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1.1 Introduction to Digital Picture 
Coding

• Digital versus Analogue
– Advantages

• High Picture Quality
• Portability/mobility

– Storage and transmission over existing networks

– Disadvantages
• Large storage and transmission requirements

– e.g. NTSC motion video 720 x 480 pixels @ 30 fps with 
4:2:2 format requires 20.8 Mb/s bandwidth.

– A 30 second video clip occupies 624 Mb (standard CD).
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• Compression: a practical necessity for 
digital pictures
– Reduces storage and transmission 

requirements
• How?

– Compression reduces redundancies in digital 
pictures
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• Statistical redundancies may appear
– Spatially in adjacent pixels
– Temporally in adjacent picture frames
– Spectrally in different frequency and 

orientation bands
• Psychovisual Irrelevancy

– Exists due to the limitations of the Human 
Visual System (HVS) 

• Optical (human eyes)
• Cortical (the human brain)
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Spatial and Temporal Domains
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Digital Picture Compression Fundamental 
Concepts
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• Lossy and Lossless Compression 
– Lossless

• No information loss, low compression
– Lossy

• Some information loss, high compression

• Quality/Distortion measures
– Quantify coding quality/errors in lossy 

compression schemes
– Objective and subjective measures
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• Subjective distortion measure
– Employs human observers, gauges perceived 

quality/distortions
– Impractical for general purposes

• Objective distortion measure
– Utilises functional metric to determine 

quality/distortions
– Statistical metric. e.g. MSE, PSNR
– HVS bases metric. e.g. PBIM, VQM
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1.2 Characteristics of Picture Data 

• Digital Image Data 
– Derived from sampling continuous image field 

data over an area of M x N
– Individual digitized element is referred to as a 

pixel (or pel)
– Each pixel has 2q discrete levels per colour 

channel
– q is typically 8 which corresponds to one byte 

(256 levels) per colour channel per sample
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1.2.2 Digital Video Data

• Digitization of video
– Sampled spatially as with digital image
– Sampled at regular temporal interval to obtain 

multiple image frames
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• Colour Spaces
– RGB (Red, Blue and Green)
– YdCbCr (1 Luminance, 2 Chrominance) 

• RGB Colour Space
– For source capture and display
– Corresponds to the Red, Blue and Green 

elements in display devices. e.g. CRT, LCD
– Each channel has equal bandwidth –

inefficient for transmission and storage
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• YdCbCr Colour Space
– For storage, transmission and processing
– Isolates luminance component (Y)

• Human vision is more sensitive to luminance than 
colour

R', G' and B' are normalised to 1
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Digital representation of colour format conversion 
of natural video stream
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• YdCbCr Operational Ranges
– 16 ≤ Yd ≤ 235
– -112 ≤ Cb,Cr ≤ 112

• YdCbCr Component Resolutions
– Full resolution (4:4:4)
– Half resolution (4:2:2)
– Quarter resolution (4:2:0)
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1.2.2 Statistical Analysis

• Design of coding system is dependent on 
statistical property of target images

• Correlation implies similarity
– High correlation in data → high compression

• Variance implies difference
– High variance in data → low compression
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1.3 Compression and Coding 
Techniques

• Entropy Coding
– Shannon’s first theorem

• Describes the minimum bits required, H(x), to 
represent some source data, x, with m number of 
symbols having a probability distribution, p.

∑
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• Entropy coders
– Huffman – block oriented
– Arithmetic – stream oriented
– Utilise variable length codes

• More efficient than fixed length codes
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1.3.2 Predictive Coding

• Rationalè for predictive coding
– high correlation → low prediction errors
– low prediction errors → lower entropy

• Applicable to lossy and lossless coding
– Lossless coder

• LOCO (JPEG-LS core), CALIC
– Lossy coder

• Differential Pulse Code Modulation (DPCM) for 
motion compensated video

• Pulse coding of DC coefficients in JPEG/MPEG
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Closed loop DPCM encoder with
Variable Word Length (VWL) coding



© CRC Press, Wu & Rao Eds, 2006

1.3.3 Transform Coding

• Discrete Cosine Transform (DCT)
– Derived from DFT
– N-point can be extended to 2N-point 

(Mirroring)
– Functional definition of 2-D DCT
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Signal extension. A) input signal. B) N-point DFT 
boundary effect. C) symmetric even extension (mirroring)
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8x8 DCT Basis Image
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• Separable transform
– 2-D DCT obtained through cascade of 1-D 

DCT
• Fast algorithm implementation

– Only for 2n-point DCTs
• Produces visually undesirable blocking 

artifacts at low bitrates.
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Blocking artifacts from DCT

a) Test image
b) Inverse DCT with 4x4 

low frequency 
coefficients

c) Inverse DCT with 2x2 
low frequency 
coefficients

d) Inverse DCT with DC 
coefficients only
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1.3.3.2 Discrete Wavelet Transform

• DWT is localised in space
• DWT more suited than DFT in dealing with non-

stationary signals

Below: time-frequency resolution of DFT and DWT
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DWT

• Generally implemented in dyadic structure
– 2 band filters, high-pass and low-pass

• Multi-resolution representation
– Obtained through successive Iterative filtering of low-

pass band
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Left: Test Image
Right: 3 level spectral image
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DWT

• DWT may use any 
number of filters 
(right)

• Haar filters - Simplest 
filter set

• For picture coding, 
spline filters are 
commonly employed
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Discrete Haar Transform 8x8 basis image
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• Dyadic wavelet transform matches well 
with psychoviual models
– Produces coded images with superior visual 

quality at medium and high bitrate
• Distortions in DWT coded images

– blurring and ringing artifacts at low bitrates
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Blurring artifacts in 3 level wavelet transform

a) Test image
b) DWT image without 

level 1 coefficients
c) DWT images without 

levels 1 and 2 
coefficients

d) DWT images with only 
the low-pass (LL) band 
coefficients
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1.4 Picture Quantization

• Maps K inputs to L outputs
• Memory and Memoryless

– Quantization is dependent and independent of  
other causal sample data, respectively

• Deadzone quantiser
– Located about the mean value of an image, 

typically zero
– Larger step size within the deadzone reduces 

variance and improves entropy coding



© CRC Press, Wu & Rao Eds, 2006

• Uniform Quantizer
– Constant step size
– Mid-rise or mid-tread

• Non-uniform quantizer
– Variable step size
– Outputs are dependent on the PDF of inputs
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Non-uniform quantizer
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1.4.2 Optimal Quantizer Design

• Minimize quantization errors
– For K number of inputs (d) and L number of 

outputs (r)
– qL-1 ≤ d < qL → rL

– Determine the best set of quantization 
intervals, q = {q0, q1, q2, …, qL}, that produces 
minimal quantization errors. 
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1.4.3 Vector Quantizer

• Input vector is represented by a symbol 
within a codebook

• Minimal distortion criteria for selecting 
symbol

• Optimal vector quantizers are impractical
– Require large codebooks

• Scalar quantizers are vector quantizers of 
dimension 1
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Block diagram of a simple vector quantizer
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1.5 Rate-Distortion Theory

• Minimum bitrate required to reproduce a 
source at various distortion levels

• May utilise different error measures
– MSE, MAD, etc

• Employed to control quality of digitally 
coded pictures

• Accuracy of R-D estimation increases with 
the sophistication of algorithms
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Rate-Distortion curve for MSE and MAE
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1.6 Human Visual System

• HVS Physiological make-up
– Eyes

• Cornea and lens for focusing
• Photoreceptors in retina (cornea) to capture light
• Optic nerve for transmission of receptor signals

– Visual pathway
• Connects the eye to the cortex

– Visual cortex
• Processing centre – detection, recognition, etc
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Simplified human eye – cross section
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• Contrast
– HVS operates in relative manner. i.e., 

difference
– Additionally, the HVS is sensitive to intensity 

levels
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• Weber’s fraction: ∆I / I
– HVS sensitivity relative to difference and 

intensity
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• Spatial Frequency
– Visual acuity (cyc/deg) of the human optics
– Expressed by the modulation transfer function 

(MTF)
– MTF Formulation (Mannos and Sakrison):

fr denotes spatial frequency normalised by viewing 
angles

1.1)114.0()144.00192.0(6.2)( rf
rrMTF effF −+=
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Viewing environment and spatial frequency 
concept

Horizontal angle
θh = 2arctan((H/2)/6V) 

Vertical angle
θv = 2arctan((V/2)/6V) 
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• Masking
– Occurs during the interaction of neural signals
– Results in the suppression and enhancement 

of certain details in images
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1.7 Digital Picture Coding 
Standards and Systems

• JPEG Still Image Coding Standard
– Block Based DCT

• 8x8 DCT
– Scalar quantizer

• For luminance and chrominance channels
– Run-length and huffman coding

• Zigzag scanning order
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JPEG Coding Structure
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Quantization matrix for luminance (left) and 
chrominance (right) channels
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Scanning order for DCT Coefficients



© CRC Press, Wu & Rao Eds, 2006

• JPEG2000 Standard
– Wavelet transform

• Multi-resolution
• Any bi-orthogonal filters

– Typically 9/7 or 5/3 integer filter set

– Progressive bitplane quantization
– Run-length and arithmetic coding
– Scalable coding

• Rate
• Resolution
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Simplified JPEG2000 coding structure
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Comparative performance of JPEG and 
JPEG2000 with Girl image

M = 8, e = 8.46.2622.53JPEG2000

Quality factor = 47.6321.85JPEG

Compression 
Parameter

Error (rms)Compression Ratio
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Left column: JPEG
Right column: JPEG2000

Bottom row: Difference 
image (between 
original and coded)
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MPEG-X Standards

• Basic Framework
– Block based DCT coding
– MC/DPCM for inter-frame coding
– Scalar quantisation

• Different quantisation strategies for inter- and intra-
frame coding

• Different matrix for different colour channel
– Run-length and huffman coding

• Zigzag scanning of DCT coefficients
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MPEG-1 Coding Structure
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Video coding standards

• Chronology
– MPEG1/H.261
– MPEG2 → H.263
– MPEG4/ASP
– H.264/AVC

Left: standardized video 
codecs performances
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Comparison of standards: MPEG1, MPEG2, 
MPEG-4 and H.264/MPEG-4 Part10
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Average bitrate savings for video streams [J+02]

• Substantial improvement in H.264

31%--H.263

43%17%-MPEG-4 ASP

64%49%39%H.264/MPEG-4 Part 10 AVC

MPEG-2H.263MPEG-4 ASPCoder

Average bitrate saving relative to
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1.8 Summary

• Basic introduction to digital picture coding
– Characteristics of picture data
– Picture coding techniques
– Quantisation
– Rate-distortion
– Human visual system and picture coding

• Brief description of existing image and 
video coding standards
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2.1 Introduction

• Picture display and coding systems are 
adapting to the human visual system

• The need to understand the HVS
– Characteristics
– Limitations
– Sensitivity to spatial and temporal changes
– Colour perception
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2.2 Brief Introduction of the Visual 
System

• Human Optics
– Lens for focusing
– Cornea

• 3 cellular and 2 synaptic layers
• Fovea - Primary focal point of the visual field

– Photoreceptors
• Cones for photopic vision – 7 million

– Short (S), medium (M) and long (L) wavelengths
• Rods for scotopic vision – 120 million
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• Optic nerve
– Integrates receptor signals via ganglion cells

• 100 rods to 1 ganglion
– Increase sensitivity of scotopic vision

• 1 cone to 1+ ganglion

• Light adaptation - localized in the retina
• Opponent colour 

– Due lateral ganglion inter-connection
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• Visual Cortex
– Neurons are orientation and frequency 

selective
• Medial Temporal region of the Cortex

– Sensitive to motion
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2.3 Colour Vision

• Colour sensation
– of the mind not of worldly objects

• Functionally
– Colour signals are linearly related to cone 

signals
– No standardized method for specifying cone 

signals
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2.3.1 Colorimetry

• All colours are derived from 3 primaries
– Red, Blue and Green

C1 = r1R + g1G + b1B

• Colour matching – Tristimulus
– Follows linear algebraic rules

• additive
C2 = r2R + g2G + b2B
C3 = C1 + C2 = (r1+r2)R + (g1+g2)G + (b1+b2)B

• Proportion/product
kC3 = kC1 + kC2
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Maxwell diagram for colour matching with 3 
primaries. C1 = 0.3R + 0.45G + 0.25B
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• Adding primaries to test light
– Resulting colour outside gamut

C4 = rR + gG – bB

• Colorimetry - matching experiments
– real R, G and B primaries
– CIE 1931 standard observer system

• Imaginary primaries X, Y and Z
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CIE 1931 2o. Top: Colour Matching for RGB (left) 
and XYZ (right). Bottom: Chromaticity diagram
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2.3.2 Colour Appearance, order system 
and difference

• Depends on
– Adaptation, local and global
– Stimulus in visual field

• Size, location and configuration (shape)
– Objects

• Colour and location
– Background/surrounding colour

• Same chromaticity and luminance → may 
have different appearances
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• Colour has 5 attributes
– Brightness → intensity
– Lightness → intensity relative to white
– Colourfulness → chromaticity
– Chroma → chromaticity relative to white
– Hue → attribute of a colour

• Brightness and Colourfulness - Absolute 
• Lightness and Chroma - Relative
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• Unique Hues
– No mixture of other hues
– Red, Blue, Green and Yellow

• Opponent colour (hue) pair
– Cannot co-exist in the same stimulus
– Red-Green and Blue-Yellow

• Need for uniform description of colour 
appearance
– Colour order system (Munsell book of colour)
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Left: Hue arrangements in constant lightness plane. 
Right: A Hue leaf with variation in lightness and 

chroma.
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• Perceived colour difference
– CIE 1976 L*, a*, b* (CIELAB) colour space

• Quantify perceived difference between two colours
• Colour appearance models

– Dependent on viewing conditions
– Calculates relative colour attributes
– Predict brightness and colourfulness
– may adjust for changes in colourfulness and 

contrast
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CRT gamut plot in CIELAB space
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2.4 Luminance and the Perception 
of Light Intensity

• Luminance
– Different definitions
– Leads to confusion
– Described as “apparent intensity”
– Used to label achromatic (luminance) channel 

in visual processing
• Actual definition

– Effectiveness of light of different wavelengths 
in specific photometric matching task
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2.4.1 Luminance

• CIE functional definition of luminance

Where k is a constant, P1λ and V(λ) are the 
radiance and photopic spectral luminous efficiency 
function

V(λ) = ratio of radiant flux of wavelengths λm and λ

• Luminance measured in candelas (cd/m2)
• CIE heterochromatic brightness matching

– Additive (Abney’s) law fails
• Brightness not always additive in coloured stimulus

∫=
λ λλ λλ dVPkL )(1
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• Alternate matching methods
– Heterochromatic Flicker Photometry (HFP)

• Luminance intensity adjusted to match test and 
flickering light

– Minimally Distinct Border (MDB)
• Intensity adjusted to minimize the distinctness 

between the borders of bipartite luminance fields
– HFP and MDB obeys additivity rule
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Helmholtz-Kohlrause effect. The apparent 
isoluminant chromatic colours increases with chroma.
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• Luminance efficiency function
– Relative to the sensitivity of cone types
– Dependent on adaptation, esp., chromatic

• Can only be defined under conditions for which it is 
measured

– HFP and MDB
• Luminosity taken as weighted sum of L and M 

cones
• Contribution of S cones is negligible under normal 

conditions
– Affected colour blindness (L and M cones)
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2.4.2 Perceived Intensity

• Weber’s Law :
– General rule of thumb
– Measures contrast (relative intensity)
– States that the ratio of background (I) and 

incremental (∆I) intensities is constant (k)
– As I increase, ∆I also increase to meet 

detection threshold – Just Noticeable 
Difference (JND)

– Does not hold for full range of intensities
– Reliable for intensities above 100 cd/m2

kII =∆ /
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• Fechner’s Law
– Logarithmic relationship between stimulus 

intensity and associated sensation, S
S = k log(I)

I is the intensity
k is a constant dependent on stimulus condition

– Does not match data from direct brightness 
experiments

• Data exhibit power function profile: S = k Ia
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• luminance and lightness relationship
– Non-linear general profile
– Specific profile depends on

• Exact stimulus conditions
• Data collection methods
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Luminance vs Lightness
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Lightness illusions

A. Simultaneous 
contrast

B. Crispening
C. White’s illusion
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2.5 Spatial Vision and Contrast 
Sensitivity

• Spatial information processing
– Visual acuity of the human optics

• Modelled by
– Modulation transfer function (MTF)

• Able to detect spatial variation and spatial 
alignment (Vernier acuity or hyperacuity)

– Sampling by photoreceptor array
• Sampling rate of 120 samples/degree → nyquist

frequency of 60 cpd (cycles per degree)
• Optics degrades images above 60 cpd, no aliasing
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2.5.2 Contrast Sensitivity

• Studied with harmonic stimuli (sine wave)
• Definition

– Reciprocal of the threshold needed to detect 
stimuli of different frequencies

• Contrast sensitivity function
– Measures visual system sensitivity to varying 

sinusoidal frequencies
• Michelson’s Contrast

Cm = (Lmax – Lmin)/(Lmax + Lmin)
Lmax and Lmin are peak and trough luminance
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Contrast Sensitivity Function for different mean 
luminance (Barten’s Empirical Model)
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• Contrast Sensitivity depends on
– Mean luminance
– Orientation
– Temporal frequency
– Spatial position in retina

• Maximal sensitivity at the fovea
• Oblique effect

– Reduced contrast sensitivity for obliquely 
oriented gratings (2-3 times)
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2.5.3 Multiple Spatial Frequency 
Channels

• CSF represent multiple narrowly tuned 
spatial frequency channels
– Supported by physiological, psychophysical 

and anatomical evidence
• Concept of multi-channel structure for 

human vision
– narrow frequency bands
– narrow orientation bands
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Envelop of multiple CSFs tuned to narrow spatial 
frequencies channels
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• Cortical receptive fields
– Are size specific
– Indicative of multi-resolution structure

• Frequency bandwidths
– broader at low frequencies
– Narrower at high frequencies
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• Pattern Adaptation
– Vision system takes inputs from multiple 

spatial frequency channels
– Channels most sensitive to adaptation stimuli 

responds less vigorously
– Once adaptation sets in, the distribution of 

inputs responses is skewed
– Also affects orientation channels
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Pattern and orientation adaptation. A) adaptation 
test. B) skewed sensitivity due to adaptation
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• Pattern Detection
– Dependent on contrast of fundamental 

components, not overall contrast
• Masking and Facilitation

– Masking hinders detection
– Facilitation aids detection.
– Depends spatial frequency, orientation and 

phase
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Masking and facilitation

• Target frequency 2.0
• “dips” on curves signifies 

facilitation
• Facilitation is strongest at 

low contrast when target 
and masking frequencies 
are closest
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• Dependencies in spatial frequencies and 
orientation
– Non-linear interactions between separate 

spatial frequency and orientation bands exist
– Physiological and psychophysical evidence 

supports inter-channel dependencies
– However, Some Vision Models assumes 

independence between spatial frequency and 
orientation channels
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Inter-channel dependencies
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Chromatic contrast sensitivity

• Opponent colour
• Chromatic and 

achromatic profile 
differs 

• Luminance contrast 
operates at higher 
frequencies
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• Supra-threshold contrast sensitivity
– Effects of threshold and supra-threshold are 

different
– Flattening effect or “non-constancy”

• Occurs as contrast of gratings exceed far beyond 
that of the threshold levels 

• Hypothesis (Georgeson and Sullivan)
– Spatial frequency channels adjust gains 

independently to operate at supra-threshold
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Supra-threshold contrast matched to 5 cpd
gratings
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Contrast matching. A) achromatic and chromatic 
matching. B) Contrast ratio of colour matching.
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• Image Compression and Image Difference
– Incomplete understanding of human vision
– Have some operational knowledge of visual 

system
• Improve image processing/compression system

– Perceptually lossless coding
– Perceptual coding (JPEG2000)
– S-CIELAB computes visible colour difference
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2.6 Temporal Vision and Motion

• Temporal CSF
– Critical Flicker Frequency (CFF)
– Ferry-Porter Law

• T-CSF increase linearly with average background 
intensity (in log scale)

– Talbot-Plateau Law
• Perceived intensity of a fused periodic stimulus is 

equivalent to a steady stimulus of the same time-
average intensity
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• Counter phase grating for experiments
– Contrast reverses over time

• Temporal contrast threshold for detection, 
a function of
– temporal frequency of the modulation 
– spatial frequency of the pattern
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Temporally counter phased grating
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Temporal CSF with mean luminance measured in 
trolands
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Spatial contrast sensitivity at various temporal 
frequencies (left) and vice versa (right)
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• Apparent Motion
– motion after-effect due to adaptation

• e.g. the moon can appear to move behind clouds

• Inter-Stimulus Interval (ISI)
– Interval between stimulus
– Short ISI (< 30 msec), no motion observable
– Perceived motion between 30 – 60 msec (ISI)
– Continuous motion with > 100 msec (ISI)
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• Korte’s Law
– Motion Detection

• higher contrast for larger positional change
• Higher contrast for shorter ISI
• Larger positional separations for long ISI
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Spatio-temporal contrast sensitivity
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2.7 Visual Modelling

• Discoveries made in small steps
• Purpose of vision modelling

– Automate tasks
– Improve reproduction of real world images 

• Applications
– Image/video processing

• Quality/fidelity measures
– Image/video compression

• Improve quality and/or compression performance
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2.8 Conclusion

• Overview of the visual system
• Colour vision

– Colorimetry, colour appearance
• Luminance and intensity
• Spatial vision

– Contrast sensitivity
• Temporal vision
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Chapter 3 Outline

3.1 Introduction
3.2 Blocking Effect
3.3 Basis Image Effect
3.4 Blurring
3.5 Colour Bleeding
3.6 Staircase Effect
3.7 Ringing
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Chapter 3 Outline

3.8 Mosaic Patterns
3.9 False Contouring 
3.10 False Edges
3.11 MC Mismatch
3.12 Mosquito Effect
3.13 Stationary Area Fluctuation
3.14 Chrominance Mismatch
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3.15 Video Scaling and Field Rate 
Conversion 
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3.17 Summary
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3.1 Introduction

• Hybrid MC/DPCM/DCT coding
– Classification and evaluation coding artifacts
– Leads to improvement of coding systems

• Constant quality video

• Artifacts identification
– Attributes

• Visual manifestation
• Causes 
• Relationships
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• Classification limited to MPEG-1 artifacts
– Derived through various coding rates

• Artifacts are difficult to isolate
– unable specify coding rate which leads to the 

manifestation of any particular artifact
– Multiple artifacts may co-exist together
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3.2 Blocking Effect

• Inherent in block based (DCT) coding 
• Visual Characteristic

– Discontinuity at block boundary
• Cause

– Quantization of DCT coefficients
• Intra-frame mode

– Prominent smoothly textured regions
– DC coefficients has highest impact
– Coarse quantization of AC coefficients
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Example of Blocking Effect
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• Inter-frame mode
– External blocking

• Boundary of 16x16 macro-block
• Occurs around moving objects

– Resulting from poor MC, block mismatch

– Internal blocking
• Boundaries of 8x8 DCT blocks within macro-block
• Generally appears in mildly textured area with 

sufficiently high prediction error – errors not 
quantized to zero
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3.3 Basis Image Effect

• Block bearing distinct DCT basis image
– AC basis with horizontal and vertical patterns

• Cause
– Coarse quantization of low magnitude DCT 

coefficients
• Relationship

– May lead to other artifacts
• Blocking and mosaics
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DCT Basis Function
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DCT Basis Image Effect
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• Visual significance of basis function
– Different basis has different significance
– Proportional to AC energy concentration in 

each coefficient
• Inter-frame coding

– Appears in high spatial activity areas due to 
coarse quantization
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3.4 Blurring

• Loss of spatial detail
• Cause in DCT coding

– Coarse quantization of mid to high frequency 
AC coefficients

• Associated artifacts
– Blocking and mosaic effects if sufficient 

spatial information has been blurred
• Inter-frame coding

– Prediction from macro-blocks with spatially 
degraded details
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3.5 Colour Bleeding

• Effectively colour blurring
– Smearing of colour over areas of strong 

contrasting chrominance
• Cause

– Coarse quantization of AC components
• Manifestation extends to macro-block 

boundaries
– Due to sub-sampling of chroma channels 

(4:2:2 or 4:2:0)
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Colour bleeding in coded (0.6Mbps) chroma 
channels

Top left: Cb channel
Bottom left: Cr channel
Right: Decoded frame
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3.6 Staircase Effect

• Primary reason - no diagonal DCT basis 
function

• Cause by coarse quantization of AC 
components associated with diagonal 
edges

• Related to blocking and mosaic
• Appears around block boundaries
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Staircase Effects
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3.7 Ringing

• Occurs along high contrast edges in areas 
of generally smooth texture

• Appears as ripples moving outwards from 
the edge

• Chrominance Ringing
– Related to colour bleeding/mismatch
– Spans whole macro-block
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Ringing Artifact: along the edge of the table and 
the arm
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Low Ringing: Claire sequence @ 1Mbps. PSNR: 
approximately 45 dB
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3.8 Mosaic Patterns

• Mismatch between all or parts of adjacent 
blocks
– Analogy from mismatch of mosaic tiles

• Cause
– Coarse quantization of AC components
– Subsequent contour and/or texture difference 

between adjacent blocks
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Mosaic Effect post de-blocking filter
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• Intra-frame mode
– Generally occurs in areas of high spatial 

activity
– Related to basis image effect
– Mosaic effect more pronounced if mismatched 

patterns have different orientations
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Mosaic effect and basis image effect. left: original 
frame. Right: coded frame
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• Inter-frame mode
– MC mismatch 
– Occurs in high spatial activity areas
– Successive prediction affects the degree of 

the mosaic effect
• Successive prediction improves/refine spatial 

information
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Mosaic effect in I-frame
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Mosaic effect in P-frame predicted from I-frame
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Deterioration on Mosaic effect in P-frame predicted 
from P-frame
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3.9 False Contouring

• Occurs in smoothly textured area with 
gradual transition in pixel intensity/value

• Appears as step-like gradation in affected 
areas

• Cause
– Inadequate number of quantization levels
– Irregular distribution of AC energy due to 

quantization
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False Contouring
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3.10 False Edges

• Occurs within inter-frame mode
• Propagated through blocking effect

– Block-edge discontinuity used as reference of 
motion estimation

• Most prominent in smooth areas
• Usually localized to neighbouring frames
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Propagation of blocking effect to false edges
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3.11 MC Mismatch

• Occurs when objects overlap in macro-
blocks

• Subsequent MC will be unable to find a 
satisfactory match for overlapping objects

• Resulting in high prediction errors
• Errors ineffectively coded due to 

quantization
• Mismatch becomes visible
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Macro-blocks encompassing the region of two 
objects with diverging motion



© CRC Press, Wu & Rao Eds, 2006

High frequency noise induced by motion 
mismatch
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3.12 Mosquito Effect

• Due to temporal fluctuations
• Related to

– Block mismatch
– Ringing effect

• Ringing related mosquito effect
– Occurs when coarse quantization is applied to 

high prediction errors in adjacent frames
– Equivalent to fluctuating ringing
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Difference sub-images of 5 successive Claire
sequence. Order of coded frame: clockwise from 

top left. 
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MC prediction type for 4 successive frames. 
Forward (>), backward (<) and bi-directional (<>) 

predictions.
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• Mismatched related mosquito effect
– Enhanced mosquito effect due to MC 

mismatch of macro-blocks
– Equivalent to fluctuating MC mismatch
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3.13 Stationary Area Fluctuation

• Occurs around high contrast edges in the 
temporal domain

• Visible even around areas with high details 
(e.g. highly textured areas)

• Primary cause 
– Quantization of high frequency prediction 

errors (DPCM)
• Resulting in fluctuation of high spatial frequency
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Sons and Daughters Sequence (frame 40 and 41). 
Static background with some foreground motion
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Difference Image of frame 40 and 41 of Sons and 
Daughters sequence.



© CRC Press, Wu & Rao Eds, 2006

3.14 Chrominance Mismatch

• Misplacement of a macro-block 
– relative to it’s own general colour and 

surrounding colour
• Cause

– Use of luminance channel motion vectors 
(MV) for chrominance

• Optimum luminance and chrominance MVs for a 
given macro-block may not be the same
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Chrominance mismatch at the top of the tree trunk
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3.15 Video Scaling and Field Rate 
Conversion

• Scaling
– Decimation → aliasing
– Interpolation → blurring

• Field Rate Conversion
– 60 Hz (NTSC) → 50 Hz (PAL) and vice versa
– Jerky motion from downsampling

• Temporal interpolation remove jerky motion, but 
produces ghosting artifacts
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3.16 De-interlacing

• Interlaced (dual) fields → frame
• Some de-interlacing methods

– Line repetition and averaging
• Aliasing at high vertical frequencies and some 

blurring problems
– Field repetition

• Serration artifacts around edges of moving objects
– Motion adaptivity - hybrid methods

• Luminance difference, median filters, motion 
compensation, etc
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3.17 Summary

• Classification of distortions in hybrid 
MC/DPCM/DCT coders
– Based on consistent characteristics

• Quantization errors
– Primary source of distortions
– Spatial distortions

• Within blocks and between blocks
– Temporal distortions

• Due to MC mismatch and quantized predicted 
errors
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• Distortions manifestation
– Multiple types of distortions may co-exists
– Some distortions are related

• e.g. blocking and ringing
– Distortions are difficult to isolate
– Dependent on 

• Source content – distortion levels varies with 
picture content

• Coding parameters – MC, DCT, quantization, etc
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4.1 Introduction

• Proliferation of audio/visual media
• Audio/visual services

– Important to maintain quality of services
– How to measure picture quality?
– Difference between analogue and digital 

media
• Two approach to Quality measure

– Subjective assessment
– Objective assessment
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4.2 Subjective Assessment 
Methodologies

• Utilize human subjects for assessment
• Most reliable way for quantify picture 

quality
• Different assessment methodology for 

different conditions



© CRC Press, Wu & Rao Eds, 2006

4.3 Selection of Test Materials

• Variations in picture quality
– is subjected to compression, transmission and 

manipulation operations
• Picture content also affects picture quality

– video sequences with minimal motion can 
maintain sufficiently high picture quality at low 
bitrates (Susie)

– At similar bitrates, other types (content) of 
video sequences exhibit noticeable 
distortions. e.g. Mobile & Calendar
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Susie Sequence
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Common test sequences: clockwise from top left: 
Waterfall, Tree, Mobile & Calendar and Tempete
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• Robust picture quality test for motion video 
equipment and system should
– Have multiple sources
– 8 to 16 different source material types

• Source materials provided through 
standards and co-operative bodies:
– IEEE
– SMPTE
– VQEG (Video Quality Experts Group)
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4.4 Selection of Participants -
Subjects

• Either experts or non-experts
• Screening

– Visual acuity
– Colour blindness
– Other visual impairments

• Subject numbers
– 16 to 24 subjects to maintain statistic 

relevance
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• Experts
– Advantages

• Experience
• More precise evaluation – good for evaluating 

technical performance
– Disadvantages

• Bias evaluation
• Critical evaluation – does not reflect the 

generalized view of the average consumer
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• Non-experts
– General public, average user
– May see artifacts that experts missed

• Since they generally have a non-structured 
approach to evaluating picture quality/impairment

– Generally reliable if tests are structured 
properly

– Factors influencing non-expert
• Age, gender, etc
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• Screening
– For visual defects
– Standardized tests

• Snellen Eye Chart ©
– Screens for 20/20 normal or corrected vision

• Ishihara ©
– Screens for colour blindness
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Snellen eye chart (left) and Ishihara test 
plate (right)
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4.5 Experimental Design

• Factors to consider for tests
– Time 

• Excessive test duration leads to fatigue
• Commonly 30 mins session with warm-up trials

– Double/Single presentation
• Affects test duration and limit number of test 

conditions covered
– Repeat tests

• For stabilizing results. 
• Past experience has shown little gain in data 

stability with repeats
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• Factors affecting testing environment
– Lighting
– Ambient noise
– Quality and calibration of display device

• Environmental specifications 
– ITU-T BT.500 standard
– Exemplar testing environment

• Communications Research Centre (CRC), Canada
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Testing room layout at CRC
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• Common experimental mistakes
– Limited set of test material
– Inadequate coverage of the range of 

conditions to be tested
• Make sure that which is to be tested is tested 

thoroughly
– Excessively long test durations → fatigue
– Neglecting warm-up and re-set trials

• Allows adjustment to testing procedures



© CRC Press, Wu & Rao Eds, 2006

4.6 International Testing Methods

• Double Stimulus Impairment Scale (DSIS)
• Double Stimulus Quality Scale (DSQS) 

Method
• Comparative Test
• Single Stimulus Continuous Quality 

Evaluation (SSCQE)
• Clear instructions on “how to do the test”

must be given to subjects prior to test
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4.6.1 Double Stimulus Impairment 
Scale (DSIS)

• Impairment measurement
• A 5-point discrete scale is commonly used

– Imperceptible – perfect quality
– Perceptible, but not annoying
– Slightly annoying
– Annoying
– Very Annoying – unwatchable
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DSIS 5-point rating scale
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DSIS test instructions
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• DSIS measures failure characteristics
– e.g. minimum coding rate relative to quality

Below: DSIS trial structure with reference (R) and test (T) 
material. Impairment is recorded during the rating period
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Typical outcome of the overall impairment results

• Overall analysis
– Testing various conditions 

(con1, con2, etc)
• Graph signifies behaviour

– Test methods with 1 and 2 
variables

• Simultaneous assessment 
of two systems under 
multiple conditions
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Individual sequence results for a typical DSIS test

• Specific Analysis
– Evaluate the response 

of individual sequence
• Identify extremities, 

thus operational 
boundaries of systems

– Identify system 
behaviour relative to 
specific source type

• Poor with what type?
• Good with what type?
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4.6.2 Double Stimulus Quality Scale 
(DSQS) Method

• Quality measurement
• Double scale for grading quality

– Measurement taken as difference between 
two scores

• Continuous scale (0-100)
– Minimizes quantization errors
– 5 categories: Excellent (80-100); Good (60-

79); Fair (40-59); Poor (20-49) and bad (0-19)
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• Subjects rate both the first (R) and the second 
(T) sequence.

• Double blind test
– R and T may be in reverse order
– Sequence order is unknown to both subject and tester 
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DSQS scale

• Properly design tests
– Score difference 

between 1st and 2nd

sequence rarely 
exceed 40 units

– Often under 25
• Reference may be 

rated lower than test 
sequence
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DSQS test instructions
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Typical DSQS raw results

• Mean Opinion Score 
(MOS)
– Purposes

• Check stability of 
reference score

• Rough indication of 
differences between 
reference and test 
sequences



© CRC Press, Wu & Rao Eds, 2006

Typical DSQS difference results

• Minus test
– Check if test sequence 

has been rated higher 
than reference

• Analysis
– Test methods

• Ascertain the difference 
between 1 and 2 
variables

– Is quality dependent 
on sequences?
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4.6.3 Comparison Scale Method

• For comparing systems with equal 
capability

• Comparative Scale (below)
– 100 units: -50(A) → 0 (A=B) → 50(B)
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Comparative test trial structure

• Double blind test
• Single or double stimulus
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4.6.4 Single Stimulus Method

• One stimulus per set of sequence
– One opportunity to evaluate, no repeat

• Shorter testing time
• Applicable to DSQS, DSIS, CS, etc
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4.6.5 Continuous Quality Evaluations

• Single Stimulus Continuous Quality 
Evaluation (SSCQE) method

• No reference sequences
• Continuous rating

– Sequences under evaluation are rated for the 
duration of the sequence

• Record variation in picture quality within 
sequences in addition to between sequences

– Continuous recording with slider (i.e. mouse 
or cursors) in computer 
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SSCQE evaluation layout (left), slider (right) and 
typical continuous score (bottom)
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4.6.6 Discussion of SSCQE and 
DSCQS

• Primary difference
– SSCQE

• Continuous opinion scoring
• Computer recorded with slider

– DSCQS
• Single opinion score per set of test sequences
• Recorded on score sheet

• Slider vs Score Sheet
– Marking errors on score sheets

• Leads to discarding of data
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• Continuous score vs single score
– Pinpoint error segments in sequences

• SSCQE can, DSCQS cannot
– Real-time application

• Evaluation of pictures during broadcast
– Reflects subjective opinion with better 

precision
• SSCQE more applicable than DSCQS for 

quality assessment of video
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• Comparatively, SSCQE and DSCQS 
results are statistically indistinguishable
– Within the limits of what could be compared

• Comparative study of SSCQE and 
DSCQS [PW03]
– M.H. Pinson and S. Wolf, “Comparing subjective video quality 

testing methodologies”, In SPIE Video Comms. And Image 
Processing Conference, pp. 146-157, 2003

• DSCQS improvement
– apply continuous (slider) score
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• Primacy and Recency Effect
1. Strong impression of distortion (Primacy)
2. Impression lingers and subsequently 

weights heavily in picture quality for a 
certain duration of time (Recency)

– SSCQE prone to this problem
– Uni-opinion score DSCQS has no problem

• Uneven changes with continuous score
– Sharp degradation with poor quality frames
– Slow recovery with good quality frames
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4.6.7 Pitfalls of different methods

• Contextual effect –
– Manifests according to operational context
– Dependency between sequences

• Perceived quality is at times influenced by previous 
sequences

– Ceiling or floor (range) effect
• Perceived quality does not properly match the 

range of quality score. 
– e.g., “excellent” is matched to “good” due to inadequate 

quality range for test materials
– Partially remedied with anchors
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• Joint investigation into contextual effect
– Labs involved

• CRC (communications Research Centre), Canada
• CCRTT (France Telecom)
• IRT (Institut für Rundfunktecknik), Germany
• SPTT (Swiss Telecom)

– Assessment method studies
• DSCQS
• DSIS
• Comparative
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CRC results for various anchor conditions in 
DSCQS, DSIS and Comparison methods
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Collapse (combined) results from CRC, CCETT, 
IRT and SPTT [ITU97] for various anchor 

conditions
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• CRC results
– Moderate contextual effect for all methods 

studied at most conditions except B1
• Combined results

– Slight contextual effect overall except DSIS 
under condition B3

• Noticeable difference between CRC and 
combined results
– Variations unavoidable, but acceptable if 

within limits



© CRC Press, Wu & Rao Eds, 2006

4.7 Objective Assessment Methods

• Automated assessment
– Without direct human input

• Classical analogue objective measures
– Peak Signal-to-Noise Ratio (PSNR)
– Mean Square Error (MSE)

• Analogue measures inadequate for digital 
pictures
– Different characteristics between digital and 

analogue pictures
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• For digital pictures
– Quality is source dependent
– Distortions are structured

• According to coding techniques
• Different objective measures required for 

digital pictures
– Should account for the HVS
– Able to handle a variety of picture types

• Natural, animated, synthetic, etc
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• Industrial requirements
– Full reference

• Assessment based on an original reference
– Reduced reference

• Assessment based on a partial/reduced original 
reference

– No reference
• No point of original reference for quality/distortion 

assessment



© CRC Press, Wu & Rao Eds, 2006

4.8 Summary

• Subjective Assessment
– Design test to answer question one is seeking

• Assessment method depends on
– Quality or Impairment measure
– Comparison or discrimination
– Double or single stimulus

• Selection of test material
• Selection of subjects

– Experts or non-experts
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5.1 Introduction

• Evaluation and Optimization of Picture 
Coding/Processing Systems
– Reliant on the Human Visual System (HVS)

• Determines visual distortion → perceived quality
• Subjective Assessment

– Most reliable for quantifying perceived quality
– Complicated and time consuming to 

implement
– Impractical for real-time applications
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• Objective Assessment
– Mathematical metrics

• MSE, PSNR, etc
• Simple and fast
• Unreliable predictors of perceived quality/distortion

– HVS based metrics
• Give a more consistent account of perceived 

quality and distortion
• Still image and video metrics

– Discussions  limited to video



© CRC Press, Wu & Rao Eds, 2006

5.2 Quality Factors

• What influences quality?
– Interest and expectation

• of services (DVD, VHS, mobile broadcasts)
• of programs (movie, sports, etc)

– Display type and properties
• CRT, LCD, Plasma, etc – affects contrast

– Viewing Condition
• Distance, size, resolution, etc
• Luminance from ambient lighting



© CRC Press, Wu & Rao Eds, 2006

• What else influences quality?
– Fidelity of reproduction

• Visible distortions (e.g. blurring)
• Enhancement (e.g. sharpness, clarity)

– Accompanying soundtrack
• Synchronization with video
• Clarity of audio

• “Interests” (of viewers) are the most 
difficult factor to account for
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5.3 Metric Classification

• Psychophysical – HVS modelling
– Quantify picture quality relative to HVS

• Simple models with contrast, colour modelling
• More complicated with neurological modelling

– Suitable for a wide range of video 
applications

• Engineering – signal analysis
– Quantify quality relative to structural features 

and/or distortions
– May consider HVS characteristics
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• Metric referencing types
– Full reference (FR)

• Frame by frame comparison between reference 
and test video

– Reduced reference (RR)
• Only some references are available

– No reference (NR)
• Only has test video for measurement

– Problem with distinguishing distortions from content

– FR, RR and NR are driven by applications
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Full-Reference Metrics

Compression/
Transmission

SystemVideo

Sender Receiver

Video

FR Quality
MeasurementFull reference information
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Reduced-Reference Metrics

Compression/
Transmission

SystemVideo

Sender Receiver

Video

RR Quality
MeasurementReduced reference information

Feature
Extraction
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Non-Reference Metrics

Compression/
Transmission

SystemVideo

Sender Receiver

Video

NR Quality
Measurement

NR Quality 
Measurement
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5.4 Pixel-Based Metrics

• The Classics
– Mean Square Error (MSE)

– Peak Signal-to-Noise Ratio (PSNR)

Temporal (t) and spatial (m,n) axis with maximum 
luminance/chrominance magnitude (I) 

∑∑∑ −=
t m n

ro tnmxtnmx
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• MSE measures picture difference
• PSNR measures picture fidelity
• Fast but limited approximation of 

perceived distortion/quality
– similar MSE/PSNR does not always equate to 

similar perceived distortion/quality
• Effectiveness of Pixel-based metric

– Tailored to specific type of distortion
• MSE good for additive noise, poor for coding 

artifacts
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Images polluted with high frequency noise (left) 
and band-pass filtered noise (right) having 

identical PSNR.
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5.5 The Psychophysical Approach

• Basic components of vision models
– Colour processing

• Colour space conversion
– Multi-channel decomposition

• Spatial and temporal frequencies
– Contrast sensitivity and adaptation

• HVS operates in contrast (difference) levels
• Affected by adaptation to luminance level

– Masking (facilitation)
• Suppression and enhancement of visual stimuli
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– Pooling
• Integration of (all) visual stimuli

– Spanning spatial, temporal and colour channels

Below: Block diagram of a typical HVS model
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5.5.2 Single Channel Model

• Single channel spatial filter
• Simple to implement
• Computationally efficient
• Modelling 

– Contrast Sensitivity Function (CSF)
– Distortion detection depends on some 

threshold criterion
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• Examples of CSF 
– For Image

• Mannos and Sakrison’s Modulation Transfer 
Function (MTF)

– Contrast sensitivity relative to spatial frequencies

– For Video
• Lukis and Budrikis’s spatio-temporal CSF model

– Incorporates masking through spatial-temporal activity 
weighting function
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5.5.3 Multi-Channel Model

Multiple channels
– Each channel deals with one frequency band
– Overall CSF is equivalent to the envelop of  

sensitivities of all channels
– Detection is independent in each channel 

when threshold is reached
• Relative to single channel models

– More complex in implementation 
– Better prediction performance
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Envelop of multiple CSFs
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• Some Multi-channel models
– Still images

• Visible Difference Predictor (VDP)
• Visual Discrimination Model (VDM)

– Video
• Just Noticeable Difference (JND) metric
• Moving Picture Quality Metric (MPQM)
• Normalization Video Fidelity Metric (NVFM)
• Continuous Video Quality Evaluation (CVQE)

– Designed for low bitrate video
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5.6 The Engineering Approach

• Specialized metrics
– Ad hoc techniques 
– Operates well within a predefined scope
– Good computational efficiency

• Some Full Reference (FR) metrics
– DCTune – for still images
– Perceptual Video Quality Measure (PVQM)
– Structural Similarity Index Metric (SSIM)
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• A Reduced Reference (RR) metric
– Video Quality Metric (VQM)

• Partial reference derived from extracted features

• No Reference (NR) 
– More specialized in application
– Used for measuring specific artifacts

• Blurring, jerkiness, ringing, clipping, blocking
– Blocking Impairment Metric (BIM)

• May operate in time or spectral domains



© CRC Press, Wu & Rao Eds, 2006

5.7 Metric Comparison

• Evaluation criterions
– Prediction accuracy
– Monotonicity

• ordering of pictures according to quality
– Consistency

• Number of outliers

• Quantified with regression analysis
– Correlation most commonly used
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5.7.2 Video Quality Experts Group

• VQEG evaluations
– Source materials

• Production and distribution videos
• 20 scenes with 16 test conditions

– DSCQS Subjective Assessment
– 2 test phases

• Phase I 
– Evaluated 10 metrics including PSNR
– Conclusion: no clear winner
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• Phase II
– Focused on digitally encoded video
– Covers wider range of distortions
– New sources and conditions 

• 128 sequences produced
– Evaluated 6 metrics including PSNR
– Each metric calibrated to reference videos
– Mean Opinion Score (MOS) correlation

• 70% MOS for PSNR
• 94% MOS for the best metric
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• Current VQEG activity
– RR and NR metrics evaluations

• for television and other multi-media services
• At low bitrates and small frame sizes
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5.7.3 Limitation of prediction 
performance

• Statistically factor
– Subjective scores rest on statistical relevance

• Large sample size needed
• Performance of metrics

– Phase I below expectation
• Correlation of MOS across all labs is 90-95%

– Indicative of the performance limit of metrics
• Best metric has correlation of 80-85%

– Phase II
• Best metric not statistically equivalent to MOS
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5.8 Conclusion and Perspective

• Quality metrics 
– Applicable in many fields

• e.g. broadcasting services
– Many issues and problems to be resolved

• Comprehensive evaluation of quality metrics
• Better modelling of human vision

– attention area (region of interest)
• Perceived quality in addition to picture fidelity

– Colour, sharpness, brightness, etc, affect quality
• What is the Impact of audio in video quality?
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6.1 Objective Picture Quality Scale 
for Image Coding

• Objective measures
– Useful for systematic design of coders

• Allows for rapid evaluation of coding performance
– Traditional scales (PSNR and MSE)

• Effective for qualifying random errors
• Ineffective for structured coding errors

– need to incorporate human visual system 
characteristics to objective measures
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• Picture Quality Scale (PQS)
– Defined as a measurement of difference 

between coded and original images
– Two representations of measurement

• 5 grade quality scale
• 7 grade deterioration or improvement scale
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6.1.3 Construction of a Picture Quality 
Scale

• PQS methodology
– Compute local distortion map fi[m,n]

• from distortion factor Fi

– Quality derived from combined distortions
• Via regression methods
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PQS components

Luminance 
coding error

Spatial frequency 
weighting error

Distortion 
factors F1 to F5

Principal Component 
Analysis
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• Luminance coding error
– Transform input to uniform scale

x[m,n] = k • xo[m,n]1/2.2

(Weber-Fechner Law approximation) with the 
xo[m,n] original image

– Computation of contrast adjusted error
e[m,n] = x[m,n] – xc[m,n]

xc[m,n] is the contrast adjusted compressed image
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• Spatial frequency weighting of errors
– Spectral sensitivity of contrast

S(ω) = 1.5e-(σ2ω2)/2 – e2σ 2ω2

σ=2, ω=(2πf )/60,  f 2= u2 + v2

u and v are horizontal and vertical frequencies
– High frequencies attenuation needed to 

account for CRT transfer function
– High frequency response is anisotropic
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– High frequency contrast sensitivity
Sa(ω) = S(ω) • O(ω,θ)

with 
O(ω,θ) = (1+e-β(ω -ωo)cos42θ)/(1+e-β(ω -ωo))

where
θ=tan-1(v/u), ωo=2πfo , β=8,  fo=11.13 cyc/deg

– Weighted error is contrast adjusted error 
filtered with spectral sensitivity function
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Random errors and disturbances

• Distortion factor F1
– from coding noise

ei[m,n] = xo[m,n] – xr[m,n]
f1[m,n] = (ei[m,n] * wTV[m,n])2

wTV[m,n] = 1/(1+(f/fc)
2)

fc=5.56 cyc/deg at viewing distance 4H (height)
– Computation of F1
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Random errors and disturbances

• Distortion Factor F2
– Due to incremental noise in slowly varying 

regions of images 
f2[m,n] = IT[m,n](eo[m,n] – sa[m,n])2

with sa[m,n] the spatial contrast sensitivity and IT[m,n]
threshold indicator for perceptual visibility

– Distortion F2
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Structured and localized errors and 
disturbances

• Distortion Factor F3 (blocking errors)
– Along horizontal (h) and vertical (v) edges

f3h[m,n] = Ih[m,n](ew[m,n] - ew[m,n-1])2

– Final distortion composed of horizontal and 
vertical factors
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Structured and localized errors and 
disturbances

• Distortion Factor F4 (correlated errors)
– Localized to a windowed area (w)

– Distortion F4
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Structured and localized errors and 
disturbances

• Distortion Factor F5 (masking)
– In horizontal (Sh) and vertical (Sv) directions

f5[m,n] = IM[m,n]·|ew[m,n]|·(Sh[m,n] + Sv[m,n])
– Final distortion

NK, number of 3x3 Kirsch edge k(m,n) ≥ K, K=400
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Principal component analysis

• Quantify combined distortion factors
– With covariance (COV) matrix

CF = COV(F) = E{(F - µF) (F - µF)T}
where F = (F1, F2, F3, F4, F5)

T is a vector of distortion 
factors with µF is the its mean

– Derivation of principal components (Z)
• Obtain eigenvectors of CF to determine individual 

contribution of distortion factors (F1 to F5) 
• De-correlation of eigenvectors of CF

– More effective and robust for quality assessment
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Computation of PQS

• PQS defined as linear combination of 
principal components

where bj is the partial regression coefficient of the 
Multiple Regression Analysis (MRA) 

• Regression analysis 
– performed on mean opinion score (MOS)

• collected through subjective experiments

∑
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PQS distortion factor images from a JPEG coded 
image with quality factor = 15

From left to right, top to 
bottom:

1. Original
2. f1[m,n]
3. f2[m,n]
4. .
5. f4[m,n]
6. f5[m,n]
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6.4.1 Visual Assessment Test

• Follow ITU-R bt.500 recommendations
– General experimental conditions
– Subjective scale
– Specific conditions

• Test image resolution 256 x 256 pixels
• 4 times image height viewing distance 
• Trained non-expert subjects
• Grading of quality in half step increments

– 9 subjects with 675 evaluations from 75 
encoded images
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Impairment scale (left) and experimental 
conditions (right)
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Test images. Clockwise from top left: Church, 
Hairband, Weather, Barbara and Cameraman
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• Coding engines
– DCT, Subband and Wavelet coders

• Collation of data
– Mean Opinion Score (MOS)

• Mean score for each of the 75 encoded images

• Data analysis
– Compute covariance matrix
– Compute eigenvalues and eigenvectors
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Covariance matrix (top) and eigenvalues with 
corresponding eigenvectors (bottom)

Principal 
component 

analysis

Multiple 
Regression 

Analysis
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• Observations of covariance matrix
– High correlation between F1 and F2

• Expected since both evaluate random errors
– High correlation between F3 and F2/F2

• Unexpected between blocking and random errors
• Appears to track one another as coding 

parameters change
• Observation of Eigenvalues

– 99.5% of energy concentrated in λ1, λ2 and λ3 
• Image quality mainly depends on F1, F2 and F3
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• Principal Component Analysis
– Transformation from Fi to Zi
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• Multiple Regression Analysis
– Two expressions

PQS = 5.632 – 0.068Z1 – 1.536Z2 – 0.0704Z3

PQS = 5.797 + 0.035F1 + 0.044F2 + 0.01F3 - 0.132F4 + 0.135F5

– Existing regression coefficient lack robustness
• Consequently, may not operated well outside test 

images
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Evaluation of PQS

• PQS matched well with MOS
– Better fit in mid-range MOS than extremeties
– Correlation coefficient ρ = 0.928
– For WMSE and MOS, ρ = 0.57

• Calculated with F1 alone
– PQS absolute error about the regression line

• Within 0.5 with 70% probability
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PQS vs MOS scatter diagram
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• PQS vs PSNR
– PQS captures differences missed by PSNR 

between JPEG and wavelet coders
• PQS Generality and robustness

– Some variations relative to coding technique
• PQS evaluation slightly dependent on coding 

techniques
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6.1.6 Key Distortion Factors

• Analyse distortion factors Fi
– Determine if individual Fi is a key distortion 

factor
• Overall distortion characterized by

– Z1: the amount of error
– Z2: the location of error
– Z3: the structure of error

• PQS a linear combination of 3 errors
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Correlation between PQS and MOS

• Different combination 
of PQS distortion 
factors and their 
associated correlation 
to MOS
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• Contribution of distortion factors
– F5 may operate by itself

• Perhaps for evaluating high quality pictures
– F1, F2 and F3 are insufficient by themselves

• Other distortion factors to consider
– Jagged distortions
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6.1.7 Discussion

• Limitations
– Assigning single quality score may not reflect 

picture quality clearly
• ITU-R bt.500 scales and methods

– 5 point scale lack resolution
– Need for anchor images

• Modelling human vision
– Importance of visual characteristics for quality 

metrics
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• Specialization of PQS
– Can calibrated to evaluate specific coding 

systems
• PQS of colour picture coding

– Evaluates colour distortions in addition to the 
usual distortions

• Applications for PQS
– Adaptive coders with quality feedback loop
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6.2 Application of PQS to a Variety 
of Electronic Images

• Categories of electronic media
– Conventional TV
– High Definition TV
– Extra high quality images

• Digital cameras, specialized image capture 
devices

– Handheld devices 
• cellular phones, PDA

– Computers (computer graphics)
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• Subjective picture evaluation
– Purpose of evaluation. Measure what?

• Fidelity, impairment or picture quality
– Picture spatial resolution and viewing distance
– Constancy of viewing distance

• Viewing distance as a function of display height
– Viewing angle between adjacent pixels
– Other viewing conditions

• Ambient light, noise, etc
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6.3 Various Categories of Image 
Systems

• Standard TV
– NTSC, PAL, SECAM

• HDTV and Super HDTV
– 1000 x 1600 pixel HDTV
– 2000 x 4000 pixel super HDTV

• Extra High Quality Images
• Cellular Phone type
• Personal computer
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Encoding parameters of digital TV for studios
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6.4 Study at ITU

• Some recent Recommendations
– J.143
– J.133
– J.147
– J.148
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Recommendation J.143

• Move towards standardization of 
assessment models
– Full Reference (FR)
– Reduced Reference (RR)
– No Reference (NR)

• FR 
– Compares between processed and reference
– Intended for TV standard evaluations
– May be deploy on handheld devices in future
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Concept of FR, NR and RR methods
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• NR
– Evaluates based on processed only
– No effective generic NR metric has been 

established
• RR

– Evaluation based on extracted feature of 
reference pictures

– Intended for monitoring TV transmission
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Recommendation J.133

• Measurement of MPEG-2 transport stream 
in networks
– For television transmission

Below: concept of J.133. PRC (program reference clock)
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Recommendation J.147

• Objective picture quality measurement 
method by use of in-service test signals
– Can operate in either FR, RR or NR modes

Below: Concept of J.147
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Recommendation J.148

• Requirements for an objective perceptual 
multimedia quality model
– Considers both audio and video

Below: Concept of J.148
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6.5 Conclusion

• Picture quality evaluation is a difficult task
– Subjectively - perception, viewing conditions, 

time factor, etc
– Objectively – Modelling/prediction issues

• PQS: an objective quality assessment
– For still images, but extendable to video
– Operates on 5 or 7 point scale
– Quantifies different types of distortions
– Correlates well with MOS
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• Moves in standardization bodies
– Moves towards perceived picture quality
– Enhancing picture evaluation tools

• According to applications
– FR, NR and RR metrics
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Introduction

• Properties of images
– Highly structured

• Due to strong spatial dependency of pixels
• Holds important information of objects

• Structural Similarity assessment
– Assumes the HVS is adaptive to structural 

information
– Consequently, quantifying structural similarity 

should account for perceived quality
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7.1 Structural Similarity and Image 
Quality

• Discussions centred on Full Reference 
(FR) metric
– Test image evaluated based on a reference

• Reference image is assumed to have perfect 
quality

• Classification of statistics based quality 
measures
– Error sensitive approach
– Feature/structural extraction
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• Error sensitive
– Error signal defined as the difference between 

test and reference image. e.g. MSE
– Assumes quality loss as a linear function of 

error signal
• Feature/structure extraction

– More attenuated to the HVS
– Distortion as a function of structural changes
– Measure structural deterioration



© CRC Press, Wu & Rao Eds, 2006

Original Einstein
Contrast stretched

MSE = 144
MSSIM = 0.9884

Mean shifted
MSE = 144

MSSIM = 0.9884

JPEG
MSE = 142

MSSIM = 0.6624

Blurred
MSE = 144

MSSIM = 0.6940

Impulse noise
MSE = 144

MSSIM = 0.8317
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7.2 The Structural SIMilarity (SSIM) 
Index

• Similarity measurement in 3 components
– Luminance, Contrast and structure

Below: Illustration of the SSIM system
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• Luminance similarity
– Mean intensity

– Luminance comparison l(x,y) of test and 
reference signals x and y, respectively, is

l(x,y) = l(µx,µx)

x = {xi | i = 1,2,…, N}, y = {yi | i = 1,2,…,N}

∑
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• Contrast similarity
– Remove mean intensity  x = x - µx

• Projects of vector x onto hyperplane
– Estimate contrast with standard deviation, σ

– Contrast comparison given by
c(x,y) = c(σx,σy)
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Projection onto hyperplane
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• Structural similarity
– Normalization by σ (range bounded to 0 - 1)
– Structural comparison

• Overall similarity measure
S(x,y) = f(l(x,y), c(x,y), s(x,y))
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• Similarity definition f(.)
– Must satisfy 3 conditions

• Symmetry: S(x,y) = S(y,x)
– Exchanging order of inputs should not affect output

• Boundedness: S(x,y) ≤ 1
• Unique maximum: S(x,y) = 1 if and only if x = y
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• Luminance definition

– C1 Controls instability when both µx and µy are 
close to 0

C1 = (K1L)2

– L is the dynamic range of pixel values (255) 
and K1 << 1, a small constant
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• l(x,y) is related to Weber’s law
• Contrast definition

where C2 = (K2L)2; C2 ≥ 0 and K2 << 1
2
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• Structural definition

where σxy is defined as
3
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• SSIM definition
SSIM(x,y) = [l(x,y)]α · [l(x,y)]β · [l(x,y)]γ

Where α > 0, β > 0 and γ > 0 are gains for 
individual components

• Setting conditions α=β=γ=1 and C3=C2/2
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• Distortion Contour
– Geometric projection of distortion in vector 

space
– Contours area represents error
– Distortion contours changes according to the 

profile of the error functions
• Shape, size/volume
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Magnitude 
weighted 

Minkowski

SSIM with 
component 
emphasis

SSIM with 
structure 
emphasis

Magnitude and 
component 
weighted 

Minkowski

Component 
weighted 

Minkowski

Distortion Contour
for Minkowski

error
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7.3 Image Quality Assessment 
Based on the SSIM Index

• SSIM more effective for localized 
evaluation
– Statistical features of images are highly non-

stationary
– Image distortion may be space-variant
– Focus of the HVS localized on an area

• Due to viewing angle of the foveal area
– Provides spatially varying quality maps

• Different areas with different quality levels
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• SSIM windows
– Squared 8 x 8 windows

• Leads to blocking in index map
– Weighted circular Gaussian window

• Alleviates blocking problem
• weights w = {wi | i = 1,2,…, N} bounded by

∑ =
=

N

i iw
1

1
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SSIM index maps of impulse corrupted Einstein 
image. a) square window. b) Circular window
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• Weighted mean

• Weighted standard deviation
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• Overall quality measure for SSIM

Where the sample weight Wj follows

– Weighting strategies
• uniform
• Region of interest (ROI)
• Foveal area

∑
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Practical evaluation MSSIM

• Evaluate the performance of SSIM
– Measure against subjective scores

• Source material
– 29 colour images from LIVE database
– Compressed with JPEG and JPEG2000

• JPEG bitrates 0.150 - 3.336 bpp
• JPEG2000 bitrates 0.028 – 3.150 bpp

– Generating 175 coded images
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• Subjective evaluation
– Quality assessment with 5 point scale

• Excellent, good, fair, poor and bad
– Subject numbers

• 13 to 20 for JPEG coded images
• 25 for JPEG 2000 coded images

– Screening for outliers in data
– Data normalized to range of 1 -100
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• MSSIM operation
– Calculation based on downsampled image

• ¼ resolution image

• Performance observations
– Colour components has little impact on 

MSSIM performance
– MSSIM more consistent with perceived quality
– Better prediction than PSNR
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Absolute error 
map

Original Buildings
image

Original Stream
Image

Absolute error 
map

JPEG2000 Coded
@ 0.1896 bpp

SSIM mapSSIM map

JPEG Coded
@ 0.2673 bpp
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Scatter plots of MOS vs model prediction
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• Quantitative performance evaluation
– Correlation coefficient (CC)
– Spearman rand order correlation coefficient (SROCC)

• MSSIM clearly better
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7.4 Discussions

• Structural Similarity measurement
– Different to traditional error sensitive method

• MSE/PSNR
– Measures perceived structural information

• Not perceived error
– Top-down approach 

• Mimics hypothesized overall HVS functionality
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• SSIM
– A practical application of the structural 

similarity philosophy
– Simple implementation
– Good prediction results

• Compared to PSNR
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8.1 Introduction

• Proliferation of digital services and 
applications
– Digital broadcast, multimedia, camera, etc
– Rely upon compression

• Leads to distortions
• Therefore need to quantify quality of services

• Traditional metrics
– MSE/PSNR
– Do not always reflect perceived quality or 

distortion
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• Vision Model based metrics
– Emulate mechanism of the Human Visual 

System (HVS)
– More accurate measurement of perceived 

quality/distortion
– Generalized metric

• Measures overall quality
– Specialized metric

• Measures specific impairment. e.g. blurring
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Impairment metrics

• Useful for studying the characteristics of 
individual impairment
– May lead to improvements of coding systems

• e.g. blocking impairment used to design de-
blocking algorithms
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8.2 Vision Modelling for Impairment 
Measurement

• Key element of vision model (above)
– Colour sensitivity
– Spatio-temporal contrast sensitivity
– Contrast gain control
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8.2.1 Colour Space Conversion

• Colour Spaces
– RGB, YCbCr, CIE XYZ, etc
– For typical video - YCbCr

• Opponent Colour Space (OCS)
– HVS operated in OCS

• Black-White (BW), Red-Green (RG), Blue-Yellow 
(BY) colour channels

– Conversion from YCbCr to OCS needed
– Y and BW channels have similar properties



© CRC Press, Wu & Rao Eds, 2006

• Sensitivity of colour channels
– BW and Y channels contains most information

• Possible for vision models to operate on colour 
pictures with luminance channel only with minimal 
error
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8.2.2 Temporal Filtering

• Temporal channels of HVS
– Sustained (low pass)

• Contains majority of information (and distortions) 
– Transient (band pass)

Below: 30 Hz filter coefficients 
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Temporal filters (30 Hz). Left: low pass. Right: 
band pass
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8.2.3 Spatial Filtering

• Spatial sensitivity of HVS
– 4 to 7 bands
– Frequency with 1 to 2 octaves bandwidth
– Orientation with 30 to 60 degrees bandwidth

• Practical implementation
– Steerable Pyramid Transform (SPT)

• 1 isotropic low-pass level
• 4 band pass levels

– 4 orientations (0o, 45o, 90o and 135o)
• 1 isotropic high pass level
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Steerable Pyramid Image of Claire
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• Contrast Sensitivity realizations
– Convolution through filter banks 
– Multiplier through weighting coefficients

• Simple but coarse approximation
• One weight for each frequency level
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8.2.4 Contrast Gain Control

• Accounts for masking phenomenon
– Consist of excitatory and inhibitory given by

where X[j,f,θ,k,l] is an SPT coefficient at specific 
frame (j), frequency (f), orientation (θ), vertical (k) 
and horizontal (l) location 

wi is the scaling constant and γi the saturation 
coefficient. Φ = {0o, 45o, 90o, 135o} with i = {1,2,3,4}
representing 4 contrasts mechanisms
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• Multiple contrast mechanism
– Needed to overcome the rapid saturation of 

individual mechanism
• Occurs when STP coefficient X[j,f,θ,k,l] is 

considerably larger than γi

4.4817, 7.3891, 12.1825, 54.5982γi

1, 1, 1, 1wi

0.41, 1.25, 1.2, 0.4097, 0.083, 0.001Ci (CSF)
Model Parameters
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• Isotropic low-pass band
– Raw magnitude of coefficient are often 

significantly larger than γi
– Apply mean subtraction to reduce magnitude 

energy
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8.2.5 Detection and Pooling

• Decimation factor
– Normalize sensor output for uniform 

presentation

– Xf = {1,4,16,64,256}
f
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• Difference and Pooling operator
– Squared difference between original (Ro) and 

processed (Rp)
– Summation over all variable domains 

N
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8.2.6 Model Parameterization

• Calibrate Vision Model Parameters
– Ensures proper operation of vision model

• Two approaches
– Vision research experiments
– Video quality experiment
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Vision research experiments

• Utilise synthetic test patterns →→
• Target specific aspect of the HVS

– e.g. contrast sensitivity
• Testing generally at threshold level

– Appropriate for threshold level assessment
– Unsuitable for quality assessment

• Modelfest data set
– Collection of test data for common stimuli
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Video Quality Experiments

• Utilize natural video sequence
• Two phases

– Collect subjective quality scores associated 
with test materials

• e.g. VQEG and ANSI T1A1 sequences
– Find model parameters which yields the best 

correlation between prediction and subjective 
data (Optimization process)
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• Optimization
– Cost function to measure correlation

• Spearman rank correlation (rs) 
– Measures the order of quality/distortion ranking between 

subjective data and prediction

– Two tier optimization 
• Coarse search for general search space
• Refinement stage to locate local optima
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8.3 Perceptual Blocking Distortion 
Metric (PBDM)

• Blocking distortion from DCT coders
– Seen as discontinuities at block boundaries
– Manifest in smooth regions of pictures
– Quantified with PBDM (below)
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• PBDM Components
– Blocking dominant region segmentation

• Vertical and horizontal edge detection
• Isolate blocking edges from ringing distortions
• Generate blocking map

– Quantify distortions in blocking region
• With vision model in section 8.2
• Covert distortion to Objective Blocking Rating 

(OBR) scale
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Clockwise from top left. Coded Claire frame, high 
pass SPT image, detected block edges and 

blocking map
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8.3.3 Performance Evaluation of the 
PBDM

• Test material
– ANSI T1A1

• 5 sequences
• Coded with MPEG-2 coder at 768 kbps, 1.4 Mbps, 

2Mbps, 3Mbps and 5 Mbps
– VQEG

• 5 sequences
• Coded with MPEG-2 coder at 3Mbps and 2Mbps 

(3/4 resolution)
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• Subjective assessment
– ITU-R bt.500 recommended test setup
– Double Stimulus Impairment Scale variant II 

(DSIS-II) method
– 5 expert test subjects

• Evaluation with 3 correlation measures
– spearman rank order correlation
– Pearson’s correlation coefficient
– Logistic fit
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MOS vs PBDM (left) and MOS vs PSNR (right)



© CRC Press, Wu & Rao Eds, 2006

PBDM Evaluation

• PBDM has excellent correlation to MOS
• PSNR correlation to MOS is poor
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5row1 sequence: MOS: 3.6; PBDM: 3.79; PSNR: 
32.99 dB
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Inspec sequence. MOS: 1.4; PBDM: 1.22; PSNR: 
33.00 dB
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8.4 Perceptual Ringing Distortion 
Metric (PRDM)

• Ringing distortion
– Related to Gibb’s phenomenon

• Quantization of transform coefficients leads to high 
frequency irregularities

Below: PRDM diagram
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• PRDM components
– Ringing region segmentation

• Initial classification of regions into 3 categories 
based on variance

– Smooth, complex and unknown regions
• Detection of smooth and complex regions

– Unknown regions are re-classified into either smooth or 
complex regions

• Boundaries of smooth and complex regions are 
seen as ringing

– Vision model detection and pooling
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8.4.3 Performance Evaluation of PRDM

• Test material
– Original sequences

• Mobile & Calender (MC)
• Table Tennis (TT)

– Both sequences coded with MPEG-2 at
• 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4, 5 and 7 Mbps

• Subjective Assessment
– DSIS-II
– 5 expert and 2 non-expert viewers
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• Results shows excellent correlation 
between PRDM and MOS

• PSNR correlation to MOS is also good
• DCT coder exhibit limited ringing artifacts
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MOS vs PRDM (left) and MOS vs PSNR (right)
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8.5 Conclusion

• Progress have be made in vision model 
based objective metric

• However, still more work ahead
– Limited understanding of HVS

• e.g. temporal masking
– Other impairment metrics

• Blurring, temporal fluctuation, etc
– Improve vision model for NR and RR metrics
– Application of impairment metrics for picture 

coding systems development
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9.1 Introduction

• Digital pictures are ultimately viewed by 
the Human Visual System (HVS)
– Regardless of operations or applications

• The HVS has limited sensitivity
– Unable to sense all changes in pictures

• Note: not all changes equate to distortions
– e.g. post processing, edge enhancement, etc

– Advantageous to consider HVS 
characteristics in picture coding systems
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Just-Noticeable Difference (JND)

• JND definition 
– The visibility threshold below which any 

change cannot be detected by the HVS 
• Factor affection JND

– local characteristics of images
– Viewing conditions
– Individual subject
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9.1.1 Single Stimulus JND Test

• Based upon simple stimuli
– Varying foreground stimulus over a uniform 

static background
• Follows Weber-Fechner’s Law

– Just noticeable foreground threshold 
increases with background luminance above 
10 cd/m2
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Factors affecting JND threshold levels

– Contrast Sensitivity (top left: CSF)
• JND varies with spatial and temporal frequencies

– Masking and facilitation (top right)
• JND dependent on the interactions between 

stimulus and its surroundings
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9.1.2 JND Tests with Real-World 
Images

• Test the JND levels relative to distortions
– i.e., xt = xo + h(xd - xo)

where xo, xd and xt original, distorted and test 
images with h the weighting factor

– Distortions could be of any form including:
• Blocking, ringing, blurring, fluctuations, etc

– JND level determined if 75% of observes 
could perceive the distortion (xd - xo)

– JND can be scaled, i.e., 2-JND, 3-JND, etc
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9.1.3 Applications of JND Models
compression & coding

quantization/rate control
motion search
pre-processing 
filtering of residues/coefficients
inter-frame replenishment

watermarking:
•authentication
•error resilience

edge enhancement
•optimum sharpness

other visual processing, for 
resource savings/allocation

bandwidth, computing power, memory,   
display/printing resolution 

and/or
performance enhancement

picture quality

quality/distortion metrics
•differentiation

near-JND
supra-JND

•quantification
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Existing Works with JND models

watermarking
Wolfgang, et al.‘99

self-embedment for error 
correction
unequal error protection

Jiang, et al.‘99
joint source-channel coding

visual 
communication

quantizer and rate control 
Watson’93
Hontsch & Karam’00,02,
Yang, et al.‘05

motion search
Yang, et al.‘03

inter-frame replenishment
Chiu & Berger’99

filtering of 
residues/coefficients

Yang, et al.‘05

image/video 
compression

synthesis
Ramasubramanian, et al.‘99

edge-enhancement 
Lin, et al.’05

enhancement/
reconstruction
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DCT subbands
Ahumada & Peterson’92, Watson’93, Hontsch & Karam’00,02, Zhang, et 

al.’05
wavelet subbands

Watson, et al.’93
pyramid subbands

Ramasubramanian, et al.’99

pixel domain
Chou & Li’95, Chiu &Berger’99, Yang, et al.’03

contrast masking
Tong&Venetsanopoulos’98, Zhang, et al.’05

temporal effect
eye motion: Daly’98
frame difference: Chou & Chen’96 
temporal CSF:for subbands- Daly’98, Watson, et al.’01

for pixel-Zhang’04
Visual-attention modulation

Lu, et al.‘05
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9.2 JND with DCT Subbands

• Step for determining JND for DCT 
subbands
– Base threshold

• Spatial CSF
– Luminance adaptation
– Contrast masking

• Intra- and inter-band masking
– Other factors

• Temporal and colour considerations
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• General formulation in DCT subband

where n and (i,j) are the DCT block and 
subband index

– ts-csf (n,i,j) Base threshold due to spatial CSF
– ∏ξ αξ (n,i,j) Elevation parameter due to 

adaptation and masking

∏−=
ξ ξα ),,(),,(),,( jinjintjins csfs
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9.2.1 Formulation of Base Threshold

• Base threshold defined as

where To(n,k,l) is the DCT domain CSF 
threshold and
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Modelling spatial CSF

• CSF threshold defined as 

– From van Nes and Bouman’s data (below) 

2
min )log(logloglog pffkTT −+=
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9.2.2 Luminance Adaptation 
Considerations

• Simple luminance 
adaptation formulation

X[n,0,0] is DC coefficient at nth

block
XL is the background 

luminance of DC band

ε

α 







=

L
lum

nn
X
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Threshold vs Luminance
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• Realistic adaptation model
– Needed due to non-monotonic characteristic

G is the maximum grey level with K1 and K2
fitted parameters
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9.2.3 Contrast Masking

• Intra-band masking (within subband)

with 0 ≤ ζ ≤ 1
• Inter-band masking considerations

– Classification of DCT coefficients 
– Classify subblocks into masking group
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Inter-band masking classification

1. Segregate DCT 
coefficients into low (LF), 
mid (MF) and high (HF) 
frequency groups

2. Calculated absolute energy 
of each group

3. Classify DCT block to 
masking group based on 
energy of HF and MF, 
(Emh), relative to predefined 
parameters µ1, µ2 and µ3

DCT Coefficient grouping
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Illustration of low (LM), medium (MM) and high 
(HM) masking classification of DCT subblocks

µ1=125, µ2=290 and µ3=900
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• Inter-band masking (across subband)

Eml absolute energy of mid and low frequency 
coefficients, δ1=1.125, δ1=1.25 and R=400 are 
model parameters
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9.3 JND with Pixels

• Considers
– Luminance adaptation
– Texture masking
– Spatial contrast sensitivity

• Spatial JND
P(i,j) = TL(i,j) + T t(i,j) - CLt(i,j) · min{TL(i,j), T t(i,j)}
with TL(i,j) and Tt(i,j) visibility threshold for luminance 

adaptation and texture masking.
0<CLt≤1(i,j) accounts for overlapping masking effect
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Temporal Masking Effect

Right: masking f(d) vs frame 
change (d)

• Modelled as
Pv(i,j) = f(a(i,j)) · P(i,j)

where f(a) is the temporal 
masking factor defined as

22
],[],[x),( 00 LLjixjijia

p −
+

−
=
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9.3.2 Conversion between Subband
and Pixel Based JNDs

• Pixel-wise JND derived from summation of 
subband JND

– Truncation of threshold t' avoids over 
estimation of smooth region

– Sign operator eliminates blocking effect
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• Estimation of subband JND
s(n,k,l) = [Ep(n) · z(k,l)]½

with Ep(n), the pixel-wise JND energy in N x N 
image neighbourhood

and z containing the parameter weights (below)
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9.4 JND Model Evaluation

• Noise shaping in image/video
– i.e., inject noise into images/videos and see if 

the noise level is noticeable
– Pixel domain noise shaping

x̃[i,j] = x[i,j] + q · Srandom(i,j) · P(i,j)
– Transform domain noise shaping

X[n,k,l] = X[n,k,l] + q · Srandom(n,k,l) · s(n,k,l)
Srandom takes ± 1 with P(i,j) and s(n,k,l) the pixel 

and transform domain JND 
q < 1 shapes the noise at perceptual lossless quality 
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Noise injected Cameraman images. MSE = 144. 
Left: DCT domain JND. Right: Pixel domain JND
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• For same total error energy 
– Accuracy of JND model improves with 

perceptual quality of noise-injected 
images/video

• For same perceptual visual quality
– Accuracy of the JND model dictates the 

amount of noise that could be embedded into 
images/video
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9.5 Conclusions

• JND models
– Pixel domain
– Transform (DCT) domain

• JND domain conversion
– from pixel to DCT and vice versa

• Evaluation of JND models
– Systematic JND-guided noise injection 

approach
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• Applications of JND models
– Perceptual quality/distortion metric
– Picture compression
– Data hiding
– Error concealment
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10.1 Introduction

• Objective Image Quality (OIQ) Metric
– Predict standard subjective quality ratings
– Substantial work carried out by VQEG 

• Supported by ITU and broadcast industry
• Work focused on quality measures for 

broadcasting applications
– Should consider enhancements as well as distortions
– Must be applicable along any point of broadcast chain

» Including points with no references
» Need for No-Reference Metric
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• No-Reference Objective Quality Metrics 
(NROQM)
– Application areas

• Video coding system development
• Embedded monitoring and control of quality
• Evaluation of picture display (coding) systems

– Evaluations picture features
• e.g. sharpness, contrast, distortions, etc

– Incorporates aspects of the HVS
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10.2 State-of-the-Art for No-
Reference Metrics

• Digital Video Quality (DVQ) Analyzer
– Measure blocking distortions in video

• Measurements account for motion and spatial 
masking

• Picture Appraisal Rating (PAR)
– Estimates PSNR from quantized data

• Tektronix’s PQM300
– Blocking distortion metric for video
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10.3 Quality Metric Components 
and Design

• Centred on feature measurement
• Two aspects to feature quantification

– Desirables which adds to quality
• Sharpness, contrast, etc

– Undesirables that impedes quality
• Impairments, e.g., blurring, blocking, etc
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Framework for the development of no-
reference metric (above)

• Train the model to predict subject responses
– Gather subjective data associated with images/videos
– Optimize model with test images/videos to produce 

the best prediction match with subjective data
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10.3.1 Blocking Artifacts

• Due to coarse quantization of DCT 
coefficients

• Occurs along block boundaries of blocks
• Need to differentiate between blocking 

edges and content edges
– Threshold measurements

• Assumes blocking edges below certain threshold
– Measure magnitude of discontinuities or
– Calculate extrapolated discontinuities of blocks
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Extrapolation for blocking detection

• (Er)j and (El)j are extrapolated values from 
adjacent blocks

• Discontinuity is the difference between all 
extrapolated values (Er)j and (El)j along the block 
boundary
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10.3.2 Ringing Artifacts

• Ringing definition
– Shimmering effect around high contrast edges

• Manifests as edge doubling
• Ringing and blocking not necessarily 

correlated
– Ringing depends on the strength of edges in 

images
– Blocking depends on presence smoothly 

varying areas
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Blocking and ringing artifacts
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• General ringing detection strategy
– Edge detection
– Spatial activity measurement around edges

• Usually based on the variance of a windowed area
– Classify ringing pixels relative to variance
– Examples metric

• Visible Ringing Measure (VRM)
– Also employ morphing operations for detection
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10.3.3 Clipping

• Truncation of pixel/coefficient magnitude 
due to the arithmetic precision process
– Leads to aliasing artifacts
– Introduced during picture coding and 

processing
• e.g. “peaking”, a sharpness enhancement process 

may lead to clipping when enhancement pictures 
overshoots its dynamic operational range 

• General clipping measures
– Quality the number of clipped pixels
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10.3.4 Noise

• Random variation in spatial and temporal 
dimension
– Introduced during transmission or picture 

generation
– May enhance or degrade picture quality
– Most noticeable in relatively smooth regions

• Appears as speckle in spatial domain
• Fluctuation in temporal domain
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• Noise measurement
– Generally reliant of variance

• To classify noisy regions
– Assumes noise to be considerably weaker 

then image signals 
• Isolated noise (or signal) with low pass or band 

pass filtering
• Quantify isolated noise 
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10.3.5 Contrast

• The difference in luminance between a 
pixel and its background

• Contrast dependent on
– Object in question, background, mean 

luminance and colour
• Simple Measurement of contrast levels

– Compute luminance histogram
– Calculated the difference (in luminance 

energy) between the upper and lower halves 
of the histogram
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10.3.6 Sharpness

• Quantify by the clarity of details in images
– Through preservation/definition of edges

• Sharpness depends on
– Resolution, content, contrast and noise

• Sharpness metric with local edge kurtosis
– Generate edge image

• Partition edge image into blocks
– Apply 2-D kurtosis to individual blocks

• Sharpness is the average 2-D kurtosis
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Edge detection and block assignment of Doll 
sequence for sharpness measurement
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10.4 No-Reference Overall Quality 
Metric (NROQM)

• Consists of components described in 
section 10.3
– Contrast, noise, clipping, sharpness, blocking 

and ringing
• Model Optimization

– Find a set of NROQM parameters that best 
match subjective data

– Incremental heuristic knowledge approach
• More precise calibration of metric components
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Operational flowchart of the NROQM
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10.5 Performance of the Quality 
Metric

• Evaluated with 65 sequences
– With various level of processing

• Coding, sharpness enhancement and noise 
reduction

– Derived from 3 sequences
• Doll, Dolphins and Lawnmowerman

– Subjective assessment
• 20 non-expert subjects
• 7-point scale comparative test

– Correlation: NROQM=0.85, PSNR=0.399
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Performance of NROQM
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• Additional evaluations
– With different sequences (Fade and Boat)

• Correlation: 0.848 (Fade) and 0.943 (Boat)
– Expert viewers

• Extreme enhancement of test material
– NROQM operating outside operational range

» Not calibrated for extreme enhancement 
• Resulting evaluation uncovers some deficiencies

– High clipping
– Sharpness in high contrast areas
– Over sharpening
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10.6 Conclusions and Future 
Research

• NR metric has practical applications
– picture quality and impairment measurement
– Quality assessment for coding system 

development
– Real-time monitoring and control of picture 

quality
• NROQM an example of NR metric

– Demonstrated operability/applicability
– Potential for improvement
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• Areas for future development
– Motion field smoothness
– Mosquito noise
– IBP frame drift
– Judder

• Unnatural modulation of smooth motion
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1.1 Formation

• VGEG formed in 1997
– To address standardized objective methods 

for picture quality measurement
– From ITU Tele-communication and Radio-

communication sectors 
• ITU-R SG-11
• ITU-T SG-12 and SG-9
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11.2 Goals

• To develop recommendation for objective 
picture quality assessment
– Basic requirement

• Objective metric should provide adequate 
equivalent subjective assessment of picture quality

• Must be effective for evaluating standardized video 
coding schemes, e.g. MPEG-2, H.263, etc

– At various bitrates from 768 kbps to 36 Mbps
– At varying spatial and temporal information

» interlaced/non-interlaced, PAL/NTSC, etc
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• Plan
– Model verification process

• Solicit objective models to be include for 
verification leading to recommendation

• Develop of objective and subjective test plan
• Objective test for evaluating proposed models
• Subjective test for acquiring subjective data
• Analyze objective test results and subjective data

– Present report to ITU
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11.3 Phase I

• Selection of source material
• Selection of test conditions (HRC)

– e.g. coding rate
– Hypothetical Reference Circuits (HRC)

• Subjective test
– Follows ITU-R bt.500 recommendations

• Double Stimulus Continuous Quality Scale 
(DSCQS) method

– 20 sequences x 16 HRCs
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• Subjective test (continue)
– Undertaken is 4 parts

• 50 Hz Low and High Quality
• 60 Hz Low and High Quality

– Run in multiple laboratories
• CRC (Canada), RAI (Italy), CCETT (France), NHK 

(Japan), DCITA (Australia), Berkom (Germany) 
and FUB (Italy)
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• Objective test
– Ran by individual proponent of each model
– Proponent results (10%) verified by 

independent labs
• CRC (Canada), FUB (Italy), IRT (Germany) and 

NIST (USA)
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Proponents of objective measures

• [po] Peak Signal to Noise Ratio (PSNR)
• [p1] CPqD (Brazil)
• [p2] Tektronix/Sarnoff (USA)
• [p3] NHK/Mitsubishi Electric Corp. (Japan)
• [p4] KDD (Japan)
• [p5] EPFL (Switzerland)
• [p6] TAPESTRIES (European Union)
• [p7] NASA (USA)
• [p8] KPN Research (The Netherlands)/Swisscom CIT 

(Switzerland)
• [p9] NTIA/ITS (USA)
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• Comparison metrics
– Measures a number of attributes between 

subjective and objective data
• Prediction accuracy

– Correlation measures, e.g. Pearson’s, Spearman, etc
• Monotonicity
• Consistency 
• Variation 
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Phase I conclusions

• No objective measurement system could 
replace subjective testing

• No one objective model outperforms the 
other in all cases

• Objective assessment methods have 
improved considerably,  but

• No method for ITU recommendation can 
be made

• Data set generated is uniquely valuable
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11.4 Phase II

• More discriminating than Phase I test
– More precise area of interest
– Focused on secondary distribution of digitally 

coded television quality video
– Two experiments 

• 525-line and 625-line video covering a wide range 
of qualities

– Proponents required to submit video 
calibration parameters

• Spatial and temporal registration, gains, etc
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• Laboratories
– 525-line test - CRC (Canada) and Verizon

(USA)
– 625-line test - FUB (Italy)

• Proponents
– 10 initially
– 8 began testing
– 6 completed testing
– PSNR included as baseline metric
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• Final proponents
A. NASA (USA)
D. British Telecom (UK)
E. Yonsei University/Radio Research Lab./SK 

Telecom (Korea)
F. CPqD (Brazil)
G. Chiba University (Japan)
H. NTIA/ITS (USA)
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• Results
– 625 and 525 results were similar, not identical
– For 525 

• Models D and H performed better than other 
models

• D and H statistically equivalent in performance
– For 625

• Models A, E, F and H are statistically equivalent in 
performance and are better than remaining models

– PSNR performance is mid range
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• ITU directions
– Draft standard for estimating perceived video 

quality
• 4 model following VQEG Phase II results

– British Telecom
– Yonsei University/Radio Research Lab./SK Telecom
– CPqD
– NTIA/ITS

– Eventually recommend only one normative full 
reference method
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11.5 Continuing Work and 
Directions

• Continuing work 
– with Full Reference Metric

• Future 
– Reduced Reference Metric
– No-Reference Metric
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11.6 Summary

• VQEG
– Purpose

• Develop a unified an objective video quality 
measurement method for standardization

– Existing work
• Phase I and II test

– has a number of proponents
– for applications in broadcasting
– Produced valuable data for future quality metric work

– Future
• Unified FR metric, work in NR and RR metric
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12.1 Introduction

• Video encoders
– Traditional approach with MSE type metric 
– HVS based utilizing perceptual metric

• MSE metric
– Fast computation, simple implementation 
– Poor correlation with perceived distortion

• Perceptual metric
– Good correlation with subjective data
– Computationally intensive
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Performance of HVS (left) and non-HVS (right) 
based objective metrics



© CRC Press, Wu & Rao Eds, 2006

12.2 Noise Visibility and Visual 
masking

• Lossy coding systems
– Introduce distortion to pictures
– So, how to minimize visible distortions?

• Characteristics of distortions
– Structural in appearance

• Manifestation has consistent structure
– Appearance dependent on image content

• Certain area of images may hide distortions
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Visibility of noise. Left: Gaussian (MSE: 27.1). 
Right: DCT quantization (MSE: 21.3)



© CRC Press, Wu & Rao Eds, 2006

• Block based DCT coders
– Used for video coding (MPEG standards)
– Blocking distortions prominent

• Due to quantization

• Discrete Wavelet Transform (DWT) coder
– No blocking distortions
– Ringing distortions at low bitrates
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Images coded at 0.25 bpp. Left: DCT (JPEG). 
Right: DWT (JPEG2000 )
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12.3 Architectures for Perceptual 
based Coding

• The Rate-Distortion (R-D) Curve (Below)
– Regulates distortions relative to bitrates
– Profile of R-D curves are content dependent

• i.e., different picture have different R-D curve
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MPEG-2 coder with 2 possible application points 
(shaded boxes) for R-D optimizer

• Estimated R-D
– Look-ahead technique
– Outside coding loop

• Computed R-D with 
multi-pass coding 
scheme
– 1st pass for R-D curve
– 2nd pass for coding
– Inside coding loop
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• Latency issue
– Estimated R-D outside coding loop has high 

latency
• may not cope well with rapidly changing content

– Computed R-D inside coding loop has low 
latency

• Distortion levels can be controlled by in-built 
distortion metric

• Coding rate is then adjusted to the desired quality 
level with the R-D curve
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12.3.1 Masking Calculations

• Masking regions
– High contrast edges

• e.g., textured area such as grass
– Occasionally around visually salient features 

with broad frequency coverage
• Some salient features attract more visual attention

– Therefore, special treatment required to minimize 
visibility of artifacts
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• Spatio-temporal masking
– Laplacian pyramid decomposition of frames

• Into different resolutions, i.e., ½ and ¼
– Sum of energy across local spatio-temporal 

frequency and orientation bands
• Regions of high saliency removed from 

calculations
– Calculate the local contrast 

• Sum of local energy normalized by the maximum 
luminance
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Maskability model with salient feature rejection
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• Saliency rejection
– Construct histogram of local contrast energy 

for each frame
– Region above percentile threshold are 

rejected 
• Threshold is a free parameter set to 75% 

• Temporal saliency considerations
– Object based with motion tracking
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Flowergarden sequence (Left) and its masking 
map (right). Bright area indicates low masking.
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12.3.2 Perceptual Based Rate 
Control

• Perceptual metric in rate control at:
– Macroblock level (block size limitation)

• Only provides relative estimates of distortions
– Picture level (pre-assigned bitrate for frame)

• Good account of visible distortion
• Uniform distribution of distortion over frame

– GOP level (pre-assigned bitrate for GOP)
• Utilize full vision model, i.e., temporal mechanism
• Uniform distortion distribution over GOP
• With VBR enables constant quality video
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Macroblock bit allocation with the Visual 
Discrimination Model (VDM)
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Example of vision based coding with DVC 
(incorporating VDM) compared to MPEG TM5

Baseline 
Encoder-TM5 DVC Encoder

DVC EncoderBaseline 
Encoder-TM5
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• Look Ahead R-D curve
– Estimate R-D curves based on sample videos

• Acquire distortions of sample videos at various 
bitrates (quantization level)

• Estimate R-D curve for different video profiles
– i.e., different GOP 

– Interpolate points in curve for R-D estimation
– Generally used as the first pass for a multi-

pass coding scheme
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Illustration of Sarnoff look-ahead R-D curve 
estimation (JRA: Joint Rate Allocation)
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• Sarnoff Look-Ahead rate allocation
– Real-time implementation
– Picture level rate allocation
– Operation depends on frame type

• i.e., I-frame, P-frame or B-frame
– Histogram approach
– Utilise Visual MSE to compute error

• Visual MSE = MSE/(Visual mask)
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12.4 Standard-Specific Features

• Block sizes (block based coding)
– Blocking artifacts

• Due to coarse quantization
• Dependent on picture content 

– More visible in smooth areas than highly textured areas
• Dependent on motion activity and prediction
• Affected by viewing distance (visual acuity)

– Blocking diminishes as viewing distance increases 
• Block size affects visibility of blocking effect

– H.264/MPEG-4 AVC uses 4x4 DCT block



© CRC Press, Wu & Rao Eds, 2006

Impact of quantization on blocking distortion
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Visibility of blocking artifacts in smooth and 
textured areas
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12.4.2 In-Loop Filtering

• For de-blocking
– Reduces visibility of block
– Eliminates the need for post-filtering at 

decoder
• De-blocking filters used in

– H.261, H.263 and H.264/MPEG-4 AVC
• Reduction of blocking in H.264/MPEG-4 

AVC attributed (in part) to
– 4x4 DCT and de-blocking filter
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12.4.3 Perceptual-Based Scalable 
Coding Schemes

• Scalable coding
– Multi-layered with one base and additional 

enhancement layers
– Scalable modes

• Temporal/spatial resolutions and SNR
– MPEG-4 Fine Granularity Scalability (FGS)

• DCT coefficients encoded in layers
– Allows precise rate control

• Applications in video streaming
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12.5 Salience/Maskability Pre-
Processing

• Pre-filtering can be adapted to any coding 
system

• Saliency rejection 
– Histogram strategy
– Coherence of local motion

• Targets local regions with same/similar motion 
speed and direction 

– indicative of coherent moving objects
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Pre-processor based maskability model with 
salient feature rejection
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Illustration of pre-filtering. Left: MPEG-2 TM5 
coded images. Right: DVC coded with pre-filtering
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12.6 Application to Multi-Channel 
Encoding

• Multiplexed video 
streams
– 8-12 programs in a 30 

Mbps transport stream
– Suited for Look-Ahead 

rate control scheme
• Join Rate Allocation

(JRA) equalizes 
distortions over all 
video streams

Multi-channel encoder
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13.1 Introduction

• Redundancies in picture data
– Statistical

• Correlation between pixel data
– Psychovisual

• Information which the eye and mind cannot see
• Removal does not impede image quality but
• Leads to better compression performance
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Human Visual System (HVS) Based Coders

• Common implementation through
– Quantization (most common)
– Coefficient weighting

• Performed prior to quantization
– Post- and/or pre-filtering
– Region Of Interest (ROI) coding

• Identify visually significant region and encode at 
higher quality
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• Some HVS Based coders
– Watson’s DCTune
– Safranek and Johnton’s Subband Image 

Coder
– Höntsch and Karam’s APIC
– Chou and Li’s Perceptually Tuned Subband

Image Coder
– Taubman’s EBCOT with visual masking
– Zeng et al’s Point-Wise Extended Visual 

Masking
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13.2 A Perceptual Distortion Metric 
Based Image Coder

• Utilize EBCOT (Embedded Block Coding 
with Optimized Truncation) architecture
– Modular Rate-Distortion (R-D) component

• Any distortion metric may be embedded in the R-D 
function

– Perceptual distortion metric replaces MSE

– Bitstream compliance maintained
• No additional side information
• No other alteration to bitstream
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13.2.1 Coder Structure

• Basic EBCOT framework (below)
– transform

• 5 level transform
• Bi-orthogonal 9/7 filters



© CRC Press, Wu & Rao Eds, 2006

13.2.2 Perceptual Image Distortion 
Metric (PIDM)

• Contrast Gain Control (CGC) (above)
– Frequency transform (with 9/7 filter)
– CSF weighting
– Masking + detection
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13.2.3 EBOCT Adaptation

• Perceptual distortion calculation
– Localized to individual block
– Each bitplane has n number of coding passes

• Hence up to n number of quality layers
• Perceived distortion calculated between layers

• Neighbourhood size for masking
– Variable size neighbourhood

• Dependent on resolution level
– The higher the resolution, the larger the window
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Masking neighbourhood size. Left to right: level 2,  
level 3 and level 4.
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13.3 Model Calibration

• Calibrate vision model responses to 
subjective data

• Test material
– 11 source images
– Distorted derived from bitplane filtering of 

source images in the transform domain
• Covers a wide range of quality levels
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• Subjective test
– DSCQS method from ITU-R bt.500
– 3H viewing distance
– 14 to 19 subjects 

• Optimization of model paramters
– In three stages

• Parametric, algorithmic and manual optimization
– Correlation measure

• pearson’s correlation coefficient
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• Parametric
– Brute force search
– Coarse approximation of model parameters

• Algorithmic
– More detail search for optimum parameters

• Manual tuning at coder level
– Parameters are tuned relative to performance 

of encoded images
• Requires subjective input
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Illustration of manual optimization

• Necessity of manual optimization
– Subjective data provide overall quality of images
– PIDM operates at coefficient/block level and require 

more refined subjective data
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13.4 Performance Evaluation

• Comparison with benchmark coders
– EBCOT with MSE
– EBCOT-CVIS

• Taubmans’s spatial masking model
– EBCOT-XMASK

• Zeng et al’s spatial masking model

• Assessment material
– 8 images of which 5 have been used for 

model calibration
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• Methods of evaluation
– Objective

• PSNR and Universal Image Quality Index (UIQI)
– Subjective

• Randomized comparative test
– Dichotomous 2 images with 2 choices: left or right
– Trichotomous 2 images with 3 choices: left, right or either

• Range of evaluation
– Each image is coded to 4 bitrates

• 0.0625 bpp, 0.125 bpp, 0.25 bpp and 0.5 bpp
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Objective Results

• Overall 
– PSNR

• Best performer EBCOT-MSE (no surprise)
• EBCOT-PIDM 2nd and EBCOT-CVIS 3rd

• Worst performer EBCOT-XMASK
– UIQI

• All metrics about the same except for EBCOT-
XMASK

– Worst performer below 0.25 bpp
– Best performer at 0.5 bpp
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Subjective Results

• Overall
– PIBM vs CVIS (13 subjects)

• Dichotomous: 81% of test images for PIBM 
• Trichotomous: 66% of test images for PIBM, 

– PIBM vs XMASK (7 subjects)
• Dichotomous: 78% of test images for PIBM
• Trichotomous: 78% of test images for PIBM, 

– PIBM vs MSE (15 subjects)
• Dichotomous: 72% of test images for PIBM
• Trichotomous: 57% of test images for PIBM
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13.5 Perceptual Lossless Coder

• Encodes images at imperceptible level
– Between coded and original 
– Constant quality coder at the Just Not-

Noticeable Level (JNND)
• Visual Pruning Function (VPF)

– Equivalent pre-filtering operator that removes 
visually redundant information

– Operates in the spectral domain
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13.5.1 Coding Structure (below)

• EBCOT with embedded VPF
– Utilize similar vision model as the PIDM
– Perceptual distortion of vision model 

calibrated to JNND threshold  
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13.5.2 Performance Analysis

• Compression performance
– Compared with 2 benchmark coders

• LOCO (LOw COmplexity coder) 
– JPEG-LS core

• nLOCO (near-lossless LOCO)
– With maximum pixel difference of 2 (d=2)

• Subjective Test for indifference
– Trichotomous test

• Randomized presentation of images
• 2 images, 3 choices: left, right or identical
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Compression performance of PLC and benchmark 
coders

• PLC is ahead
– Up to 50% more 

compression than 
LOCO

– Up to 10% more  
compression than 
nLOCO
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Subjective results. Left: PLC vs Original. Right: 
PLC vs nLOCO
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• Raw subjective results
– Apparently PLC is better than original

• Neutral indicative of differences
• Preferred selection favours PLC
• Perhaps PLC has an enhancement effect

– PLC and nLOCO are similar
• Neutral selection is not indicative similarity, but
• Preferred selection is split almost evently

– Raw preference is 5.5% apart



© CRC Press, Wu & Rao Eds, 2006
Original PLC



© CRC Press, Wu & Rao Eds, 2006
PLC nLOCO



© CRC Press, Wu & Rao Eds, 2006

13.6 Summary

• Perceptual Image coding
– Enables further compression gains over pure 

statistical coders
– Allows for graceful degradation of perceived 

quality relative to bitrate constrains
– Enables constant (perceived) quality coding

• e.g. constant quality at the JNND level (PLC)
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• PIDM Coding structure
– Start-of-the-art EBCOT architecture

• Hierarchical progressive bitplane coder
• Scalable in rate and resolution

– PIDM used for R-D function for rate control
• Measures perceived distortion resulting from 

bitplane encoding
– Fully bitstream compliant with 

EBCOT/JPEG2000
• No additional side information needed
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14.1 Foveated Human Vision and 
Foveated Image Processing

• Anatomy of the human eye
– Photoreceptor: Cones and Rods

• Populates the retina (focal point fovea)
• Non-uniform distribution of photoreceptors in retina
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Distribution of rods, cones and ganglion cells 
relative to eccentricity (central point of fovea)

• Cone concentrates 
falls off sharply from 
fovea

• No rods in fovea
• No photoreceptor in 

the area occupied by 
the optic nerve (blind 
spot) 
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• Basic operation of the eye
– Light is captured by photoreceptors

• Cones responsible for photopic vision
• Rods handle scotopic vision

– Ganglion cells integrates visual stimuli 
captured by photoreceptors

• Some preliminary processing of visual signals
– Integrated signal transmitted to cortex via 

visual pathways
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• Foveated image processing and coding
– Focused on the fovea

• Point of fixation
– Major redundancies in peripheral vision

• Improve compression
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Goldhill Image. a) original. b) foveated
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14.2 Foveation Methods

• Geometric methods
– Three approaches

• Direct application of to uniform resolution image
– Underlying image is mapped onto new coordinate 

system (1 to 1 mapping)
• Superpixel method

– Pixels are grouped and mapped into superpixel block 
(many to 1 mapping)

• Foveated retinal geometry
– Image mapped to foveal sensor grid 
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Foveation coordinate transform. a) original images. 
b) transformed image
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Longmap superpixel representation
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Foveated sensor distribution
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14.2.2 Filtering Based Methods

• Foveal processing
– Shift-invariant low-pass filtering

• Cut-off frequency determined by retinal sampling 
density

• Foveation implementation
– Multi-channel Filter banks

• Decomposition into different spectral bands
• Foveal image obtained with space-invariant 

combination of spectral images
– dependent on retinal sampling density
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Filter bank foveation method

• Filter design considerations
– Low-pass, band-pass or both
– Filter type: IIR or FIR
– Characteristics

• Band size, ripple size
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14.3.2 Multiresolution Methods

• Image projected into different resolutions
– Combines both geometric and filtering-based 

methods 
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14.3 Scalable Foveated Image and 
Video Coding

• Scalable video coding
– Compressed stream layered to different 

quality levels
– Quality tailored to user requirements
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14.3.1 Foveated Perceptual Weighting 
Model

• Contrast sensitivity measured as a 
function of retinal eccentricity
– Dependent of viewing distance (below)

• Assuming constant fixation point (u), as viewing distance 
increases (v), angle of eccentricity (e) decreases
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Normalized contrast sensitivity
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• Foveal weights in the wavelet domain
– Determine visible threshold in the wavelet 

domain
• Devise error model from data fitting of threshold 

level noise experiments in the wavelet domain
– Formulate error detection function from error 

model
– Adjust error detection function according to 

contrast sensitivity
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Wavelet domain weighting mask of a signal 
foveation point
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14.3.2 Embedded Foveation Image 
Coding (EFIC)

• EFIC components
– Wavelet transform
– Foveal weighting (transmitted to decoder)
– SPHIT encoding (modified)
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Zelda Image

a) SPIHT @ 512:1
b) EFIC @ 512:1
c) SPIHT @ 128:1
d) EFIC @ 128:1
e) SPHIT @ 32:1
f) EFIC @ 32:1
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14.3.3 Foveation Scalable Video 
Coding (FSVC)

• Scalable coding
• I- and P-frame only
• EFIC for I-frame
• MC/DPCM for P-

frame
– Used previous original 

and decoded frame for 
prediction



© CRC Press, Wu & Rao Eds, 2006

Left: Consecutive frames of Silence sequence. 
One I-frame followed by P-frames. Middle: FSVC 

@ 200kbps. Right: Foveation points. 
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Frame 32 of salesman sequence coded with 
FSVC. a) original. b) 200 kbps. c) 400 kbps. d) 800 

kbps. 

200 Kbps

400 Kbps

Original

800 Kbps
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14.4 Discussions

• Principles of foveal operation
• Foveation methods

– Geometric, filtering-based and mulitresolution
• Scalable foveated image/video coding

– Foveated perceptual weighting model
– EFIC (embedded foveation image coding)
– FSVC (Foveation scalable video coding)
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15.1 Introduction

• Proliferation of applications that rely on 
compression systems
– Video-conferencing, video over internet, etc

• Coding systems introduces distortions
– Visible artifacts degrades quality of services
– Prevalent at low bitrates

• Picture processing for distortion reduction
– Pre-processing at encoding end
– Post processing at decoding end
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15.2 Image Compression and 
Coding Artifacts

• Transform based coding
– Employ data transformation

• Reduces redundancies
– Popular due to 

• Near-optimal decorrelation and energy compaction
• Fast implementation

– Recommended in international standards
• DCT in JPEG, MPEG, H.26x
• DWT in JPEG2000



© CRC Press, Wu & Rao Eds, 2006

• Distortions in transform based coders
– Appears primarily at low bitrates
– Blocking artifact most prominent in DCT
– Ringing and blurring artifacts for DWT

• Blocking Artifact (grid noise)
– Discontinuities between adjacent blocks
– Appears on block boundaries
– Side effect of quantization operations

• When mid and high frequency DCT coefficients are 
nullified
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Coded Lena image at 0.22 bpp. Left: JPEG. Right: 
JPEG2000
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• Ringing artifacts
– Spurious oscillation in 

the vicinity of major 
edges (at low bitrates)

– Similar to Gibb’s 
phenomenon

Left: example of ringing for 
1-D signal
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15.3 Reduction of Blocking Artifacts

• Important part of coding system
– Implemented in H.264/MPEG-4 AVC

• Application of de-blocking filters
– Mostly at post-processing end
– May also be employed at the encoding end in 

video coders, e.g., H.264/MPEG-4 AVC
• Simple low pass filtering in spatial domain

– Reduces blocking, may lead to strong blurring
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Simplified block diagram of H.264/MPEG-4 AVC
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• Projection Onto Convex Set (POCS) filter
– Applied at the decoding end
– Iterative filter
– Blurs images excessively
– Deals with pixel straddling the block boundary

• May lead to new discontinuity between each 
altered pixel and adjacent pixels
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Left: General arrangement of picture coding 
systems. Right: General structure of POCS filters
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15.3.1 Adaptive Postfiltering of 
Transform Coefficients

Left: Illustration of the 
implementation of  
adaptive postfiltering
of DCT coefficients

• HVS considered and 
modelled by the MTF
– Operationally, AC 

coefficients weighted 
by MTF
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Modulation Transfer Function (MTF). Measures 
visual sensitivity relative to spatial frequencies 
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• Calculation of Block activity
– Sum of AC coefficients normalized by local 

background luminance (Weber’s Law)
• Classification of blocking activity

– Classified into low or high activity blocks
• Based on some pre-defined threshold value

• DCT block shifting
– Forms new stationary estimates of DCT 

coefficients for weighted filtering
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Illustration of block shifting 
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• Adaptive weighted filtering
– Weighting relative to local activity

• Low activity 
– 5x5 filtering window
– Uniform filter weights 

• High activity –
– 3x3 filtering window
– Filter weights: 3 for central coefficient and 1 for all others
– Avoids excessive blurring of high activity block
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• Quantization constrains
– Projects filtering to de-quantized domain

• i.e. ensures quantizer output stays within the post-
filtering boundary
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15.3.3 Simulation Results

• Evaluations 
– 9 images
– Compared with 5 de-block algorithms

• POCS and 2 POCS variations
• H.263 and MPEG-4 standard de-block filters
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• Evaluation methods
– PSNR
– GBIM (Generalized Block Impairment Metric)

• Results
– Proposed method superior to other algorithms
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Original JPEG coded H.263 post-filter MPEG-4 post-filter

POCS-Z POCS-Y POCSP Proposed
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15.4 Reduction of Ringing

• Problem with de-ringing
– Blurring of image content
– No enhancement edge sharpness

• Due, in part, to the difficulty of distinguishing 
between content edges and ringing distortion

• Manifestation in DCT and DWT coders
– More prominent on DWT coders
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Left: Lena image coded by MPEG-4 coder. Right: 
left image after de-ringing
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15.5 Summary

• Post-processing for applications in picture 
coding and processing
– Reduction of coding distortions

• Blocking for DCT
– De-blocking filters

» Adaptive postfiltering of transform coefficients
• Ringing primarily for DWT
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16.1 Introduction

• Color bleeding in DCT coders
– Appears as a smearing of color between 

highly contrasting chrominance
– May lead to secondary color ringing effect
– Visually objectionable

Left: Illustration of color
bleeding
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16.2 Analysis of the Color Bleeding 
Phenomenon

• Manifestation of color bleeding
– Occurs when boundaries of chroma channels 

overlaps inappropriately
• Resulting in chrominance mismatch 

– Initiated by decimation and quantization of 
chrominance components

• Coarse quantization of AC bands
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16.2.1 Digital Color Video Formats

• YUV colour space (YdCbCr digital form)
– Often employed in color picture coding
– Y contains the luminance component
– U and V the chrominance channels
– Human vision is more sensitive to luminance 

than chrominance channel
• Little or no quality with sub-sampling chroma 

channels
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Chrominance sub-sampling strategies in YdCbCr
color space
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16.2.2 Color Quantization

• Quantization account for visual sensitivity
– Sensitivity varies with spatial frequency
– Different sensitivities for luminance and 

chrominance channels
• Chroma channels less sensitive

– Higher quantization for Cb and Cr

Luminance (left) and chrominance (right) quantization matrices
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16.2.3 Analysis of Color Bleeding 
Distortion

• Ringing in sub-sampled chroma channels 
propagates when up-sampled to full 
chroma resolution
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16.3 Description of the Post-
Processor

• Major components
– Detection
– Classification
– Filtering

Left: Illustration of post-
filtering process
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• Color bleeding detection
– Variance computation in Cb and Cr

• 4 x 4 windowed block
• Computes activity level in chroma block 

– For chroma edge detection

– Luminance edge detection
• For vertical and horizontal edges
• Used as additional reference for chrominance 

edges
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• Computation of code block pattern
– Classification of block pattern for filtering
– Partitioning of 8 x 8 code block

• To 4 quadrants (4x4 sub-block)
– Binary flag for each block set if

• Strong chrominance edge exist
• Luminance edge detected

– Pattern generated according to 4 flags
• 16 possible patterns
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Left: 4 quadrants of 8x8 code block. Right: Pattern 
configurations for code block classification



© CRC Press, Wu & Rao Eds, 2006

• Filtering process
– Ringing related color bleeding

• Smoothing pixels around the target pixel (target 
pixel untouched)

• Smoothing operation applied to all color channels
– Blocking related color bleeding 

• Neighbourhood averaging (chroma channels)
• Intra-filtering 

– Averaging of corrupted pixels identified by pattern 
configuration
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16.4 Experimental Results –
Concluding Remarks

• Noticeable improvement with post-
processing
– Visual reduction of color bleeding
– supported by PSNR results

+0.43+0.41Foreman (#225)

+0.10+0.32Table tennis (#001)

Cb componentCr component

∆ PSNR (dB)Sequence (frame)
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Left: decode picture frames. 
Right: post-filtered frames
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17.1 Introduction to Error Resilient 
Coding Technique

• Network transmission errors
– Due network congestion, mis-routing and 

channel noise
• Results in packet corruption and/or packet loss

– Has severe impact on picture quality of video 
stream

– Minimize transmission errors with error 
resilient coding
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• Error resilient coding
– Error detection

• Know when and where errors occurs
– Resynchronization

• when video streams lose synchronization due to 
errors

– Data recovery and error concealment
• Estimate lost data 
• Minimize estimation errors



© CRC Press, Wu & Rao Eds, 2006

17.2 Error Resilient Coding 
Methods Compatible with MPEG-2

• Temporal localization
– Minimizes propagation errors

• Spatial localization
– Minimizes the effects of errors within picture 

frames
• Concealment processes

– Minimizes effects of errors within picture 
frames
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17.2.1 Temporal Localization

• Stop propagation error with early re-
synchronization pictures
– Cyclic intra-coded pictures

• Replace damaged P or B frames with I frames
• High cost in bitrate

– Cyclic intra-coded slices
• Intra-frame split into a number of row slices
• Slices are embedded into a number of P-frames 

– One slice per P-frame
• This approach leads to “window screen wipe”
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Top: Cyclic intra-coded picture. Bottom: Cyclic 
intra-coded slices
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17.2.2 Spatial Localization

• Re-synchronization for differential coded 
macroblock (MB)
– Small slice method

• Minimize errors due to cell lost by
– Reducing slice to cell ratio, i.e., having few cells per slice

– Adaptive slice scheme
• Slice size changes according to spacing of cells
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Illustration of small slice (left) and adaptive slice 
(right) approaches
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17.2.3 Concealment

• Methods for error concealment
– Temporal Predictive Concealment

• Block replacement from previous frame
– Spatial Interpolation

• Estimate missing MB with adjacent MBs
– Motion Compensated Temporal Concealment

• Motion compensated block replacement



© CRC Press, Wu & Rao Eds, 2006

Concealment methods

Temporal Predictive Spatial Interpolation

Motion Compensated 
Concealment
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Macro-block replacement (right) of the Bus
sequence with cell loss (left)
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Spatial interpolation error concealment (right) of 
the Flower Garden sequence with cell loss (left) 
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17.2.4 Scalability

• Multiple layers of information
– Base layer has the most important information
– Other layers carry additional information

• Applicable for ATM networks
– Cells loss from congestion can be controlled 

• Network management can decide what cell to drop
• Ineffective for wireless networks

– Cells loss uncontrollable
• When cause by signal propagation
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Scalability method

• Data partitioning
– Split data into layers relative to importance

• e.g. motion vectors, DC coefficient, AC coefficient
– May have motion drift

• When only base layer is available
– Missing enhancement layers needed for MC

• SNR Scalability
– Split into multiple quality layers
– Motion compensation based on all layers

• Motion drift occurs in the lower layer
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Scalability method

• Spatial Scalability
– Motion compensation with separate picture 

store for each layer
• Resolves the low layer motion drift

• Spatial Scalability without Temporal 
Prediction
– Prediction in upper layers derived from base 

layer
• Eliminates drift in upper layers
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Illustration of spatial scalability with (left) and 
without (right) temporal prediction
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17.3 Methods for Concealment of Cell 
Loss

• Boundary Matching Algorithm (BMA)
– Replacement block from previous frame is 

selected based on the best boundary match 
of current frame

– 3 boundaries used for matching calculation
• Top, left and bottom (of the lost block)

– May employ full search or fast search
• Fast searches relative to

– Motion vector (MV) of same MB in previous frame
– MV of a neighbouring MB 
– Average or median MV of neighbouring MBs
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Illustration of boundary matching of BMA
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• Decoder Motion Vector Estimation
(DMVE)
– An improvement of the BMA
– Uses additional boundaries for matching 

calculation
• top right and bottom left

– Performs full search for boundary matching
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DMVE boundary matching



© CRC Press, Wu & Rao Eds, 2006

• Extension of DMVE
– Utilize fast search as in BMA

• Optional Candidate Search (OCS)
– Based on MV of previous frame MB and neighbouring 

MB

– Bi-directional frames prediction
• If loss MB comes from B-frame

– Two Line Search
• Use only 2 lines surrounding lost MB for search

– Reduces computation
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17.4 Experimental Procedure

• 2 MPEG-2 coded sequences @ 4 Mbps 
used for test
– Flower Garden and Bus

• Cell loss probabilities set at 10-4, 10-3, 10-2

and 0.5
• 7 error concealment techniques compared
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17.5 Experimental Results

BusFlower Garden

PSNR vs Cell Loss
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• PSNR Observations 
– Low cell loss (10-4) 

• Little difference between various methods
– Medium cell loss (10-3) 

• DMVE and Above Motion Vector noticeably better
– High cell loss (10-2) 

• DMVE clearly the superior method
– 6-7dB better than MB replacement

– Very high cell loss (0.5) 
• Performance dropped substantially for all
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Experimental results with cell loss of 10-4 (left) and 
10-3 (right)
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Experimental results with cell loss of 10-2

(left) and 0.5 (right)
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17.6 Conclusions

• Error resilient coding
– Important for combating cell loss in networks
– Several approaches

• Spatial localization, MB resynchronization, 
concealment 

– Error concealment method
• DVME demonstrates excellent performance at 

various cell loss probabilities
– Further improvements if this method is combined with 

spatial localization and resynchronization methods
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18.1 Picture Coding Structures

• Picture coding structures
– Not just a mathematical framework for 

reducing statistical redundancies
– Need to consider human vision in the coding 

framework
• To reduce visual redundancies
• and help push the compression boundary further
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• Coding systems often driven by 
applications
– In turn driven by some practical limitations

• Bitrate constrain is often the driving point in the 
development efforts for practical coding systems

• Insufficient consideration given to picture quality in 
the development of coding systems

– e.g. limited progress in addressing certain distortions in 
high definition digital TV

» Granular noise
» Stationary area temporal fluctuation
» Jerky motion



© CRC Press, Wu & Rao Eds, 2006

• Four directions for picture coding
– Push boundaries of existing waveform and 

entropy coding techniques
– Incorporating various HVS aspects into 

waveform coding techniques
– Pursuing mathematical alternatives for 

waveform coding
– Derive new coding framework and structures 

propelled by vision science and research
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18.1.1 Performance Criteria

• Framework of coding systems
– Determined by a set of performance criteria 
– Different criteria for different components of a 

coder, e.g.
• Selection of transform is dependent on 

decorrelation and energy packing efficiency 
• Coding performance has traditionally been 

measured by MSE/PSNR for a given coding rate
– Criterions are tailored towards reduction of 

statistical errors or redundancies
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• Consequently, coding frameworks are 
determined 
– According to their mathematical properties
– Performance in statistical redundancy 

reduction
• Choices of coding framework

– Affects compression performance
– Exhibit specific type of distortions

• e.g. Blocking for DCT coders or ringing/edge 
rippling for DWT coders
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• An assumption for lossy coding
– Primarily removes statistical redundancy
– Leads to a coding structure that reflects 

assumption
– Strict definition of statistical redundancy 

• The removal of redundant data not the removal of 
information 

– Lossy coding removes both redundant data 
and information

• So assumption not longer holds!
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• Paradigm shift may be necessary
– From pure statistical model to a combination 

of statistical and psychovisual models
– Such an approach could address more 

effectively issues concerning
• Various types of picture impairments
• Overall picture quality
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18.1.2 Complete vs. Over-Complete 
Transform

• Complete transform (common DWT)
– Perfect reconstruction (reversible)
– Good energy packing
– Short filter support (FIR implementation)
– Low complexity
– Critically sample 

• Number of inputs = number of outputs
– Lacks shift invariance
– Limited directional selectivity
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• Over-complete transform (CWT)
– Good orientation selectivity

• Relative to filter kernel
– Over sampled

• Number of Outputs > number of inputs
– Shift invariant 
– More complex than complete transform
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Basis function CWT and 2-D real DWT

2-D Q-shift Complex 
Wavelet Transform 

(CWT)

2-D real Discrete 
Wavelet Transform 

(DWT)
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Illustration of wavelet and scaling functions 
component for CWT and DWT. Aliasing is visible 

in the DWT domain

Disc Image
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• Aliasing in DWT domain
– Due to shift invariance 

• Resulting from decimation of DWT coefficients
• In compression terms

– CWT has demonstrated performance gains 
over DWT 

• ≈ 1dB PSNR gain and better visual quality
• What is the criteria for selecting coder 

transform?
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DWT (left) and CWT (right) coded images

0.1994 bpp (PSNR: 33.47 dB) 0.1992 bpp (PSNR: 34.12 dB)
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18.1.3 Decisions Decisions

• Each approach has it strengths and 
weaknesses

• How to quantify overall strengths over 
weaknesses?
– Possibly joint performance criteria

• Multiple criterions
• Evaluate coding components individually and 

jointly
– New criterions? Perhaps HVS based?
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Example of 2-D aliasing and blurring tradeoffs

Original edge at 45o

from vertical axis

Original vertical edge

Original edge at 25o

from vertical axis

Original vertical 
disembodied edge

2-D Fourier spectrum of 
25o edge showing 
Cortex channels

2-D Fourier spectrum of 
vertical edge showing 

Cortex channels

2-D Fourier spectrum of 
25o edge

2-D Fourier spectrum of 
vertical edge
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Example of 2-D aliasing and blurring tradeoffs

Sub-sampled edge at 
non-orthogonal 

orientation without anti-
aliasing filter

Sub-sampled vertical 
edge without anti-
aliasing filtering

2-D Fourier spectrum 
edge showing Cortex 

channels

2-D Fourier spectrum of 
edge

2-D Fourier spectrum 
edge showing Cortex 

channels
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18.2 Vision Modelling Issues

• Limited understanding of overall human 
vision
– Need to build up knowledge to model more 

complex higher level vision
• Better modelling of supra-threshold vision

– Since considerable number of coding 
applications operate above the threshold level

• Optimizing vision models for applications
– Devise more robust/comprehensive methods?
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18.3 Spatio-Temporal Masking in 
Video Coding

• Transient and sustain channels in human 
vision
– Segregates temporal information into low 

pass (sustain) and band pass (transient) 
bands

• Current standards have yet to employ 
temporal masking 
– To address temporal artifacts

• e.g. Temporal granular noise and fluctuation
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18.4 Picture Quality Assessment

• Picture quality metrics design approaches
– MSE and PSNR insufficient for qualify visible 

picture impairments and picture quality
– HVS based metric more suitable

• But has a number of challenges
– Computation and model complexity issue
– Model accuracy
– Optimization of models
– Initial VQEG study indicated little gain for HVS based 

metric over PSNR
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• Alternative assessment methods and 
issues
– Measure impairments and quality

• Can it measure enhancement as well?
– FR, NR and RR objective metrics

• Application specific
– NR and RR have restricted range of applications

– Subjective assessment
• Impractical for many applications
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• More challenges in picture quality 
assessment
– Improvement needed for current picture 

assessment techniques to meet new 
applications, e.g., 3-D video/TV

– Factors for consideration in assessment
• e.g. picture accompanied by audio
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18.5 Challenges in Perceptual 
Coder Design

• Pre- and post-processing
– For removal of distortions
– Enhancement of image details and overall 

visual quality
• Error detection and concealment 

– Embedded into coders for improve resilience 
from network induced noise
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• Incorporating HVS into existing coders
– Pre- and post-filtering
– Quantization
– Distortion metric for R-D optimized coders

• EBCOT with self-masking function (Taubman)
• PLC: EBCOT with PIDM

• Qualifying the lower bound for perceptually 
lossless picture coding 
– Perceptually lossless coding
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18.6 Codec System Design 
Optimization

• Considerations for future generation 
picture coding framework
– Pre- and/or post-filtering
– Overall encoding and decoding system should 

be optimization
• To better address existing coding issues
• To improve compression performance and picture 

quality 
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18.7 Summary

• Goal of picture compression
– Rate-Distortion minimization

• Equivalently Rate-Quality optimization

• Most picture coders are rate driven
• Quality driven coders are rarities
• However, this may can if the lower bound 

for perceptually lossless coding is 
determined
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Lena image coded at 0.125 bpp

JPEG2000
MSE

JPEG2000 
PIDM

JPEG2000
CVIS

(self-masking)

Original
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