seconds. It
again changes its direction and moves down 20 cm for 6 seconds.
(a) What is the total distance the ant covers?
(b) What is the displacement of the ant?
(c) What is its average speed in cm/s?
(d) What is its average velocity in cm/s?
(e) What is its average speed in cm/s as it is moving to the right?
(f) What is its average velocity in cm/s as it is moving to the right?
(g) What is its average speed in cm/s as it is moving down?
(h) What is its average velocity in cm/s as it is moving down?

G.7 Numerical Exercises for Chapter 7

Exercise G.7.1. A 100-gram bullet traveling with the speed of 100 m/s hits a 2-kg block
of wood resting on a smooth floor and sticks to it (see Figure G.12).
(a) What is the appropriate system and what does it consist of?
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(b) What is the initial momentum of the bullet? Draw an arrow!
(c) What is the initial momentum of the block?
(d) What is the momentum of the system before the bullet hits the wood? Draw an arrow!
(e) What is the momentum of the system after the bullet hits the wood? Draw an arrow!
(f) What is the speed of the system of block and the bullet?

Figure G.12: The bullet is about to hit the stationary block.

Exercise G.7.2. A 100-gram bullet traveling with the speed of 80 m/s hits a 2-kg block of
wood which is already in motion in the opposite direction on a smooth floor (see Figure G.13)
with a speed of 2 m/s. The bullet sticks to the block.
(a) What is the initial momentum of the bullet? Draw an arrow!
(b) What is the initial momentum of the block? Draw an arrow!
(c) What is the momentum of the system before the bullet hits the wood? Draw an arrow!
(d) What is the momentum of the system after the bullet hits the wood? Draw an arrow!
(e) What is the speed of the system of block and the bullet?

Figure G.13: The bullet is about to hit the block that is moving in the opposite direction.

Exercise G.7.3. A 200-gram bullet moving to the left hits a stationary 8-kg block of wood.
The bullet sticks to the block and the two move with a speed of 2 m/s.
(a) What is the momentum of the system after collision? Draw an arrow!
(b) What is the momentum of the system before the bullet hits the wood?
(c) What was the initial momentum of the bullet? Draw an arrow!
(d) What was the speed of the bullet before it hit the block?

Exercise G.7.4. A 200-gram tennis ball moving with the unknown speed of vin to the left,
hits a 5-kg stationary bowling ball and bounces back from it with the same speed. After
collision, the bowling ball is seen to move with a speed of 2m/s.
(a) What is the initial momentum of the tennis ball in terms of vin? Draw an arrow!
(b) What is the initial momentum of the bowling ball?
(c) What is the momentum of the system before collision in terms of vin?
(d) What is the momentum of the system after collision in terms of vin?
(e) Write an equation involving vin that describes the constancy of the total momentum
before and after collision. Solve this equation to find the initial speed of the tennis ball.

Exercise G.7.5. A 300-gram tennis ball moving with the unknown speed of vin to the left,
hits a 6-kg bowling ball moving to the right with a speed of 1 m/s and bounces back from
it with the same speed of vin. After collision, the bowling ball is seen to move with a speed
of 2 m/s to the left. Take left to be the positive direction.
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(a) What is the initial momentum of the tennis ball in terms of vin? Draw an arrow!
(b) What is the initial momentum of the bowling ball? Draw an arrow!
(c) What is the momentum of the system before collision in terms of vin?
(d) What is the momentum of the system after collision in terms of vin?
(e) Write an equation involving vin that describes the constancy of the total momentum
before and after collision. Solve this equation to find the initial speed of the tennis ball.

Exercise G.7.6. A 100-gram bullet traveling with the speed of 100 m/s hits a 10000-kg
block resting on the frictionless floor of an indoor hockey stadium 50 m long at one end
of the stadium. How long does it take the block to reach the other end after the bullet
penetrates it?

Exercise G.7.7. An astronaut with a total mass (astronaut plus wrench) of 75 kg is
detached from her spaceship and moves with a speed of 0.2 m/s away from it at a distance
of 20 m. The commander tells the astronaut to throw the 0.5-kg wrench she is holding as
hard as she can. The astronaut follows the order, throwing the wrench at a speed of 20 m/s.
Drawing arrows for momenta will help!
(a) Which direction does the astronaut throw the wrench?
(b) What is the momentum of the system before she throws the wrench? Draw an arrow!
(c) What is the momentum of the system after she throws the wrench? Draw an arrow!
(d) What is the momentum of the wrench? Draw an arrow!
(e) What is the momentum of the astronaut? Draw an arrow!
(f) What is the speed of the astronaut?
(g) Will the astronaut get back to the spaceship? If so, how long does it take her to reach
the spaceship?

Exercise G.7.8. An astronaut with a total mass (astronaut plus wrench) of 95 kg is
detached from his spaceship and moves with a speed of 0.4 m/s twoards it at a distance of
30 m. He needs to get to the ship in less than a minute. The commander tells the astronaut
to throw the 1-kg wrench he is holding as hard as she can. The astronaut follows the order,
throwing the wrench at a speed of 10 m/s. Drawing arrows for momenta will help!
(a) Which direction does the astronaut throw the wrench?
(b) What is the momentum of the system before he throws the wrench?
(c) What is the momentum of the system after she throws the wrench?
(d) What is the momentum of the wrench? Draw an arrow!
(e) What is the momentum of the astronaut? Draw an arrow!
(f) What is the speed of the astronaut? Will the astronaut get back to the spaceship in
time?

Exercise G.7.9. A 200-gram mass is tied to one end of a string 1.5 m long. Emmy holds
the other end and whirls the string above her head at the rate of 2 revolutions per second.
Assume that the string is almost horizontal.
(a) What is the speed of the mass?
(b) What is the acceleration of the mass?
(c) What is the force acting on the mass?
(d) What is the source of this force?

Exercise G.7.10. An 18-ton truck is moving around a curve at a speed of 60 mph in
opposite direction to that of the car shown in Figure 7.7. The radius of the curve is 150 m.
(a) What is the acceleration of the truck in m/s2?
(b) What is the net force acting on the truck? Draw an arrow on the truck indicating the
direction of the net force.
(c) How is the direction of this arrow related to that of the car of Figure 7.7?
(d) What applies this force on the truck?
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Exercise G.7.11. The ferris wheel of Figure G.14 has a radius of 10 m and makes a
complete revolution every 6.5 seconds.
(a) What is the distance covered by a person on the wheel in one revolution?
(b) What is the speed of that person?
(c) Find the magnitude of the acceleration of people sitting in positions A, C, F, and G.
(d) A person has a mass of 70 kg. What is the net force acting on her when she is at C?
At G? Draw an arrow on Figure G.14 (a) for each of these net forces.
(e) What is the weight of that person? Draw her weight at C and at G of Figure G.14 (a).
(f) Is there any other force acting on the person? If so, is it a contact or an action-at-a-
distance force? Draw this force at C and at G of Figure G.14 (a), and compare it with the
weight of the person.
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(a) (b)

Figure G.14: The Ferris wheel and the people riding on it.

Exercise G.7.12. Suppose now that the ferris wheel slows down, making a complete
revolution every 30 seconds.
(a) What is the distance covered by a person on the wheel in one revolution?
(b) What is the speed of that person?
(c) Find the magnitude of the acceleration of people sitting in positions A, C, F, and G.
(d) A person has a mass of 70 kg. What is the net force acting on him when he is at C? At
G? Draw an arrow on Figure G.14 (b) for each of these net forces.
(e) What is the weight of that person? Draw his weight at C and at G of Figure G.14 (b).
Draw the normal force at C and at G of Figure G.14 (b), and compare it with the weight
of the person.

G.8 Numerical Exercises for Chapter 8

Exercise G.8.1. Calculate the kinetic energy (in Joules) of the following objects:
(a) A 15-ton truck moving with a speed of 70 mph.
(b) An 80-kg biker moving with a speed of 25 mph.
(c) A 0.1-kg bullet moving with a speed of 200 mph.
(d) A 0.5-kg hammer head moving with a speed of 60 mph.

Exercise G.8.2. A 30-kg block is given an initial speed of 15 m/s on a rough floor. The
block stops after 20 meters.
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(a) What is the initial kinetic energy of the block?
(b) What is the final kinetic energy of the block?
(c) What is the change in the kinetic energy of the block?
(d) How much work is done by the force of friction?
(e) How large is the force of friction?

Exercise G.8.3. A baseball pitcher throws a 0.2 kg ball at 100 mph straight up. We want
to find how high the ball will rise.
(a) What is the speed in m/s?
(b) What is the KE at the beginning?
(c) What is the PE at the beginning? Consider the pitcher’s hand level as the reference
level.
(d) What is the total ME at the beginning?
(e) What is the ME, KE, and PE at the highest point?
(f) What is the maximum height?

Exercise G.8.4. A roller coaster starts at point B with a speed of 32 m/s and moves
towards C. The mass of the car plus the passenger is 250 kg (see Figure 8.12). Assume that
h1 = 70 m, h2 = 50 m, and h3 = 25 m.
(a) What is the total mechanical energy at B?
(b) What is the total mechanical energy at C? What is PE at C? What is KE at C? Speed
at C?
(c) What is the total mechanical energy at D? What is PE at D? What is KE at D? Speed
at D?

Exercise G.8.5. A roller coaster starts at point C with a speed of 30 m/s and moves
towards A. The mass of the car plus the passenger is 250 kg (see Figure 8.12). Assume that
h1 = 60 m, h2 = 40 m, and h3 = 20 m.
(a) What is the total mechanical energy at C?
(b) What is the total mechanical energy at B? What is KE at B? Speed at B?
(c) Will the roller coaster be able to make it to the top of the hill at A? If so, what is the
total mechanical energy at A? What is KE at A? Speed at A?

Exercise G.8.6. A roller coaster starts at point D with a speed of 30 m/s and moves
towards A. The mass of the car plus the passenger is 200 kg (see Figure 8.12). Assume that
h1 = 80 m, h2 = 60 m, and h3 = 30 m.
(a) What is the total mechanical energy at D?
(b) What is the total mechanical energy at C? What is KE at C? Speed at C?
(c) What is the total mechanical energy at B? What is KE at B? Speed at B?
(d) Will the roller coaster be able to make it to the top of the hill at A? If so, what is the
total mechanical energy at A? What is KE at A? Speed at A?

Exercise G.8.7. Two trucks 70,000 lb (32 metric tons) each, moving at 70 mph collide
head-on, with the wreckage being at rest after collision. Each kilogram of TNT has 4 million
Joules of destructive energy.
(a) What is the KE of each truck?
(b) What is the total KE?
(c) How many kg of TNT is the destructive energy of collision?

Exercise G.8.8. Santa Claus has to visit 200 million children, and on the average, there
are 8 children per home.
(a) How many chimneys does Santa have to climb down and up in 24 hours?
(b) Assume that Santa can climb down and up 20,000 chimneys every second. How long
does Santa spend climbing down and up all the chimneys?
(c) How much time is left for Santa to hop from chimney to chimney?
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(d) The houses Santa visits are 20 m apart. What is the total distance Santa has to cover?
(e) How fast should Santa travel to be able to deliver all the toys?
(f) Take the effective cargo mass for Santa’s entire trip to be half the mass Santa starts
with. If each toy is approximately 2 kg, what is the effective mass?
(g) How much energy does Santa spend to reach the hopping speed?
(h) This energy turns into heat in a fraction of a second when Santa lands at the next
chimney. How many tons of TNT is the “bomb” associated with Santa’s landing at each
chimney?
(i) The “Little Boy,” dropped on Hiroshima in 1945, was 15000 tons of TNT. How many
“Little Boy”s is associated with Santa’s landing at each chimney?
(j) What is the total energy Santa uses in 24 hours?
(k) The total yearly energy consumption of the world is approximately 4× 1020 J. For how
many years should the entire population of Earth stop using any form of energy before
Santa can make his one-day trip?

Exercise G.8.9. Santa Claus has to visit 180 million children, and on the average, there
are 6 children per home.
(a) How many houses does Santa have to visit?
(b) Assuming he has 30 hours to visit all the houses, how much time does he have for each
house?
(c) Assume that Santa can climb down and up 30,000 chimneys every second. How long
does Santa spend climbing down and up each chimney?
(d) How much time is left for Santa to spend between two chimneys?
(e) The houses Santa visits are 25 m apart. How fast should Santa travel to be able to
deliver all the toys?
(f) Take the effective cargo mass for Santa’s entire trip to be half the mass Santa starts
with. If each toy is approximately 1.5 kg, what is the effective mass?
(g) How much energy does Santa spend to reach the hopping speed?
(h) This energy turns into heat in a fraction of a second when Santa lands at the next
chimney. How many tons of TNT is the “bomb” associated with Santa’s landing at each
chimney?
(i) The “Fat Man,” dropped on Nagasaki in 1945, was 22000 tons of TNT. How many “Fat
Man”s is associated with Santa’s landing at each chimney?
(j) What is the total energy Santa uses in 30 hours?
(k) The total yearly energy consumption of the world is approximately 4× 1020 J. For how
many years should the entire population of Earth stop using any form of energy before
Santa can make his one-day trip?

G.9 Numerical Exercises for Chapter 9

Exercise G.9.1. Atlas, one of Saturn’s moons, is seen to move around Saturn once every
14.5 hours (the period of the moon) on a circular orbit. The distance of Atlas from Saturn
is 137,000 km.
(a) What is the distance covered by Atlas in one period?
(b) What is Atlas’ period in seconds?
(c) What is the speed (in m/s) of Atlas as it moves around Saturn?
(d) What is Atlas’ (centripetal) acceleration?
(e) From the knowledge of the centripetal acceleration, find Saturn’s mass.
(f) Using Kepler’s third law, find Saturn’s mass.

Exercise G.9.2. Phobos, one of the two Mars’ moons, is seen to move around Mars in 7.7
hours (the period of the moon) on a circular orbit. The distance of Phobos from Mars is
9,400 km.
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(a) What is the distance covered by Phobos in one period?
(b) What is Phobos’ period in seconds?
(c) What is the speed (in m/s) of Phobos as it moves around Mars?
(d) What is Phobos’ (centripetal) acceleration?
(e) From the knowledge of the centripetal acceleration, find Mars’ mass.
(f) Using Kepler’s third law, find Mars’ mass.
(g) Deimos, the other Moon of Mars, is seen to go around its mother planet every 30 hours.
Use Kepler’s third law to find Deimos’ distancce from Mars.

Exercise G.9.3. The radius of the Earth R⊕ is 6,400 km. An apple is circling the Earth
at an altitude of 20 km (see Figure G.15). (a) How far is the apple from the center of the
Earth? (b) What is the gravitational acceleration of the apple assuming that the mass of
the Earth is 6 × 1024 kg? How is this related to the centripetal acceleration of the apple?
(c) Calculate the speed of the apple.

V Altitude of apple is 20 km

Figure G.15: The Earth with an apple circling it!

Exercise G.9.4. A 0.1 kg apple is launched with a speed of 200 m/s from the surface of
a planet in some exotic star system. The planet has a mass of 5× 1018 kg and a radius of
400 km.
(a) What is the initial KE of the apple? Its initial PE? Its total energy?
(b) What is the total energy, the PE, and the KE of the apple 200 km above the surface of
the planet?
(c) What is the total energy, the PE, and the KE of the apple 400 km above the surface of
the planet?
(d) Will the apple ever return?

Exercise G.9.5. A 0.1 kg apple is launched with a speed of 800 m/s from the surface of
a planet in some exotic star system. The planet has a mass of 3× 1020 kg and a radius of
40 km.
(a) What is the initial KE of the apple? Its PE? Its total energy?
(b) What is the total energy, the PE, and the KE of the apple 50 km above the surface of
the planet?
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(c) What is the total energy, the PE, and the KE of the apple 100 km above the surface of
the planet? What is wrong?

Exercise G.9.6. Asteroid Vesta has a radius of 275 km and a mass of 2.4×1020 kg. What
is Vesta’s escape velocity.

Exercise G.9.7. Mercury has a radius of 2440 km and a mass of 3.3 × 1023 kg. What is
Mercury’s escape velocity.

Exercise G.9.8. Jupiter has a radius of 71800 km and a mass of 1.9 × 1027 kg. What is
Jupiter’s escape velocity.

Exercise G.9.9. Neptune has a radius of 24300 km and a mass of 1.03 × 1026 kg. What
is Neptune’s escape velocity.

Exercise G.9.10. A small planet in a remote star system has a radius of 75 km and a
mass of 5× 1017 kg. A baseball is thrown vertically upward on this planet with a speed of
75 mph.
(a) What is the escape velocity of the planet?
(b) Will the baseball come back? If so what is the maximum height reached by the baseball?

Exercise G.9.11. A small planet in a remote star system has a radius of 120 km and
a mass of 8 × 1019 kg. A bullet is fired vertically upward on this planet with a speed of
500 mph.
(a) What is the escape velocity of the planet?
(b) Will the bullet come back? If so what is the maximum height reached by the bullet?

G.11 Numerical Exercises for Chapter 11

Exercise G.11.1. You see a lightning and 10 seconds later you hear its thunder. Assume
that the light from lightning reaches you instantly.
(a) How long did it take the sound to reach you?
(b) How far away is the cloud?

Exercise G.11.2. The range of AM radio station frequencies is 530 to 1700 kHz. Radio
waves travel at the speed of light c = 300, 000 km/s. What is the range of AM wavelengths?

Exercise G.11.3. The range of FM radio station frequencies is 88 to 108 MHz. Radio
waves travel at the speed of light c = 300, 000 km/s. What is the range of FM wavelengths?

Exercise G.11.4. Figure G.16 shows two coherent sources producing waves in phase, i.e.,
when S1 produces a crest or a trough, so does S2. The distance between the sources,
exaggerated for clarity, is comparable with the wavelength. Point A is equidistant from the
two sources, BS1 is half a wavelength longer than BS2, and CS2 is one wavelength longer
than CS1.
(a) Is there a constructive or destructive interference at A? Explain!
(b) Is there a constructive or destructive interference at B? Explain!
(c) Is there a constructive or destructive interference at C? Explain!

Exercise G.11.5. Figure G.16 shows two coherent sources producing waves in phase, i.e.,
when S1 produces a crest or a trough, so does S2. The distance between the sources,
exaggerated for clarity, is comparable with the wavelength. Point A is equidistant from the
two sources, BS1 is one wavelength longer than BS2, and CS2 is two wavelengths longer
than CS1.
(a) Is there a constructive or destructive interference at A? Explain!
(b) Is there a constructive or destructive interference at B? Explain!
(c) Is there a constructive or destructive interference at C? Explain!
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S1

S2

C

B

A

Figure G.16: The two coherent sources producing waves. The distance between the sources is comparable
with the wavelength.

Exercise G.11.6. Figure G.16 shows two coherent sources producing waves in phase, i.e.,
when S1 produces a crest or a trough, so does S2. The distance between the sources,
exaggerated for clarity, is comparable with the wavelength. Point A is equidistant from the
two sources, BS1 is 1.5λ longer than BS2, and CS2 is 3λ longer than CS1.
(a) Is there a constructive or destructive interference at A? Explain!
(b) Is there a constructive or destructive interference at B? Explain!
(c) Is there a constructive or destructive interference at C? Explain!

Exercise G.11.7. Figure G.16 shows two coherent sources producing waves in phase, i.e.,
when S1 produces a crest or a trough, so does S2. The distance between the sources,
exaggerated for clarity, is comparable with the wavelength. Point A is equidistant from the
two sources, BS1 is 2λ longer than BS2, and CS2 is 4λ longer than CS1.
(a) Is there a constructive or destructive interference at A? Explain!
(b) Is there a constructive or destructive interference at B? Explain!
(c) Is there a constructive or destructive interference at C? Explain!

Exercise G.11.8. Figure G.16 shows two coherent sources producing waves in phase, i.e.,
when S1 produces a crest or a trough, so does S2. The distance between the sources,
exaggerated for clarity, is comparable with the wavelength. Point A is equidistant from the
two sources, BS1 is 2.5λ longer than BS2, and CS2 is 5λ longer than CS1.
(a) Is there a constructive or destructive interference at A? Explain!
(b) Is there a constructive or destructive interference at B? Explain!
(c) Is there a constructive or destructive interference at C? Explain!

Exercise G.11.9. Two coherent loud speakers producing a sound wave of frequency 9000
Hz are 5 m apart.
(a) Will these sources produce an inteference pattern?
(b) The distance is now reduced to 0.5 m. Is interference possible now?

Exercise G.11.10. Two coherent sources of electromagnetic waves producing waves of
frequency 5 × 1010 Hz are 1 m apart. Electromagnetic waves travel at the speed of light
c = 3× 108 m/s.
(a) Will these sources produce an inteference pattern?
(b) The distance is now reduced to 50 cm. Is interference possible now?
(c) The distance is further reduced to 1 cm. Is interference possible now?

Exercise G.11.11. A loud speaker produces a sound wave of frequency 10,000 Hz. This
wave approaches a circular aperture one meter in diameter.
(a) Will the wave produce a diffraction pattern?
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(b) The diameter is now reduced to 8 cm. Is diffraction possible now?
(c) The diameter is further reduced to 5 cm. Is diffraction possible now?

Exercise G.11.12. A source of electromagnetic waves produces microwaves of frequency
5× 107 Hz. This wave approaches a circular aperture 10 cm in diameter. Electromagnetic
waves travel at the speed of light c = 3× 108 m/s.
(a) Will the wave produce a diffraction pattern?
(b) The diameter is now reduced to 8 cm. Is diffraction possible now?

Exercise G.11.13. The yellow light with a wavelength of 6×10−7 m coming from a galaxy
is seen to be shifted to 5.5× 10−7 m.
(a) Is the galaxy approaching or receding from us?
(b) What is the fractional change in the wavelength (∆λ/λ)?
(c) What is the speed of the galaxy?

Exercise G.11.14. The speedometer of a police car shows a speed of 110 mph as the
policeman chases a speeder. He sends a radar wave with a wavelength of 5 m to the speeder
and receives a signal whose wavelength has decreased by 1.5× 10−7 m.
(a) Is the police car approaching or receding from the speeder?
(b) What is the fractional change in the wavelength (∆λ/λ)?
(c) What is the speed of the police car relative to the speeder?
(d) How fast is the speeder going?

G.12 Numerical Exercises for Chapter 12

Exercise G.12.1. The mass of an electron is 9.1 × 10−31 kg and its charge is (negative)
1.6× 10−19 Coulomb.
(a) Find the gravitational attraction (call it Fg) between two electrons separated by 1 m.
(b) Find the electrical repulsion (call it Fe) between two electrons separated by 1 m.

(c) What is the ratio
Fe
Fg

? How does this ratio change if the electrons above were separated

by 2 m?

Exercise G.12.2. Two trucks each having a mass of 10 metric tons carry one millicoulomb
of negative charge each. They are parked 3 m apart.
(a) What is the gravitational attraction between the two trucks?
(b) What is the electrical repulsion between the two trucks?
(c) What is the ratio of the two forces?
(d) What is the ratio of the two forces if the trucks are 30 m apart?

G.14 Numerical Exercises for Chapter 14

Exercise G.14.1. An electric charge is oscillating with a frequency of 5 Hz.
(a) What is the wavelength of the EM wave produced? How does it compare with the
circumference of the Earth (40,000 km)? Does it make sense to call such an EM wave a
“wave”?
(b) The frequency is now increased to 5 kHz. What is the wavelength now? Does it make
sense to call such an EM wave a “wave”?
(c) The frequency is further increased to 5 MHz. What is the wavelength now? Does it
make sense to call such an EM wave a “wave”?

Exercise G.14.2. One of the fastest mechanical rotators—with an electric charge on it—
spins at a rate of 60,000 rpm (revolutions per minute).
(a) What is the frequency of the rotation?
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(b) What is the wavelength of the EM wave so produced?
(c) Does it make sense to call such an EM wave a “wave”?

Exercise G.14.3. An electron (a negatively charged subatomic particle) moves around the
nucleus of an atom on a circular orbit with a period of 10−15 second.
(a) What is the frequency of the electron orbital motion?
(b) What is the wavelength of the EM wave produced?
(c) Does it make sense to call such an EM wave a “wave”?

G.16 Numerical Exercises for Chapter 16

Exercise G.16.1. For the toss of 16 coins, use Pn(m) =
n!

m!(n−m)!2n
to

(a) find the frequency for 0 through 16 heads.
(b) Find the probability for 0 through 16 heads.
(c) How much is the probability of getting 8 heads bigger than the probability of getting 2
heads?

Exercise G.16.2. The figure on the next page contains eight plots of the probability of the
occurrence of varying number of heads. Each plot corresponds to a certain total number of
coins. Find the following information from each plot and write it on that plot.
(a) The total number of coins.
(b) The right zero m+ and the left zero m−.
(c) The width of the curve ∆n.
(d) The relative width of the curve δn.
(e) Which curve is the narrowest? Which one the widest? (This question is not to test your
visual ability! Think!)
(f) Can you see a trend from the last question?

G.17 Numerical Exercises for Chapter 17

Exercise G.17.1. A mixture of nitrogen and hydrogen molecules is held at a temperature
of 50 ◦C. Nitrogen is 14 times heavier than hydrogen.
(a) How many times larger is the average KE of the hydrogen molecules than that of the
nitrogen molecules?
(b) How many times larger is the average speed (root mean square of velocity) of the
hydrogen molecules than that of the nitrogen molecules?
(c) The temperature is now doubled to 100 ◦C. How do the answers to (a) and (b) change?
(d) Hydrogen molecule has a mass of 3.32 × 10−27 kg. What is the average speed of the
hydrogen molecules when the temperature is 50 ◦C? When it is 100 ◦C?
(e) What are the average speeds of the nitrogen molecules at these two temperatures?

Exercise G.17.2. Molecular nitrogen gas is in a vessel at a temperature of 150 ◦C. The
gas is now heated so that its temperature is tripled to 450 ◦C.
(a) How many times larger is the average KE of the nitrogen molecules after heating than
before heating?
(b) How many times larger is the average speed of the nitrogen molecules after heating than
before heating?
(c) Nitrogen molecule has a mass of 4.65 × 10−26 kg. What is the average speed of the
nitrogen molecules when the temperature is 150 ◦C?
(d) What is the average speed of the nitrogen molecules when it is 450 ◦C?
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Figure G.17: Plots of number of heads versus probability.
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Exercise G.17.3. Argon gas is in a vessel at a temperature of 200 ◦C. The gas is now
heated so that its temperature is quadrupled to 800 ◦C.
(a) How many times larger is the average KE of the argon atoms after heating than before
heating?
(b) How many times larger is the average speed of the argon atoms after heating than before
heating?
(c) Nitrogen molecule has a mass of 4.65 × 10−26 kg. What is the average speed of the
nitrogen molecules when the temperature is 150 ◦C? When it is 450 ◦C?

Exercise G.17.4. How many “molecules” are there in a liter of an ideal gas at room
temperature (300 ◦K) and atmospheric pressure?

Exercise G.17.5. A car flat tire has a volume of 25 liters and a pressure of 1 atm (about
14 psi) when the temperature is 15 ◦C.
(a) How many “air molecules” are there in the tire?
(b) How many more molecules of air should we add to the tire to raise its pressure to 2.5
atm (about 36 psi) at the same temperature? Assume that the volume increases to 28 liters.

Exercise G.17.6. 18 grams (1 mole) of water is boiled completely into steam in a four-liter
pressure cooker at a temperature of 400 ◦C.
(a) What is the pressure in the cooker?
(b) Suppose the temperature is doubled to 800 ◦C. What is the pressure now?

G.18 Numerical Exercises for Chapter 18

Exercise G.18.1. This exercise shows you the difference between heat and temperature.
Take 100 grams of water (a cup) and add enough heat to raise its temperature from 20 ◦C
to the boiling point, 100 ◦C. The specific heat of water is 4186.
(a) How much heat is required for this process?
(b) Now take a bath tub full of water (m = 200 kg). How much heat is needed to raise its
temperature from 20 ◦C to 30 ◦C?

G.20 Numerical Exercises for Chapter 20

Exercise G.20.1. Figure G.18 shows four pairs of figures depicting the BBR curve as
predicted by classical theory (left) and the actual observation (right). The horizontal axis
is the wavelength in µm, and the vertical axis is intensity in some arbitrary units. How well
does the classical prediction agree with observation in each of the following cases? Find the
actual values from the corresponding graph and compare them!
(a) When the wavelength is 28 µm, 21 µm, 9 µm, 5.5 µm, 2.5 µm, and 0.17 µm.
(b) While the general shapes of the two curves in the first three pairs are the same, the last
pair shows a drastic difference! What can you say about the behavior of intensity when the
wavelength decreases from 0.3 µm to 0.1 µm according to classical prediction? According
to observation?
(c) Based on the graphs on the left, what do you think the classical theory predicts about
intensity when the wavelength is reduced further beyond 0.1 µm?
(d) Based on the graphs on the right, what do you think actually happens to the intensity
when the wavelength is reduced further beyond 0.1 µm?
(e) Based on the graphs on the right, try to sketch a graph of intensity versus wavelength
with a horizontal range starting at 0.1 µm and ending at 30 µm.

Exercise G.20.2. The surface temperature of human body is about 300 ◦K.
(a) What is the wavelength corresponding to the maximum intensity of EM waves we
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Figure G.18: Comparison of classical prediction (left) versus observation (right) of BBR curves.

produce as a BBR?
(b) What category of EM spectrum does this correspond to?

Exercise G.20.3. Figure G.19 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?

0.5 1 1.5 2 2.5 3

Figure G.19: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

Exercise G.20.4. The Sun has a surface temperature of 6000 ◦K and a radius of 700,000
km.
(a) Calculate the brightness of the Sun.
(b) What is the total power output of the Sun?
(c) How much energy is received by each m2 of the surface of the Earth which is 150 million
km away? Hint: The Earth is on a big sphere of radius 150 million km. This sphere receives
the entire power output of the Sun.

Exercise G.20.5. A star 10 light years away has a surface temperature of 12000 ◦K and
a radius of 1 million km.
(a) Calculate the brightness of the star.
(b) What is the total power output of the star?
(c) How much energy is received by each m2 of the surface of the Earth? Hint: The Earth
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is on a big sphere of radius 10 light years. This sphere receives the entire power output of
the star.

Exercise G.20.6. Figure G.20 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?
(c) What is the brightness of the star?
(d) How much power (joules per second) is given off by the star if its radius is one million
km?

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure G.20: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

Exercise G.20.7. Figure G.21 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?
(c) What is the brightness of the star?
(d) How much power (joules per second) is given off by the star if its radius is 150 million
km?

1 2 3 4

Figure G.21: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

Exercise G.20.8. Figure G.22 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?
(c) What is the brightness of the star?
(d) How much power (joules per second) is given off by the star if its radius is 3 million
km?
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0.2 0.4 0.6 0.8

Figure G.22: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

Exercise G.20.9. Figure G.23 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?
(c) What is the brightness of the star?
(d) How much power (joules per second) is given off by the star if its radius is 10 million
km?

0.5 1 1.5 2

Figure G.23: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

Exercise G.20.10. Figure G.24 shows a black body radiation curve of a star in which the
wavelength is given in units of µm.
(a) From the graph, read off the (approximate) wavelength corresponding to the maximum
intensity.
(b) What is the surface temperature of the star?
(c) What is the brightness of the star?
(d) How much power (joules per second) is given off by the star if its radius is 15 million
km?

Exercise G.20.11. A spherical 100-Watt light bulb has a radius of 2.5 cm.
(a) What is the area of the sphere in m2?
(b) What is the brightness of the bulb?
(c) Use the Stefan–Boltzmann law to estimate the bulb’s surface temperature.
(d) What is this temperature in degrees Celsius?

Exercise G.20.12. Suppose that the filament of a spherical 100-Watt light bulb can be
approximated as a sphere of radius of 0.75 cm.
(a) What is the area of the sphere in m2?
(b) What is the brightness of the bulb?
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0.1 0.2 0.3 0.4 0.5

Figure G.24: The BBR curve of a star. The values of the wavelength on the horizontal axis are in µm.

(c) Use the Stefan–Boltzmann law to estimate the bulb’s surface temperature.
(d) What is this temperature in degrees Celsius?

Exercise G.20.13. Recall that the wavelength range of visible light is 0.4 to 0.7 µm.
(a) Which color of light has the highest energy?
(b) What is the energy (in eV) of this color?
(c) Which color of light has the lowest energy?
(d) What is the energy (in eV) of this color?

Exercise G.20.14. A gamma ray has a wavelength of 10−15 m.
(a) What is the energy (in eV) of this gamma ray?
(b) What is its frequency?

Exercise G.20.15. A hypothetical metal has a work function of 1.5 eV.
(a) What is the longest-wavelength photon that can release the photoelectrons?
(b) Is it visible?

Exercise G.20.16. Blue light with wavelength of 0.45 µm is incident on a hypothetical
metal containing electrons which are bound to the metal with an energy of 2 eV.
(a) What is the energy of the photon in eV?
(b) Will the photoelectrons be released?
(c) If so, what will their (maximum) kinetic energy be?

G.21 Numerical Exercises for Chapter 21

Exercise G.21.1. The electron of a hydrogen atom makes a transition from the tenth orbit
to the third orbit.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

Exercise G.21.2. The electron of a hydrogen atom makes a transition from the fourth
orbit to the third orbit.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?
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Exercise G.21.3. The electron of a hydrogen atom makes a transition from the tenth orbit
to the first orbit.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

Exercise G.21.4. A hydrogen atom makes a transition from the n = 5 to n = 3 state.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

Exercise G.21.5. A hydrogen atom makes a transition from the n=2 to n=1 state.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

Exercise G.21.6. A hydrogen atom makes a transition from the n=10 to n=5 state.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

Exercise G.21.7. A hydrogen atom makes a transition from the n=4 to n=2 state.
(a) What is the energy of the photon released?
(b) What is the photon’s frequency?
(c) What is the photon’s wavelength?
(d) Is it visible? If so, what color does it have? If not, which category of the EM spectrum
does it belong to?

G.22 Numerical Exercises for Chapter 22

Exercise G.22.1. An electron has a mass of 9.1 × 10−31 kg, a diameter which is smaller
than 10−18 m and moves with a speed of 105 m/s.
(a) What is the wavelength of this electron?
(b) Is it possible to see the diffraction of such electrons?

Exercise G.22.2. Figure G.25 shows the probability and the wave function (probability
amplitude) of a hydrogen atom when n = 2. The unit of length on the horizontal axis is
a0, the Bohr radius.
(a) Which plot is the probability and which one is the probability amplitude?
(b) At what distance(s) in units of a0 is the electron least likely to be found?
(c) Is the atom stable? I.e., is there a chance that the electron collapses to the nucleus?
(d) At what distance(s) (in units of a0) is the electron most likely to be found?
(e) What are the chances that the electron is found at a distance greater than 15a0?
(f) Compare the probability of finding the electron between the nucleus and a sphere of
radius 2a0 with the probability of finding it between the sphere of radius 2a0 and a sphere
of radius 15a0. Hint: Approximate the region with a familiar geometrical shape!
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(g) Compare the probability of finding the electron between a sphere of radius 2a0 and a
sphere of radius 10a0 with the probability of finding it between the sphere of radius 10a0

and a sphere of radius 100a0.

5 10 15 20

5 10 15 20

Figure G.25: The hydrogen wave function and its probability for n = 2. The horizontal axis gives the
distance of the electron from the nucleus in units of a0.

Exercise G.22.3. Figure G.26 shows the probability and the wave function (probability
amplitude) of a hydrogen atom when n = 3. The unit of length on the horizontal axis is
a0, the Bohr radius.
(a) Which plot is the probability and which one is the probability amplitude?
(b) At what distance(s) in units of a0 is the electron least likely to be found?
(c) Is the atom stable? I.e., is there a chance that the electron collapses to the nucleus?
(d) At what distance(s) (in units of a0) is the electron most likely to be found?
(e) What are the chances that the electron is found at a distance grater than 30a0?
(f) Compare the probability of finding the electron between the nucleus and a sphere of
radius 2a0 with the probability of finding it between the sphere of radius 2a0 and a sphere
of radius 7a0. Hint: Approximate the region with a familiar geometrical shape!
(g) Compare the probability of finding the electron between the nucleus and a sphere of
radius 7a0 with the probability of finding it between the sphere of radius 7a0 and a sphere
of radius 30a0.

5 10 15 20 25 30

5 10 15 20 25 30

Figure G.26: The hydrogen wave function and its probability for n = 3. The horizontal axis gives the
distance of the electron from the nucleus in units of a0.

Exercise G.22.4. A precision-tools company claims that it has invented a device that can
measure energy of an atom with an uncertainty of only 0.01 eV in a time interval of 10−14

second. Is the company’s claim valid?

G.26 Numerical Exercises for Chapter 26

Exercise G.26.1. The crew of Apollo 23 goes to the Moon with a speed of 10 km/s. It
spends 20 hours exploring the Moon, and comes back with the same speed. The captain of
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the spaceship has just had a baby when he leaves on the mission. The whole trip takes 42
hours for the crew.
(a) To feel the enormity of Apollo’s speed, estimate its travel time from New York to Los
Angeles (a distance of about 5000 km).
(b) How many hours does the captain spend on the way from Earth to the Moon?
(c) How many more seconds has the baby aged than the captain?
(d) How far is the Moon from the Earth?
(e) What is the Earth-Moon distance according to the crew?

Exercise G.26.2. Epsilon Eridani is a star that is situated 10.8 light years away from us.
The crew of the Spaceship Enterprise set out on their journey to Epsilon Eridani with 95%
light speed.
(a) What is the distance between Earth and Epsilon Eridani according to the crew of
Enterprise?
(b) How long does it take the crew to get there according to the crew?
(c) What is the round-trip travel time to Epsilon Eridani and back for the crew?
(d) How long does it take the crew to get there according to the Earth observers?
(e) What is the round-trip travel time of the journey for the people on Earth?
(f) Verify that (b) and (c) are related via time dilation formula.

Exercise G.26.3. The crew of a spaceship goes to a distant planet 30 l.y. away with a
speed of 0.87c. It spends a year exploring the planet, and comes back with the same speed.
The captain of the spaceship is 35 years old and has just had a baby when he leaves on the
mission.
(a) What is the Earth-planet distance according to the crew?
(b) How many years does the captain spend on the way from Earth to the planet?
(c) How long does it take the “baby” for her father to land on the planet?
(d) How old is the “baby” when the captain gets back? How old is the captain?
(e) How old would a classmate of the captain be if (s)he were alive?

Exercise G.26.4. In the table below, you are to calculate 1/
√

1− x for small values of x
and compare the result with 1 + 1

2x.

Exercise G.26.5. To compare the results you obtain below, note that the length of a
proton (the smallest measurable length in the universe) is about 10−15 m, the length of
an atom is about 10−10 m, the length of a molecule is about 10−9 m, and the length of a
bacterium is about 10−6 m.
(a) How much does a car shrink as it moves on a highway with a speed of 65 mph? Length
of a typical car is about 4 meters.
(b)How much does a race car shrink as it moves on a speedway with a speed of 230 mph?
Length of a typical race car is about 3 meters.
(c) How much does a jet plane shrink as it moves with a speed of 500 mph? Length of a
typical jet plane is about 30 meters.
(d)How much does a space shuttle shrink as it moves with a speed of 8 km/s? Length of a
space shuttle is about 50 meters.

G.27 Numerical Exercises for Chapter 27

Exercise G.27.1. Figure G.27 shows some events as seen by Emmy.
(a) Which pair of events are causally disconnected?
(b) For all pairs that are causally connected, find the speed relative to Emmy of Karl who,
moving at constant speed, is present at both events.
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x 1− x
√

1− x 1− 1
2x 1/

√
1− x 1 + 1

2x

0.5

0.2

0.1

0.05

0.005

0.0002

0.00001

(c) Find the time interval between the pair of events of the previous part as measured by
Karl by using the formula that connect proper time to nonproper time.
(d) Find the time interval between the pair of events of the previous part as measured by
Karl by calculating their spacetime distances.

ct

xO

E
1

E
2

E
3

E
4

E
5

Figure G.27: Some events in a spacetime plane of observer O.

Exercise G.27.2. Figure G.28 shows two world-line diagrams. (a) shows two trips to the
Moon (distance of 400,000 km from Earth) by two inertial observers, with the initial point
of the trip being half way from Earth. (b) shows a trip to Alpha Centauri which is 4 l.y.
away from Earth.
(a) Estimate the travel time of observer 1 to the Moon. What is her speed?
(b) Estimate the travel time of observer 2 to the Moon. What is his speed?
(c) Estimate the travel time of observer in (b). What is his speed?

Exercise G.27.3. In Figure G.29 Emmy is the observer O. Karl is moving relative to
Emmy and has a coordinate system, whose axes are also shown in the figure. All units are
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Figure G.28: Spacetime diagrams, world lines, and space travels.

in light years. Assume that at t = 0 the origin of both coordinates coincide.
(a) How fast is Karl moving relative to Emmy? In which direction?
(b) How many years after Karl’s take off did event E1 occur according to Emmy?
(c) When did event E1 occur according to Karl?
(d) Karl asks a friend in his RF to send a light signal back to Emmy. Which event corre-
sponds to this process? When does the friend send the signal?
(e) How far from Emmy is Karl’s friend at the moment that he sends the signal?
(f) How far from Karl is his friend?
(g) How many years after E2 did E3 occur according to Karl?According to Emmy?
(h) When does Emmy receive the light signal from Karl’s friend?
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Figure G.29: Emmy is O. Karl’s axes are as shown.

Exercise G.27.4. In Figure G.30 Emmy is the observer O. Karl is moving relative to
Emmy and has a coordinate system, whose axes are also shown in the figure. All units are
in light years. Assume that at t = 0 the origin of both coordinates coincide.
(a) How fast is Karl moving relative to Emmy? In which direction?
(b) How many years after Karl’s take off did Emmy send Karl a light signal? How many
years later (according to Emmy) did Karl receive the signal? How many years after take
off did Karl receive Emmy’s signal?
(c) How many years after take off did Karl send a light signal to Emmy according to Emmy?
According to Karl? When did Emmy receive this signal?
(d) Karl asks a friend in his RF to send a light signal back to Emmy. Which event corre-
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sponds to this process? When does the friend send the signal?
(e) How far from Emmy is Karl’s friend at the moment that he sends the signal?
(f) How far from Karl is his friend?
(g) When does Emmy receive the light signal from Karl’s friend?
(h) When according to Karl does event E2 occur? Hint: To find coordinates of an event,
draw parallel lines!
(i) One year after the take off, Emmy sends Karl a light signal. Immediately after receiving
the signal, Karl responds by sending a signal to Emmy. How long after she sends her signal
does she receive Karl’s response?
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Figure G.30: Emmy is O. Karl’s axes are as shown.

Exercise G.27.5. Emmy (observer O) is in the middle of a 100-meter train car moving at
99.5% the speed of light. Karl (observer O′) is standing on a platform seeing Emmy pass
by. Emmy passes Karl at time zero for both observers. At the moment that she passes him,
she observes that firecrackers A (at the rear end of the train) and B (at the front end of
the train) explode simultaneously. With Karl’s spacetime axes as perpendicular, sketch the
following in the space provided below:
(a) Emmy’s axes, and the location of the firecrackers (label the points A and B).
(b) The space coordinates for the two explosions as seen by Karl (label these x′A and x′B).
(c) The actual value of x′A and x′B in meters.
(d) The time coordinates for the two explosions as seen by Karl (label these ct′A and ct′B).
(e) The actual value of ct′A and ct′B in meters.
(f) The actual value of t′A and t′B in µs.
(g) The time coordinate at which Emmy receives the two light signals from A and B (label
it cTAB).
(h) The actual value of cTAB in meters.
(i) The actual value of TAB in µs.
(j) The time coordinates at which Karl receives the two light signals from A and B (label
them cT ′A, cT ′B).
(k) The actual value of cT ′A and cT ′B in meters.
(l) The actual value of T ′A and T ′B in µs.

Exercise G.27.6. Emmy (observer O) is in a spaceship moving at 86.6% light speed. Karl
(observer O′) is standing on Earth seeing Emmy pass by. Emmy passes Karl at time zero
for both observers. At the moment that she passes him, she observes that supernovae A
(10 ly away on her positive direction) and B (10 ly away on her negative direction) explode
simultaneously. With Karl’s spacetime axes as perpendicular, sketch the following in the
space provided below:
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(a) Emmy’s axes, and the location of the supernovae (label the points A and B).
(b) The space coordinates for the two explosions as seen by Karl (label these x′A and x′B).
(c) The actual value of x′A and x′B in light years.
(d) The time coordinates for the two explosions as seen by Karl (label these ct′A and ct′B).
(e) The actual value of t′A and t′B in years.
(f) The time coordinate at which Emmy receives the two light signals from A and B (label
it cTAB).
(g) The actual value of TAB in years.
(h) The time coordinates at which Karl receives the two light signals from A and B (label
them cT ′A, cT ′B).
(i) The actual value of T ′A and T ′B in years.

Exercise G.27.7. Emmy (observer O) is in a spaceship moving at 99.5% light speed. Karl
(observer O′) is standing on Earth seeing Emmy pass by. Emmy passes Karl at time zero
for both observers. At the moment that she passes him, Karl observes that supernovae A
(10 ly away on his positive direction) and B (10 ly away on his negative direction) explode
simultaneously. With Emmy’s spacetime axes as perpendicular, sketch the following in the
space provided below:
(a) Karl’s axes, and the location of the supernovae (label the points A and B).
(b) The space coordinates for the two explosions as seen by Emmy (label these xA and xB).
(c) The actual value of xA and xB in light years.
(d) The time coordinates for the two explosions as seen by Emmy (label these ctA and ctB).
(e) The actual value of tA and tB in years.
(f) The time coordinate at which Karl receives the two light signals from A and B (label it
cT ′AB).
(g) The actual value of T ′AB in years.
(h) The time coordinates at which Emmy receives the two light signals from A and B (label
them cTA, cTB).
(i) The actual value of TA and TB in years.

Exercise G.27.8. In Figure G.31 are shown the worldlines of some observers as seen by
Emmy (observer O).
(a) Specify which worldlines are correct.
(b) Which observers change direction of their motion?
(c) Which observer leaves Emmy and then comes back to her?
(d) Which observers leave each other and then comes back together?
(e) Mark, when appropriate, the event on the world lines when the observers are temporarily
not moving relative to Emmy.

Exercise G.27.9. The year is 2209 and the Intergalactic Space Federation (ISF) is trying
to go back to the year 1999 to calm down the world’s fear of the “millennium disaster” by
going to the radio station that is announcing the “doom’s day” news. It finds the spaceship
Diracus, which is 212 ly away and for which the event of 1999 is NOW. Diracus happens to
be just passing an outpost there, so the plan can be immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes with origin O′ and axes x′ and ct′ and place both the
origin of Diracus (event O) and the event of the announcement of the radio station in 1999
(event E) in the Earth’s spacetime plane.
(b) What is the space separation between the two events in the Earth’s RF?
(c) What is the time separation between the two events in the Earth’s RF?
(d) Draw the Diracus axes x and ct?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is the time separation between the two events in the Diracus RF?
(g) What is γ?
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Figure G.31: Some worldlines that may or may not be right.

(h) How far is the radio station from Diracus according to the Diracus crew?
(i) Can the crew prevent the announcement of the doomsday?

Exercise G.27.10. The year is 2139 and the Intergalactic Space Federation (ISF) is trying
to go back to the year 1939 to stop the World War II by capturing Hitler and taking him
to outer space. It finds the spaceship Diracus, which is 201 ly away and for which the event
of 1939 is NOW. Diracus happens to be just passing an outpost there, so the plan can be
immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes with origin O′ and axes x′ and ct′ and place both
the origin of Diracus (event O) and the event of Hitler’s capture (event E) in the Earth’s
spacetime plane.
(b) What is the space separation between the two events in the Earth’s RF?
(c) What is the time separation between the two events in the Earth’s RF?
(d) Draw the Diracus axes x and ct?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is the time separation between the two events in the Diracus RF?
(g) What is γ?
(h) How far is Hitler’s residence from Diracus according to the Diracus crew?
(i) Can the crew prevent WWII?

Exercise G.27.11. The year is 2788 and the Intergalactic Space Federation (ISF) is trying
to go back to the year 212 BC to stop the slaying of Archimedes by a Roman soldier by
stunning the soldier with a laser gun. It finds the spaceship Diracus, which is 3001 ly away
and for which the event of 212 BC is NOW. Diracus happens to be just passing an outpost
there, so the plan can be immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes with origin O′ and axes x′ and ct′ and place both the
origin of Diracus (event O) and the stunning of the Roman soldier (event E) in the Earth’s
spacetime plane.
(b) What is the space separation between the two events in the Earth’s RF?
(c) What is the time separation between the two events in the Earth’s RF?
(d) Draw the Diracus axes x and ct?
(e) What is the time separation between the two events in the Diracus RF?
(f) How fast is Diracus moving (i.e., what is β)?
(g) What is γ?
(h) How far is Archimedes’ residence from Diracus according to the Diracus crew?
(i) Can the crew prevent the slaying of Archimedes?

Exercise G.27.12. The year is 2788 and the Intergalactic Space Federation (ISF) is trying
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to go back far enough in the past so the slaying of Archimedes by a Roman soldier in 212
BC can be stopped. It decides to go to the year 1212 BC and finds the spaceship Diracus,
which is 4001 ly away and for which 1212 BC is NOW. Diracus happens to be just passing
an outpost there, so the plan can be immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes with origin O′ and axes x′ and ct′ and place the origin
of Diracus (event O), the slaying of Archimedes (event E), and the year 1212 BC (event B)
in the Earth’s spacetime plane.
(b) Draw the Diracus axes x and ct?
(c) How fast is Diracus moving (i.e., what is β)?
(d) What is γ?
(e) What is the space separation between O and B in the Earth’s RF?
(f) What is the time separation between the same two events in the Earth’s RF?
(g) What is the time separation between O and B in the Diracus RF?
(h) How far is the site of the event B from Diracus according to the Diracus crew?
(i) When is E happening according to the Diracus crew?
(j) What is the x-coordinate of E according to the Diracus crew? To answer this question,
do the following: From E, draw a line parallel to the x-axis to cut the ct-axis at A. Convince
yourself that EA is the x-coordinate of E, and that OA is the time of the occurrence of E
according to the Diracus crew (which you found earlier). From A draw a line parallel to
the x′-axis to cut the ct′-axis at A′. Use Rule 4 to relate EA to AA′. Use Rule 2 to relate
AA′ to EA′. So, once you find EA′, you are done. To find EA′, you need O′A′; but Rule
4 gives you O′A′ in terms of OA. Now put everything together to find EA.
(k) Draw E and B in the rest frame of O, i.e., in a coordinate system in which ct-axis is
perpendicular to the x-axis.
(l) Is it possible to save Archimedes?

Exercise G.27.13. Suppose we are in the distant future when speeds have reached close
to light speed. On the 20th anniversary of her mother’s tragic death in a car crash Karl
tries to prevent the event from happening. So he plans to find a spaceship, for which 10
years earlier than the accident is NOW. That way, he would have 10 years to prepare for
the prevention of the accident. He finds the spaceship Diracus, which is 31 ly away. Diracus
happens to be just passing an outpost there, so the plan can be immediately communicated
to Diracus.
(a) Draw the Earth’s coordinate axes with origin O′ and axes x′ and ct′ and place the origin
of Diracus (event O), Karl’s mother fatal crash (event E), and 10 years earlier (event B) in
the Earth’s spacetime plane.
(b) Draw the Diracus axes x and ct?
(c) How fast is Diracus moving (i.e., what is β)?
(d) What is γ?
(e) What is the space separation between O and B in the Earth’s RF?
(f) What is the time separation between the same two events in the Earth’s RF?
(g) What is the time separation between O and B in the Diracus RF?
(h) How far is the site of the event B from Diracus according to the Diracus crew?
(i) When is E happening according to the Diracus crew?
(j) What is the x-coordinate of E according to the Diracus crew? To answer this question,
do the following: From E, draw a line parallel to the x-axis to cut the ct-axis at A. Convince
yourself that EA is the x-coordinate of E, and that OA is the time of the occurrence of E
according to the Diracus crew (which you found earlier). From A draw a line parallel to
the x′-axis to cut the ct′-axis at A′. Use Rule 4 to relate EA to AA′. Use Rule 2 to relate
AA′ to EA′. So, once you find EA′, you are done. To find EA′, you need O′A′; but Rule
4 gives you O′A′ in terms of OA. Now put everything together to find EA.
(k) Draw E and B in the rest frame of O, i.e., in a coordinate system in which ct-axis is
perpendicular to the x-axis.
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(l) Is it possible to save Karl’s mother?

Exercise G.27.14. Jack is on a spaceship that travels to a planet of a star system 10 l.y.
away on a world line shown in Figure G.32 as seen by observer O, Jill. All units are in light
years.
(a) How long is the time interval between take-off from Earth (E1) and landing on the
planet (E2) according to Jill?
(b) How long is the time interval between landing (E2) and departure (E3) from the planet
according to Jill?
(c) How long is the time interval between departure (E3) and landing on Earth (E4) ac-
cording to Jill?
(d) How long does the entire trip take according to Jill?
(e) From the figure determine what ∆s is for the two events E1 and E2.
(f) From the figure determine what ∆s is for the two events E2 and E3.
(g) From the figure determine what ∆s is for the two events E3 and E4.
(h) What is ∆s for the entire trip? How long does this trip take according to Jack?
(i) Who measures the proper time interval between E1 and E4, Jack or Jill (or both)?
(j) What is the speed of the spaceship in m/s between E1 and E2? Between E2 and E3?
Between E3 and E4?
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Figure G.32: The heavy path is the world line of the spaceship. All units are in light years.

Exercise G.27.15. Jill is on a spaceship that travels to a planet of a star system 50 l.y.
away on a world line shown in Figure G.33 as seen by observer O, Jack. All units are in
light years.
(a) How long is the time interval between take-off from Earth (E1) and landing on the
planet (E2) according to Jack?
(b) How long is the time interval between landing (E2) and departure (E3) from the planet
according to Jack?
(c) How long is the time interval between departure (E3) and landing on Earth (E4) ac-
cording to Jack?
(d) How long does the entire trip take according to Jack?
(e) From the figure determine what ∆s is for the two events E1 and E2.
(f) From the figure determine what ∆s is for the two events E2 and E3.
(g) From the figure determine what ∆s is for the two events E3 and E4.
(h) What is ∆s for the entire trip? How long does the entire trip take according to Jill?
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(i) Who measures the proper time interval between E1 and E4, Jack or Jill (or both)?
(j) What is the speed of the spaceship in m/s between E1 and E2? Between E2 and E3?
Between E3 and E4?
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Figure G.33: The heavy path is the world line of the spaceship. All units are in light years.

Exercise G.27.16. Jack is on a spaceship that travels to a planet of a star system 10 ly
away on a world line shown in Figure G.34 as seen by observer O, Jill. All units are in light
years. (a) How long is the time interval between take-off from Earth (E1) and landing on
the planet (E2) according to Jill?
(b) How long is the time interval between landing (E2) and departure (E3) from the planet
according to Jill.
(c) How long is the time interval between departure (E3) and landing on Earth (E4) ac-
cording to Jill?
(d) How long does the entire trip take according to Jill?
(e) From the figure determine what ∆s is for the two events E1 and E2.
(f) From the figure determine what ∆s is for the two events E2 and E3.
(g) From the figure determine what ∆s is for the two events E3 and E4.
(h) What is ∆s for the entire trip? How long does this trip take according to Jack?
(i) Who measures the proper time interval between E1 and E4, Jack or Jill (or both)?
(j) What is the speed of the spaceship between E1 and E2? Between E2 and E3? Between
E3 and E4?

Exercise G.27.17. Jill is on a spaceship that travels to a planet of a star system 30 l.y.
away on a world line shown in Figure G.35 as seen by observer O, Jack. All units are in
light years.
(a) How long is the time interval between take-off from Earth (E1) and landing on the
planet (E2) according to Jack?
(b) How long is the time interval between landing (E2) and departure (E3) from the planet
according to Jack?
(c) How long is the time interval between departure (E3) and landing on Earth (E4) ac-
cording to Jack?
(d) How long does the entire trip take according to Jack?
(e) From the figure determine what ∆s is for the two events E1 and E2.
(f) From the figure determine what ∆s is for the two events E2 and E3.
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Figure G.34: The heavy path is the world line of the spaceship. All units are in light years.

(g) From the figure determine what ∆s is for the two events E3 and E4.
(h) What is ∆s for the entire trip? How long does this trip take according to Jill?
(i) Who measures the proper time interval between E1 and E4, Jack or Jill (or both)?
(j) What is the speed of the spaceship between E1 and E2? Between E2 and E3? Between
E3 and E4?
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Figure G.35: The heavy path is the world line of the spaceship. All units are in light years.

Exercise G.27.18. Observer O is in a rocketship which is moving relative to observer
O′ with the speed of 270,000 km/s. Suppose that at t = 0 the origins of the two RFs
coincide. Observer O fires an electron in the forward direction (E1) with a speed of 150,000
km/s. This electron is detected one microsecond (10−6 sec) later (E2) at a detector. In the
following calculations, keep as many decimals as possible.
(a) What is γ for this relative motion?
(b) What is ∆x and c∆t (according to O)?
(c) Find ∆s (according to O) and from that find ∆τ (according to O)?
(d) What is ∆x′ and c∆t′ (according to O′)?
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(e) Find ∆s′ (according to O′) and from that find ∆τ ′ (according to O′)?
(f) Compare ∆s′ with ∆s and ∆τ ′ with ∆τ?

Exercise G.27.19. Observer O is in a rocketship which is moving relative to observer O′

with the speed of 240,000 km/s. Suppose that at t = 0 the origins of the two RFs coincide.
Observer O fires a light beam in the forward direction (E1). This beam is detected one
microsecond (10−6 sec) later (E2) at a detector. In the following calculations, keep as many
decimals as possible.
(a) What is γ for this relative motion?
(b) What is ∆x and c∆t (according to O)?
(c) Find ∆s (according to O) and from that find ∆τ (according to O)?
(d) What is ∆x′ and c∆t′ (according to O′)?
(e) Find ∆s′ (according to O′) and from that find ∆τ ′ (according to O′)?
(f) Compare ∆s′ with ∆s and ∆τ ′ with ∆τ?

Exercise G.27.20. Consider the explosion of the two firecrackers at the two ends of a
train moving with speed v. Label these two events as (x′1, t

′
1) and (x′2, t

′
2) for the ground

observer, and as (x1, t1) and (x2, t2) for the train observer.
(a) Write the (four) Lorentz transformation for the two events.
(b) Subtract the equations to find a relation between ∆x = x2 − x1 and ∆t = t2 − t1 (the
length and time interval in the RF of the train observer) and ∆x′ = x′2−x′1 and ∆t′ = t′2−t′1
(the length and time interval in the RF of the ground observer).

Exercise G.27.21. Assume that the ground observer O′ sees the explosion of two fire-
crackers at the two ends of a train, with observer O inside it, as simultaneous. The speed
of the train is v.
(a) What is ∆t′?
(b) Solve the equation involving ∆t′ and find a relation between ∆x and ∆t.
(c) Substitute for ∆t in the equation for ∆x′ and find a relation connecting ∆x and ∆x′.
Can you interpret this as length contraction?

Exercise G.27.22. Emmy (observer O) is riding on a train whose fractional speed is β
relative to Karl (observer O′), who is at the platform watching the train go by as shown
in Figure G.36. The moment that Emmy passes Karl is the origin of time for both Karl
and Emmy, and that is also the time that both firecrackers pop simultaneously according
to Karl. The location of each observer is the origin of his/her space coordinate. The length
of the train is L according to Karl. Find the answer to all the following questions in terms
of L, β, and γ.
(a) What are the spacetime coordinates of A and B according to Karl?
(b) What are the spacetime coordinates of A and B according to Emmy? What is the
significance of the sign of tB? What is the length of the train according to Emmy?
(c) In the middle diagram of Figure G.36, Emmy receives the signal from B. What are
the spacetime coordinates of this event according to Emmy? Hint: Add the time of the
occurrence of B to the time that it takes for light to travel from B to Emmy.
(d) According to Karl, when and where does Emmy receive the signal from B?
(e) In the last diagram of Figure G.36, Karl receives the signals from A and B. What are
the spacetime coordinates of this event according to Karl?
(f) According to Emmy, when and where does Karl receive the signals from A and B? Has
she seen the rear end of the train pass Karl when this happens?
(g) Assume that L = 100 m and β = 0.995. Now find numertical values for all the above
questions.

Exercise G.27.23. The year is 2209 and the Intergalactic Space Federation (ISF) is trying
to go back to the year 1999 to calm down the world’s fear of the “millennium disaster” by
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Figure G.36: At the moment shown on top of the page, the firecrackers explode according to Karl.

going to the radio station that is announcing the “doom’s day” news. It finds the spaceship
Diracus, which is 212 ly away and for which the event of 1999 is NOW. Diracus happens to
be just passing an outpost there, so the plan can be immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes and place both the origin of Diracus (event E1) and the
event of the announcement of the radio station in 1999 (event E2) in the Earth’s spacetime
plane.
(b) What is the space separation between the two events in the Earth’s RF?
(c) What is the time separation between the two events in the Earth’s RF?
(d) What is the time separation between the two events in the Diracus RF?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is γ?
(g) How far is the radio station from Diracus according to the Diracus crew?
(h) Can the crew prevent the announcement of the doomsday?

Exercise G.27.24. The year is 2788 and the Intergalactic Space Federation (ISF) is trying
to go back to the year 212 BC to stop the slaying of Archimedes by a Roman soldier by
stunning the soldier with a laser gun. It finds the spaceship Diracus, which is 3001 ly away
and for which the event of 212 BC is NOW. Diracus happens to be just passing an outpost
there, so the plan can be immediately communicated to Diracus.
(a) Draw the Earth’s coordinate axes and place both the origin of Diracus (event E1) and
the stunning of the Roman soldier (event E2) in the Earth’s spacetime plane.
(b) What is the space separation between the two events in the Earth’s RF?
(c) What is the time separation between the two events in the Earth’s RF?
(d) What is the time separation between the two events in the Diracus RF?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is γ?
(g) How far is Archimedes’ residence from Diracus according to the Diracus crew?
(h) Can the crew prevent the slaying of Archimedes?

Exercise G.27.25. The year is 2788 and the Intergalactic Space Federation (ISF) is trying
to go back far enough in the past so the slaying of Archimedes by a Roman soldier in 212
BC can be stopped. It decides to go to the year 1212 BC and finds the spaceship Diracus,
which is 4001 ly away and for which 1212 BC is NOW. Diracus happens to be just passing
an outpost there, so the plan can be immediately communicated to Diracus.
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(a) Draw the Earth’s coordinate axes and place both the origin of Diracus (event E1), the
slaying of Archimedes (event E2), and the year 1212 BC (event E3) in the Earth’s spacetime
plane.
(b) What is the space separation between E1 and E3 in the Earth’s RF?
(c) What is the time separation between the same two events in the Earth’s RF?
(d) What is the time separation between the same two events in the Diracus RF?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is γ?
(g) How far is the site of the event E3 from Diracus according to the Diracus crew?
(h) How much farther is the site of the slaying from E3 according to the Diracus crew? In
other words, what is ∆x23?
(i) How much later does the slaying occur than E3 according to the Diracus crew? In other
words, what is ∆t23?
(j) How far is the slaughter site from Diracus according to the Diracus crew?
(k) How much time does the Diracus crew have to get to the site?
(l) Now Diracus commander sends a manned probe to the site to divert the slaying. As a
fraction of light speed, what should the probe speed be for it to get there at the time of the
slaying?
(m) Can the probe save Archimedes?

Exercise G.27.26. Suppose we are in the distant future when speeds have reached close
to light speed. On the 10th anniversary of her mother’s tragic death in a car crash Karl
tries to prevent the event from happening. So he plans to find a spaceship, for which 5
years earlier than the accident is NOW. That way, he would have 5 years to prepare for the
prevention of the accident. He finds the spaceship Diracus, which is 16 ly away. Diracus
happens to be just passing an outpost there, so the plan can be immediately communicated
to Diracus.
(a) Draw the Earth’s coordinate axes and place the origin of Diracus (event E1), Karl’s
mother fatal crash (event E2), and 5 years earlier (event E3) in the Earth’s spacetime
plane.
(b) What is the space separation between E1 and E3 in the Earth’s RF?
(c) What is the time separation between the same two events in the Earth’s RF?
(d) What is the time separation between the same two events in the Diracus RF?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is γ?
(g) How far is the site of the event E3 from Diracus according to the Diracus crew?
(h) How much farther is the site of the crash from E3 according to the Diracus crew? In
other words, what is ∆x23?
(i) How much later does the crash occur than E3 according to the Diracus crew? In other
words, what is ∆t23?
(j) How far is the crash site from Diracus according to the Diracus crew?
(k) How much time does the Diracus crew have to get to the crash site?
(l) Now Diracus commander sends a manned probe to the crash site to divert the crash. As
a fraction of light speed, what should the probe speed be for it to get there at the time of
the crash?
(m) Can the probe make it to the accident?

Exercise G.27.27. Suppose we are in the distant future when speeds have reached close
to light speed. On the 20th anniversary of her mother’s tragic death in a car crash Karl
tries to prevent the event from happening. So he plans to find a spaceship, for which 10
years earlier than the accident is NOW. That way, he would have 10 years to prepare for
the prevention of the accident. He finds the spaceship Diracus, which is 31 ly away. Diracus
happens to be just passing an outpost there, so the plan can be immediately communicated
to Diracus.
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(a) Draw the Earth’s coordinate axes and place the origin of Diracus (event E1), Karl’s
mother fatal crash (event E2), and 10 years earlier (event E3) in the Earth’s spacetime
plane.
(b) What is the space separation between E1 and E3 in the Earth’s RF?
(c) What is the time separation between the same two events in the Earth’s RF?
(d) What is the time separation between the same two events in the Diracus RF?
(e) How fast is Diracus moving (i.e., what is β)?
(f) What is γ?
(g) How far is the site of the event E3 from Diracus according to the Diracus crew?
(h) How much farther is the site of the crash from E3 according to the Diracus crew? In
other words, what is ∆x23?
(i) How much later does the crash occur than E3 according to the Diracus crew? In other
words, what is ∆t23?
(j) How far is the crash site from Diracus according to the Diracus crew?
(k) How much time does the Diracus crew have to get to the crash site?
(l) Now Diracus commander sends a manned probe to the crash site to divert the crash. As
a fraction of light speed, what should the probe speed be for it to get there at the time of
the crash?
(m) Can the probe make it to the accident?

G.28 Numerical Exercises for Chapter 28

Exercise G.28.1. A very compact car has a mass of 200 kg. It is desired to accelerate this
car to speeds very close to the speed of light. Use Newtonian nonrelativistic theory (not a
valid theory at high speeds).
(a) Calculate the energy needed to accelerate the car from rest to 0.99c.
(b) How much energy does it take to accelerate the car further from 0.99c to 0.9999c?
(c) How much energy does it take to accelerate the car further from 0.9999c to 0.999999c?
(d) How much energy does it take to accelerate the car further from 0.999999c to 0.99999999c?
(e) How much energy does it take to accelerate the car further from 0.9999999999c to
0.999999999999c? Each gallon of gasoline stores approximately 109 J of energy. How many
gallons are needed to accomplish this acceleration?

Exercise G.28.2. A car has a mass of 1200 kg. It is desired to accelerate this car to speeds
very close to the speed of light. Use Newtonian nonrelativistic theory (not a valid theory
at high speeds).
(a) Calculate the energy needed to accelerate the car from rest to 0.99c.
(b) How much energy does it take to accelerate the car further from 0.99c to 0.9999c?
(c) How much energy does it take to accelerate the car further from 0.9999c to 0.999999c?
(d) How much energy does it take to accelerate the car further from 0.999999c to 0.99999999c?
(e) How much energy does it take to accelerate the car further from 0.9999999999c to
0.999999999999c? Each gallon of gasoline stores approximately 109 J of energy. How many
gallons are needed to accomplish this acceleration?

Exercise G.28.3. A car has a mass of 1200 kg. It is desired to accelerate this car to speeds
very close to the speed of light.
(a) Calculate the energy needed to accelerate the car from rest to a speed of 0.99c.
(b) How much energy does it take to accelerate the car further from 0.99c to 0.9999c?
(c) How much energy does it take to accelerate the car further from 0.9999c to 0.999999c?
(d) How much energy does it take to accelerate the car further from 0.999999c to 0.99999999c?
(e) How much energy does it take to accelerate the car further from 0.9999999999c to
0.999999999999c? Each gallon of gasoline stores approximately 109 J of energy.How many
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gallons of gasoline are needed to accomplish this acceleration? Compare this with the
nonrelativistic case.

Exercise G.28.4. It is desired to accelerate a penny (about 1 gram) to 0.9999999c.
(a) How many Joules of energy is required?
(b) A medium city uses about one giga (109) Watts (Joules per second) of power. How
many seconds should all power plants of such a city be devoted to the acceleration of the
penny? How many years?

Exercise G.28.5. A medium city uses about one giga (109) Watts of power.
(a) How many Joules of energy is used in such a city in a year?
(b) How many kilograms of matter and antimatter are to annihilate each other to provide
energy for one year of such a city?

G.29 Numerical Exercises for Chapter 29

Exercise G.29.1. A beam of light is sent across a distance of 10 km on a planet whose
gravitational acceleration is 200 m/s2.
(a) How long does it take light to go from one end of the field to the other?
(b) How far does this light beam falls during this time?
(c) What is the deflection angle of light, i.e., the angle between its original direction of
motion and its direction at the other end of the field?

Exercise G.29.2. A beam of starlight grazes a star of mass 8 × 1032 kg and radius
600,000 km.
(a) What is the deflection angle for this light beam in radians?
(b) What is the deflection angle in degrees? In arcseconds?

Exercise G.29.3. A beam of starlight grazes a white dwarf of mass 1030 kg and radius
6,000 km.
(a) What is the deflection angle for this light beam in radians?
(b) What is the deflection angle in degrees? In arcseconds?

Exercise G.29.4. A flashlight emits green light of wavelength 0.55 µm. It is located at the
top of a mountain peak 6000 m high. It shines a light beam downward, which is detected
at the bottom.
(a) Is the wavelength of light at the bottom shorter or longer than 0.55 µm?
(b) What is the change in the wavelength of the light?

Exercise G.29.5. Yellow light of wavelength 0.6 µm is emitted by the Sun whose surface
gravitational acceleration is 270 m/s2. This light is detected 100 km away from the Sun.
(a) Is the wavelength of light at the bottom shorter or longer than 0.6 µm?
(b) What is the change in the wavelength of the yellow light?

Exercise G.29.6. A satellite 20 km above the surface of the Earth carries an atomic clock
synchronized with a similar clock on Earth. The satellite is kept in orbit for one year.
Consider only the GTR effects.
(a) Which clock will be running faster?
(b) How many seconds will the faster clock be ahead of the slower one after one year?

Exercise G.29.7. A satellite 50 km above the surface of Jupiter carries an atomic clock
synchronized with a similar clock on Jupiter where the gravitational acceleration is 25 m/s2.
The satellite is kept in orbit for one year. Consider only the GTR effects.
(a) Which clock will be running faster?
(b) How many seconds will the faster clock be ahead of the slower one after one year?
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Exercise G.29.8. A satellite 5000 km above the surface of a planet carries an atomic clock
synchronized with a similar clock on the planet. The mass of the planet is 4× 1025 kg and
its radius in 3000 km. The satellite is kept in orbit for one year. Consider only the GTR
effects.
(a) Which clock will be running faster?
(b) How many seconds will the faster clock be ahead of the slower one after one year?

Exercise G.29.9. A distant galaxy is 250 Mly away. Assume that the Hubble parameter
is 22 km/s per Mly.
(a) What is the speed of the galaxy in m/s?
(b) How long (in seconds) did it take this galaxy to move this distance?
(c) How many years ago was this galaxy on top of the Milky Way?

Exercise G.29.10. A distant galaxy is 800 Mly away. Assume that the Hubble parameter
is 20 km/s per Mly.
(a) What is the speed of the galaxy in m/s?
(b) How long (in seconds) did it take this galaxy to move this distance?
(c) How many years ago was this galaxy on top of the Milky Way?

Exercise G.29.11. At earlier times, the Hubble parameter was larger than its present
value. When the Hubble parameter was 500 km/s per Mly,
(a) what was the speed of a galaxy 150 Mly away from the Milky Way?
(b) How long (in seconds) did it take the galaxy to move that distance?
(c) How many years earlier was this galaxy on top of the Milky Way?

Exercise G.29.12. At earlier times, the Hubble parameter was larger than its present
value. When the Hubble parameter was 2000 km/s per Mly,
(a) what was the speed of a galaxy 120 Mly away from the Milky Way?
(b) How long (in seconds) did it take the galaxy to move that distance?
(c) How many years earlier was this galaxy on top of the Milky Way?

Exercise G.29.13. At earlier times, the Hubble parameter was larger than its present
value. When the Hubble parameter was 70,000 km/s per Mly,
(a) what was the speed of a galaxy 4 Mly away from the Milky Way?
(b) How long (in seconds) did it take the galaxy to move that distance?
(c) How many years earlier was this galaxy on top of the Milky Way?

G.31 Numerical Exercises for Chapter 31

Exercise G.31.1. 12
6C has an atomic mass of exactly 12 u.

(a) What is the total binding energy of 12
6C in MeV?

(b) What is its binding energy per nucleon?

Exercise G.31.2. 14
7N has an atomic mass of 14.003074 u.

(a) What is the total binding energy of 14
7N in MeV?

(b) What is its binding energy per nucleon?

Exercise G.31.3. The binding energy per nucleon of 63
29Cu is 8.523 MeV.

(a) What is the atomic mass of 63
29Cu in MeV?

(b) What is its mass in unified atomic mass unit?

Exercise G.31.4. The mass excess for 40
20Ca is −34.85 MeV.

(a) What is the total binding energy of 40
20Ca in MeV?

(b) What is its binding energy per nucleon? What is its mass in MeV? What is its mass in
unified atomic mass unit?



208 Appendix G Numerical Exercises

Exercise G.31.5. An isotope of Na has a half-life of 15 hours. What fraction of a sample
of this isotope remains after one day? If you start with a million atoms, how many atoms
are left after one week?

Exercise G.31.6. An isotope of Ca has a half-life of 1.5 million years.
(a) What fraction of a sample of this isotope remains after 1000 years?
(b) How long do we have to wait for 1% of a sample of this isotope to disappear?

Exercise G.31.7. A fission reaction is given by

n +235
92 U → 93

37Rb +141
55 Cs + 2n

The mass excesses of 235
92 U, 93

37Rb, and 141
55 Cs are 40.92 MeV, −72.62 MeV, and −74.48 MeV,

respectively.
(a) What is the binding energy per nucleon for 235

92 U?
(b) What is the binding energy per nucleon for 93

37Rb?
(c) What is the binding energy per nucleon for 141

55 Cs?
(d) What is the energy released in the reaction?

Exercise G.31.8. A hypothetical fission reaction is given by

n +250
94 X → 140

50 Y +109
? Z+?n

The binding energy per nucleon of X, Y, and Z are 7.4 MeV, 8 MeV, and 8.2 MeV, respec-
tively.
(a) What is the number of protons in Z?
(b) How many neutrons are produced?
(c) What is the energy released in the reaction?

Exercise G.31.9. A hypothetical fission reaction is given by

n +242
93 X → 141

54 Y +98
? Z+?n

The binding energy per nucleon of X, Y, and Z are 7.2 MeV, 8.1 MeV, and 7.8 MeV,
respectively.
(a) What is the number of protons in Z?
(b) How many neutrons are produced?
(c) What is the energy released in the reaction?

Exercise G.31.10. The first stage of the proton-proton cycle is

p + p → 2
1D + e + ν

where ν is a (neutral) neutrino. The mass of the proton, deuteron, and e are, respectively,
938.272 MeV, 1875.6 MeV, and 0.51 MeV.
(a) What is the sign of the electric charge of e?
(b) What is the energy released in the reaction?

G.38 Numerical Exercises for Chapter 38

Exercise G.38.1. The temperature of the universe is now 2.725 ◦K, and its scale size is
500 Mly.
(a) How hot was the universe when its length scale R was the size of the Sun (1,400,000
km)?
(b) What was λmax then?
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Exercise G.38.2. When the temperature of the universe was 100 times the present tem-
perature,
(a) how much smaller was the length scale of the universe than present?
(b) How much larger was the photon number density compared to now?
(c) How much larger was the photon average energy compared to now?
(d) How much larger was the photon equivalent mass density compared to now?
(e) How much larger was the matter mass density compared to now?

Exercise G.38.3. When the length scale of the universe was 10000 times smaller than the
present length scale,
(a) how much hotter was the universe than the present?
(b) How much larger was the photon number density compared to now?
(c) How much larger was the photon average energy compared to now?
(d) How much larger was the photon equivalent mass density compared to now?
(e) How much larger was the matter mass density compared to now?

Exercise G.38.4. The temperature of the universe is now 2.725 ◦K, and its scale size is
500 Mly. (a) How hot was the universe when its length scale R was the size of the local
group of galaxies (3,000,000 ly)?
(b) What was the photon number density?
(c) What was the photon average energy?
(d) What was the photon equivalent mass density?
(e) What was the matter mass density?

Exercise G.38.5. The temperature of the universe is now 2.725 ◦K, and its scale size is
500 Mly.
(a) How hot was the universe when its length scale R was the size of the Earth (10,000
km)?
(b) What was the photon number density?
(c) What was the photon average energy?
(d) What was the photon equivalent mass density?
(e) What was the matter mass density?

Exercise G.38.6. Consider the universe one millisecond after the big bang, when α =
7.125.
(a) What was the temperature then?
(b) What was the density then?
(c) Assuming that the current temperature of the universe is 2.725 ◦K and its scale size is
500 Mly, what was the scale size of the universe one millisecond after the big bang?
(d) How do you describe the rate of expansion of the universe during the first millisecond
of its creation?

G.39 Numerical Exercises for Chapter 39

Exercise G.39.1. The luminosity of the Sun is the result of the conversion of hydrogen
into helium and release of energy. The energy released is only 0.7% of the energy equivalent
of the mass of the hydrogen converted.
(a) Given that the luminosity of the Sun is 4 × 1026 Watts, how much mass-energy of
hydrogen is turned into helium per second?
(b) How much mass is the Sun losing per second?

Exercise G.39.2. The radius of the Sun is 700,000 km and its surface temperature is
6000 K.
(a) What is the intensity (brightness, energy flux) at the surface of the Sun?
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(b) What is the surface area of the Sun?
(c) What is the luminosity of the Sun?
(d) Given that the Earth-Sun distance is 150 million km, find the brightness (intensity,
energy flux) of the Sun on Earth.
(e) A star that is identical to the Sun has a brightness of 0.4 µW/m2. How far is this star?




