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FIGURE 8.11
(a) Quantum circuit of an n-qubit controlled-modular multiplexer

CMODMULTI(n). There are n layers of MODADD(n), where the kth layer
adds a2! mod N to the second register when ¢ = 1 and zx_; = 1. The
numbers a and N are fixed and are hardwired. The output of the second
register is ax mod N. This circuit is denoted as (b), where the temporary
register has no external input and output ports and is not shown explicitly.
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FIGURE 10.4
Three-qubit phase-flip error QECC.

al — ++) + b + ——). We found in the above exercise that a phase-flip error
acts as a bit-flip error in the basis |+); UnZUn = X. Therefore, we need
to put the basis back from |+) to {|0},|1)} by applying the second Walsh-
Hadamard transform UI??’ so that a phase-flip error is recognized as a bit-flip
error and we can employ the same error syndrome detection circuit as well as
the error correction circuit as those used for the bit-flip error QECC.

Collecting these results, the quantum circuit for the phase-flip QECC is
constructed as shown in Fig. 10.4.

EXERCISE 10.3 Show that the circuit depicted in Fig. 10.4 is able to cor-
rect also a continuous error Uz = €*#Z acting on one of the qubits.

10.3 Shor’s Nine-Qubit Code

Let us consider a more general noisy channel in which all possible single-qubit
errors occur. Namely, the following errors are now active in the channel;

Bit-Flip Error X : (Z) — (2)
Phase-Flip Error  Z : (‘;) — (_“b) (10.13)

Phase- and Bit-Flip Error Y : ( (Z) — (;b> .
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FIGURE 10.14
(a) Seven Hadamard gates applied on the logical qubit state |z)r. (b) A
circuit equivalent with (a).

and
ZI)y = %(I‘FMO)(I+M1)(I+M2)le>®7

= —|1)z, (10.48)

where we noted that [Z, M;] = 0 and (—1)7 = —1.
Next, we consider the Haramard gate H acting on the encoded states as

Uu|0)f, = %QO)L +1|1)z), Uall) = -\}—5(|0)L —|1)p). (10.49)

Surprisingly, this gate is also implemented by a tensor product of seven
Hadamard gates, _
Uy =UZ" = Wr, (10.50)
where W7 is the Walsh-Hadamard transform acting on seven qubits.
Let us consider the action of Wy on |0}y, first. The circuit
1
V8
given in Fig. 10.14 (a) is put in the form given in (b) by making use of the
trick introduced in Fig. 10.9 and U2 = I. The resulting circuit is written as
W7|0) L = [Co(X6X5)][C1(X6X4)][Ca(X5X4)]
x [C3(X6 X5X4)]UnoUs1 UnaUns|0) &7
= [Co(X6X5)Uno)[C1(XeX4)Um][C2(X5X4)Unz]
x[C3(X6X5X4)Uns]|0)®7, (10.51)

W7(0)r, = Wr—=(I + Mo)(I + My1)(I + M2)|0)®”
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FIGURE 15.4

(a) Schematic diagram of a SQUID with two Josephson junctions. (b) Ac-
tual nanoscale SQUID. The enlarged structure is the Josephson junction in
Fig. 15.1. The white line in the bottom is 10 um long. Courtesy of Jukka
Pekola, Helsinki University of Technology, Finland.

where we assumed that the two Josephson junctions are identical and each
junction has the Josephson energy E;/2. By introducing the parameters

¢ o1+ 2

6 =1 — o = 25 9=y (15.22)

the Josephson energy is rewritten as
)
E=—Ejcos 5 cos 0. (15.23)

The factor cos(6/2) in the RHS is due to the interference between Cooper
pairs through two paths and hence is regarded as a manifestation of the Bohm-
Aharonov effect. The current through junction 1, in the direction from A to
B, is
1,
L= _2£ sin ¢17

while that through the junction 2, from A to B, is
I
I = —26- sin ¢z,

where I, = 2eE;/k. Therefore the current through the SQUID from A to B
in Fig. 15.4 (a) is
2e OF
J=hL+Ih="——.
1= 5
Note that a current flows along the SQUID loop even when I, = —Iy, for

(15.24)
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FIGURE 15.8
Charge qubit with a tunable Josephson energy.

15.3.2 Split Cooper Pair Box

It has been shown in §15.2.2 that a superconducting loop with two iden-
tial Josephson junctions with identical Josephson energy E;/2 has the total
Josephson energy

1+ ¢ o1 — P2
5 008 5,

E
—TJ(cos ¢1 + cos ) = —Ejcos (15.46)
where ¢; and ¢, are the phase differences across the junctions 1 and 2, re-
spectively. Let L be the self-inductance of the loop and I be the current
circulating the loop. Then the difference ¢; — ¢ is related to the magnetic
flux ® = Pgyy + LI threading the loop as

¢1 - ¢2 o i)ext
=TT 154
2 "0 T oy (15.47)
where we assumed that the self-inductance L is very small for a charge qubit
under consideration. Now the Josephson energy is expressed as

—Ejcos (71' Pexs ) cos ¢, (15.48)
00

where ¢ = (¢1 — ¢2)/2. It has been shown that the effective Josephson energy
is given by

(I)ex
E;(®) = Ej cos (w - t) . (15.49)
0

Figure 15.8 shows a schematic picture of a charge qubit with a tunable
Josephson energy, called a split Cooper pair box. The total Hamiltonian
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FIGURE 15.9
Simplest flux qubits. (a) An rf-SQUID and (b) a flux qubit with a tunable
Josephson energy Ej.

is again given by

1 1
H = —§BZ(Ng)az - EBZ(Qext)oz, (15.50)
where both coefficients
E Doy
B,(Ng) = —20—(1 — 2Ny), By(®Pext) = Ejcos (71' £ t) (15.51)
0

are controllable.

The eigenvalues and the corresponding eigenvectors of the Hamiltonian
(15.50) are given by Eqgs. (15.43) and (15.44) with B, in Eq. (15.45) re-
placed by By(®ext). Observe that |0) — [N = 0) and |1) — |N = 1) as
Pext — Po/2 with B,(Ny) # 0, while |0) — (I[N = 0) + [N = 1))/+/2 and
1) = (—|N =0) + [N =1))/v2 as Ny — 1/2 with By(®exs) # 0.

15.4 Flux Qubit

In contrast with a charge qubit, the flux threading a SQUID is the relevant
degree of freedom in a flux qubit. Here we need to employ a circuit with

E;> Ec. (15.52)

15.4.1 Simplest Flux Qubit

The simplest flux qubit, the rf~SQUID, is shown in Fig. 15.9. This is nothing
but a SQUID with no input/output current. It is made of a superconducting
loop with a Josephson junction where the loop supports a persistent current 7
and a flux ® threading the loop. The flux is related to the external magnetic
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FIGURE 15.15

Direct observation of the charge qubit state by measurement of a current
through a tunnel junction.
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state is approximately the same as the state [N = 0), and the system is in
this state with a large probability. Next a gate pulse with the pulse width
At is applied so that N, is now equal to 0.5 (B, = 0) during this period.
Finally the gate voltage is put back to its initial value. Suppose the risetime
and falltime of pulses are much shorter than A/E;. Let us analyze the state
evolution associated with this pulse, following Fig. 15.16. (i) The system is
in the state [N = 0) = (|0) — [1))/+/2 immediately after the pulse is turned
on, and the Bloch vector starts to rotate around the z-axis for the period
At due to the Ej-term (B;), which implies that the sytem oscillates between
IN = 0) and |N = 1) (Rabi oscillation). (ii) When the pulse is turned
off, the state is a superposition of |[N = 0) and |N = 1) whose coefficients
are determined by At. The state |[N = 1) has considerably higher energy
than |N = 0) without the pulse, viz N; = 0.25. Suppose the tunneling bias
voltage V is adjusted so that the quasiparticle energy outside the Josephson
junction sits between those of |[N = 0) and |N = 1) states. Then the state
|N = 1) decays into two quasiparticles and the electric current I, associated
with these quasiparticles, is detected, while the |N = 0) state, in contrast, is
stable against this decay. This is how the qubit states [N = 0) and [N = 1)
are discriminated by measuring the tunneling current. Another advantage of
this method is that if one waits for some duration of time required for the
[N = 1) state to dacay into two quasiparticles after the pulse is turned off,
the qubit is definitely in the initial state |N = 0). Therefore, by repeating the
above process many times with a fixed At, the probability of the qubit in the
state |[N = 1) is found by tunneling current measurements.

Figure 15.17 shows the Rabi oscillation observed in this way. The phase de-
coherence time T3 has been also measured by using the same readout method
[12].
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FIGURE 15.19

(a) A flux qubit with readout SQUIDs. (b) Bias current Ii;.s for readout.
Transition to normal state manifests itself as finite V.

a small probability with which the voltage V(t) # 0 is observed even in the
CPB state |0). Let pp and p; be the probabilities with which the junction
undergoes a transition to the normal state when the CPB is in the states |0}
and |1}, respectively. A theoretical estimate shows that p; — pg = 0.95 while
the observed value is ~ 0.6. However this discrepancy does not matter in
the estimation ~ 1.8 us of T1. The phase decoherence time T5 has also been
measured by making use of the Ramsey fringe experiment [8] and spin-echo-
type technique. The value they obtained is T3 ~ 0.50 us, corresponding to
approximately 8,000 free precessions.

15.7.3 Switching Current Readout of Flux Qubits

Readout of a flux qubit is conducted in a similar manner as that of a quantro-
nium [16, 17]. Figure 15.19 (a) shows a typical circuit for flux qubit readout,
in which a readout d¢ SQUID with two junctions is connected to a three-
junction flux qubit [17]. The circuit may support a bias current Iuias, and a
voltmeter measures the voltage V, while the bias current is applied.

Readout is carried out with the bias current Iyi,s. The current Ipias com-
prises a short pulse and a succedent trailing plateau as shown in Fig. 15.19 (b).
The flux qubit is driven to normal state by a short pulse depending on its qubit
state, and the trailing plateau is applied to prevent the qubit from reentering
the superconducting state.
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FIGURE 15.26

Switching probability, which reveals vacuum Rabi oscillation, as a function of
the pulse length ¢, [ns]. Reprinted figure with permission from J. Johansson
et al., Physical Review Letters 96, 127006 (2006), Copyright (2006) by the
American Physical Society.

The Hamiltonian at the degeneracy point 3 is H;, and it follows from
Eq. (15.134) that the relevant matrix element is

((0)(n = 1]) H; (|1)|n = 0)) = i2kAsin 923 cos % (15.148)

The eigenstates of the Hamiltonian are (|1}|n = 0) % i|0)|n = 1))/v/2, and
the corresponding eigen energies are +AA sina. Therefore the Rabi oscillation
frequency is given by Qr = 2Asin«. Finally the shift pulse is turned off so
that ®ex assumes its initial value at t = 0. The resulting states are |0)|n = 1)
and |1)|n = 0) denoted as 4 and 2, respectively, in Fig. 15.25. Then a readout
process is applied to the state. Figure 15.26 shows the measurement result.

The CNOT gate in trapped ions has been implemented by introducing
effective coupling between distant ions through mediating phonon mode. It
has been pointed out recently that a similar mechanism might work for flux
qubits if the phonon mode in trapped ions is replaced by the plasmon mode
in the LC resonator. The coupling between the qubit and the resonator is
made possible through the mutual inductance.

It is shown in a recent proposal by the NTT group [23] that a flux qubit-
flux qubit coupling may be introduced by coupling them selectively to an
LC resonator whose resonace frequency is controllable by adjusting the bias
current through the Josephson junction in the LC circuit. An explicit proto-
col to entangle arbitrary two flux qubits among many qubits is proposed, in
which a resonating circuit surrounding these qubits is made use of. The the-
oretical proposal of this scenerio has been already reported, and experiments
demonstrating this qubit-qubit coupling are planned [23].
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Coulomb blockade diamond. The parallelogram made of lines with a slope
—C¢/Cp and lines with a slope C¢/(C — Cs) is a Coulomb blockade region
in the Vz —Vs plane. The number of electrons is fixed in the Coulomb blockade
region. The diagram shows the region where N = 0,1,2 and 3. The region
corresponding to N = 0 is exceptional in that the diamond does not close,
and hence it is discriminated from the other diamonds.

each parallelogram decreases as Vi is lowered; see Fig. 16.6. The state with
N = 0 appears in the left end of Vg axis, which is easily identifiable since
the corresponding “parallelogram” does not close. The failure of the closure
is attributed to the fact that the conditions (a) and (b) are not necessary in
this region. States with small IV, such as N =1 or 2, are prepared by making
use of this fact.

It is found from the above observation that the Coulomb blockade phenom-
ena, with which a given electron number state stabilizes the QD, plays a very
important role when a QD is employed as a qubit.

16.3 Electron Charge Qubit

Two types of qubits that make use of electronic states in quantum dots are
proposed to date. One uses two neighboring quantum QDs, which we call
the double quantum dots or DQD for short in the following, and the two
different states |0) and |1) of a qubit correspond to which of the two QDs is
occupied. This qubit is called a charge qubit. The other qubit, called a spin
qubit, makes use of two spin states, spin up and spin down, of an electron
trapped in a single quantum dot.
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(a) Energy diagram of DQD when up < Eg < EL < pg. (b) The same for
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be described by Eqs. (16.8) and (16.9), temperature must be low enough
and moreover |¢| and A must be small enough compared to the energy level
separation due to Coulomb blockade.

16.3.2 Rabi Oscillation

Rabi oscillation in an electron charge qubit has been first observed by the NTT
group [4]. Initialization and measurements were made in the state shown in
Fig. 16.8 (a). This state satisfies the conditions us > Er, > Er > up
and |e] > A. The gate electrode voltages are controlled first to make the
system in the state shown in Fig. 16.8 (a). An electron is supplied from the
source S, and the relevant energy level of the left QD is occupied so that the
state (N + 1, Ng) is realized. This electron does not hop to the right QD
due to the assumption |e] 3> A. Next the DQD is steered to a state with
4s = up > Ey = Epg so that ¢ = 0 as shown in Fig.16.8 (b). Then the
DQD is detached from S and D and allowed to execute Rabi oscillation for
the duration tp, after which the system is further driven back to the state in
Fig. 16.8 (a). The coupling between the QDs is turned off in this state and
only the electron residing in the right dot flows into D and the system is put
back to the initial state. The signal obtained in a single measurement is not
strong enough to be observed. Hayashi et al. measured the current I flowing
out from D by repeating the above cycle many times [4]. Figure 16.9 shows
experimentally observed Rabi oscillation.
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FIGURE 16.9

Coherent charge oscillation. The barrier height between the left and the right
dots is controlled by changing the paramter Vi, which changes the overlap
intergral ¢t and hence A, leading the change in the Rabi oscillation frequency.
Courtesy of NTT Basic Research Laboratory.

16.4 Electron Spin Qubit
16.4.1 Electron Spin Qubit

Let us consider an electron confined in a QD. We define the logical state |0)
as the spin-T state and the logical |1} as the spin-| state. Technology making
use of electron spins thus defined is called spintronics in the literature. The
electron number N for a spintronics is 1 in an ideal situation. A QD with
N =1 is easily realized not only in a QD but also in a DQD as mentioned
in the previous section. Let us consider a DQD and let Sy, (Sg) be the spin
operator of the left (right) QD. Two-qubit coupling is given by

Hie=J > Sk ®Sk, (16.10)

k=z,y,z

where the exchange energy J is controllable by changing the overlap intergral
between the electron wave functions. This is done by changing the barrier
height between the dots by controlling the voltage applied to the electrodes
separating the dots.

Although coherent motion of a large number of spins is well established in
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FIGURE 16.12

Measurement of the spin-relaxation time 7;. Relaxation from the spin-down
state to the spin-up state takes place in waiting time #,44. Electron injection
to the dot takes place slightly after Vp is set to 2). This delay is so short, how-
ever, that it may be negligible in practice [6]. Courtesy of Jeroen Elzerman,
ETH, Switzerland.

the spin is observed in the |-state as the pulse width in Step 2 is changed.
The relaxation time 77 measured in this way is ~0.85+0.11 ms at a magnetic
field of 8 T.

16.4.3 Coherence Time

Suppose there is a single electron in a quantum dot. It is reported that
the longitudinal relaxation time 7; of the electron is as long as ~ 10 ms
[5]. The coherence time T, which is defined as the phase relaxation time
experimentally observed, is on the order of ~10 ns. An electron in a quantum
dot is under fluctuating magnetic field produced by Ga and As nuclear spins,
which couples with the electron through the hyperfine interaction. Each dot
has ~ 10° nuclear spins of Ga and As, which thermally fluctuate. The effective
magnetic field on the electron is known to fluctuate with the time scale on
the order of ~10 us.

Let us turn to the measurement of the dephasing time T5. Single-shot
signal strength is, however, not strong enough to directly read out T5. Signals
are accumulated during the interval longer than the typical fluctuation time
of the nuclei. Therefore the observed phase decoherence time is obtained
by averaging a snap-shot T» over ensemble under fluctuating magnetic field.
The decoherence time thus obtained is denoted as T5. It is found from the
observed value T3 = 10 ns that the amplitude of the nuclear magnetic field
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Bloch sphere, which represents a DQD state in (1,1). The north pole and the
south pole of the Bloch sphere corresponds to the singlet state |S) and the
triplet state |Tp), respectively, while | 1|) and | |1) are in the zy-plane. The
arrow shows the initial state |.S). Reprinted from Physica E, 35, J. R. Petta
et al., “Preparing, manipulating, and measuring quantum states on a chip”,
251-256, Copyright (2006), with permission from Elsevier.

is called the spin blockade and is employed as a readout method of qubit
states in this exeperiment. In the state (1,1) on the other hand, the energies
of the three states of a triplet electron pair and that of the singlet pair are
almost degenerate if the exchange energy J is negligible. If a magnetic field
is applied in this state, the | 77) and | ||) states have different energies, while
that of the residual states, a singlet state |.S) = (| T|) —| /1)/v/2 and a triplet
state |To) = (| T1) +| |1))/v2, remain degenerate. We choose |S) and |T)
as the qubit states |0) and |1), respectively. Any qubit state is expressed as
a point on a Bloch sphere as shown in Fig. 16.15. In fact, the degeneracy
between |5} and |Tp) is lifted if the exchange interaction .J between the dots
is taken into account. As a result, the energy of the singlet state S is lower
than that of the triplet state Ty by J. The parameter J is controllable by
changing ¢ (< 0). It takes maximum value J(0) when ¢ = 0 and J(¢) — 0 in
the limit |¢| > J(0). Let BL,. (BE ) be the component of the hyperfine field
in the left (right) dot. Then the Hamiltonian of this qubit is

= 0 g* 11BA Bpuc
= (g*uBABnuC J(€) ) , (16.11)

where g* ~ —0.44 is the electron g factor in GaAs, up is the Bohr magneton,
AByye = B, — BE and J(0) > |ABucl-

The intrinsic phase coherence time T3 of this qubit has been measured by
elimimating the effect of the nuclear magnetic field fluctuation. The parameter
€ has been scanned in the spin-echo experiment as shown in Fig. 16.16.
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FIGURE 16.17

Spin echo recovery probability Pg plotted against 7¢ — 75+ for given rg +
7gr. Observe that the probability takes the maximum value at 7¢ — 7 =
0. The coherence time T5 is obtained by plotting the maximum value as a
function of 75 + 75-. From J. R. Petta et al., SCIENCE, 309: 2180-2184 (30
September 2005) and J. R. Petta et al., Physica E, 35, 251-256 (December
2006). Reprinted with permissions from AAAS and Elsevier.

16.5 DiVincenzo Criteria

DiVincenzo criteria for a quantum dot quantum computer are evaluated sep-
arately for charge qubits and spin qubits.

16.5.1 Charge Qubits
Let us evaluate the DiVincenzo criteria for charge qubits.

1. A scalable physical system with well-characterized qubits:

A qubit is made of a double quantum dot fabricated in a GaAs/Al/GaAs
heterostructure. It is potentially scalable using currently available semi-
conductor lithography technology. A two-qubit system has been fabri-
cated, and coupling between two qubits has been demonstrated so far
[10]. The two basis states of the qubit correspond to states in which an
electron sits in the right (left) quantum dot.

2. The ability to initialize the state of the qubits to a simple fiducial state,
such as [00...0):

The qubit can be initialized by electron injection [4]; see Fig. 16.8.



