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Chapter 1

Computer Mathematics Languages
— An Overview

Exercises and Solutions

1. Install MATLAB environment on your machine, and issue the command demo.

From the dialog boxes and menu items of the demonstration program, experi-

ence the powerful functions provided in MATLAB.

Solution Execute the setup.exe file on the MATLAB DVD, and follow the

instructions, the MATLAB and the toolboxes licensed will be installed. Start

MATLAB and run demo command under the prompt >>, you may appreciate

the beauty of MATLAB.

2. Type the command doc symbolic/diff, and see whether it is possible, by

reading the relevant help information, to solve the problem given in Example

1.1. If the solutions can be obtained, compare the solutions with the results in

the example.

Solution From the information provided in doc, one may specify the following

commands

>> syms x; y=sin(x)/(x^2+4*x+3); dy=diff(y,x,4), pretty(dy)

3. The following Lyapunov equation is to be solved. Use the command lookfor

lyapunov and see whether there are any function related with the keyword. If

there is, say, the lyap function is found, type doc lyap and see whether there

is a way to solve the Lyapunov equation. Check the accuracy of the solution.




8 1 6

3 5 7

4 9 2



 X + X





16 4 1

9 3 1

4 2 1



 =





1 2 3

4 5 6

7 8 0





Solution To solve the equation, one should know how a matrix can be expressed

in MATLAB, which will be shown in Chapter 2. Comparing the help infor-

mation obtained, it can immediately be found that A, B and C matrices can

respectively be expressed by

A =





8 1 6

3 5 7

4 9 2





, B =





16 4 1

9 3 1

4 2 1





, C =





1 2 3

4 5 6

7 8 0





such that the Lyapunov equation AX + XB = −C can be established. The

equation can be solved and checked with the following statements, where the

norm of error matrix is then 9.5337×10−15 .

1
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2 Solving Applied Mathematical Problems with MATLAB

>> A=[8 1 6; 3 5 7; 4 9 2]; B=[16 4 1; 9 3 1; 4 2 1];

C=-[1 2 3; 4 5 6; 7 8 0]; X=lyap(A,B,C)

norm(A*X+X*B+C)

4. Write a simple subroutine which can be used to perform matrix multiplications
in other languages such as C. Try to make the code bug free.

Solution For an n × p matrix A and a p × m matrix B, the multiplication of
them can be obtained mathematically from

cij =

p∑

k=1

aikbkj , i = 1, · · · , n, j = 1, · · · , m

Clearly, a triple-loop in C should be used to solve such a problem. From the
above formula, the following C statements can be used as the main body

1 for (i=0: i<n; i++){ for (j=0; j<m; j++){

2 c[i][j]=0; for (k=0; k<p; k++) c[i][j]+=a[i][k]*b[k][j];

3 }}

Unfortunately, there are bugs in the previous program, since the two matrices
are not judged whether multiplicable or not. From the above equation it is easily
found that the columns of A must equal to the rows of B. Thus a statement
in pseudo-code if col(A)==row(B) should be introduced. Even with such a
patch, there are still bugs, since it excludes the case if one of the matrices is
scalar. Also the case where A and/or B are complex is not considered.
From this example, it can be concluded that with C, even slight carelessness
may cause serious problems in the results. High standard languages must be
used to avoid the tedious and risky programming work.

5. Write a piece of code in C which is capable of generating the Fibonacci sequence,
defined as a1 =a2 =1, ak+2 =ak +ak+1, for k = 1, 2, · · · . Generate the sequence
with 50 terms. Observe whether the results are feasible. If there are serious
problems, is there any possible solutions in C?

Solution From the recursive formula, the following program can be written

1 main() { int a1,a2,a3,i;

2 a1=1; a2=1; printf("%d %d ",a1,a2);

3 for (i=3;i<=100;i++){a3=a1+a2; printf("%d ",a3); a1=a2; a2=a3;

4 }}

It seems that the problem has been solved easily with the program. Once
one executes the problem, it is found that after 24 terms, negative values of ai

suddenly appear. In the following terms, the values sometimes are positive, and
sometimes are negative. Apparently the results are wrong. What is the reason
for such kind of behavior? This is because the data type int is used, which
only allows the terms within the interval (−32767, 32767). If the results are
beyond the range, wrong results may appear. Of course one may use the 64-bit
long data type, however, even though with such a data type, wrong results still
appear after 36 terms. A sophisticated mathematics language must be employed
in solving reliably such a problem. For instance, when symbolic computation
in MATLAB is used, it is easily found that a100 = 354224848179261915075.
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Chapter 2

Fundamentals of MATLAB
Programming

Exercises and Solutions

1. In MATLAB environment, the following statements can be given
tic, A=rand(500); B=inv(A); norm(A*B-eye(500)), toc

run the statements and observe results. If you are not sure with the com-
mands, just use the on-line help facilities to display information on the related
functions. Then explain in detail the statement and the results.

Solution What the statements actually do is to calculate and verify the inverse
matrix B of a 500× 500 randomly generated matrix A, and measure the total
time consumes. It can be found that the precision reaches 10−12-level, and the
time required is around one second.

2. Suppose that a polynomial can be expressed by f(x) = x5 + 3x4 + 4x3 + 2x2 +

3x+6. If one wants to substitute x by
s− 1

s + 1
, the function f(x) can be changed

into a function of s. Use the Symbolic Toolbox to do the substitution and get
the simplest result.

Solution One should declare the two variables s and x as symbolic variables,
then the subs() function should be used to do variable substitution. Finally,
simplification of the results should be performed

>> syms s x, f=x^5+3*x^4+4*x^3+2*x^2+3*x+6;

F=subs(f,x,(s-1)/(s+1)), F=simple(F)

which leads to the result F =
3 + 23s + 54s2 + 70s3 + 19s5 + 23s4

(s + 1)5
.

3. Input the matrices A and B into MATLAB workspace where

A =




1 2 3 4
4 3 2 1
2 3 4 1
3 2 4 1


 , B =




1 + j4 2 + j3 3 + j2 4 + j1
4 + j1 3 + j2 2 + j3 1 + j4
2 + j3 3 + j2 4 + j1 1 + j4
3 + j2 2 + j3 4 + j1 1 + j4


 .

It is seen that A is a 4 × 4 matrix. If a command A(5, 6) = 5 is given, what
will happen?

Solution The two matrices can be specified easily with the following statements

3
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4 Solving Applied Mathematical Problems with MATLAB

>> A=[1 2 3 4; 4 3 2 1; 2 3 4 1; 3 2 4 1]

B=[1+4i 2+3i 3+2i 4+1i; 4+1i 3+2i 2+3i 1+4i;

2+3i 3+2i 4+1i 1+4i; 3+2i 2+3i 4+1i 1+4i];

If further the command

>> A(5,6)=5

is used, and columns and rows in the statements are all greater than the current
size of A, zero terms are introduced to the extended part of A, then the (5,6)th
term is assigned to 5.

4. For a matrix A, if one wants to extract all the even rows to form matrix B, what
command should be used? Suppose that matrix A is defined by A =magic(8),
establish matrix B with suitable statements and see whether the results are
correct.

Solution Even row extraction of a matrix A can easily found by

>> A=magic(8), B=A(2:2:end,:)

5. Implement the following piecewise function where x can be given by scalar,
vectors, matrices or even other multi-dimensional arrays, the returned argument
y should be the same size as that of x. The parameters h and D are scalars.

y = f(x) =





h, x > D
h/Dx, | x |6 D
−h, x < −D

Solution Two methods can be used, and the best one is with the use of the
relationship expression in a clever way

>> y=h*(x>D) + h/D*x.*(abs(x)<=D) -h*(x<-D);

An alternative method is by the use of loops and condition structures

>> for i=1:length(x)

if x(i)>D, y(i)=h;

elseif abs(x(i))<=D, y(i)= h/D*x(i); else, y(i)=-h; end

end

The structure of the latter statements are easy to understand, however the
former is applicable not only for vector x, but also to other data structures
such as matrices or three-dimensional arrays.

6. Evaluate using numerical method the sum S = 1+2+4+· · ·+262+263 =

63∑
i=0

2i,

the use of vectorization form is suggested. Check whether accurate solutions
can be found and explain why. Find the accurate sum using the symbolic
computation methods.

Solution The following statements can be used to evaluate numerically the sum,
however due to the limitations of the 64-bit double data type, the result s1 =
1.844674407370955×1019 is not accurate.

>> s1=sum(2.^[0:63])
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Fundamentals of MATLAB Programming 5

To solve the problem accurately, the symbolic data type should be used instead.
The new statement should be

>> s2=sum(sym(2).^[0:63])

with s2 = 18446744073709551615. One may even replace the term 63 by 1000

to evaluate accurately

1000∑
i=0

2i, which is not possible by numerical data types. The

accurate result is 214301721437253464189685009812000362112280962341106721
488750077674070210224987224498639675763139171625518934583510629365037
429057138462808719691551493971496078691355496484619708421492101247422
837559083643060929499671638825347975351183310878921541258291423929553
73084335320859663305248773674411336138751.

7. Write an M-function mat add() with the syntax
A=mat add(A1,A2,A3,· · · )

In the function, it is required that arbitrary number of input arguments Ai are
allowed to be added up.

Solution With the use of varargin, the function below can be designed.

1 function A=mat_add(varargin)

2 A=0; for i=1:length(varargin), A=A+varargin{i}; end

The try-catch structure can further be used to solve the above problem.

1 function A=mat_add(varargin)

2 try

3 A=0; for i=1:length(varargin), A=A+varargin{i}; end

4 catch, error(lasterr); end

8. An MATLAB function can be written, whose syntax is
v=[h1, h2, hm, hm+1, · · · , h2m−1] and H=myhankel(v)

where the vector v is defined, and out of it, the output argument should be an
m×m Hankel matrix.

Solution Many methods can be used to solve the above problem:
(i) The most straightforward method is the use of double loop structure to
implement Hi,j = hi+j−1 such that

1 function H=myhankel(v)

2 m=(length(v)+1)/2;

3 for i=1:m, for j=1:m, H(i,j)=v(i+j-1); end, end

(ii) For a certain column (or row), ai = [hi, hi+1, · · · , hi+m−1]. Thus single
loop structure can be used to generate the Hankel matrix

1 function H=myhankel(v)

2 m=(length(v)+1)/2; for i=1:m, H(i,:)=v(i:i+m-1); end

(iii) Based on the existing hankel() function, one can write

1 function H=myhankel(v)

2 m=(length(v)+1)/2; H=hankel(v(1:m),v(m:end));
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6 Solving Applied Mathematical Problems with MATLAB

9. From matrix theory, it is known that if a matrix M is expressed as M =
A + BCBT, where A, B and C are the matrices of relevant sizes, the inverse
of M can be calculated by the following algorithm

M−1 =
(
A + BCBT

)−1

= A−1 −A−1B
(
C−1 + BTA−1B

)−1

BTA−1

The matrix inversion can be carried out using the formula easily. Suppose that
there is a 5× 5 matrix M , from which the three other matrices can be found.

M =




−1 −1 −1 1 0
−2 0 0 −1 0
−6 −4 −1 −1 −2
−1 −1 0 2 0
−4 −3 −3 −1 3




, A =




1 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 4




B =




0 1 1 1 1
0 2 1 0 1
1 1 1 2 1
0 1 0 0 1
1 1 1 1 1




, C =




1 −1 1 −1 −1
1 −1 0 0 −1
0 0 0 0 1
1 0 −1 −1 0
0 1 −1 0 1




.

Write the statement to evaluate the inverse matrix. Check the accuracy of
the inversion. Compare the accuracy of the inversion method and the direct
inversion method with inv() function.

Solution Based on the partition formula, the following function can be written

1 function Minv=part_inv(A,B,C)

2 Minv=inv(A)-inv(A)*B*inv(inv(C)+B’*inv(A)*B)*B’*inv(A);

For the given matrices, the following two methods can be used

>> M=[-1,-1,-1,1,0; -2,0,0,-1,0; -6,-4,-1,-1,-2;

-1,-1,0,2,0;-4,-3,-3,-1,3];

A=[1,0,0,0,0; 0,3,0,0,0; 0,0,4,0,0; 0,0,0,2,0; 0,0,0,0,4];

B=[0,1,1,1,1; 0,2,1,0,1; 1,1,1,2,1; 0,1,0,0,1; 1,1,1,1,1];

C=[1,-1,1,-1,-1; 1,-1,0,0,-1; 0,0,0,0,1; 1,0,-1,-1,0; 0,1,-1,0,1];

M1=inv(M), % method 1, direct numerical solution

M2=part_inv(A,B,C) % method 2, with partition formula

Ms=inv(sym(M)); e1=norm(double(Ms)-M1), e2=norm(double(Ms)-M2)

The appearance of M1 and M2 are the same, however, the precision might be
different, since e1 = 1.5232×10−16, e2 = 1.5271×10−15. It can be concluded that
normally when direct functions exist, it should be used, rather than using any
other indirect methods, to avoid accumulative errors.

10. Consider the following iterative model
{

xk+1 = 1 + yk − 1.4x2
k

yk+1 = 0.3xk

with initial conditions x0 = 0, y0 = 0. Write an M-function to evaluate the
sequence xi, yi. 30000 points can be obtained by the function to construct the
x and y vectors. The points can be expressed by a dot, rather than lines. In
this case, the so-called Hénon attractor can be drawn.
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Solution Loop structure can be used to implement the recursive formula, and
the Hénon attractor can be drawn as shown in Figure 2.1. Note that, the option
’.’ should be used to indicate the sequence.

>> n=30000; x=zeros(1,n); y=x;

for i=1:n-1, x(i+1)=1+y(i)-1.4*x(i)^2; y(i+1)=0.3*x(i); end

plot(x,y,’.’)

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

FIGURE 2.1: Hénon attractor

11. An equilateral triangle can be drawn by MATLAB statements easily. Use the
loop structure to design an M-function that, in the same coordinates, a sequence
of equilateral triangles can be drawn, each by rotating a certain angle from the
previous one.

Solution To rotate counter-clockwise an equilateral triangle by the angle θ, the
new triangle can be illustrated as shown in Figure 2.2 (a). The critical points
of the new triangle are respectively (cos θ, sin θ), (cos(θ + 120◦), sin(θ + 120◦))
and (cos(θ +240◦), sin(θ +240◦)), then back to point (cos θ, sin θ). The triangle
can be drawn easily. Increment the angle θ continuously and draw in a loop a
set of triangles, the resulted graphical display is shown in Figure 2.2 (b), with
the command

>> draw_triangles(5,’r’) % 5 and ’r’ for increment angle and color

and the M-function draw triangles() is listed below

1 function draw_triangles(delta,col)

2 t=[0,120,240,0]*pi/180; xxx=[]; yyy=[];

3 for i=0:delta:360

4 tt=i*pi/180; xxx=[xxx; cos(tt+t)]; yyy=[yyy; sin(tt+t)];

5 end

6 plot(xxx’,yyy’,col), axis(’square’)

Selecting the increment to other values such as ∆θ = 2, 1, 0.1, one may further
observe the results.

12. Select suitable step-sizes and draw the function curve for sin (1/t), where t ∈
(−1, 1).
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8 Solving Applied Mathematical Problems with MATLAB

............................
............................

.....
θ x

y

-

6

(a) sketch of the rotation

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) final results

FIGURE 2.2: Graphical display of a set of triangles

Solution In ordinary graphics mode, when a step-size of 0.03 is used, the curve
of the function is shown in Figure 2.3 (a). However the curve is harsh.

>> t=-1:0.03:1; y=sin(1./t); plot(t,y)

If variable step-size is used, the curves are shown in Figure 2.3 (b).

>> t=[-1:0.03: -0.25, -0.248:0.001:0.248, 0.25:.03:1];

y=sin(1./t); plot(t,y)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) fixed step-size

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) variable step-size

FIGURE 2.3: The curves of sin(1/t) under different step-sizes

It can be concluded from the example that, the curves obtained should be
verified, before it can be put into practical used.

13. For suitably assigned ranges of θ, draw polar plots for the following parametric
functions.
(i) ρ = 1.0013θ2, (ii) ρ = cos(7θ/2),
(iii) ρ = sin θ/θ, (iv) ρ = 1− cos3 7θ
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Solution It seems that drawing polar plot is an easy task. However one should be
very careful in verifying the results by choosing different θ intervals. Also dot
operation of vectors must be used. Comparing the plots for different θ ranges
shown in Figures 2.4 (a) and (b).

  10
  20
  30
  40

30

210

60

240

90

270

120

300

150

330

180 0

  0.2
  0.4
  0.6
  0.8
  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.2
  0.4
  0.6
  0.8
  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.5
  1
  1.5
  2

30

210

60

240

90

270

120

300

150

330

180 0

(a) θ ∈ (0, 2π)
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(b) θ ∈ (0, 6π)

FIGURE 2.4: Polar plots for different θ ranges

>> t=0:0.01:2*pi; subplot(221), polar(t,1.0013*t.^2), % (i)

subplot(222), t1=0:0.01:4*pi; polar(t1,cos(7*t1/2)) % (ii)

subplot(223), polar(t,sin(t)./t) % (iii)

subplot(224), polar(t,1-(cos(7*t)).^3) % (iv)

figure; t=0:0.01:2*pi; % repeat the previous commands, get figure (b)

14. Find the solutions to the following equations using graphical methods and verify
the solutions. {

x2 + y2 = 3xy2

x3 − x2 = y2 − y

Solution The two equations can all be expressed by implicit function drawing
command ezplot(), and the intersections are the solutions of the simultaneous
equations, as shown in Figure 2.5. One may zoom the plots and find more
accurate values of the intersections.

>> ezplot(’x^2+y^2-3*x*y^2’); hold on, ezplot(’x^3-x^2=y^2-y’)

15. Draw the 3D surface plots for the functions xy and cos(xy) respectively. Also
draw the contour lines of the functions. View the 3D surface plot from different
angles.

Solution The following commands can be used to draw the 3D surface and
contour lines of the functions. The function view() can be used to change view
points and also one can rotate the 3D surfaces manually.

>> [x,y]=meshgrid(-1:.1:1); z1=x.*y; z2=sin(z1);

subplot(211), surf(x,y,z1), subplot(212), contour(x,y,z1,30)
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−6 −4 −2 0 2 4 6
−6
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x

y

FIGURE 2.5: Graphical interpretations of the solutions

figure;

subplot(211), surf(x,y,z2), subplot(212), contour(x,y,z2,20)

16. In graphics command, there is a trick in hiding certain part of the plot. If the
function values are assigned to NaN’s, the point on the curve or the surface will
not be shown. Draw first the surface plot of the function z = sin xy. Then cut
off the region satisfies x2 + y2 6 0.52.

Solution The mesh grid data of a rectangular region can be generated first and
the function values can be calculated. Then find all the points in the region
satisfying x2 + y2 6 0.52, and set the values to NaN’s. The 3D surface of the
given function excluding the region, shown in Figure 2.6.

>> [x,y]=meshgrid(-1:.1:1); z=sin(x.*y);

ii=find(x.^2+y.^2<=0.5^2); z(ii)=NaN; surf(x,y,z)
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FIGURE 2.6: 3D surface with a region cut off
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Chapter 3

Calculus Problems

Exercises and Solutions

1. Compute the limits.

(i) lim
x→∞

(3x + 9x)
1
x
, (ii) lim

x→∞
(x + 2)x+2(x + 3)x+3

(x + 5)2x+5

Solution The limit problems can be solved with the following statements, with
L1 = 9, L2 = e−5.

>> syms x; f=(3^x+9^x)^(1/x); L1=limit(f,x,inf)

f=(x+2)^(x+2)*(x+3)^(x+3)/(x+5)^(2*x+5); L2=limit(f,x,inf)

2. Compute the double limits.

(i) lim
x→−1
y→2

x2y + xy3

(x + y)3
, (ii) lim

x→0
y→0

xy√
xy + 1− 1

, (iii) lim
x→0
y→0

1− cos
(
x2 + y2

)
(
x2 + y2) ex2+y2

Solution The double limit problems can be solved with the following statements,
with L1 = −6, L2 = 2, and L3 = 0.

>> syms x y; fa=(x^2*y+x*y^3)/(x+y)^3; L1=limit(limit(fa,x,-1),y,2)

fb=x*y/(sqrt(x*y+1)-1); L2=limit(limit(fb,x,0),y,0)

fc=(1-cos(x^2+y^2))/(x^2+y^2)/exp(x^2+y^2);

L3=limit(limit(fc,x,0),y,0)

3. Compute the derivatives of the functions.

(i) y(x) =

√
x sin x

√
1− ex, (ii) y =

1−√cos ax

x (1− cos
√

ax)

(iii) atan
y

x
= ln(x2 + y2), (iv) y(x) = − 1

na
ln

xn + a

xn
, n > 0

Solution The derivatives of the functions can be found with the following state-
ments and

>> syms a x; f=sqrt(x*sin(x)*sqrt(1-exp(x))); D1=simple(diff(f))

y=(1-sqrt(cos(a*x)))/(x*(1-cos(sqrt(a*x)))); D2=simple(diff(y))

syms y; f=atan(y/x)-log(x^2+y^2); D3=simple(-diff(f,x)/diff(f,y))

syms n positive; f=-log((x^n+a)/x^n)/(n*a); D4=simple(diff(f,x))

with

D1 =
1

2
√

x
√

1− ex sin x

(√
1− ex sin x + x

√
1− ex cos x− xex sin x

2
√

1− ex

)

11
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D2 =
a sin ax

2x
√

cos ax (1− cos
√

ax)
− 1−√cos ax

x2 (1− cos
√

ax)
− a (1−√cos ax) sin

√
ax

2x (1− cos
√

ax)
2√

ax

D3 =
y + 2x

x− 2y
and D4 =

1

x(xn + a)

4. Compute the fourth-order derivative of function y(t) =

√
(x− 1)(x− 2)

(x− 3)(x− 4)
.

Solution One may find the fourth-order derivative of the given function with

>> syms x; f=sqrt((x-1)*(x-2)/(x-3)/(x-4)); D=simple(diff(f,x,4))

and the results can be expressed mathematically as

3

(
16x11−392x10+4312x9−28140x8+121344x7−364560x6+

783552x5−1214604x4+1342560x3−1015348x2+474596x−103741

)

(
(x− 1) (x− 2)

(x− 3) (x− 4)

)7/2

(x− 3)8 (x− 4)8

5. In calculus courses, when the limit of a ratio is required, where both the
numerator and the denominator tends to 0 or∞, simultaneously, the L’Hôpital’s
law can be uses, i.e., to evaluate the limits of derivatives of numerator and

denominator. Verify the lim
x→0

ln(1 + x) ln(1− x)− ln(1− x2)

x4
by the consecutive

use of the L’Hôpital’s law, and compare with the results directly obtained.

Solution From the denominator it can be seen that, to make sure the denom-
inator is no longer zero, fourth-order derivative to both the numerator and
denominator should be taken. Thus with the use of the L’Hôpital’s law, the
limit can be find as L = 1/12, which can also be verified with the direct method.

>> syms x; n=log(1+x)*log(1-x)-log(1-x^2); d=x^4;

n4=diff(n,x,4); d4=diff(d,x,4); n4=subs(n4,x,0);

L=n4/d4, L1=limit(n/d,x,0)

6. For parametric function

{
x = ln cos t
y = cos t− t sin t

, compute
dy

dx
and

d2y

dx2

∣∣∣∣
t=π/3

.

Solution With the paradiff() function given in the book, the derivatives re-
quired are obtained respectively as

D1 = − (−2 sin t− t cos t) cos t

sin t
, D2 =

5

6
+

7
√

3

54
π.

>> syms t; x=log(cos(t)); y=cos(t)-t*sin(t);

D1=paradiff(y,x,t,1),

f=paradiff(y,x,t,2); D2=simple(subs(f,t,sym(pi)/3))

7. Assume that u = cos−1

√
x

y
, verify

∂2u

∂x∂y
=

∂2u

∂y∂x
.

Solution To show that the two sides are equal, one can evaluate the two side
and simplify the difference between them to see whether it is zero or not. For
this problem, it is easily shown that the difference is zero, hence the equation
holds.
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>> syms x y; u=acos(x/y);

simple(diff(diff(u,x),y)-diff(diff(u,y),x))

8. For the given function

{
xu + yv = 0

yu + xv = 1
, compute

∂2u

∂x∂y
.

Solution The solution to be problem can be found with the following statements

and the result is
2x

(x2 − y2)2
+

8y2x

(x2 − y2)3
.

>> syms x y u v; [u,v]=solve(’x*u+y*v=0’,’y*u+x*v=1’,’u,v’);

diff(diff(u,x),y)

9. Assume that f(x, y) =

∫ xy

0

e−t2dt, compute
x

y

∂2f

∂x2
− 2

∂2f

∂x∂y
+

∂2f

∂y2
.

Solution The problem can easily be solved with the following statements, and

F = −2e−x2y2
(−x2y2 + 1 + x3y).

>> syms x y t; f=int(exp(-t^2),t,0,x*y);

F=x/y*diff(f,x,2)-2*diff(diff(f,x),y)+diff(f,y,2); F=simple(F)

10. Given the matrix f(x, y, z) =

[
3x + eyz

x3 + y2 sin z

]
, compute the Jacobian matrix.

Solution The Jacobian matrix can be obtained as J =

[
3 eyz ey

3x2 2y sin z y2 cos z

]
.

>> syms x y z; F=[3*x+exp(y)*z; x^3+y^2*sin(z)];

J=jacobian(F,[x,y,z])

11. Compute the following indefinite integrals

(i) I(x) = −
∫

3x2 + a

x2 (x2 + a)2
dx, (ii) I(x) =

∫ √
x(x + 1)√

x +
√

1 + x
dx

(iii) I(x) =

∫
xeax cos bx dx, (iv) I(t) =

∫
eax sin bx sin cx dx

Solution The indefinite integrals can be calculated from

>> syms x a; f=-(3*x^2+a)/(x^2+(x^2+a)^2); I1=int(f,x)

f=sqrt(x*(x+1))/(sqrt(x)+sqrt(x+1)); I2=int(f,x)

syms a b x; f=x*exp(a*x)*cos(b*x); I3=int(f,x)

syms x a b c; f=exp(a*x)*sin(b*x)*sin(c*x); I4=int(f,x)

and the integral I1 is too complicated and will not show here. The other three
integrals are respectively

I2 =
2
√

x (x + 1)x (3x + 5)

15
√

x + 1
− 2

√
x (x + 1) (x + 1) (−2 + 3x)

15
√

x

I3 =

(
ax

a2 + b2
− a2 − b2

(a2 + b2)2

)
eax cos bx−

(
− bx

a2 + b2
+

2ab

(a2 + b2)2

)
eax sin bx

I4 =
aeax cos ((b− c) x)

2[a2 + (b− c)2]
− (−b + c) eax sin ((b− c) x)

2[a2 + (b− c)2]
− aeax cos ((b + c) x)

2[a2 + (b + c)2]

+
(−b− c) eax sin ((b + c) x)

2[a2 + (b + c)2]
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12. Compute the definite integrals and infinite integrals

(i) I =

∫ ∞

0

cos x√
x

dx, (ii) I =

∫ 1

0

1 + x2

1 + x4
dx

Solution The two integrals can be obtained as I1 =
√

2π/2, I2 =
√

2π/4.

>> syms x; I1=int(cos(x)/sqrt(x),x,0,inf),

I2=int((1+x^2)/(1+x^4),x,0,1)

13. For the function f(x) = e−5x sin(3x + π/3), compute

∫ t

0

f(x)f(t + x) dx.

Solution Defining the function of x, subs() function can be used to establish
the function of t + x. The following statements can be used to calculate R.

>> syms x t; f=exp(-5*x)*sin(3*x+sym(pi)/3);

R=int(f*subs(f,x,t+x),x,0,t); simple(R)

and the result is

15
√

3e10t cos 3t− 68 cos 3t− 15e10t sin 3t− 25
√

3 sin 9t+

25
√

3e10t sin 3t + 15 sin 9t− 25 cos 9t− 15
√

3 cos 9t + 93e10t cos 3t

1360e15t

14. For different values of a, compute the integral I =

∫ ∞

0

cos ax

1 + x2
dx.

Solution Loop structure can be used to calculate the infinite integral for different
values of a, and the relationship is shown in Figure 3.1.

>> syms x a; f=cos(a*x)/(1+x^2); aa=[0:0.1:pi]; y=[];

for n=aa, b=int(subs(f,a,n),x,0,inf); y=[y, double(b)]; end

plot(aa,y)

0 0.5 1 1.5 2 2.5 3 3.5
0
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0.4

0.6

0.8

1

1.2

1.4

1.6

FIGURE 3.1: The integral for different values of a

15. Show that for any function f(t),

∫ b

a

f(t) dt = −
∫ a

b

f(t) dt.

Solution Function f(t) can be defined with f=sym(’f(t)’). Thus, the equation
can be shown with the following statements, which yields zero difference.
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>> syms a b t; f=sym(’f(t)’); simple(int(f,t,a,b)+int(f,t,b,a))

16. Solve the multiple integral problems.

(i)

∫ 2

0

∫ √
4−x2

0

√
4− x2 − y2 dydx, (ii)

∫ 3

0

∫ 3−x

0

∫ 3−x−y

0

xyz dzdydx

(iii)

∫ 2

0

∫ √
4−x2

0

∫ √
4−x2−y2

0

z(x2 + y2) dzdydx

(iv)

∫ 1

0

∫ x

0

∫ y

0

∫ z

0

xyzue6−x2−y2−z2−u2
dudzdydx

Solution The multiple integrals can easily be evaluated with

>> syms x y z u; f1=sqrt(4-x^2-y^2); f2=x*y*z; f3=z*(x^2+y^2);

f4=x*y*z*u*exp(6-x^2-y^2-z^2-u^2);

I1=int(int(f1,y,0,sqrt(4-x^2)),x,0,2)

I2=int(int(int(f2,z,0,3-x-y),y,0,3-x),x,0,3)

I3=int(int(int(f3,z,0,sqrt(4-x^2-y^2)),y,0,sqrt(4-x^2)),x,0,2)

I4=int(int(int(int(f4,u,0,z),z,0,y),y,0,x),x,0,1)

where I1 =
4π

3
, I2 =

81

80
, I3 =

4π

3
, I4 =

1

384
e6− 1

96
e5 +

1

64
e4− 1

96
e3 +

1

384
e2.

17. Compute the Fourier series expansions to the following functions, and compare
graphically the approximation results, if finite term series are used.

(i) f(x) = (π − |x|) sin x, − π 6 x < π, (ii) f(x) = e|x|, − π 6 x < π,

(iii) f(x) =

{
2x/l, 0 < x < l/2

2(l − x)/l, l/2 < x < l
, where l = π.

Solution (i) and (ii) can easily be solved with

>> syms x; f=(sym(pi)-abs(x))*sin(x); [A,B,F1]=fseries(f,x,10); F1

syms x; f=exp(abs(x)); [A,B,F2]=fseries(f,x,10); simple(F2)

which yield the results

F1 =
1

2
π sin x+

16

9

sin 2x

π
+

32

225

sin 4x

π
+

48

1225

sin 6x

π
+

64

3969

sin 8x

π
+

80

9801

sin 10x

π

F2 =
eπ − 1

π
+

(−eπ − 1) cos x

π
+ 2

(eπ − 1) cos 2x

5π
− (eπ + 1) cos 3x

5π

+
2 (eπ − 1) cos 4x

17π
− (eπ + 1) cos 5x

13π
+ 2

(eπ − 1) cos 6x

37π
− (eπ + 1) cos 7x

25π

+
2 (eπ − 1) cos 8x

65π
− (eπ + 1) cos 9x

41π
+

2 (eπ − 1) cos 10x

101π
The solutions to (iii) is a little bit difficult, the heaviside() function in the
Symbolic Math Toolbox can be used to express the original function

f(x) = 2heaviside
(
x− π

2

)
− 2

π
x
|x− π/2|
x− π/2

Thus the following MATLAB statements can be used to find the Fourier series

>> syms x; pi1=sym(pi);
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f=2*heaviside(x-pi1/2)-2/pi1*x*abs(x-pi1/2)/(x-pi1/2);

[a,b,F]=fseries(f,x,10,-pi,pi); F

which returns

−1

4
+

4

π2
cos x +

(
4π−1 + 2

)

π
sin x− 2

π2
cos 2x− sin 2x

π
+ 4

cos 3x

9π2

+

(−π−1 + 6
)

9π
sin 3x− 1

2π
sin 4x+

4

25π2
cos 5x+

(
4π−1 + 10

)

25π
sin 5x− 2

9π2
cos 6x

− 1

3π
sin 6x +

4

49π2
cos 7x +

(−4π−1 + 14
)

49π
sin 7x− 1

4π
sin 8x +

4

81π2
cos 9x

+

(
4π−1 + 18

)

81π
sin 9x− 2

25π2
cos 10x− 1

5π
sin 10x

18. Write the Taylor series expansions to the following functions, and compare
graphically the approximation results, if finite term series are used.

(i)

∫ x

0

sin t

t
dt, (ii) ln

(
1 + x

1− x

)
, (iii) ln

(
x +

√
1 + x2

)
, (iv) (1+4.2x2)0.2,

(v) e−5x sin(3x + π/3) expansions about x = 0 and x = a points respectively.

Solution Taylor series expansions for the first four functions can be obtained
from the following statements

>> syms t x; f1=int(sin(t)/t,t,0,x); F1=taylor(f1,x,15)

f2=log((1+x)/(1-x)), F2=taylor(f2,x,15)

f3=log(x+sqrt(1+x^2)); F3=taylor(f3,x,15)

f4=(1+4.2*x^2)^0.2; F4=taylor(f4,x,13)

ezplot(f3,[-1,1]), hold on, ezplot(f4,[-1,1])

which yield respectively

(i) F1 = x− x3

18
+

x5

600
− x7

35280
+

x9

3265920
− x11

439084800
+

x13

80951270400

(ii) F2 = 2x +
2

3
x3 +

2

5
x5 +

2

7
x7 +

2

9
x9 +

2

11
x11 +

2

13
x13

(iii) F3 = x− 1

6
x3 +

3

40
x5 − 5

112
x7 +

35

1152
x9 − 63

2816
x11 +

231

13312
x13

(iv) F4 =1+
21

25
x2−882

625
x4+

55566

15625
x6−4084101

390625
x8+

1629556299

48828125
x10−136882729116

1220703125
x12

(v) The first four terms of Taylor series expansion can be obtained with

>> syms x a; f=exp(-5*x)*sin(3*x+sym(pi)/3); F5=taylor(f,x,4,a)

where

F5 = e−5a sin
(
3a +

π

3

)
+

(
3e−5a cos

(
3a +

π

3

)
− 5e−5a sin

(
3a +

π

3

))
(x− a)

+
(
8e−5a sin

(
3a +

π

3

)
− 15e−5a cos

(
3a +

π

3

))
(x− a)2

+
(
33e−5a cos

(
3a +

π

3

)
+ 5/3e−5a sin

(
3a +

π

3

))
(x− a)3

19. Get the Taylor series expansion of the function f(x, y) =
1− cos

(
x2 + y2

)
(
x2 + y2) ex2+y2

about x = 1, y = 0 point.
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Solution Taylor series expansion of a two-dimensional function needs the facilities
in Maple, with

>> syms x y; f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2+y^2));

F=maple(’mtaylor’,f,’[x=1,y=0]’,4)

where

1− cos 1

e1
+

(2 sin 1− 4 + 4 cos 1) (x− 1)

e1
+

(−6 cos 1− 7 sin 1 + 8) (x− 1)2

e1

+
(sin 1− 2 + 2 cos 1) y2

e1
+

(− 34
3

+ 32
3

sin 1 + 16/3 cos 1
)
(x− 1)3

e1

+
(−8 cos 1 + 10− 8 sin 1) y2 (x− 1)

e1
+

(
83
6
− 6 cos 1− 34

3
sin 1

)
(x− 1)4

e1

+
(24 sin 1 + 16 cos 1− 27) y2 (x− 1)2

e1
+

(−2 cos 1 + 5/2− 2 sin 1) y4

e1

+

(
134
15

cos 1 + 194
15

sin 1− 244
15

)
(x− 1)5

e1
+

(
164
3
− 28 cos 1− 140

3
sin 1

)
y2 (x− 1)3

e1

+
(14 sin 1− 16 + 10 cos 1) y4 (x− 1)

e1

20. Compute the first n term finite sums and infinite sums.

(i)
1

1× 6
+

1

6× 11
+ · · ·+ 1

(5n− 4)(5n + 1)
+ · · ·

(ii)

(
1

2
+

1

3

)
+

(
1

22
+

1

32

)
+ · · ·+

(
1

2n
+

1

3n

)
+ · · ·

Solution The partial and infinite sums of the series are obtained with

>> syms n k; S1=simple(symsum(1/(5*k-4)/(5*k+1),k,1,n)),

S2=symsum(1/(5*k-4)/(5*k+1),k,1,inf)

S3=simple(symsum(1/2^k+1/3^k,k,1,n)),

S4=symsum(1/2^k+1/3^k,k,1,inf)

with the results

S1 =
n

5n + 1
, S2 =

1

5
, S3 = −2−n − 3−n

2
+

3

2
and S4 =

3

2

21. Compute the following limits

(i) lim
n→∞

[
1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ · · ·+ 1

(2n)2 − 1

]
,

(ii) lim
n→∞

n

(
1

n2 + π
+

1

n2 + 2π
+

1

n2 + 3π
+ · · ·+ 1

n2 + nπ

)

Solution The limit of the series can be obtained as L1 = 1/2, L2 = 1.

>> syms k n; L1=limit( symsum(1/((2*k)^2-1),k,1,n),n,inf)

L2=limit(n*symsum(1/(n^2+k*pi),k,1,n),n,inf)

22. Show that cos θ + cos 2θ + · · ·+ cos nθ =
sin(nθ/2) cos[(n + 1)θ/2]

sin θ/2
.

Solution It is immediately found that the difference between the left-hand-side
and the right-hand-side representations is zero, which proves the formula.
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>> syms theta k n; S1=symsum(cos(k*theta),k,1,n);

S2=sin(n*theta/2)*cos((n+1)*theta/2)/sin(theta/2); simple(S1-S2)

23. For the following tabulated measured data, evaluate numerically its derivatives
and definite integral.

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

yi 0 2.2077 3.2058 3.4435 3.241 2.8164 2.311 1.8101 1.3602 0.9817 0.6791 0.4473 0.2768

Solution The differentiation from the data set can be obtained as shown in Figure
3.2, and the integral is I = 2.2642.

>> x=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2];

y=[0,2.2077,3.2058,3.4435,3.241,2.8164,2.311,1.8101,...

1.3602,0.9817,0.6791,0.4473,0.2768];

[dy1,dx1]=diff_ctr(y,x(2)-x(1),1);

[dy2,dx2]=diff_ctr(y,x(2)-x(1),2);

[dy3,dx3]=diff_ctr(y,x(2)-x(1),3);

[dy4,dx4]=diff_ctr(y,x(2)-x(1),4); I=trapz(x,y)

plot(dx1+x(1),dy1,’-’,dx2+x(1),dy2,’--’,dx3+x(1),...

dy3,’:’,dx4+x(1),dy4,’-.’)
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FIGURE 3.2: Numerical differentiation curve

24. Evaluate the definite integral

∫ π

0

(π−t)
1
4 f(t)dt, f(t)=e−t sin(3t+1) numerically.

Also evaluate the integration function F (t) =

∫ t

0

(t − τ)
1
4 f(τ) dτ numerically

for different sample points of t, such that t = 0.1, 0.2, · · · , π, and draw the F (t)
plot.

Solution The definite integral can be obtained with F1 = 0.3415.

>> f=@(t)exp(-t).*sin(3*t+1).*(pi-t).^(1/4); F1=quadl(f,0,pi)

For the second integral, select a vector T = [t1, t2, · · · , tN+1], t1 = 0. The
original integral can be expressed as the sum of the integrals on the sub interval
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(ti, ti+1) such that F (t) =

k∑
i=1

∫ ti+1

ti

(t − τ)1/4f(τ)dτ , where t is a discrete

instance, with t = tk+1. Thus the loop structure follows can be used to evaluate
the integrals F (t), and the curve of F (t) is obtained as shown in Figure 3.3.

>> F0=0; T=[0:0.1:pi,pi]; F=0;

for i=1:length(T)-1, xm=T(i); xM=T(i+1);

f=@(tau)exp(-tau).*sin(3*tau+1).*(xM-tau).^(1/4);

F0=F0+quadl(f,xm,xM); F=[F,F0];

end

plot(T,F)
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FIGURE 3.3: Integral curve

25. Evaluate numerically the multiple integral problems.

(i)

∫ 2

0

∫ e−x2/2

0

√
4− x2 − y2 e−x2−y2

dydx

(ii)

∫ 2

0

∫ 2

0

∫ 2

0

z(x2 + y2) e−x2−y2−z2−xz dzdydx

(iii)

∫ 7/10

0

∫ 4/5

0

∫ 9/10

0

∫ 1

0

∫ 11/10

0

√
6− x2 − y2 − z2 − w2 − u2 dwdudzdydx

Solution
It should be noted that there are no analytical solutions to the problems, thus
the obtained results should be verified.
(i) One may try first the theoretical method. Unfortunately, the analytical
solution or numerical solution to the problem cannot be obtained with the
int() function.

>> syms x y; f=sqrt(4-x^2-y^2)*exp(-x^2-y^2);

int(int(f,y,0,exp(-x^2/2)),x,0,2)

Thus numerical solution methods should be used. For instance, the NIT toolbox
can be used to solve (i), with I1 = 1.0633.

>> f1=@(x,y)sqrt(4-x.^2-y.^2).*exp(-x.^2-y.^2);

f1M=@(x)exp(-x.^2/2); f1m=@(x)0; I1=quad2dggen(f1,f1m,f1M,0,2)
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(ii) Again it can be shown that the analytical solution to the problem cannot be
obtained. Thus the following statements should be used to find the numerical
solution, which is I2 = 0.2078.

>> f=@(x,y,z)z.*(x.^2+y.^2).*exp(-x.^2-y.^2-z.^2-x.*z);

I2=triplequad(f,0,2,0,2,0,2)

(iii) The NIT function quadndg() can be used in evaluating the n-dimensional
integrals over hyper rectangular regions. There is a bug in the function since it
does allow allow the integrand to be descried by anonymous function or inline
function. The only way to use is the M-function.
For this example, one can denote that x1 = x, x2 = y, x3 = z, x4 = u, x5 = w,
thus the M-function for the integrand can be written as

1 function y=exc3fmi(x)

2 y=sqrt(6-x(1)^2-x(2)^2-x(3)^2-x(4)^2-x(5)^2);

The integral can be evaluated with I3 = 1.1888.

>> I3=quadndg(’exc3fmi’,[0,0,0,0,0],[7/10,4/5,9/10,1,11/10])

Verification method hints: change error tolerance and see whether the same
results can be obtained.

26. Compute the gradient of the measured data for a function of two variables.
Assume that the data were generated by the function f(x, y) = 4 − x2 − y2.
Generate the data and verify the results of gradient with theoretical results.

0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 4 3.96 3.84 3.64 3.36 3 2.56 2.04 1.44 0.76 0

0.2 3.96 3.92 3.8 3.6 3.32 2.96 2.52 2 1.4 0.72 −0.04

0.4 3.84 3.8 3.68 3.48 3.2 2.84 2.4 1.88 1.28 0.6 −0.16

0.6 3.64 3.6 3.48 3.28 3 2.64 2.2 1.68 1.08 0.4 −0.36

0.8 3.36 3.32 3.2 3 2.72 2.36 1.92 1.4 0.8 0.12 −0.64

1 3 2.96 2.84 2.64 2.36 2 1.56 1.04 0.44 −0.24 −1

1.2 2.56 2.52 2.4 2.2 1.92 1.56 1.12 0.6 0 −0.68 −1.44

1.4 2.04 2 1.88 1.68 1.4 1.04 0.6 0.08 −0.52 −1.2 −1.96

1.6 1.44 1.4 1.28 1.08 0.8 0.44 0 −0.52 −1.12 −1.8 −2.56

1.8 0.76 0.72 0.6 0.4 0.12 −0.24 −0.68 −1.2 −1.8 −2.48 −3.24

2 0 −0.04 −0.16 −0.36 −0.64 −1 −1.44 −1.96 −2.56 −3.24 −4

Solution From the data, the partial derivatives ∂z/∂x and ∂z/∂y can easily
found. Also from the known description of the surface function, the analytical
representation of the partial derivatives can be obtained as ∂z/∂x = −2x,
and ∂z/∂y = −2y, which are planes. The numerical partial derivatives and
theoretical ones are shown in Figure 3.4, and it can be seen that the numerical
solutions are quite accurate.

>> x=0:0.2:2; y=0:0.2:2; [x0,y0]=meshgrid(x,y);

z0=[4,3.96,3.84,3.63,3.36,3,2.56,2.04,1.43,0.75,0;

3.96,3.92,3.8,3.59,3.32,2.96,2.52,2,1.39,0.71,-0.04;
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3.84,3.8,3.68,3.47,3.2,2.84,2.4,1.88,1.27,0.59,-0.16;

3.63,3.59,3.47,3.27,3,2.63,2.2,1.68,1.07,0.39,-0.36;

3.36,3.32,3.2,2.99,2.72,2.36,1.92,1.4,0.79,0.11,-0.64;

3,2.96,2.84,2.63,2.36,2,1.56,1.04,0.43,-0.24,-1;

2.56,2.52,2.4,2.19,1.92,1.56,1.12,0.6,0,-0.68,-1.44;

2.04,2,1.88,1.68,1.4,1.04,0.6,0.08,-0.52,-1.2,-1.95;

1.43,1.39,1.27,1.07,0.79,0.43,0,-0.52,-1.12,-1.8,-2.56;

0.75,0.71,0.59,0.39,0.11,-0.24,-0.68,-1.2,-1.8,-2.48,-3.24;

0,-0.04,-0.16,-0.36,-0.64,-1,-1.44,-1.96,-2.56,-3.24,-4];

[fx,fy]=gradient(z0); fx=fx/0.2; fy=fy/0.2;

subplot(221), surf(x0,y0,fx), subplot(222), surf(x0,y0,fy)

syms x y z; z=4-x^2-y^2; zx=diff(z,x), zy=diff(z,y)

fx1=subs(zx,{x,y},{x0,y0}); fy1=subs(zy,{x,y},{x0,y0});

subplot(223), surf(x0,y0,double(fx1)),

subplot(224), surf(x0,y0,double(fy1))
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FIGURE 3.4: Partial derivatives

27. Evaluate the following path and line integrals

(i)

∫

l

(x2 + y2) ds, l: x = a(cos t + t sin t), y = a(sin t− t cos t), for 0 6 t 6 2π

(ii)

∫

l

(yx3 + ey) dx + (xy3 + xey − 2y) dy, where l is given by the upper-semi-

ellipsis of a2x2 + b2y2 = c2.

(iii)

∫

l

y dx−x dy+(x2+y2) dz, l: x=et, y=e−t, z=at, 0 6 t 6 1, for a>0.

(iv)

∫

l

(ex sin y − my)dx + (ex cos y − m) dy, where l is defined as the closed

path from (a, 0) to (0, 0), then with the upper-semi-circle x2 + y2 = ax.

Solution The line and path integrals can easily be obtained with

>> syms a t; x=a*(cos(t)+t*sin(t)); y=a*(sin(t)-t*cos(t));
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f=x^2+y^2; I1=int(f*sqrt(diff(x,t)^2+diff(y,t)^2),t,0,2*pi)

syms x y a b c t; x=c*cos(t)/a; y=c*sin(t)/b;

P=y*x^3+exp(y); Q=x*y^3+x*exp(y)-2*y;

ds=[diff(x,t);diff(y,t)]; I2=int([P Q]*ds,t,0,pi)

syms t; syms a positive; x=exp(t); y=exp(-t); z=a*t;

F=[y, -x, (x^2+y^2)];

ds=[diff(x,t);diff(y,t);diff(z,t)]; I3=int(F*ds,t,0,1)

syms t m; syms a positive; x1=t; y1=0;

F1=[exp(x1)*sin(y1)-m*y1, exp(x1)*cos(y1)-m];

x2=a/2+a/2*cos(t); y2=a/2*sin(t);

F2=[exp(x2)*sin(y2)-m*y2, exp(x2)*cos(y2)-m];

I4a=int(F1*[diff(x1,t);diff(y1,t)],t,0,a)

I4b=int(F2*[diff(x2,t);diff(y2,t)],t,0,pi); I4=I4a+I4b

and the results are respectively

I1 = 2a3π2 + 4a3π4, I2 =
2c(2c4 − 15b4)

15ab4
, I3 = 2 +

ae2

2
− ae−2

2
, and I4 =

a2mπ

8
.

28. Compute the surface integrals, where S is the bottom side of the semi-sphere

z=
√

R2−x2−y2.

(i)

∫

S

xyz3 ds, (ii)

∫

S

(x + yz3) dxdy.

Solution (i) The original integral can be converted into the double integral

I = −
∫ R

−R

∫ √
R2−x2

−
√

R2−x2
xyz3

√
1 + z2

x + z2
y dydx

Thus the integral can be evaluated with I1 = 0.

>> syms x y z; syms R positive; F=x*y*z^3; z=sqrt(R^2-x^2-y^2);

I1=-int(int(F*sqrt(1+diff(z,x)^2+diff(z,y)^2),y,...

-sqrt(R^2-x^2),sqrt(R^2-x^2)),x,-R,R)

(ii) The parametric description of the semi-sphere can also be written as x =
R sin u sin v, y = R sin u cos v, z = R cos u, π 6 u 6 2π, 0 6 v 6 2π. The
integral can be evaluated with the following statements and the result is I2 =
4πR3/3.

>> syms R positive; syms u v;

x=R*sin(u)*sin(v); y=R*sin(u)*cos(v); z=R*cos(u); P=x+y*z^3;

A=diff(y,u)*diff(z,v)-diff(z,u)*diff(y,v);

I2=int(int(A*P,u,pi,2*pi),v,0,2*pi)
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Chapter 4

Linear Algebra Problems

Exercises and Solutions

1. Jordanian matrix is a very practical matrix in matrix analysis courses. The
general form the the matrix is described as

J =




−α 1 0 · · · 0
0 −α 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −α


 , e.g., J1 =




−5 1 0 0 0
0 −5 1 0 0
0 0 −5 1 0
0 0 0 −5 1
0 0 0 0 −5




.

Construct matrix J1 with the MATLAB function diag().

Solution With the sophisticated function diag(), the Jordanian matrix can
easily be established

>> J1=diag([-5 -5 -5 -5 -5])+diag([1 1 1 1],1)

or even more systematically

>> n=5; J1=diag(-5*ones(1,n))+diag(ones(1,n-1),1))

2. Nilpotent matrix is a special matrix defined as Hn =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




. Verify

for any pre-specified n, Hi
n = 0 is satisfied for all i > n.

Solution The for loop can be used to test whether there are exceptions to the
above definitions. Actually there is no exception for i < 100.

>> for i=1:100

A=diag(ones(1,i),1); if norm(A^(1+i))>0, disp(i); end

end

It is also interesting to observe the changes of Hi
n when i changes from 1 to n.

3. Can you recognize from the way of display, whether a matrix is a numeric matrix
or a symbolic matrix. If A is a numeric matrix and B is a symbolic matrix,
can you predict the product C=A*B is a numeric matrix or a symbolic matrix.
Verify the judgement through a simple example.

23
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Solution A times B returns a symbolic matrix.

4. Compute the determinant of a Vandermonde matrix A =




a4 a3 a2 a 1
b4 b3 b2 b 1
c4 c3 c2 c 1
d4 d3 d2 d 1
e4 e3 e2 e 1




,

and find the simplified results.

Solution With the following statements, the Vandermonde matrix can be estab-
lished first, then the determinant can be evaluated and converted.

>> syms a b c d e; A=vander([a b c d e]); simple(det(A))

the simplified result is

(a− d) (−a + c) (c− d) (b− a) (b− d) (b− c) (−a + e) (e− d) (e− c) (−b + e) .

5. Input matrices A and B in MATLAB, and convert them into symbolic matrices.

A =




5 7 6 5 1 6 5
2 3 1 0 0 1 4
6 4 2 0 6 4 4
3 9 6 3 6 6 2
10 7 6 0 0 7 7
7 2 4 4 0 7 7
4 8 6 7 2 1 7




, B =




3 5 5 0 1 2 3
3 2 5 4 6 2 5
1 2 1 1 3 4 6
3 5 1 5 2 1 2
4 1 0 1 2 0 1
−3 −4 −7 3 7 8 12
1 −10 7 −6 8 1 5




.

Solution The input and conversions of the matrices are easy and straightforward.
Then the symbolic forms can be obtained.

>> A=[5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;

10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7]; A=sym(A)

B=[3,5,5,0,1,2,3; 3,2,5,4,6,2,5; 1,2,1,1,3,4,6; 3,5,1,5,2,1,2;

4,1,0,1,2,0,1; -3,-4,-7,3,7,8,12; 1,-10,7,-6,8,1,5]; B=sym(B)

6. Check whether the matrices given in the above exercise are singular or not. Find
the rank, determinant, trace and inverse matrices for them. Check whether the
inverse matrices are correct or not.

Solution The problem can be solved with the following statements

>> A=[5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;

10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7]; A=sym(A);

det(A), rank(A), trace(A), inv(A), inv(A)*A

and it is found that det(A) = −35432, rank(A) = 7, trace(A) = 27, and the
verified inverse matrix is obtained as
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A−1 =




2297

4429
−1157

4429

2771

8858
−1709

4429

173

4429
−1278

4429
− 178

4429
6465

8858

1537

8858

4151

17716
−1332

4429
− 469

4429
−1758

4429
−1467

8858

−24047

17716
− 4651

17716
−20641

35432

6091

8858

3079

8858

4827

8858

6439

17716
5515

8858
− 977

8858

4185

17716
−1424

4429
− 794

4429
− 842

4429
− 491

8858

− 6163

17716
− 887

17716

463

35432

1613

8858
− 127

8858

1271

8858

1567

17716
3781

17716

2565

17716

219

35432

189

8858
− 921

8858

429

8858
− 3353

17716

− 9225

17716

4959

17716
− 6663

35432

2137

8858
− 9

8858

2601

8858

1785

17716




7. Find the characteristic polynomials, eigenvalues and eigenvectors for the ma-
trices A and B in Exercise 5. Validate Hamilton-Caylay Theorem and explain
how the error, if any, may be eliminated.

Solution Take matrix A as an example, the characteristic polynomial and the
eigenvalues can be obtained with the following statements

>> A=[5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;

10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7];

e=eig(A), p=poly(sym(A)), p=sym2poly(p), polyvalm(p,A)

The characteristic polynomial is x7−27x6−18x5−1000x4+3018x3+24129x2+
2731x + 35432, and the Hamilton-Caylay Theorem is also validated.
If numerical method is used, the norm of error may be 1.494×10−5. One should
replace poly() by poly1(), to avoid the error.

>> p=poly(A), e=polyvalm(p,A), norm(e)

8. Perform singular value decompositions, LU decompositions and orthogonal de-
compositions to the matrices A and B in Exercise 5.

Solution Still for matrix A, the LU decomposition can be performed either in
numerical or in symbolic method

>> A=[5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;

10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7];

[L,U]=lu(A), [L1,U1]=lu(sym(A))

where numerical solution are

L =




0.5 0.50725 0.55556 0.10989 0.5 0.53756 1
0.2 0.23188 −0.75 0.64286 0.57018 1 0
0.6 −0.028986 −0.94444 1 0 0 0
0.3 1 0 0 0 0 0
1 0 0 0 0 0 0

0.7 −0.42029 1 0 0 0 0
0.4 0.75362 0.27778 0.64835 1 0 0



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U =




10 7 6 0 0 7 7
0 6.9 4.2 3 6 3.9 −0.1
0 0 1.5652 5.2609 2.5217 3.7391 2.058
0 0 0 5.0556 8.5556 3.4444 1.7407
0 0 0 0 −8.7692 −8.011 2.5751
0 0 0 0 0 3.8534 1.5794
0 0 0 0 0 0 −1.9204




and the analytical solutions are

L1 =




1 0 0 0 0 0 0
2/5 1 0 0 0 0 0
6/5 −22 1 0 0 0 0
3/5 24 −1 1 0 0 0
2 −35 55/36 65/36 1 0 0

7/5 −39 59/36 −17/36 3/17 1 0
4/5 12 −1/2 −1 −60/119 −102/35 1




U1 =




5 7 6 5 1 6 5
0 1/5 −7/5 −2 −2/5 −7/5 2
0 0 −36 −50 −4 −34 42
0 0 0 −2 11 2 −7
0 0 0 0 −119/4 −17/3 557/36
0 0 0 0 0 5/3 479/153
0 0 0 0 0 0 17716/1785




9. For arbitrary matrices

A1 =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , A2 =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




verify the Hamilton-Caylay Theorem.

Solution The Hamilton-Caylay Theorem can be verified for the arbitrary 3 × 3
and 4× 4 matrices with the following statements and it can be seen that both
the resulted matrices are zero matrices.

>> syms a11 a12 a13 a21 a22 a23 a31 a32 a33 x;

A=[a11 a12 a13; a21 a22 a23; a31 a32 a33]; p=poly(A)

P=polycoef(p,x,3); simple(P(1)*A^3+P(2)*A^2+P(3)*A+P(4)*eye(3))

syms a14 a24 a34 a41 a42 a43 a44;

A=[A [a14; a24; a34]; a41 a42 a43 a44];

p=poly(A); P=polycoef(p,x,4);

simple(P(1)*A^4+P(2)*A^3+P(3)*A^2+P(4)*A+P(5)*eye(4))

10. Perform LU factorization and SVD decomposition to the following matrices

A =




8 0 1 1 6
9 2 9 4 0
1 5 9 9 8
9 9 4 7 9
6 9 8 9 6




, B =




1 2 2 2
1 1 2 0
1 1 1 0
0 0 2 0


 .

Solution LU factorization and SVD decomposition of matrix A are found by
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>> A=[8,0,1,1,6; 9,2,9,4,0; 1,5,9,9,8; 9,9,4,7,9; 6,9,8,9,6];

[L,U]=lu(sym(A)), [L,A1,M]=svd(A)

and the matrices are

L =




1 0 0 0 0
9/8 1 0 0 0
1/8 5/2 1 0 0
9/8 9/2 521/173 1 0
3/4 9/2 451/173 1572/2101 1




U =




8 0 1 1 6
0 2 63/8 23/8 −27/4
0 0 −173/16 27/16 193/8
0 0 0 −2101/173 −6925/173
0 0 0 0 −2242/2101




N =




−0.23011 −0.6123 −0.32765 −0.57127 0.37207
−0.35339 −0.44337 0.79124 0.014875 −0.22859
−0.46818 0.59296 0.077909 −0.61995 −0.19699
−0.54646 −0.17809 −0.50623 0.35009 −0.53929
−0.55169 0.21259 0.065144 0.40808 0.69258




A1 = diag([30.8316, 9.8319, 8.4099, 4.8975, 0.1796])

M =




−0.44492 −0.87705 0.049073 0.1109 0.13462
−0.41941 0.24294 −0.23755 0.76644 −0.34817
−0.46133 0.17518 0.71237 −0.27604 −0.41573
−0.47509 0.36794 0.069106 0.006557 0.7963
−0.43314 0.07553 −0.65492 −0.56924 −0.23179




11. Compute the eigenvalues, eigenvectors and singular values of the following
matrices.

A =




2 7 5 7 7
7 4 9 3 3
3 9 8 3 8
5 9 6 3 6
2 6 8 5 4




, B =




703 795 980 137 661
547 957 271 12 284
445 523 252 894 469
695 880 876 199 65
621 173 737 299 988




.

Solution For matrices A and B, the problem can be solved by

>> A=[2,7,5,7,7; 7,4,9,3,3; 3,9,8,3,8; 5,9,6,3,6; 2,6,8,5,4];

e=eig(A), [v,d]=eig(A), svd(A)

B=[703,795,980,137,661; 547,957,271,12,284; 445,523,252,894,469;

695,880,876,199,65; 621,173,737,299,988]

e=eig(B), [v,d]=eig(B), svd(B)

and the eigenvalues of matrix A can be found as 27.8629, 2.6062,−2.2306 ±
j1.8926,−5.0078, and the eigenvalues of B are 2670,−580.9,−136.04, 572.99±
j315.67. More accurate eigenvalues can be obtained when one convert A and
B into symbolic ones.

12. Please check whether the following matrices are positive-definite ones, if so,
please find the Cholesky decomposited matrices.
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A =




9 2 1 2 2
2 4 3 3 3
1 3 7 3 4
2 3 3 5 4
2 3 4 4 5




, B =




16 17 9 12 12
17 12 12 2 18
9 12 18 7 13
12 2 7 18 12
12 18 13 12 10




.

Solution One may test the positive-definiteness of a symmetrical matrix via
chol(). If a square matrix of the size of A is returned, it is a positive-definite
matrix. So for A, it is a positive-definite matrix.

>> A=[9,2,1,2,2; 2,4,3,3,3; 1,3,7,3,4; 2,3,3,5,4; 2,3,4,4,5]

chol(A), L=chol(sym(A))

and the symbolic lower-triangular matrix

L =




3 0 0 0 0

2/3 4
√

2/3 0 0 0

1/3 25
√

2/24
√

302/8 0 0

2/3 23
√

2/24 25
√

302/1208
√

59041/151 0

2/3
√

2/24 57
√

302/1208 215
√

59041/59041
√

193154/391




13. Perform the Jordanian transformation for A =




−2 0.5 −0.5 0.5
0 −1.5 0.5 −0.5
2 0.5 −4.5 0.5
2 1 −2 −2


, and

also find the corresponding transformation matrix.

Solution The Jordanian transformation can be performed by

>> A=[-2,0.5,-0.5,0.5; 0,-1.5,0.5,-0.5; 2,0.5,-4.5,0.5; 2,1,-2,-2];

[V,J]=jordan(sym(A))

with

V =




0 1/2 1/2 −1/4
0 0 1/2 1

1/4 1/2 1/2 −1/4
1/4 1/2 1 −1/4


 , J =




−4 0 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2




The above method also applies for a numerical matrix A.

14. Find the basic set of solutions of the homogenous equations

(i)





6x1 + x2 + 4x3 − 7x4 − 3x5 = 0
−2x1 − 7x2 − 8x3 + 6x4 = 0
−4x1 + 5x2 + x3 − 6x4 + 8x5 = 0
−34x1 + 36x2 + 9x3 − 21x4 + 49x5 = 0
−26x1 − 12x2 − 27x3 + 27x4 + 17x5 = 0,

(ii) A=



−1 2 −2 1 0
0 3 2 2 1
3 1 3 2 −1


 .

Solution (i) The coefficient matrix of the homogenous equation can be established
first and the basic set of solutions can be written as

eT
1 = [95/17, 1, 0, 103/34, 151/34] and eT

2 = [191/34, 0, 1, 109/34, 173/34].

>> A1=[6,1,4,-7,-3; -2,-7,-8,6,0; -4,5,1,-6,8;

-34,36,9,-21,49; -26,-12,-27,27,17]; A=sym(A);

rank(A1), v=null(A1); e1=v(:,1), e2=v(:,2)
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(ii) For the given matrix A, the basic set of solutions can also be found such
that eT

3 = [−18, 1, 10, 0,−23], and eT
4 = [−13, 0, 7, 1,−16].

>> A2=[-1,2,-2,1,0; 0,3,2,2,1; 3,1,3,2,-1]; A=sym(A);

A2=sym(A2); rank(A2), v=null(A2); e3=v(:,1), e4=v(:,2)

Thus for any a1 and a2, the analytical equations are

>> syms a1 a2; x1=a1*e1+a2*e2, x2=a1*e3+a2*e4, A1*x1, A2*x2

with (i), x1 =




191a1/34 + 95a2/17
a2

a1

109a1/34 + 103a2/34
173a1/34 + 151a2/34




, (ii) x2 =




−13a1 − 18a2

a2

7a1 + 10a2

a1

−16a1 − 23a2




.

15. Find the numerical and analytical solutions to the following linear algebraic
equations, and then validate the results.



2 −9 3 −2 −1
10 −1 10 5 0
8 −2 −4 −6 3
−5 −6 −6 −8 −4


 X =




−1 −4 0
−3 −8 −4
0 3 3
9 −5 3


 .

Solution One should check first the solvability problem

>> A=[2,-9,3,-2,-1; 10,-1,10,5,0; 8,-2,-4,-6,3; -5,-6,-6,-8,-4];

B=[-1,-4,0; -3,-8,-4; 0,3,3; 9,-5,3];

rank(A), rank([A B])

Since the two ranks are the same, there are infinite numbers of solutions with

>> syms a; v=null(sym(A))*a; x=[v v v]+sym(A)\B, A*x-B

The solutions are given for any a, that


a+967/1535 a−943/1535 a−159/1535
−1535a/1524 −1535a/1524 −1535a/1524

−3659a/1524−1807/1535 −3659a/1524−257/1535 −3659a/1524−141/1535
1321a/508+759/1535 1321a/508−56/1535 1321a/508−628/1535
−170a/127−694/307 −170a/127+719/307 −170a/127+103/307




.

16. Check whether the equation




16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1


 X =




1
3
4
7


 has a solution.

Solution The rank of the two related matrices can be obtained and since they
are not equal, there is no solution to the linear algebraic equation.

>> A=[16,2,3,13; 5,11,10,8; 9,7,6,12; 4,14,15,1];

B=[1; 3; 4; 7]; [rank(A), rank([A B])]

17. Find the analytical solutions to the following linear algebraic equations, and
then validate the results.
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


2 9 4 12 5 8 6
12 2 8 7 3 3 7
3 0 3 5 7 5 10
3 11 6 6 9 9 1
11 2 1 4 6 8 7
5 −18 1 −9 11 −1 18
26 −27 −1 0 −15 −13 18




X =




1 9
5 12
4 12
10 9
0 5
10 18
−20 2




.

Solution We should check first the solvability of the equation

>> A=[2,9,4,12,5,8,6; 12,2,8,7,3,3,7; 3,0,3,5,7,5,10; 3,11,6,6,9,9,1;

11,2,1,4,6,8,7; 5,-18,1,-9,11,-1,18; 26,-27,-1,0,-15,-13,18];

B=[1,9; 5,12; 4,12; 10,9; 0,5; 10,18; -20,2];

C=[A B]; rank(A), rank(C)

and it is found that rank(A) =rank(C) = 5, which means that there are infinite
sets of equations. One may solve and verify the equation as follows

>> syms a1 a2; z=null(sym(A)); x0=sym(A)\B;

x1=z*[a1; a2]; X=[x1 x1]+x0, A*X-B

The analytical solution to the equation can be found, and substituting it back
to the original equation, zero error matrix can be returned.

X =




6386

9453
a1 − 7118

9453
a2 − 15139

33710

6386

9453
a1 − 7118

9453
a2 − 3599

6742

a1 − 3106

16855
a1 − 4302

3371

−14446

9453
a1 +

15643

9453
a2 +

60429

33710
−14446

9453
a1 +

15643

9453
a2 +

12527

6742
6437

9453
a1 − 15716

9453
a2 − 30043

33710

6437

9453
a1 − 15716

9453
a2 +

2153

6742
16855

9453
a1 − 24190

9453
a2

16855

9453
a1 − 24190

9453
a2

−25198

9453
a1 +

25561

9453
a2 +

29837

33710
−25198

9453
a1 +

25561

9453
a2 +

8671

6742
a2 a2




18. For the matrices A and B, calculate A⊗B and B ⊗A. Are they equal?

A =




−1 2 2 1
−1 2 1 0
2 1 1 0
1 0 2 0


 , B =




3 0 3
3 2 2
3 1 1


 .

Solution The two Kronecker products can be obtained (display omitted). Obvi-
ously they are different.

>> A=[-1,2,2,1; -1,2,1,0; 2,1,1,0; 1,0,2,0];

B=[3,0,3; 3,2,2; 3,1,1]; kron(A,B), kron(B,A)

19. Find the analytical and numerical solutions to the following Sylvester equation,
and verify the results.
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


3 −6 −4 0 5
1 4 2 −2 4
−6 3 −6 7 3
−13 10 0 −11 0
0 4 0 3 4




X + X




3 −2 1
−2 −9 2
−2 −1 9


 =




−2 1 −1
4 1 2
5 −6 1
6 −4 −4
−6 6 −3




.

Solution The numerical and analytical solutions to the Sylvester equation can
easily be found with the following statements

>> A=[3,-6,-4,0,5; 1,4,2,-2,4; -6,3,-6,7,3; -13,10,0,-11,0;

0,4,0,3,4]; B=[3,-2,1; -2,-9,2; -2,-1,9];

C=[-2,1,-1; 4,1,2; 5,-6,1; 6,-4,-4; -6,6,-3];

X1=lyap(A,B,C), e1=norm(A*X1+X1*B+C), X2=lyap(sym(A),B,C)

and the results are

X1 =




−4.0569 −14.513 1.5653
0.035558 25.074 −2.7408
9.4886 25.932 −4.4177
2.6969 21.645 −2.8851
7.7229 31.91 −3.7634




, e1 = 3.987×10−13,

X2 =




−434641749950

107136516451
−4664546747350

321409549353

503105815912

321409549353
3809507498

107136516451

8059112319373

321409549353
−880921527508

321409549353
1016580400173

107136516451

8334897743767

321409549353
−1419901706449

321409549353
288938859984

107136516451

6956912657222

321409549353
−927293592476

321409549353
827401644798

107136516451

10256166034813

321409549353
−1209595497577

321409549353




20. Find the analytical and numerical solution to the matrix equation given below
and verify the results.


−2 2 1
−1 0 −1
1 −1 2


 X



−2 −1 2
1 3 0
3 −2 2


−X +




0 −1 0
−1 1 0
1 −1 −1


 = 0.

Solution Denote the original equation by AXB −X + C = 0, where

A =



−2 2 1
−1 0 −1
1 −1 2


 , B =



−2 −1 2
1 3 0
3 −2 2


 , C =




0 −1 0
−1 1 0
1 −1 −1




It is easily found that AX + X(−B−1) = −CB−1, and the solution to the
equation can easily found and verified

>> A=[-2,2,1; -1,0,-1; 1,-1,2]; B=[-2,-1,2; 1,3,0; 3,-2,2];

C=[0,-1,0; -1,1,0; 1,-1,-1];

X=lyap(sym(A),-inv(B),C*inv(B)), A*X*B-X+C

It is found that AXB −X + C = 0 with

X =




4147/47149 3861/471490 −40071/235745
−2613/94298 2237/235745 −43319/235745
20691/94298 66191/235745 −10732/235745



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21. Assume that a Riccati equation is given by PA+ATP−PBR−1BTP +Q = 0,
where

A=




−27 6 −3 9
2 −6 −2 −6
−5 0 −5 −2
10 3 4 −11


 , B=




0 3
16 4
−7 4
9 6


 , Q=




6 5 3 4
5 6 3 4
3 3 6 2
4 4 2 6


 , R=

[
4 1
1 5

]
.

Solve the equation and verify the result.

Solution The numerical solution to the Riccati equation can be solved with an
error-level of the 10−13.

>> A=[-27,6,-3,9; 2,-6,-2,-6; -5,0,-5,-2; 10,3,4,-11];

B=[0,3; 16,4; -7,4; 9,6];

Q=[6,5,3,4; 5,6,3,4; 3,3,6,2; 4,4,2,6]; R=[4,1; 1,5];

C=Q; B1=B*inv(R)*B’; P=are(A,B1,C),

norm(P*A+A’*P-P*B*inv(R)*B’*P+Q)

with the solutions

P =




0.12264 0.10885 0.027266 0.11846
0.10885 0.28127 0.16587 0.06371
0.027266 0.16587 0.4023 0.013892
0.11846 0.06371 0.013892 0.22087




22. Certain functions can be expressed by polynomial functions, i.e., Taylor series
expansions. In these functions, if x is substituted by matrix A, the nonlinear
function can also be expressed for matrices. Write M-functions for the matrix
function evaluation problems and verify the results with funm().

(i) cos A = I − 1

2!
A2 +

1

4!
A4 − 1

6!
A6 + · · ·+ (−1)n

(2n)!
A2n + · · ·

(ii) arc sinA = A +
1

2 · 3A3 +
1 · 3

2 · 4 · 5A5 +
1 · 3 · 5

2 · 4 · 6 · 7A7

+
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 9A9 + · · ·+ (2n)!

22n(n!)2(2n + 1)
A2n+1 + · · ·

(iii) lnA=A−I−1

2
(A−I)2+

1

3
(A−I)3− 1

4
(A−I)4 + · · ·+ (−1)n+1

n
(A−I)n + · · · .

Solution (i) the (n + 1)th term divided by the nth term is

(−1)n+1

(2n + 2)!
A2n+2

(−1)n

(2n)!
A2n

= − A2

(2n + 2)(2n + 1)

and the loop structure can be used to implement the sum of series in M-function

1 function A1=cosm1(A,eps0)

2 n=0; F=eye(size(A)); A1=F; if nargin==1, eps0=eps; end

3 while norm(F)>eps0, F=-A^2*F/(2*n+1)/(2*n+2); A1=A1+F; n=n+1; end

(ii) the (n + 1)th term divided by the nth term is
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(2n + 2)!

22n+2((n + 1)!)2(2n + 3)
A2n+3

(2n)!

22n(n!)2(2n + 1)
A2n+1

=
(2n + 1)2A2

(2n + 2)(2n + 3)

thus an M-function can be written

1 function A1=asinm1(A,eps0)

2 n=0; F=A; A1=F; if nargin==1, eps0=eps; end

3 while norm(F)>eps0,

4 F=F*A^2*(2*n+1)^2/(2*n+2)/(2*n+3); A1=A1+F, n=n+1;

5 end

(iii) the (n + 1)th term divided by the nth term is

(−1)n+2

n + 1
(A−I)n+1

(−1)n+1

n
(A−I)n

= −(A− I)
n

n + 1

and an M-function can be written to implement the algorithm

1 function A1=logm1(A,eps0)

2 n=0; I=eye(size(A)); F=A-I; A1=F; if nargin==1, eps0=eps; end

3 while norm(F)>eps0, F=-F*(A-I)*n/(n+1); A1=A1+F; n=n+1; end

It should be noted that since the Taylor series for arcsin(x) and ln(x) are
conditional, for instance, arcsin(x) for |x| < 1 and ln(x) for 0 < x 6 2, the
use of the Taylor series for matrix function evaluation is restricted. One is
suggested to use the funm() function designed in the book.

23. For an autonomous linear differential equation of the form ẋ(t) = Ax(t), the
analytical solution can be written as x(t) = eAtx(0). Find the analytical
solution to the equation

ẋ(t) =




−3 0 0 1
−1 −1 1 −1
1 0 −2 1
0 0 0 −4


 x(t), x(0) =




−1
0
3
1


 .

Solution The analytical solution of the differential equation can be found as

xT(t) = [−e−4t, 3e−t − 3e−2t, 3e−2t, e−4∗t].

>> A=[-3,0,0,1; -1,-1,1,-1; 1,0,-2,1; 0,0,0,-4]; x0=[-1; 0; 3; 1];

syms t; x=expm(A*t)*x0, e=diff(x)-A*x

24. If a block Jordanian matrix A is given by

A=




A1

A2

A3


 , where A1 =



−3 1 0
0 −3 1
0 0 −3


 ,

A2 =

[−5 1
0 −5

]
, A3 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1



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find the solutions to eAt, sin
(
2At +

π

3

)
, eA2tA2 + sin(A3t)At + esin At.

Solution The exponential of the block Jordanian matrix can be obtained

>> syms t x; A1=[-3 1 0; 0 -3 1; 0 0 -3]; A2=[-5 1; 0 -5];

A3=[-1 1 0 0; 0 -1 1 0; 0 0 -1 1; 0 0 0 -1];

A=diagm(A1,A2,A3); expm(A*t)

and it is found that

eAt =




e−3t te−3t t2e−3t/2 0 0 0 0 0 0
0 e−3t te−3t 0 0 0 0 0 0
0 0 e−3t 0 0 0 0 0 0
0 0 0 e−5t te−5t 0 0 0 0
0 0 0 0 e−5t 0 0 0 0
0 0 0 0 0 e−t te−t t2e−t/2 t3e−t/6
0 0 0 0 0 0 e−t te−t t2e−t/2
0 0 0 0 0 0 0 e−t te−t

0 0 0 0 0 0 0 0 e−t




The other matrix functions can be evaluated with the following statements

>> F1=funm(A,sin(2*x*t+pi/3),x),

F2=funm(A,exp(x^2*t)*x^2+sin(x^3*t)*x*t+exp(sin(x*t)),x)

25. For the given matrix A, find matrix functions eAt, sin At, eAt sin
(
A2eAtt

)
.

A =




−4.5 0 0.5 −1.5
−0.5 −4 0.5 −0.5
1.5 1 −2.5 1.5
0 −1 −1 −3


 .

Solution The exponential function of the matrix can be obtained

>> A=[-4.5,0,0.5,-1.5; -0.5,-4,0.5,-0.5; 1.5,1,-2.5,1.5; 0,-1,-1,-3];

A=sym(A); syms t; expm(A*t)

and it is found that

1

2




e−3t(1−t+t2)+e−5t e−5t+(−1+2t)e−3t (t+t2)e−3t e−5t−(1+t−t2)e−3t

(t−1)e−3t+e−5t e−3t+e−5t te−3t (t−1)e−3t+e−5t

(t+1)e−3t−e−5t −e−5t+e−3t (1+t)e−3t (t+1)e−3t−e−5t

−t2e−3t −te−3t −(t+t2)e−3t (2−t2)e−3t


 .

The other matrix functions can also be obtained with

>> syms x t; funm(A,’sin(x*t)’,x)

syms x t; funm(A,’exp(x*t)*sin(x^2*exp(x*t)*t)’,x)

and the results are tedious and are not displayed here.
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Chapter 5

Integral Transforms and Complex
Variable Functions

Exercises and Solutions

1. Perform Laplace transforms for the given functions

(i) f(t) =
sin αt

t
, (ii) f(t) = t5 sin αt, (iii) f(t) = t8 cos αt,

(iv) f(t) = t6eαt, (v) f(t) = 5e−at + t4e−at + 8e−2t,

(vi) f(t) = eβt sin(αt + θ), (vii) f(t) = e−12t + 6e9t.

Solution The Laplace transforms of the functions can easily be obtained with
the following statements

>> syms a t; f=sin(a*t)/t; F1=laplace(f)

f=t^5*sin(a*t); F2=laplace(f)

f=t^8*cos(a*t); F3=laplace(f)

f=t^6*exp(a*t); F4=laplace(f)

f=5*exp(-a*t)+t^4*exp(-a*t)+8*exp(-2*t); F5=laplace(f)

syms a b c t; f=exp(b*t)*sin(a*t+c); F6=laplace(f)

syms t; f=exp(-12*t)+6*exp(9*t); F7=laplace(f)

the solutions obtained are

F1 = atan
(α

s

)
, F2 =

120 sin(6atan(α/s))

(s2 + α2)3
, F3 = 20160 (s−jα)9+20160 (s+jα)9 ,

F4 =
720

(s− a)7
, F5 =

5

s + a
+

24

(s + a)5
+

8

s + 2
,

F6 =
α cos θ + (s− β) sin θ

s2 − 2βs + β2 + α2
, F7 = 7

s + 9

(s + 12) (s− 9)

2. Take inverse transforms for the problems solved above and see whether the
original function can be restored.

Solution The inverse transforms can be obtain by, for instance,

>> ilaplace(F7)

and it can be seen that all the original functions can be restored.

3. The following properties are also given for Laplace transforms. Verify for
different values of n, the following formula are satisfied.

35
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(i) L [tnf(t)] = (−1)n dnL [f(t)]

dsn
, (ii) L [tn−1/2] = Γ(n + 1/2)s−n−1/2

Solution Arbitrarily choose an n by random number generator, then the two
equations can be proved to be equal, if the differences are zeros.

>> n=fix(500*rand(1,1)); f=sym(’f(t)’);

err1=simple(laplace(t^n*f)-(-1)^n*diff(laplace(f),s,n))

err2=simple(laplace(t^(n-1/2))-gamma(sym(n)+1/2)*s^(-n-1/2))

4. Perform inverse Laplace transforms to the following F (s).

(i) F (s) =
1

s2(s2 − a2)(s + b)
, (ii) F (s) =

√
s− a−√s− b,

(iii) F (s) = ln
s− a

s− b
, (iv) F (s) =

1√
s(s + a)

, (v) F (s) =
3a2

s3 + a3
,

(vi) F (s) =
(s− 1)8

s7
, (vii) F (s) = ln

s2 + a2

s2 + b2

(viii) F (s) =
s2 + 3s + 8∏8

i=1(s + i)
, (ix) F (s) =

1

2

s + α

s− α

Solution The inverse Laplace transforms can also be evaluated with

>> syms s a b; F=1/(s^2*(s^2-a^2)*(s+b)); f1=ilaplace(F)

F=sqrt(s-a)-sqrt(s-b); f2=ilaplace(F)

F=log((s-a)/(s-b)); f3=ilaplace(F)

F=1/sqrt(s)/(s+a); f4=ilaplace(F)

F=3*a^2/(s^3+a^3); f5=ilaplace(F)

F=(s-1)^8/s^7; f6=ilaplace(F)

F=log((s^2+a^2)/(s^2+b^2)); f7=ilaplace(F)

F=s^2+3*s+8; for i=1:8, F=F/(s+i); end; f8=ilaplace(F)

F=(s+a)/(s-a)/2; f9=ilaplace(F)

and the results are

f1 = − t

a2b
+

eat

2a3 (a + b)
+

1

b2a2
− e−bt

b2 (a2 − b2)
+

e−at

2a3 (a− b)

f2 =
ebt − eat

2t3/2
√

π
, f3 =

ebt − eat

t
, f4 =

e−aterfi
(√

at
)

√
a

f5 = e−at + eat/2

(
− cos

(√
3

2
at

)
+
√

3 sin

(√
3

2
at

))

f6 = δ (1, t)− 8δ (t)− 56 t + 28 +
1

720
t6 + 7/6 t4 + 35 t2 − 28

3
t3 − 1/15 t5

f7 = 2
cos bt− cos at

t
, f9 =

1

2
δ (t) + aeαt

f8 = − 1

105
e−8t+

1

840
e−t− 1

12
e−4t+

1

30
e−3t− 1

120
e−2t− 13

120
e−6t+

1

20
e−7t+

1

8
e−5t

where erfi(x)=−jerf(jx)=
2√
π

∫ x

0

et2dt, and δ(t) is the Dirac impulse function.

5. Show the Laplace transforms where the non-integer power of s is introduced,
which is the fundamentals of fractional-order calculus.
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(i) L [tγ ] =
Γ(γ + 1)

sγ+1
, one should check different values of γ

(ii) L

[
1√

t (1 + at)

]
=

π√
a

es/aerfc
(√

s/a
)

for a > 0.

Solution (i) One may try different fractional numbers, for instance, selecting
γ = 1/3, the Laplace transform of the function can be obtained and it is the
same as the right-hand-side one.

>> syms t; g=sym(1/3); laplace(t^g)-gamma(g+1)/s^(g+1)

(ii) The Laplace transform can be evaluated directly to yield the right-hand-side
representation.

>> syms a positive; syms t; laplace(1/sqrt(t)/(1+a*t))

6. One of the applications of Laplace transform is that it can be used in solving lin-
ear constant differential equations with zero initial conditions,using the property

L

[
dnf(t)

dtn

]
=snL [f(t)]. Solve the differential equation y′′(t)+3y′(t)+2y(t)=

e−t, y(0) = y′(0) = 0 using Laplace transforms.

Solution Taking Laplace transform to both sides of the equation, such that
(s2 +3s+2)Y (s) = L [e−t], the differential equation can equivalently be solved

from y(t) = L−1

[
L [e−t]

s2 + 3s + 2

]
, and the analytical solution can be obtained as

(−1 + t)e−t + e−2t. The solution is verified with also the following statements

>> syms s t; y=ilaplace(laplace(exp(-t))/(s^2+3*s+2)),

subs(y,t,0), subs(diff(y),t,0), diff(y,2)+3*diff(y)+2*y-exp(-t)

7. Perform Fourier transforms to the following functions, and inverse Fourier
transform should then be performed to see whether the original functions can
be restored.
(i) f(x) = x2(3π − 2|x|), 0 6 x 6 2π, (ii) f(t) = t2(t− 2π)2, 0 6 t 6 2π

(iii) f(t) = e−t2 , − l 6 t 6 l, (iv) f(t) = te−|t|, − π 6 t 6 π

Solution (i) The Fourier transform of the function can be written F1 = −6(4 +
π2δ(2, ω)ω4)/ω4. Taking the inverse and finds that f1 = x2(−4xheaviside(x) +
3π + 2x). Bear in mind the definition of the heaviside() function and it is
immediately recognized that (−4xheaviside(x) + 2x) is in fact −2|x|, thus the
original function can be restored.

>> syms x; f=x^2*(3*sym(pi)-2*abs(x)); F1=fourier(f), f1=ifourier(F1)

(ii)-(iv) can be solved easily by

>> syms t; f=t^2*(t-2*sym(pi))^2; F2=fourier(f), f2=x^2*(-2*pi+x)^2

f=exp(-t^2); F3=fourier(f), f3=ifourier(F)

f=t*exp(-abs(t)); F4=fourier(f), f4=ifourier(F)

with

F2 = 2π(4jπδ(3, ω)− 4π2δ(2, ω) + δ(4, ω)), F3 = π1/2eω2/4, F4 = − 4jω

(1 + ω2)2
.
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8. Perform Fourier sinusoidal and cosine transforms for the following functions and
then perform inverse transformation and see whether the original functions can
be restored.

(i) f(t) = e−t ln t, (ii) f(x) =
cos x2

x
, (iii) f(x) = ln

1√
1 + x2

(iv) f(x) = x(a2 − x2), a > 0, (iv) f(x) = cos kx.

Solution With the calling of corresponding Maple functions from MATLAB, the
transforms can be obtained. Unfortunately the inverse transforms usually fail.

>> syms t w; f=exp(-t)*log(t);

F1s=maple(’fouriersin’,f,t,w), F1c=maple(’fouriercos’,f,t,w)

f1=maple(’invfouriersin’,Fs1,w,t),

f2=maple(’invfouriercos’,F1c,w,t)

syms x; f=cos(x^2)/x; F2s=maple(’fouriersin’,f,x,w)

syms x w; f=sin(1+x^2); F3s=maple(’fouriersin’,f,x,w)

where the complicated F2s and F3s are not displayed, and

F1s =

√
2

π

atan(ω)−γω−ω ln(1+ω2)/2

1+ω2
, F1c =−

√
2

π

γ+ln(1+ω2)/2+ωatan(ω)

1+ω2

where γ is the Euler Gamma constant.

9. Compute the discrete Fourier sinusoidal and cosine transforms for the functions
(i) f(x) = ekx, and (ii) f(x) = x3.

Solution The discrete Fourier transforms can be obtained by direct integration
methods such that

>> syms k x; syms a positive; f=exp(k*x);

F1s=int(f*sin(k*sym(pi)*x/a),x,0,a),

F1c=int(f*cos(k*sym(pi)*x/a),x,0,a)

f=x^3; F2s=int(f*sin(k*sym(pi)*x/a),x,0,a),

F2c=int(f*cos(k*sym(pi)*x/a),x,0,a)

where

F1s =−a(eakπ cos kπ−eaka sin kπ−π)

k(a2 + π2)
, F1c =

a
(−a+eaka cos kπ+eakπ sin kπ

)

k (a2 + π2)

F2s = −a4
(−6kπ cos kπ + 6 sin kπ + k3π3 cos kπ − 3k2π2 sin kπ

)

k4π4

F2c =
a4

(
6− 6kπ sin kπ − 6 cos kπ + k3π3 sin kπ + 3k2π2 cos kπ

)

k4π4

It should be noted the computer generated results are not the simplest, since
sin kπ ≡ 0 for integers k, and cos kπ = (−1)k+1.

10. Write the Mellin transform for the function f(x) =

{
sin(alnx), x 6 1
0, othewise.

Solution For the given piecewise function, the function heaviside() can be
used. Then the Mellin transform can be obtained as F = −a/(a2 + z2). Again,
unfortunately, the inverse transform of the function cannot be obtained.

>> syms x z a; f=sin(a*log(x))*heaviside(1-x);

F=maple(’mellin’,f,x,z)
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11. Perform Z transforms to the time sequences f(kT ), and verify the results.

(i) f(kT )=cos(kaT ), (ii) f(kT )=(kT )2e−akT , (iii) f(kT )=
1

a
(akT−1+e−akT )

(iv) f(kT ) = e−akT − e−bkT , (v) f(kT ) = 1− e−akT (1 + akT ).

Solution The Z transform and its inverse can easily be obtained with the
ztrans() and iztrans() functions, respectively. Below are the transformation
and inverse, and the inverse transformation restores the original functions.

>> syms k a T; f=cos(k*a*T); F1=ztrans(f), f1=iztrans(F1)

f=(k*T)^2*exp(-a*k*T); F2=ztrans(f), f2=iztrans(F2)

f=(a*k*T-1+exp(-a*k*T))/a; F3=ztrans(f), f3=iztrans(F3)

syms b; f=exp(-a*k*T)-exp(-b*k*T); F4=ztrans(f), f4=iztrans(F4)

f=1-exp(-a*k*T)*(1+a*k*T); F5=ztrans(f), f5=iztrans(F5)

and the results are

F1 =
(z − cos (aT )) z

z2 − 2z cos (aT ) + 1
, F2 =

T 2ze−aT
(
z + e−aT

)

(z − e−aT )3

F3 =
1

a

[
aTz

(z − 1)2
− z

z − 1
+ zeaT

( z

e−aT
− 1

)−1
]

F4 = eaT
( z

e−aT
− 1

)−1

− zebT
( z

e−bT
− 1

)−1

F5 =
z

z − 1
− zeaT

( z

e−aT
− 1

)−1

− aTzeaT
( z

e−aT
− 1

)−2

12. Perform inverse Z transforms to the following functions.

(i) F (z) =
10z

(z − 1)(z − 2)
, (ii) F (z) =

z−1(1− e−aT )

(1− z−1)(1− z−1e−aT )

(iii) F (z) =
z

(z − a)(z − 1)2
, (iv) F (z) =

Az[z cos β − cos(αT − β)]

z2 − 2z cos(αT ) + 1
.

Solution The inverse Z transform can be obtained directly

>> syms z; F=10*z/((z-1)*(z-2)); f1=iztrans(F)

F=z^2/((z-0.8)*(z-0.1)); f2=iztrans(F)

syms a T; F=z/((z-a)*(z-1)^2); f3=simple(iztrans(F))

F=z^(-1)*(1-exp(-a*T))/((1-z^(-1))*(1-z^(-1)*exp(-a*T)));

f4=simple(iztrans(F))

syms b A; F=A*z*(z*cos(b)-cos(a*T-b))/(z^2-2*z*cos(a*T)+1);

f5=simple(iztrans(F))

and the results are

f1 = 10(2n − 1), f2 =
8

7

(
4

5

)n

− 1

7

(
1

10

)n

, f3 = −na− an + 1− n

(−1 + a)2
,

f4 = −eanT + 1, f5 = A cos(b + aTn)

13. Take inverse Laplace transform to the following functions, then take Z transform
and verify the results.

(i) G(s) =
b

s2(s + a)
, (ii) G(s) =

b

s2(s + a)2
1− e−Ts

s
.
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Solution The idea for solving the problems is to take inverse Laplace transform
to the given functions, and then take Z transform to the results

>> syms s a b; F=b/(s^2*(s+a)); f1=simple(ztrans(ilaplace(F)))

syms T; F=b/s^2/(s+a)^2*(1-exp(-T*s))/s;

f2=simple(ztrans(ilaplace(F)))

with

Z
[
L−1[F (s)]

]
= b

(azea + z − zea + ea − a− 1) zb

(z2ea − z − zea + 1) (z − 1) a2

14. For G(s) =
1

(s + 1)3
, if one substitutes s =

2(z − 1)

T (z + 1)
into G(s), the function

H(z) can be obtained. This kind of transform is referred to as bilinear trans-

form. For T = 1/2, find H(z). One may also assume that z =
1 + Ts/2

1− Ts/2
, inverse

bilinear transform can be performed. Check whether the original function can
be restored.

Solution Forward bilinear transform can be performed by

>> syms s z T; G=1/(s+3)^3; H=simple(subs(G,s,2*(z-1)/T/(z+1)));

H=simple(H), H1=simple(subs(H,T,1/2))

G1=subs(H,z,(s-T/2)/(s+T/2)); simple(G-G1)

where

H =

(
2 z − 2

T (z + 1)
+ 3

)−3

, H1 =
(z + 1)3

(7 z − 1)3

and the original function can be restored, if the inverse transform is taken.

15. Show that

Z
{

1−e−akT
[
cos(bkT )+

a

b
sin(bkT )

]}
=

z(Az + B)

(z−1)(z2−2e−aT cos(bT )z+e−2aT )

where
A = 1− e−aT cos(bT )− a

b
e−aT sin(bT )

B = e−2aT +
a

b
e−aT sin(bT )− e−aT cos(bT ).

Solution To show an equation hold by computers, one may take and simplify
the difference between the terms on both sides. If the difference is zero, the
equation holds. Otherwise it dose not hold. The following statements can be
given and for the problem, the difference is zero. Hence the equation holds.

>> syms a b k T; f=1-exp(-a*k*T)*(cos(b*k*T)+a/b*sin(b*k*T));

F=ztrans(f), A=1-exp(-a*T)*cos(b*T)-a/b*exp(-a*T)*sin(b*T);

B=exp(-2*a*T)+a/b*exp(-a*T)*sin(b*T)-exp(-a*T)*cos(b*T);

R=(z*(A*z+B))/((z-1)*(z^2-2*exp(-a*T)*cos(b*T)*z+exp(-2*a*T)));

simple(F-R)

16. Draw the mapping surface of the following complex variable functions.

(i) f(z) = z cos z2, (ii) f(z) = ze−z2
(cos z − sin z).

Solution The complex surfaces of the given functions can be drawn with the
following statements, as shown in Figure 5.1.
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>> z=cplxgrid(50); f1=z.*cos(z.^2); cplxmap(z,f1)

figure; f2=z.*exp(-z.^2).*(cos(z)-sin(z))); cplxmap(z,f2)
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(b) f(z) = ze−z2
(cos z − sin z)

FIGURE 5.1: Mapping surfaces of complex variable functions

17. For the function

f(x) =
x2 + 4x + 3

x5 + 7x4 − 2x3 − 100x2 − 232x− 160
e−5x

find the poles and their multiplicities and compute the residues for each poles.

Solution For polynomial denominators, the poles can be find by factorization
technique,

>> syms x;

f=(x^2+4*x+3)/poly2sym([1 7 -2 -100 -232 -160],x)*exp(-5*x);

[n,D]=numden(f); D1=factor(D)

one finds that the factorized denominator is D1 = (x+5)(x− 4)(x+2)3, and it
is immediately seen that x = −5, x = 4 are single poles while x = −2 is a triple
pole. The residues of the poles can then be solved as

>> r1=limit((x+5)*f,x,-5), r2=limit((x-4)*f,x,4)

r3=limit(diff((x+2)^3*f,x,2)/2,x,-2)

The residues of the poles are respectively r1 =
8e25

243
, r2 =

35e−20

1944
, r3 =

149e10

216
.

18. Judge whether the polynomials are coprime or not. If not, please find the terms
which can simplify B(s)/A(s).

(i) B(x) = −3x4 + x5 − 11x3 + 51x2 − 62x + 24

A(x) = x7 − 12x6 + 26x5 + 140x4 − 471x3 − 248x2 + 1284x− 720

(ii) B(x) = 3x6 − 36x5 + 120x4 + 90x3 − 1203x2 + 2106x− 1080

A(x) = x9+15x8+79x7+127x6−359x5−1955x4−3699x3−3587x2−1782x−360.

Solution To judge whether two polynomials are coprime or not, one can find the
greatest common divisor of them and see whether there exists s term in it. The
problem can then be solved with
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>> syms s; B=poly2sym([-3 1 -11 51 -62 24],s);

A=poly2sym([1 -12 26 140 -471 -248 1284 -720],s), d1=gcd(A,B)

A=poly2sym([1 15 79 127 -359 -1955 -3699 -3587 -1782 -2360],s),

B=poly2sym([3 -36 120 90 -1203 2106 -1080],s); d2=gcd(A,B)

where d1 = s− 1, d2 = 1, which means that (ii) is coprime while (i) is not.

19. Perform partial fraction expansions to the following functions

(i) f(x) =
3x4 − 21x3 + 45x2 − 39x + 12

x7 + 15x6 + 96x5 + 340x4 + 720x3 + 912x2 + 640x + 192

(ii) f(s) =
s + 5

s8+21s7+181s6+839s5+2330s4+4108s3+4620s2+3100s+1000

(iii) f(x) =
3x6 − 36x5 + 120x4 + 90x3 − 1203x2 + 2106x− 1080

x7 + 13x6 + 52x5 + 10x4 − 431x3 − 1103x2 − 1062x− 360
.

Solution The partial fraction expressions of the functions can be obtained

>> syms s x;

F=(3*x^4-21*x^3+45*x^2-39*x+12)/(x^7+15*x^6+96*x^5+...

340*x^4+720*x^3+912*x^2+640*x+192); f1=residue(F,x)

F=(s+5)/(s^8+21*s^7+181*s^6+839*s^5+2330*s^4...

+4108*s^3+4620*s^2+3100*s+1000); f2=residue(F,s)

F=(3*x^6-36*x^5+120*x^4+90*x^3-1203*x^2+2106*x-1080)/...

(x^7+13*x^6+52*x^5+10*x^4-431*x^3-1103*x^2-1062*x-360);

f3=residue(F,x)

with

f1 =
1344

x + 3
+

486

(x + 2)6
− 1053

(x + 2)5
+

1296

(x + 2)4
− 1341

(x + 2)3
+

1344

(x + 2)2
− 1344

x + 2

f2 =
− 7

2312
− j

23

2312
(s + 1 + j)2

−
517

39304
− j

143

9826
s + 1 + j

−
7

2312
− j

23

2312
(s + 1− j)2

−
517

39304
+ j

143

9826
s + 1− j

+
1

36 (s + 2)
− 1

867(s + 5)2
− 65

44217(s + 5)

f3 =
945

4(x + 5)
− 360

x + 4
+

252

x + 2
+

45

(x + 1)2
− 501

4(x + 1)

20. Find the residues of the following functions at poles

(i) f(z) =
1− sin ze−2z

z7 sin(z − π/3)
(z4 + 10z3 + 35z2 + 50z + 24)

(ii) f(z) =
(z − 3)4

z4 + 5z3 + 9z2 + 7z + 2
(sin z − e−3z)

(iii) f(z) =
(1− cos 2z)(1− e−z2

)

z3 sin z
.

Solution (i) poles at z = 0 (possible multiplicity of 7), z = π/3 + kπ for any
integer k (single)

>> syms z; kk=[-3 -2 -1 0 1 2 3];

f=(1-sin(z)*exp(-2*z))*poly2sym([1 10 35 50 24],z)/z^7/sin(z-pi/3);

r1=limit(diff(z^7*f,z,6)/prod(1:6),z,0),
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for i=1:length(kk),

r(i)=limit((z-kk(i)*pi-pi/3)*f,z,kk(i)*pi+pi/3),

end

with r1 = −12973
√

3

540
− 11143

270
, and the rest of the residues can also be found for

selected integers of k. The approximate values of r is r = [6262.7525, 10.7372,
0.0586, 82.4305,−0.0836, 0.0080,−0.0020].
(ii) The denominator can be expressed by (z + 1)3(z + 2), thus the pole −1 is
a triple pole, and −2 is a single pole. The two residues can be evaluated with
the following statements

>> syms z; D=z^4+5*z^3+9*z^2+7*z+2; factor(D)

f=(z-3)^4/D*sin(z-exp(-3*z));

r1=limit((z+2)*f,z,-2), r2=limit(diff((z+1)^3*f,z,2)/2,z,-1)

and the residues are respectively

r1 = 625 sin 2 cos e6 + 625 cos 2 sin e6

r2 = 1152e6 sin 1 cos e3 + 1152e6 cos 1 sin e3 − 512 cos 1 cos e3 + 512 sin 1 sin e3

+768e3 sin 1 cos e3 +768e3 cos 1 sin e3−2688e3 cos 1 cos e3 +2688e3 sin 1 sin e3

− 480 sin 1 cos e3 − 480 cos 1 sin e3

(iii) z = 0 (possible multiplicity of 4), with a residue of r1 = 4, and z = kπ for
any integer k (single pole), and the residues are all zeros.

>> syms z; f=(1-cos(2*z))*(1-exp(-2*z))/z^3/sin(z);

r1=limit(diff(z^4*f,z,3)/prod(1:3),z,0)

kk=[-3 -2 -1 1 2 3];

for i=1:length(kk), r(i)=limit((z-kk(i)*pi)*f,z,kk(i)*pi), end

21. Evaluate the closed-path integrals

(i)

∮

Γ

z15

(z2 − 1)2(z4 − 2)3
dz, where Γ is the positive circle |z| = 3;

(ii)

∮

Γ

z3

1 + z
e1/z dz, where Γ is the positive circle |z| = 2.

(iii)

∮

Γ

cos z(1− e−z2
) sin(3z + 2)

z sin z
dz, where Γ is the positive circle |z| = 1.

Solution (i) The six poles, z = ±1, z = ± 4
√

2 and z = ±j 4
√

2 are all encircled by
the positive circle of |z| = 3, thus one can evaluate the integral with

>> syms z; F=z^(15)/((z^2-1)^2*(z^4-2)^3); i=sqrt(-1);

s=sym(2)^(1/4); r=0; pp=[-1,1,-s,s,-s*i,s*i];

for j=1:6,

r=r+limit(diff(F*(z-pp(j))^3,z,2)/2,z,pp(j));

end

R=simple(2*pi*i*r)

The value of the integral is R = 2jπ.
(ii) The single pole z = −1 is encircled by the closed-path, thus
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>> syms z; F=z^3/(1+z)*exp(1/z); R=2*pi*i*limit(F*(z+1),z,-1)

and the integral is R = −2πje−1.
(iii) There are infinite number of poles in the function, at z = 0, and z = kπ,
for any integer k. However within the circle |z| = 1, there is only one double
pole at z = 0. The closed-path integral can be evaluated with R = 6πj cos 2.

>> syms z; i=sqrt(-1); f=cos(1-exp(-z^2))*sin(3*z+2)/z/sin(z);

R=2*pi*i*limit(diff(z^2*f,z),z,0)
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Chapter 6

Nonlinear Equations and
Optimization Problems

Exercises and Solutions

1. Find the solutions to the following equations, and verify the accuracy of the
solutions.

(i)

{
x2

1 − x2 − 1 = 0

(x1 − 2)2 + (x2 − 0.5)2 − 1 = 0
(ii)





x2y2 − zxy − 4x2yz2 = xz2

xy3 − 2yz2 = 3x3z2 + 4xzy2

y2x− 7xy2 + 3xz2 = x4zy

Solution (i) can be solved easily with the following statements, and the accuracy
reaches to the 10−31 level.

>> [x1,x2]=solve(’x1^2-x2-1=0’,’(x1-2)^2+(x2-0.5)^2-1=0’,’x1,x2’)

norm(double([x1.^2-x2-1 (x1-2).^2+(x2-0.5).^2-1]))

(ii) can be solved with the following statements, with 10−24 level.

>> [x,y,z]=solve(’x^2*y^2-z*x*y-4*x^2*y*z^2=x*z^2’,...

’x*y^3-2*y*z^2=3*x^3*z^2+4*x*z*y^2’,...

’y^2*x-7*x*y^2+3*x*z^2=x^4*z*y’,’x,y,z’)

norm(double([x.^2.*y.^2-z.*x.*y-4*x.^2.*y.*z.^2-x.*z.^2,...

x.*y.^3-2*y.*z.^2-3*x.^3.*z.^2-4*x.*z.*y.^2,...

y.^2.*x-7*x.*y.^2+3*x.*z.^2-x.^4.*z.*y]))

It will be noticed once the solutions are displayed that there are 21 sets of
solutions, and the first three are respectively (x, 0, 0), (0, y, 0) and (0, 0, z),
which correspond to arbitrary combinations of x, y and z on the three axes.
Thus there are infinite sets of solutions. The rest 18 sets are individuals.

2. Solve graphically the following equations, and verify the results.

(i) e−(x+1)2+π/2 sin(5x + 2) = 0 (ii) (x2 + y2 + xy)e−x2−y2−xy = 0

Solution (i) can be shown with the following statements, and the intersections
with y = 0, i.e., x-axis, are the solutions of the equation. The solutions can
be obtained from Figure 6.1 (a). One may zoom a particular intersection for a
more accurate solution.

>> ezplot(’exp(-(x+1)^2+pi/2)*sin(5*x+2)’), line([-3.5 1.5],[0,0])

45
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(ii) The contour lines of the function can be can be drawn with the following
statements, as shown in Figure d6.1 (b), an the contour line labeled 0 are the
solutions of the equation.

>> [x,y]=meshgrid(-3:0.1:3);

z=(0.1*x.^2+0.1*y.^2+x.*y).*exp(-x.^2-y.^2-x.*y);

[C,h]=contour(x,y,z,[-0.1:0.05:0.1]); set(h,’ShowText’,’on’)
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FIGURE 6.1: Graphical solutions of equations

3. Find in numerical methods the solutions to the above problems, and verify the
results.

Solution (i) can be solved numerically, when one selects an initial point. For
instance, if one selects x0 = 0 as the initial point, the following statements can
be used to find more accurate solution at x = 0.2283.

>> f=@(x)exp(-(x+1).^2+pi/2).*sin(5*x+2); x0=0; x=fsolve(f,x0)

(ii) Since the solutions to the equation are contour lines, it is not possible to
find all the solutions on the continuous lines. However the analytical solutions
of the equation can be obtained through symbolic computation such that y =(
−1

2
± j

√
3

2

)
x. The last statement verifies the solutions.

>> syms x; y=solve(’(x^2+y^2+x*y)*exp(-x^2-y^2-x*y)=0’,’y’)

simple(subs(’(x^2+y^2+x*y)*exp(-x^2-y^2-x*y)’,’y’,y1))

4. Find c such that the integral

∫ 1

0

(ex − cx)2 dx is minimized.

Solution The integral can be evaluated with the following statements

>> syms x c; y=int((exp(x)-c*x)^2,x,0,1)

and it is found that the integral y = −1

2
− 2c +

1

2
e2 +

c2

3
. The following

statements can be used to find the minimum value of the original problem,
where c = 3, f = 0.1945.

>> f=@(c)-1/2-2*c+1/2*exp(2)+c^2/3; c=fminsearch(f,0), y=f(c)
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5. Find all the solutions to the modified Riccati equation, and verify the results.

AX + XD −XBX + C = 0

where

A =




2 1 9
9 7 9
6 5 3


 , B =




0 3 6
8 2 0
8 2 8


 , C =




7 0 3
5 6 4
1 4 4


 , D =




3 9 5
1 2 9
3 3 0


 .

Solution One should write out the an M-file to describe the equation, with
arguments A, B, C and D the additional ones.

1 function y=ex_ric(x,A,B,C,D)

2 X=reshape(x,size(A)); y1=A*X+X*D-X*B*X+C; y=y1(:);

and a Riccati equation solver can be written as

1 function X=ex_solve(A,B,C,D,x0)

2 if nargin==4, x0=rand(size(A)); end

3 x=fsolve(’ex_ric’,x0(:),[],A,B,C,D); X=reshape(x,size(A));

With the use of the functions, the solutions to the Riccati equation can all be
found, by repeated calling of the function

>> A=[2,1,9; 9,7,9; 6,5,3]; B=[0,3,6; 8,2,0; 8,2,8];

C=[7,0,3; 5,6,4; 1,4,4]; D=[3,9,5; 1,2,9; 3,3,0];

x=ex_solve(A,B,C,D), norm(A*x+x*D-x*B*x+C)

Two solutions can be found for the equations such that

x1 =




0.78765 0.42984 −2.2827
−0.60885 −0.26903 0.72972
−0.65535 −0.34174 1.1487


 , x2 =




1.4567 1.3663 0.38581
−0.28228 0.18807 2.0323
−0.59091 −0.25153 1.4057




6. Solve the unconstrained optimization problems min
x

f(x), where

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3) + (1− x2
3)

2+

10.1
[
(x2 − 1)2 + (x4 − 1)2

]
+ 19.8(x2 − 1)(x4 − 1).

Solution One can declare the objective function first with anonymous function
(or other types of function), then calling the solver to solve the problem.

>> f=@(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)+...

(1-x(3)^2)^2+10.1*((x(2)-1)^2+(x(4)-1)^2)+19.8*(x(2)-1)*(x(4)-1);

x=fminunc(f,ones(7,1))

The optimal solution is x = [10.546, 111.23, 6.7823,−111.5, 1, 1, 1]T.

7. A set of challenging benchmark problems for evaluating optimization algorithms
can be solved using MATLAB. Solve the following unconstrained optimization
problems with MATLAB.
(i) De Jong’s problems[1]

J = min
x

xTx = min
x

(x2
1 + x2

2 + · · ·+ x2
p), where xi ∈ [−512, 512]

where i = 1, · · · , p, with theoretic solution x1 = · · · = xp = 0.
(ii) Griewank’s benchmark problem
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J = min
x

(
1 +

p∑
i=1

x2
i

4000
−

p∏
i=1

cos
xi√

i

)
, where xi ∈ [−600, 600].

(iii) Ackley’s benchmark problem[2]

J = min
x


20 + 10−20 exp


−0.2

√√√√1

p

p∑
i=1

x2
i


− exp

(
1

p

p∑
i=1

cos 2πxi

)
 .

Solution (i) De Jong’s problem can be solved with the following statements, and
a zero vector x can be found.

>> f=@(x)x.’*x; x=fminunc(f,ones(20,1)), norm(x)

(ii) One may use the following statements to solve the problem and the norm
of the solution is 3×10−7, which is close to a theoretical zero vector.

>> f=@(x)(1+x.’*x/4000-prod(cos(x./cos(sqrt(1:length(i))))));

x=fminunc(f,ones(20,1)), norm(x)

(iii) The objective function can be established first, then the solutions to the
problem can be found, such that the norm of the solution is 1.3×10−8, with
theoretical solution of 0.

>> f=@(x)20+1e-20*exp(-0.2*sqrt(sum(x.^2)/20))-...

exp(sum(cos(2*pi*x))/20);

x=fminunc(f,0.1*ones(20,1)), norm(x)

8. Consider the Rastrigin function[3]

f(x1, x2) = 20 + x2
1 + x2

2 − 10(cos πx1 + cos πx2).

3D surface plot for the objective function can be shown. An initial point
can be selected from the plot, such that a good minimization to the problem.
Understand the dependency of optimum point with respect to initial values.

Solution For different initial vectors, the solutions may be completely different, of
course, most of the solutions obtained are local minima. To solve it thoroughly,
one should use global optimum solution algorithms, such as GA to be presented
in Chapter 10.

>> y=@(x)20+x(1)^2+x(2)^2-10*(cos(pi*x(1))+cos(pi*x(2)));

x1=fminunc(y,[1;0])

9. Solve the nonlinear programming problem with graphical methods and verify
the results using numerical methods.

min

x s.t.





x1−x2+2>0

−x2
1+x2−1>0

x1>0,x2>0

(x3
1 + x2

2 − 4x1 + 4)

Solution The following statements can be used to find graphically the solution
of the problem, with all the points which do not satisfy the constraints set to
NaN. The 3D surface is shown in Figure 6.2. It can be read from the surface
that x1 = 0, x2 = 1.
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>> [x1,x2]=meshgrid(0:0.02:1,1:0.02:2); z=x1.^3+x2.^2+4*x1+4;

ii=find(x1-x2+2<0); z(ii)=NaN; ii=find(-x1.^2+x2-1<0); z(ii)=NaN;

ii=find(x1<0); z(ii)=NaN; ii=find(x2<0); z(ii)=NaN; surf(x1,x2,z)
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FIGURE 6.2: Graphical solutions to the problem

Set the nonlinear constraints

1 function [c,ce]=exc6f1(x), ce=[]; c=[x(1)^2-x(2)+1];

Numerical solution to the problem can also be found with the following state-
ments that the solution vector is x = [0, 1]T, which agrees well with the
graphical method.

>> f=@(x)x(1)^3+x(2)^2+4*x(1)+4;

A=[-1 1]; B=2; Aeq=[]; Beq=[]; xm=[0;0];

x=fmincon(f,[0;1],A,B,Aeq,Beq,xm,[],’exc6f1’)

10. Try to solve the following linear programming problems.

(i) min

x s.t.





4x1−x2+2x3−x4=−2

x1+x2−x3+2x4614

2x1−3x2−x3−x4>−2

x1,2,3>−1, x4 unconstrained

−3x1 + 4x2 − 2x3 + 5x4 (ii) min

x s.t.





x1+x2+x3+x4=4

−2x1+x2−x3−x6+x7=1

3x2+x3+x5+x7=9

x1,2,··· ,7>0

x6 + x7

Solution (i) The linear programming problem can be solved with the following
statements, with the solution of x = [−1, 2.5,−1,−6.5]T.

>> f=[-3 4 -2 5]; Aeq=[4 -1 2 -1]; Beq=-2;

A=[1 1 -1 2; -2 3 1 1]; B=[14; 2]; xm=[-1;-1;-1;-inf];

x=linprog(f,A,B,Aeq,Beq,xm)

(ii) The solution to the problem is found with

>> f=[0,0,0,0,0,1,1]; xm=[0;0;0;0;0;0;0]; A=[]; B=[];

Aeq=[1 1 1 1 0 0 0; -2 1 -1 0 0 -1 1; 0 3 1 0 1 0 1];

Beq=[4; 1; 9]; x=linprog(f,A,B,Aeq,Beq,xm)

and the solution is x = [0.3952, 2.3213, 0.5309, 0.7526, 1.5053, 0, 0]T.
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11. Solve the following quadratic programming problems and also illustrate the
solutions using graphical methods.

(i) min

x s.t.





x1+x263

4x1+x269

x1,2>0

2x2
1−4x1x2 +4x2

2−6x1−3x2 (ii) min

x s.t.





−x1+x2=1

x1+x262

x1,2>0

(x1−1)2 +(x2−2)2

Solution (i) The quadratic programming matrices H and f can be written as

H =

[
4 −4
−4 8

]
, f = [−6,−3]

The problem can be solved and x = [1.95, 1.05]T. The graphical method results
are shown in Figure 6.3 (a), which also confirmed that the solutions obtained
are correct.

>> H=[4 -4; -4 8]; f=[-6 -3]; Aeq=[]; Beq=[]; A=[1 1; 4 1];

B=[3;9]; xm=[0;0]; x=quadprog(H,f,A,B,Aeq,Beq,xm)

[x1,x2]=meshgrid(0:0.1:2); z=2*x1.^2-4*x1.*x2+4*x2.^2-6*x1-3*x2;

ii=find(x1+x2>3 | 4*x1+x2>9); z(ii)=NaN; surf(x1,x2,z)

0
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1
1.5

2

0

0.5

1

1.5

2
−20

−10
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10

(a) problem (i)

0
0.5

1
1.5

2

0

1

2
0

0.5

1

1.5

2

2.5

(b) problem (ii)

FIGURE 6.3: Graphical solutions of the QP problems

(ii) The objective function can be expanded and from which, the matrices

H =

[
2 0
0 2

]
, f = [−2,−4]

The problem can then be solved and x = [0.5, 1.5]T. The graphical method
shown in Figure 6.3 (b) verifies the results. Also since equation constraints are
involved, it is the only feasible solution to the problem.

>> H=diag([2 2]); f=[-2 -4]; Aeq=[-1 1]; Beq=1;

A=[1 1]; B=2; xm=[0;0]; x=quadprog(H,f,A,B,Aeq,Beq,xm)

[x1,x2]=meshgrid(0:0.1:2); z=(x1-1).^2+(x2-2).^2;

ii=find(abs(-x1+x2-1)>=0.1|x1+x2>3); z(ii)=NaN; surf(x1,x2,z)

12. Solve numerically the following nonlinear programming problems.
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(i) min

x s.t.





x1+x260

−x1x2+x1+x2>1.5

x1x2>−10

−106x1,x2610

ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

(ii) min

x s.t.





0.003079x3
1x3

2x5−cos3 x6>0

0.1017x3
3x3

4−x2
5 cos3 x6>0

0.09939(1+x5)x3
1x2

2−cos2 x6>0

0.1076(31.5+x5)x3
3x2

4−x2
5 cos2 x6>0

x3x4(x5+31.5)−x5[2(x1+5) cos x6+x1x2x5]>0

0.26x160.5,14<6x2622,0.356x360.6,

166x4622,5.86x566.5,0.146x660.2618

1

2 cos x6

[
x1x2(1 + x5) + x3x4

(
1 +

31.5

x5

)]

Solution (i) The objective function can be expressed as

>> f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

the constraints function can also be designed

1 function [c,ce]=exc6fun6a(x)

2 ce=[]; c=[x(1)+x(2); x(1)*x(2)-x(1)-x(2)+1.5; -10-x(1)*x(2)];

The optimization problem solver can be used to solve the nonlinear program-
ming problem.

>> A=[]; B=[]; Aeq=[]; Beq=[]; xm=[-10; -10]; xM=[10; 10];

x0=(xm+xM)/2; ff=optimset; ff.TolX=1e-10; ff.TolFun=1e-20;

x=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,’exc6fun6a’,ff)

However it is prompted after execution that “Maximum number of function
evaluations exceeded; increase OPTIONS.MaxFunEvals”, the solution obtained
is not the expected one. One may use it as an initial point to further search
for better ones with a loop structure, until a good solution is found at x =
[1.1825,−1.7398]T, after 5 loop executions.

>> i=0; x=x0;

while (1)

[x,a,b]=fmincon(f,x,A,B,Aeq,Beq,xm,xM,’exc6fun6a’,ff); i=i+1;

if b>0, break; end

end

It should be noted that sometimes, due to the improperly assigned control pa-
rameters, such as the maximum allowed interation time, the solutions obtained
may not be the one expected. One should further search for better solutions.
(ii) The constraints can be expressed as

1 function [c,ce]=exc6fun5a(x)

2 ce=[];

3 c=-[0.003079*x(1)^3*x(2)^3*x(5)-cos(x(6))^3;

4 0.1017*x(3)^3*x(4)^3-x(5)^2*cos(x(6))^3;

5 0.09939*(1+x(5))*x(1)^3*x(2)^2-cos(x(6))^2;
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6 0.1076*(31.5+x(5))*x(3)^3*x(4)^2-x(5)^2*cos(x(6))^2;

7 x(3)*x(4)*(x(5)+31.5)-x(5)*(2*(x(1)+5)*cos(x(6))+x(1)*x(2)*x(5))];

The objective function is expressed as

>> f=@(x)(x(1)*x(2)*(1+x(5))+x(3)*x(4)*(1+31.5/x(5)))/cos(x(6))/2;

Thus the solution found is x = [0.2012, 18.3629, 0.3596, 18.5780, 5.8, 0.2618]T.

>> xm=[0.2; 14; 0.35; 16; 5.8; 0.14]; A=[]; B=[];

xM=[0.5; 22; 0.6; 22; 6.5; 0.2618]; Aeq=[]; Beq=[];

x0=(xm+xM)/2; ff=optimset; ff.TolX=1e-10; ff.TolFun=1e-20;

x=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,’exc6fun5a’,ff)

13. Solve the constrained optimization problem q and k[4].

(i) min

q,w,k s.t.





q3+9.625q1w+16q2w+16w2+12−4q1−q2−78w=0

16q1w+44−19q1−8q2−q3−24w=0

2.25−0.25k6q162.25+0.25k

1.5−0.5k6q261.5+0.5k

1.5−1.5k6q361.5+1.5k

k

(ii) min

q,k s.t.





g(q)60

800−800k6q16800+800k

4−2k6q264+2k

6−3k6q366+3k

k

where

g(q) = 10q2
2q3

3 + 10q3
2q2

3 + 200q2
2q2

3 + 100q3
2q3 + q1q2q

2
3 + q1q

2
2q3 + 1000q2q

3
3

+ 8q1q
2
3 + 1000q2

2q3 + 8q1q
2
2 + 6q1q2q3 − q2

1 + 60q1q3 + 60q1q2 − 200q1

Solution (i) Assume that x1 = q1, x2 = q2, x3 = q3, x4 = k, x5 = k, the problem
can be posed as

min

x s.t.





x3+9.625x1x4+16x2x4+16x2
4+12−4x1−x2−78x4=0

16x1x4+44−19x1−8x2−x3−24x4=0

−x1−0.25x56−2.25

x1−0.25x562.25

−x2−0.5x56−1.5

x2−0.5x561.5

−x3−1.5x56−1.5

x3−1.5x561.5

x5

Thus one can write the nonlinear constraints as

1 function [c,ceq]=exc6c2(x)

2 c=[];

3 ceq=[x(3)+9.625*x(1)*x(4)+16*x(2)*x(4)+16*x(4)^2+...

4 12-4*x(1)-x(2)-78*x(4)

5 16*x(1)*x(4)+44-19*x(1)-8*x(2)-x(3)-24*x(4)];

With the following statements
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>> Aeq=[]; Beq=[]; B=[-2.25; 2.25; -1.5; 1.5; -1.5; 1.5];

A=[-1 0 0 0 -0.25; 1 0 0 0 -0.25; 0 -1 0 0 -0.5; 0 1 0 0 -0.5;

0 0 -1 0 -1.5; 0 0 1 0 -1.5]; f=@(x)x(5); x0=ones(5,1);

x=fmincon(f,x0,A,B,Aeq,Beq,[],[],’exc6c2’)

and the solution is x = [2.0309, 1.9382, 2.8147, 1.5196, 0.8765]T.
(ii) Assume that x1 = q1, x2 = q2, x3 = q3, x4 = k, the original problem can
be rewritten as

min

x s.t.





g(x)60

−x1−800x46−800

x1−800x46800

−x2−2x46−4

x2−2x464

−x3−3x46−6

x3−3x466

x4

where

g(x) = 10x2
2x

3
3 + 10x3

2x
2
3 + 200x2

2x
2
3 + 100x3

2x3 + x1x2x
2
3 + x1x

2
2x3 + 1000x2x

3
3

+ 8x1x
2
3 + 1000x2

2x3 + 8x1x
2
2 + 6x1x2x3 − x2

1 + 60x1x3 + 60x1x2 − 200x1

The nonliear constraints can be modeled with

1 function [c,ceq]=exc6c3(x)

2 ceq=[];

3 c=10*x(2)^2*x(3)^3+10*x(2)^3*x(3)^2+200*x(2)^2*x(3)^2+...

4 100*x(2)^3*x(3)+x(1)*x(2)*x(3)^2+x(1)*x(2)^2*x(3)+...

5 1000*x(2)*x(3)^3+8*x(1)*x(3)^2+1000*x(2)^2*x(3)+...

6 8*x(1)*x(2)^2+6*x(1)*x(2)*x(3)-x(1)^2+60*x(1)*x(3)+...

7 60*x(1)*x(2)-200*x(1);

and the problem can be solved with

>> f=@(x)x(4); Aeq=[]; Beq=[]; B=[-800; 800; -4; 4; -6; 6];

A=[1 0 0 -800; -1 0 0 -800; 0 -1 0 -2;

0 1 0 -2; 0 0 -1 -3; 0 0 1 -3];

x0=ones(4,1); x=fmincon(f,x0,A,B,Aeq,Beq,[],[],’exc6c3’)

The solution obtained is x = [214.7013, 1.4632, 2.1949, 1.2684]T.

14. Solve the following integer linear programming problems.

(i) max

x s.t.





x>0

3534x1+2356x2+1767x3+589x4+528x5+451x6+304x76119567

(592x1 + 381x2 + 273x3 + 55x4 + 48x5 + 37x6 + 23x7)

(ii) max

x s.t.





x1+x2+x3=30

x4+x5+x6=18

x1+x4=10

x2+x5618

x3+x6>30

x1,··· ,6>0

(120x1 + 66x2 + 72x3 + 58x4 + 132x5 + 104x6)

Solution (i) The maxization problem should first be converted into the standard
minimization problem. The objective function can then be expressed by
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1 function y=exc6o1(x)

2 y=-[592 381 273 55 48 37 23]*x;

and the integer linear programming problem can be solved with

>> intlist=ones(7,1); Aeq=[]; Beq=[]; xm=zeros(7,1);

A=[3534 2356 1767 589 528 451 304]; B=119567;

xM=20000*ones(7,1); x0=xM;

[a b x]=bnb20(’exc6o1’,ones(7,1),intlist,xm,xM,A,B,Aeq,Beq);

ix=(intlist==1); x(ix)=round(x(ix))

and the solutions is x = [32, 2, 1, 0, 0, 0, 0]T.
(ii) The objective function can be modeled as

1 function y=exc6o2(x)

2 y=-[120 66 72 58 132 104]*x;

Thus one can issue the following MATLAB commands

>> Aeq=[1 1 1 0 0 0; 0 0 0 1 1 1; 1 0 0 1 0 0]; Beq=[30; 18; 10];

A=[0 1 0 0 1 0; 0 0 -1 0 0 -1]; B=[18; -30];

intlist=ones(6,1); xm=zeros(6,1); xM=20000*ones(6,1); x0=xm;

[errmsg,f,x]=bnb20(’exc6o2’,x0,intlist,xm,xM,A,B,Aeq,Beq);

if length(errmsg)==0, x=round(x), end

with the solution x = [10, 0, 20, 0, 8, 10]T.

15. Solve the following binary linear programming problems and verify the results
in problems (i) and (ii) using the enumerate methods.

(i) min

x s.t.





x1−x2+5x3+x4−4x5>2

−2x1+6x2−3x3−2x4+2x5>0

−2x2+2x3−x4−x561

06xi61

(5x1 + 7x2 + 10x3 + 3x4 + x5)

(ii) min

x s.t.





x1−x660

x1−x560

x2−x460

x2−x560

x3−x460

x1+x2+x362

06xi61

(−3x1 − 4x2 − 5x3 + 4x4 + 4x5 + 2x6)

Solution (i) For the binary linear programming problem, the following commands
can be given, which returns x = [0, 1, 1, 0, 0]T, with a minimum of 17.

>> f=[5 7 10 3 1]; B=[-2; 0; 1];

A=[-1 1 -5 -1 4; 2 -6 3 2 -2; 0 -2 2 -1 -1];

x=bintprog(f,A,B,[],[])

Enumerate method can also be used for this small-scale problem

>> [x1,x2,x3,x4,x5]=ndgrid([0,1]);

i=find((x1-x2+5*x3+x4-4*x5>=2)& (-2*x1+6*x2-3*x3-2*x4+2*x5>=0)& ...
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(-2*x2+2*x3-x4-x5<=1));

f=5*x1(i)+7*x2(i)+10*x3(i)+3*x4(i)+x5(i); [fmin,ii]=sort(f);

idx=i(ii(1)); x=[x1(idx),x2(idx),x3(idx),x4(idx),x5(idx)]

(ii) Again bintprog() function can be used

>> A=[1 0 0 0 0 -1; 1 0 0 0 -1 0; 0 1 0 -1 0 0;

0 1 0 0 -1 0; 0 0 1 -1 0 0; 1 1 1 0 0 0];

B=[0; 0; 0; 0; 0; 2]; f=[-3 -4 -5 4 4 2];

x=bintprog(f,A,B,[],[])

with x = [0, 0, 1, 1, 0, 0]T. Using the enumerate method, the following state-
ments can be given

>> [x1,x2,x3,x4,x5,x6]=ndgrid([0,1]);

i=find((x1-x6<=0)& (x1-x5<=0)& (x2-x4<=0)& (x2-x5<=0)&...

(x3-x4<=0)& (x1+x2+x3<=2));

ff=-3*x1(i)-4*x2(i)-5*x3(i)+4*x4(i)+4*x5(i)+2*x6(i);

[fmin,ii]=sort(ff)

However by displaying the sorted values of objective function fmin, it is found
that there are two solutions with the minimum objective function of −1. Thus
the above result by bintprog() could be only one of them. Use the enu-
merate method, one can find the two solutions x1 = [0, 0, 1, 1, 0, 0]T, and
x1 = [0, 1, 1, 1, 1, 0]T.

>> idx=i(ii(1:2));

x=[x1(idx),x2(idx),x3(idx),x4(idx),x5(idx),x6(idx)]

16. Solve the binary linear programming problem.

max

x s.t.





[A1, A2]x 6
[
600
600

]

06xi61

−fx

where

A1 =

[
45 0 85 150 65 95 30 0 170 0 40 25 20 0
30 20 125 5 80 25 35 73 12 15 15 40 5 10

]

A2 =

[
0 25 0 0 25 0 165 0 85 0 0 0 0 100
10 12 10 9 0 20 60 40 50 36 49 40 19 150

]

f = [1898, 440, 22507, 270, 14148, 3100, 4650, 30800, 615, 4975, 1160, 4225,
510, 11880, 479, 440, 490, 330, 110, 560, 24355, 2885, 11748, 4550,
750, 3720, 1950, 10500]

Solution The binary linear programming problem can easily be solved with

>> A1=[45,0,85,150,65,95,30,0,170,0,40,25,20,0;

30,20,125,5,80,25,35,73,12,15,15,40,5,10,];

A2=[0,25,0,0,25,0,165,0,85,0,0,0,0,100;

10,12,10,9,0,20,60,40,50,36,49,40,19,150];

A=[A1 A2]; B=[600; 600];

f=-[1898,440,22507,270,14148,3100,4650,30800,615,4975,1160,...

4225,510,11880,479,440,490,330,110,560,24355,2885,...
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11748,4550,750,3720,1950,10500];

x=bintprog(f,A,B)

and it is found that the solution is

x = [0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0]T.

17. Solve the optimization problem with Robust Control Toolbox and YALIMP.

min

X s.t.






ATX+XA+Q XB

BTX −I


<0

X<0

tr(X)

where A =



−1 −2 1
3 2 1
1 −2 −1


 , B =




1
0
1


 , Q =




1 −1 0
−1 −3 −12
0 −12 −36




Solution (i) With Robust Control Toolbox

>> A=[-1 -2 1; 3 2 1; 1 -2 -1]; B=[1;0;1];

Q=[1 -1 0; -1 -3 -12; 0 -12 -36];

setlmis([]); X=lmivar(1,[3 1]);

lmiterm([1 1 1 X],A’,1,’s’); lmiterm([1 1 1 0],Q)

lmiterm([1 1 2 X],1,B); lmiterm([1 2 2 0],-1)

lmiterm([2,1,1,X],1,1); G=getlmis;

[c,x]=mincx(G,trace(X))

(ii) With YALMIP, the following statements can be applied

>> A=[-1 -2 1; 3 2 1; 1 -2 -1]; B=[1;0;1];

Q=[1 -1 0; -1 -3 -12; 0 -12 -36]; X=sdpvar(3);

F=[[A’*X+X*A’+Q, X*B; B’*X -1]<0, X<0];

sol=solvesdp(F,trace(X)); X=double(X)

with the results X =



−0.1620 −0.3488 −0.4880
−0.3488 −1.3216 −2.5964
−0.4880 −2.5964 −5.6625


.

18. Solve the following linear matrix inequalities



P−1 > 0, or equavelently P > 0

A1P + PAT
1 + B1Y + Y TBT

1 < 0

A2P + PAT
2 + B2Y + Y TBT

2 < 0

where

A1 =



−1 2 −2
−1 −2 1
−1 −1 0


 , B1 =



−2
1
−1


 , A2 =




0 2 2
2 0 2
2 0 1


 , B2 =



−1
−2
−1




Solution This problem is also known as the simutaneous stabilization problem
in control. With the Robust Control Toolbox, the problem can be solved with

>> A1=[-1,2,-2; -1,-2,1; -1,-1,0]; B1=[-2; 1; -1];

A2=[0,2,2; 2,0,2; 2,0,1]; B2=[-1; -2; -1];

setlmis([]); P=lmivar(1,[3,1]); Y=lmivar(2,[1,3]);

lmiterm([1,1,1,P],-1,1);
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lmiterm([2,1,1,P],A1,1,’s’), lmiterm([2,1,1,Y],B1,1,’s’)

lmiterm([3,1,1,P],A2,1,’s’), lmiterm([3,1,1,Y],B2,1,’s’)

G=getlmis; [a,b]=feasp(G); P=dec2mat(G,b,P), Y=dec2mat(G,b,Y)

The solutions obtained are

P =




17.968 −11.958 −11.555
−11.958 21.607 10.857
−11.555 10.857 12.778


 , Y T =




2.1076
14.058
13.585




If YALMIP toolbox is used, the same problem can be solved with the following
statements, and the results are also the same.

>> P=sdpvar(3); Y=sdpvar(1,3);

F=[A1*P+P*A1’+B1*Y+Y’*B1’<0,A2*P+P*A2’+B2*Y+Y’*B2’<0,P>0];

sol=solvesdp(F); P=double(P), Y=double(Y)
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Chapter 7

Differential Equation Problems

Exercises and Solutions

1. Find the general solutions to the following linear differential equation.

d5y(t)

dt5
+ 13

d4y(t)

dt4
+ 64

d3y(t)

dt3
+ 152

d2y(t)

dt2
+ 176

dy(t)

dt
+ 80y(t)

= e−2t
[
sin

(
2t +

π

3

)
+ cos 3t

]

Assume that the initial conditions are assumed to be y(0)=1, y(1)=3, y(π) =
2, ẏ(0) = 1, ẏ(1) = 2, find the analytical solution to the problem. Verify the
result.

Solution The analytical solutions of the equation can be found with the following
statements. The final results may take many pages to display, and will not be
given here. The solution may take some time.

>> syms t; u=exp(-2*t)*(sin(2*t+sym(pi)/3)+cos(3*t));

y=dsolve([’D5y+13*D4y+64*D3y+152*D2y+176*Dy+80*y=’,char(u)],...

’y(0)=1’,’y(1)=3’,’y(pi)=2’,’Dy(0)=1’,’Dy(1)=2’)

To verify the results, one may give the following statements

>> simple(diff(y,5)+13*diff(y,4)+64*diff(y,3)+152*diff(y,2)+...

176*diff(y)+80*y-u)

2. Find the general analytical solution to the linear differential equations, and also
the solution satisfying x(0) = 1, x(π) = 2, y(0) = 0. Verify the results.{

ẍ(t) + 5ẋ(t) + 4x(t) + 3y(t) = e−6t sin 4t

2ẏ(t) + y(t) + 4ẋ(t) + 6x(t) = e−6t cos 4t

Solution The general solutions of the equations can be obtained with the follow-
ing statements

>> syms t; syms C1 C2 C3;

[x,y]=dsolve(’D2x+5*Dx+4*x+3*y=exp(-6*t)*sin(4*t)’,...

’2*Dy+y+4*Dx+6*x=exp(-6*t)*cos(4*t)’)

simple(2*diff(y)+y+4*diff(x)+6*x-exp(-6*t)*cos(4*t))

simple(diff(x,2)+5*diff(x)+4*x+3*y-exp(-6*t)*sin(4*t))

with the verified results

59
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x(t) =
1013

40820
e−6t cos 4t− 681

40820
e−6t sin 4t+C1e

t+C2e
− 13

4 t−
√

57
4 t+C3e

− 13
4 t+

√
57t
4

y(t) = − 433

4082
e−6t cos 4t +

279

4082
e−6t sin 4t− 10

3
C1e

t − 5

8
C2e

− 13
4 t−

√
57t
4

−
√

57

8
C2e

− 13
4 t−

√
57t
4 − 5

8
C3e

− 13
4 t+

√
57t
4 +

√
57

8
C3e

− 13
4 t+

√
57t
4 .

Substituting the known conditions into the solutions, the undetermined coeffi-
cients Ci can be uniquely found. However again they are very lengthy and will
not be displayed here.

>> [x,y]=dsolve(’D2x+5*Dx+4*x+3*y=exp(-6*t)*sin(4*t)’,...

’2*Dy+y+4*Dx+6*x=exp(-6*t)*cos(4*t)’,...

’x(0)=1’,’x(pi)=2’,’y(0)=0’)

3. Write out the analytical solutions to the linear time-varying differential equa-
tions given below.

(i) Legendre equation: (1− t2)
d2x

dt2
− 2t

dx

dt
+ n(n + 1)x = 0

(ii) Bessel equation: t2
d2x

dt2
+ t

dx

dt
+ (t2 − n2)x = 0

Solution The solutions of the equations are all based on special functions such
Legendre’s function and Bessel’s function.

>> syms t n; x1=dsolve(’(1-t^2)*D2x-2*t*Dx+n*(n+1)*x=0’,’x’)

x2=dsolve(’t^2*D2x+t*Dx+(t^2-n^2)*x=0’)

4. Find the analytical solution to the differential equation

ÿ(x)−
(

2− 1

x

)
ẏ(x) +

(
1− 1

x

)
y(x) = x2e−5x.

Also, if the boundaries are specified by y(1) = π, y(π) = 1, find the analytical
solution. Verify the results.

Solution The general solutions to the differential equation can be obtained from

>> syms x; y=dsolve(’D2y-(2-1/x)*Dy+(1-1/x)*y=x^2*exp(-5*x)’,’x’)

with Ei(·) the special function and

y = exC2 +ex ln (x) C1 +
1

216
Ei (1, 6x) ex +

11

1296
e−5x +

5

216
e−5xx+1/36x2e−5x

If the boundary conditions are involved, the special solution to the equation
can be obtained with the following statements

>> syms x; y=dsolve(’D2y-(2-1/x)*Dy+(1-1/x)*y=x^2*exp(-5*x)’,...

’y(1)=sym(pi)’,’y(sym(pi))=1’,’x’)

5. Solve the following differential equations using Laplace transforms.{
ẍ(t) + ÿ(t) + x(t) + y(t) = 0, x(0) = 2, y(0) = 1

2ẍ(t)− ÿ(t)− x(t) + y(t) = sin t, ẋ(0) = ẏ(0) = −1

Compare the results with the ones by other methods.

Solution Assume that the Laplace transform of y(t) is Y (s), then L [y′′(t)] =
s2Y (s)− sy(0)− y′(0). Thus the equations can be transformed to
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



s2X(s)− sx(0)− x′(0) + s2Y (s)− sy(0)− y′(0) + X(s) + Y (s) = 0

2s2X(s)− 2sx(0)− 2x′(0)− s2Y (s) + sy(0) + y′(0)−X(s) + Y (s) =
1

s2 + 1

The equations now become the algebraic equations of X(s) and Y (s), and can
be solved with the function solve() discussed in Chapter 6. Inverse Laplace
transform can be used to find the solutions of original differential equations.

>> syms s X Y;

[X,Y]=solve(’s^2*X-s*2-(-1)+s^2*Y-s*1-(-1)+X+Y=0’,...

’2*(s^2*X-s*2-(-1))-(s^2*Y-s*1-(-1))-X+Y=1/(s^2+1)’,’X,Y’)

x0=ilaplace(X), y0=ilaplace(Y)

The solutions are respectively

x =
6

5
cos t− sin t +

4

5
cosh

√
6

3
t, and y =

9

5
cos t− sin t− 4

5
cosh

√
6

3
t.

Using the direct differential equation solution functions, the following state-
ments can be given

>> syms t

[x,y]=dsolve(’D2x+D2y+x+y=0’,’2*D2x-D2y-x+y=sin(t)’,...

’x(0)=2’,’y(0)=1’,’Dx(0)=-1’,’Dy(0)=-1’)

and the new solutions are

x =
2

5
e
√

6t/3+
2

5
e−
√

6t/3−sin t+
6

5
cos t, y = −2

5
e
√

6t/3−2

5
e−
√

6t/3−sin t+
9

5
cos t.

The appearances of the two sets of solutions are slightly different, however it
can easily be shown that they are identical.

6. Find the general solutions to the following equations.

(i) ẍ(t) + 2tẋ(t) + t2x(t) = t + 1 (ii) ẏ(x) + 2xy(x) = xe−x2

(iii) y(3) + 3ÿ + 3ẏ + y = e−t sin t

Solution The general solutions of the equations can be solved with

>> syms t; y1=dsolve(’D2x+2*t*Dx+t^2*x=t+1’)

syms x; y2=dsolve(’Dy+2*x*y=x*exp(-x^2)’,’x’)

syms t; y3=dsolve(’D3y+3*D2y+3*Dy+y=exp(-t)*sin(t)’)

and the general solutions are

y1 = C2e
−t−t2/2 + C1e

t−t2/2 −
√

2πj

2
erf

(√
2j

2
(t− 1)

)
e−t2/2+t−1/2

y2 =
1

2

(
x2 + 2C1

)
e−x2

, y3 = e−t (
cos t + C1 + C2t

2 + C3t
)
.

It should be noted that in equation (ii), the independent variable is x rather
than the default t, thus in the function call, one should declare x at the end,
otherwise the solution obtained may be incorrect.

7. Limit cycle is a common phenomenon in nonlinear differential equations. For
system nonlinear differential equations, no matter what the initial values are
selected, the phase trajectory will settle down on the same closed path, which
is referred to as the limit cycle. Solve the differential equation and draw the
limit cycle.
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{

ẋ = y + x(1− x2 − y2)

ẏ = −x + y(1− x2 − y2)

Try different initial values, and check whether the phase plane plot converges
to the limit cycle.

Solution Since the equation is nonlinear, the above mentioned analytical solu-
tions are not possible. We have to rely on numerical solutions. One should
assign a set of state variables such as x1 = x, x2 = y, the following statements
can be used to evaluate numerically the differential equations, for different initial
values. The phase-plane trajectories are shown in Figure 7.1, and it can be seen
that all the curves converge to a closed-path, referred to as limit cycles.

>> f=@(t,x)[x(2)+x(1)*(1-x(1)^2-x(2)^2);-x(1)+x(2)*(1-x(1)^2-x(2)^2)];

[t,x]=ode45(f,[0,10],[1;2]); plot(x(:,1),x(:,2));

[t,x]=ode45(f,[0,10],[0.1;0.2]); line(x(:,1),x(:,2));

[x1,y1]=meshgrid(-1.5:0.3:1.5); x1=x1(:); y1=y1(:); figure

for i=1:length(x1)

[t,x]=ode45(f,[0,10],[x1(i); y1(i)]); line(x(:,1),x(:,2));

end
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(b) from different initial conditions

FIGURE 7.1: Demonstrations of limit cycles

8. Consider the ordinary differential equation



ẋ = −y + xf
(√

x2 + y2
)

ẏ = x + yf
(√

x2 + y2
)

with function f(r) = r2 sin(1/r). It is pointed out in [5] that there are multiple
limit cycles for r = 1/(nπ), n = 1, 2, 3, · · · . Solve the different equations and
observe the limit cycles for different initial points.

Solution Again one should introduce the state variables x1 = x, x2 = y, the
differential equation can be modeled by an anonymous function and the problem
can be solved numerically. Under two different initial points, two different limit
cycles are obtained as shown in Figures 7.2 (a) and (b) respectively.

>> f=@(t,x)[-x(2)+x(1)*(x(1)^2+x(2)^2)*sin(1/sqrt(x(1)^2+x(2)^2));
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x(1)+x(2)*(x(1)^2+x(2)^2)*sin(1/sqrt(x(1)^2+x(2)^2))];

x0=[0.1,0.1]; [t,x]=ode45(f,[0,100],x0); plot(x(:,1),x(:,2));

figure; [t,x]=ode45(f,[0,100],0.1*x0); plot(x(:,1),x(:,2));
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FIGURE 7.2: Demonstrations of multiple limit cycles

9. Consider the well-known Rössler equation described as





ẋ = −y − z

ẏ = x + ay

ż = b + (x− c)z,

where a = b = 0.2, c = 5.7, and x1(0) = x2(0) = x3(0). Draw the 3D phase
trajectory and also its projection on the x-y plane. The parameters a, b, c are
suggested to be used as additional parameters. If the parameters are changed
to a = 0.2, b = 0.5, c = 10, solve the problem again.

Solution Let x1 = x, x2 = y, x3 = z, the numerical method can be used to solve
the equation. The 3D phase-space trajectories are obtained as shown Figure
7.3 (a).

>> f=@(t,x,a,b,c)[-x(2)-x(3); x(1)+a*x(2); b+(x(1)-c)*x(3)];

[t,x]=ode45(f,[0,100],[0;0;0],[],0.2,0.2,5.7);

plot3(x(:,1),x(:,2),x(:,3)); grid

Change the parameters of a, b, c, a new phase-space trajectory can be drawn as
shown in Figure 7.3 (b).

>> [t,x]=ode45(f,[0,100],[0;0;0],[],0.2,0.5,10);

plot3(x(:,1),x(:,2),x(:,3)); grid

10. For the well-known Chua’s circuit equation in chaotic studies that



ẋ = α[y − x− f(x)]

ẏ = x− y + z

ż = −βy − γz

where the nonlinear function f(x) is described by
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FIGURE 7.3: Phase-space trajectories of Rössler equations

f(x) = bx +
1

2
(a− b)(|x + 1| − |x− 1|), and a < b < 0.

Write an M-function to describe the equation, and draw the phase trajectory
for the parameters α = 9, β = 100/7, γ = 0, a = −8/7, b = −5/7, and initial
conditions x(0) = −2.121304, y(0) = −0.066170, z(0) = 2.881090.

Solution Select a set of state variables, x1 = x, x2 = y, x3 = z, the Chua’s
circuit can be modeled by anonymous function, and the differential equations
can be solved numerically. The time responses of the states, and the phase
space trajectory are obtained as shown in Figures 7.4 (a) and (b). The chaotic
behavior of the circuit can be observed from the results.

>> f=@(t,x,a,b,alpha,beta,gamma)...

[alpha*(x(2)-x(1)-(b*x(1)+(a-b)*(abs(x(1)+1)-abs(x(1)-1))/2));

x(1)-x(2)+x(3); -beta*x(2)-gamma*x(3)];

a=-8/7; b=-5/7; alpha=9; beta=100/7; gamma=0;

ff=odeset; ff.RelTol=1e-8;

[t,x]=ode15s(f,[0,100],[-2.121304;-0.06617; 2.88109],ff,...

a,b,alpha,beta,gamma);

plot(t,x), figure, plot3(x(:,1),x(:,2),x(:,3))
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FIGURE 7.4: Chaotic behavior of Chua’s circuit
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11. For the Lotka-Volterra’s predator-prey equations

{
ẋ(t) = 4x(t)− 2x(t)y(t)

ẏ(t) = x(t)y(t)− 3y(t)

with initial conditions x(0) = 2, y(0) = 3, solve the time responses of x(t) and
y(t), and also the phase plane trajectory.

Solution One can describe the equation first, then the time response and the
phase-plane trajectory of the solution can both be drawn as in Figures 7.5 (a)
and (b), respectively.

>> f=@(t,x)[4*x(1)-2*x(1)*x(2); x(1)*x(2)-3*x(2)];

[t,x]=ode45(f,[0,10],[2;3]); plot(t,x)

figure; plot(x(:,1), x(:,2))
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FIGURE 7.5: Solutions of the Lotka-Volterra Predator-prey model

12. Select state variables to convert the following equations into first-order explicit
ones, and solve the solutions for phase trajectories.

(i)

{
ẍ = −x− y − (3ẋ)2 + ẏ3 + 6ÿ + 2t

y(3) = −ÿ − ẋ− e−x − t
, with





x(1) = 2, ẋ(1) = −4

y(1) = −2, ẏ(1) = 7

ÿ(1) = 6

(ii)





ẍ− 2xzẋ = 3x2yt2

ÿ − ey ẏ = 4xt2z

z̈ − 2tż = 2te−xy

, with

{
ż(1) = ẋ(1) = ẏ(1) = 2

ż(1) = x(1) = y(1) = 3

Solution (i) Select x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = ÿ, the explicit first-order
state space equation can be written as




ẋ1 = x2

ẋ2 = −x1 − x3 − (3x2)
2 + x3

4 + 6x5 + 2t
ẋ3 = x4

ẋ4 = x5

ẋ5 = −x5 − x2 − e−x1 − t

with x(1) = [2,−4,−2, 7, 6]T . The other difficulties in the equation is that,
since x(1) is given rather than x(0), x(0) should be find first and then the
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solutions over the () One can solve it with the following statements and the
phase-plane trajectory is shown in Figure 7.6 (a).

>> f=@(t,x)[x(2); -x(1)-x(3)-(3*x(2))^2+(x(4))^3+6*x(5)+2*t; ...

x(4); x(5); -x(5)-x(2)-exp(-x(1))-t];

[t1,x1]=ode45(f,[1,0],[2, -4, -2, 7, 6]’);

[t2,x2]=ode45(f,[1,2],[2, -4, -2, 7, 6]’);

t=[t1(end:-1:1); t2]; x=[x1(end:-1:1,:); x2]; plot(x(:,1),x(:,3))
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FIGURE 7.6: Phase-plane trajectories of the equations

(ii) Select x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z, x6 = ż, the new state space
equation can be established.





ẋ1 = x2

ẋ2 = 2x1x2x5 + 3x2
1x3t

2

ẋ3 = x4

ẋ4 = e−x3x4 + 4x1t
2x5

ẋ5 = x6

ẋ6 = 2tx6 + 2te−x1x3

with x(1) = [3, 2, 3, 2, 2, 3]T . The problem can be solve numerically and the
phase-space trajectory can be obtained as shown in Figure 7.6.

>> f=@(t,x)[x(2); 2*x(1)*x(2)*x(5)+3*x(1)^2*x(3)*t^2; x(4); ...

exp(-x(3))*x(4)+4*x(1)*t^2*x(5); x(6); ...

2*t*x(6)+2*t*exp(-x(1)*x(3))];

[t,x]=ode15s(f,[1,0],[3,2,3,2,2,3]’); plot(x(:,1),x(:,3))

13. Solve the following ordinary differential equations

y(3) + tyÿ + t2ẏy2 = e−ty, y(0) = 2, ẏ(0) = ÿ(0) = 0

and draw the y(t) curve. Select the fixed-step Runge-Kutta algorithm for
solving the same problem. Compare in speed and accuracy with the MATLAB
functions for this problem.

Solution Since there are nonlinear terms in the differential equation, there
may not be analytical solutions. Thus one has to rely on numerical solutions.
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Normally one should select a set of state variables as x1 = y, x2 = ẏ, x3 = ÿ.
The first-order explicit differential equations can be established such that




ẋ1 = x2

ẋ2 = x3

ẋ3 = −tx1x3 − t2x2x
2
1 + e−tx1

x1(0) = 2, x2(0) = x3(0)0

and MATLAB can be used for finding the numerical solutions. The time
responses of the state variables are shown in Figure 7.7.

>> f=@(t,x)[x(2); x(3); -t^2*x(1)*x(3)-t^2*x(2)*x(1)^2+exp(-t*x(1))];

[t,x]=ode45(f,[0,10],[2;0;0]); plot(t,x)
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FIGURE 7.7: Time responses of the state variables

14. Find the analytical and numerical solutions to the following differential equa-
tions and verify the results.{

ẍ(t) = −2x(t)− 3ẋ(t) + e−5t, x(0) = 1, ẋ(0) = 2

ÿ(t) = 2x(t)− 3y(t)− 4ẋ(t)− 4ẏ(t)− sin t, y(0) = 3, ẏ(0) = 4

Solution The analytical solution of the equation can be obtained with

>> syms t; [x,y]=dsolve(’D2x=-2*x-3*Dx+exp(-5*t)’,...

’D2y=2*x-3*y-4*Dx-4*Dy-sin(t)’,...

’x(0)=1’,’Dx(0)=2’,’y(0)=3’,’Dy(0)=4’)

where

x(t) =
1

12
e−5t − 10

3
e−2 t +

17

4
e−t

y(t) = −71

5
e−3t − 265

16
e−t +

11

48
e−5t +

100

3
e−2t +

1

5
cos t− 1

10
sin t +

51

4
te−t.

Also assume that x1 = x(t), x2 = x′(t), x3 = y(t), x4 = y′(t), the state space
equation can be written as




ẋ1 = x2

ẋ2 = −2x1 − 3x2 + e−5t

ẋ3 = x4

ẋ4 = 2x1 − 3x3 − 4x2 − 4x4 − sin t, ẋT (0) = [1, 2, 3, 4]
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and the numerical solutions can be obtained with

>> f=@(t,x)[x(2); -2*x(1)-3*x(2)+exp(-5*t); x(4);...

2*x(1)-3*x(3)-4*x(2)-4*x(4)-sin(t)];

[t1,x1]=ode45(f,[0,10],[1;2;3;4]);

ezplot(x,[0,10]), line(t1,x1(:,1))

figure; ezplot(y,[0,10]), line(t1,x1(:,3))

The numerical and analytical solutions of x(t) and y(t) are obtained as shown
in Figures 7.8 (a) and (b). It can be seen that they are almost undistinguishable
from the plots.
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FIGURE 7.8: Comparisons of numerical and analytical solutions

15. For the differential equations

{
ü(t)=−u(t)/r3(t)

v̈(t)=−v(t)/r3(t)
, where r(t)=

√
u2(t)+v2(t),

and u(0) = 1, u̇(0) = 2, v̇(0) = 2, v(0) = 1. Select a set of state variables and
convert the equations to the form solvable by MATLAB. Draw and verify the
curves of u(t), v(t), and the phase plane trajectory.

Solution This equation is quite similar to the Apollo model in the book. Select
first a set of state variables such that x1 = u, x2 = u̇, x3 = v, x4 = v̇, the original
equation can be rewritten as




ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)/r3(t)

ẋ3(t) = x4(t)

ẋ4(t) = −x3(t)/r3(t)

where r(t) =
√

x2
1(t) + x2

3(t), and x(0) = [1, 2, 1, 2]. The differential equation

can be expressed by an M-function

1 function dx=app_eq1(t,x)

2 r=sqrt(x(1)^2+x(3)^2); dx=[x(2); -x(1)/r^3; x(4); -x(3)/r^3];

The equation can be solved numerically with

>> x0=[1;2;1;2]; [t,x]=ode45(@app_eq1,[0,100],x0);
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16. Consider the differential equation[6]





u̇1 = u3

u̇2 = u4

2u̇3 + cos(u1 − u2)u̇4 = −g sin u1 − sin(u1 − u2)u
2
4

cos(u1 − u2)u̇3 + u̇4 = −g sin u2 + sin(u1 − u2)u
2
3

where u1(0) = 45, u2(0) = 30, u3(0) = u4(0) = 0, and g= 9.81. Solve the
equations and draw the time responses to the states.

Solution From the given equation, it is easily recognized that it is a DAE, where
the original equation can be expressed in a matrix manner such that



1 0 0 0
0 1 0 0
0 0 2 cos(u1 − u2)
0 0 cos(u1 − u2) 1


 u̇ =




u3

u4

−g sin u1 − sin(u1 − u2)u
2
4

−g sin u2 + sin(u1 − u2)u
2
3




The following statements can be used to solve the equation, with the time
responses of the state shown in Figure 7.9.

>> fM=@(t,u)[1,0,0,0; 0,1,0,0; 0,0,2,cos(u(1)-u(2));...

0,0,cos(u(1)-u(2)),1]; g=9.81; x0=[45;30;0;0];

f=@(t,u)[u(3); u(4); -g*sin(u(1))-sin(u(1)-u(2))*u(4)^2;...

-g*sin(u(2))+sin(u(1)-u(2))*u(3)^2];

ff=odeset; ff.Mass=fM; [t,x]=ode45(f,[0,1.2],x0,ff);

plot(t,x)
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FIGURE 7.9: Differential algebraic equation solution

17. For the implicit differential equation{
ẋ1ẍ2 sin(x1x2) + 5ẍ1ẋ2 cos(x2

1) + t2x1x
2
2 = e−x2

2

ẍ1x2 + ẍ2ẋ1 sin(x2
1) + cos(ẍ2x2) = sin t

where x1(0) = 1, ẋ1(0) = 1, x2(0) = 2, ẋ2(0) = 2. Find the numerical solutions
and draw the solution trajectory.

Solution Defining y1 = x1, y2 = ẋ1, y3 = x2, y4 = ẋ2, the implicit differential
equation can be rewritten as
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{

y3ẏ4 sin(y1y3) + 5ẏ2y4 cos(y2
1) + t2y1y

2
3 − e−y2

3 = 0

ẏ2y3 + ẏ4y2 sin(y2
1) + cos(ẏ4y3)− sin t = 0

where y1(0) = 1, y2(0) = 1, y3(0) = 2, y4(0) = 2. Thus the formal method
should be

>> f=@(t,y,yd)[y(3)*yd(4)*sin(y(1)*y(3))+5*yd(2)*y(4)*cos(y(1)^2)+...

t^2*y(1)*y(3)^2-exp(-y(3)^2);

yd(2)*y(3)+yd(4)*y(2)*sin(y(1)^2)+cos(yd(4)*y(3))-sin(t)];

x0=[1;1;2;2]; ix=[1;1;1;1]; xF0=[1;1;2;2]; idx=[0;0;0;0];

[x0,xd0]=decic(f,0,x0,ix,xF0,idx)

res=ode15i(f,[0,20],x0,xd0); plot(res.x,res.y)

However it is not likely to find consistent initial values using decic() function,
thus one is not able to solve the equation. It is suggested to use the combination
of ODE solver, with the algebraic equation solver discussed in the book.
From the original equations, assume that p1 = ẏ2, p2 = ẏ4, then the following
equation can be established{

y3p2 sin(y1y3) + 5p1y4 cos(y2
1) + t2y1y

2
3 − e−y2

3 = 0

p1y3 + p2y2 sin(y2
1) + cos(p2y3)− sin t = 0

which can be regarded as the algebraic equation of p1 and p2. One can then
write out the M-function to describe the explicit equation as

1 function dy=c7impode(t,y)

2 dx=@(p,y)[y(3)*p(2)*sin(y(1)*y(3))+5*p(1)*y(4)*cos(y(1)^2)+...

3 t^2*y(1)*y(3)^2-exp(-y(3)^2);

4 p(1)*y(3)+p(2)*y(2)*sin(y(1)^2)+cos(p(2)*y(3))-sin(t)];

5 ff=optimset; ff.Display=’off’; dx1=fsolve(dx,y([1,3]),ff,y);

6 dy=[y(2); dx1(1); y(4); dx1(2)];

In this case, the implicit differential equation can be solved with the following
statements, and the results are as shown in Figure 7.10.

>> [t,x]=ode45(@exc7ide,[0,1],x0); plot(t,x)
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FIGURE 7.10: Solutions of implicit differential equations



“math˙sol˙eng” — 2008/5/1 — 8:02 — page 71 — #76

Differential Equation Problems 71

18. The following equations are regarded as stiff equations in classical differential
equation textbooks. Solve the problems using ordinary solver and stiff equa-
tion solver. Also solve the equations using analytical methods and verify the
accuracy of the numerical results.

(i)





ẏ1 = 9y1 + 24y2 + 5 cos t− 1

3
sin t, y1(0) =

1

3

ẏ2 = −24y1 − 51y2 − 9 cos t +
1

3
sin t, y2(0) =

2

3

(ii)





ẏ1 = −0.1y1 − 49.9y2, y1(0) = 1

ẏ2 = −50y2, y2(0) = 2

ẏ3 = 70y2 − 120y3, y3(0) = 1

Solution (i) The analytical solutions to the differential equation can be obtained

>> syms t;

[y1,y2]=dsolve(’Dy1=9*y1+24*y2+5*cos(t)-sin(t)/3’,...

’Dy2=-24*y1-51*y2-9*cos(t)+sin(t)/3’,’y1(0)=1/3’,’y2(0)=2/3’)

with y1 = −2

3
e−39t +

2

3
e−3t +

1

3
cos t, and y2 =

4

3
e−39t − 1

3
e−3t − 1

3
cos t.

An anonymous function can be written to describe the differential equation

>> f=@(t,y)[9*y(1)+24*y(2)+5*cos(t)-sin(t)/3;

-24*y(1)-51*y(2)-9*cos(t)+sin(t)/3];

Thus the equation can be solved numerically with an ordinary equation solver.

>> y0=[1/3; 2/3]; tf=10; [t,y]=ode45(f,[0,tf],y0); plot(t,y)

hold on; ezplot(y1,[0,10]); ezplot(y2,[0,10])

The numerical solutions to the equation are shown in Figure 7.11 (a), superim-
posed by the analytical solutions. It can be seen that the numerical solutions
are very accurate and there is no use to apply the stiff equation algorithms.
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FIGURE 7.11: Comparisons of numerical and analytical solutions

(ii) Again, since the equation is linear, the analytical solutions of the equation
can be obtained first with
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>> [y1,y2,y3]=dsolve(’Dy1=-0.1*y1-49.9*y2’,’Dy2=-50*y2’,...

’Dy3=70*y2-120*y3’,’y1(0)=1’,’y2(0)=2’,’y3(0)=1’)

where y1 = 2e−50t − e−t/10, y2 = 2e−50t, y3 = 2e−50t − e−120t.
The numerical solutions can also be obtained with

>> f=@(t,y)[-0.1*y(1)-49.9*y(2); -50*y(2); 70*y(2)-120*y(3)];

y0=[1; 2; 1]; tf=0.2; [t,y]=ode45(f,[0,tf],y0); plot(t,y)

hold on, ezplot(y1,[0,tf]); ezplot(y2,[0,tf]); ezplot(y3,[0,tf])

and the results are shown in Figure 7.11 (b), together with the analytical
solutions. It can be seen again that ordinary solver is accurate enough for
the solutions.

19. Consider the chemical reaction equation



ẏ1 = −0.04y1 + 104y2y3

ẏ2 = 0.04y1 − 104y2y3 − 3× 107y2
2

ẏ3 = 3× 107y2
2

where the initial values are y1(0) = 1, y2(0) = y3(0) = 0. This equation can be
regarded as stiff equation. Solve the problem with ode45() and check whether
it is correct or not. If not so, how can such a problem be solved.

Solution Two solvers, ode45(), and ode15s(), are going to be used and compared
in this example. The response curves are shown in Figure 7.12, and it can be
seen that they are quite close.

>> f=@(t,y)[-0.04*y(1)+10^4*y(2)*y(3); ...

0.04*y(1)-10^4*y(2)*y(3)-3e7*y(2)^2; 3e7*y(2)^2];

[t1,y1]=ode45(f,[0,10],[1;0;0]); length(t1)

[t2,y2]=ode15s(f,[0,10],[1;0;0]); length(t2),

plot(t1,y1,t2,y2)

Further comparisons on the points calculated reveal that the ordinary solver
takes 29109 steps, while the stiff equation solver only takes 41 steps. Thus for
this example, the stiff equation solver is more effective in the solutions.
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FIGURE 7.12: Solutions of differential equation
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20. Solve the boundary value equation in Problem 4 using numerical methods and
draw the solution y(t). Compared the accuracy of the results with the analytical
results obtained earlier.

Solution The analytical solutions of the differential equation can be obtained

>> syms x

y=dsolve(’D2y-(2-1/x)*Dy+(1-1/x)*y=x^2*exp(-5*x)’,...

’y(1)=pi’,’y(pi)=1’,’x’)

Numerical solutions of the problem can also be obtained with the following
statements, and the curves are shown in Figure 7.13.

>> f=@(t,x)[x(2); t^2*exp(-5*t)+(2-1/t)*x(2)-(1-1/t)*x(1)];

fb=@(xa,xb)[xa(1)-pi; xb(1)-1]; s=bvpinit(linspace(1,pi,5),[1;1]);

v=bvpset; v.RelTol=1e-8; sol=bvp5c(f,fb,s,v); plot(sol.x,sol.y)
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FIGURE 7.13: Solution of the boundary value problem

21. Solve the boundary value problem where ẍ+
1

t
ẋ+

(
1− 1

4t2

)
x =

√
t cos t, with

x(1) = 1, x(6) = −0.5.

Solution For the linear time varying equation, the analytical solution exists,
however the solution is too complicated to be displayed here.

>> x=dsolve(’D2x+Dx/t+(1-1/(4*t^2))*x=sqrt(t)*cos(t)’,...

’x(1)=1’,’x(6)=-0.5’)

The numerical solution can also be obtained with the bvp5c() function, with
the results shown graphically in Figure 7.14.

>> f=@(t,x)[x(2); sqrt(t)*cos(t)-x(2)/t-(1-1/4/t^2)]*x(1);

fb=@(xa,xb)[xa(1)-1; xb(1)+0.5]; s=bvpinit(linspace(1,6,5),[1;0]);

v=bvpset; v.RelTol=1e-8; sol=bvp5c(f,fb,s,v); plot(sol.x,sol.y)

22. For the Van der Pol equation ÿ+µ(y2−1)ẏ+y = 0, if µ = 1, find the numerical
solutions for boundary conditions y(0) = 1, y(5) = 3. If µ is a undetermined
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FIGURE 7.14: Solution of the boundary value problem

parameter, an extra condition ẏ(5) = −2 can be used. Solve the parameter µ
as well as the equation. Draw the solution and verify the results.

Solution If µ is known, the problem can be solved with

>> mu=1; f=@(t,x)[x(2); -mu*(x(1)^2-1)*x(2)-x(1)];

fb=@(xa,xb)[xa(1)-1; xb(1)-3]; s=bvpinit(linspace(0,5,5),[0,1]);

v=bvpset; v.RelTol=1e-8; sol=bvp5c(f,fb,s,v); plot(sol.x,sol.y)

and the time response can be obtained as shown in Figure 7.15 (a). It should
be noted that some improperly chosen initial conditions may cause singularity
problems in the Jacobian, while calculating the initial values.

0 1 2 3 4 5
−5

0

5

10

15

20

25

(a) with known µ

0 1 2 3 4 5
−15

−10

−5

0

5

10

(b) without known µ

FIGURE 7.15: Study of boundary conditions in Van der Pol equations

If µ is not specified, it should be used as an additional parameter. The following
statements can be used to solve the equations and also the value of µ.

>> f=@(t,x,mu)[x(2); -mu*(x(1)^2-1)*x(2)-x(1)];

fb=@(xa,xb,mu)[xa(1)-1; xb(1)-3; xb(2)+2];

s=bvpinit(linspace(0,5,5),[0,1],0); v=bvpset; v.RelTol=1e-8;

sol=bvp5c(f,fb,s,v); plot(sol.x,sol.y), mu=sol.parameters
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It is found that µ = 0.1694, and the time responses of the equation can be
obtained as shown in Figure 7.15 (b).

23. Solve numerically the partial differential equations below and draw the surface
plot of the solution u.





∂2u

∂x2
+

∂2u

∂y2
= 0

u|
x=0,y>0

= 1, u|
y=0, x>0

= 0

x > 0, y > 0

Solution It can be seen that the equation is an elliptic equation with c = 1 and
f = 0. This equation is suitable for pdetool graphical user interface. The final
results are shown in Figure 7.16.
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FIGURE 7.16: Solution surface of the partial differential equation

24. Consider the simple linear differential equation

y(4) + 4y(3) + 6ÿ + 4ẏ + y = e−3t + e−5t sin(4t + π/3)

with the conditions y(0) = 1, ẏ(0) = ÿ(0) = 1/2, y(3)(0) = 0.2. Construct the
simulation model with Simulink, and find the simulation results.

Solution To represent a differential equation with Simulink, one has first to
define the signals y(t), ẏ(t), ÿ(t), y(3)(t) and y(4)(t) using integrators. As shown
in Figure 7.17 (a).
Based on the previous considerations, the full simulation model can be estab-
lished with Simulink as shown in Figure 7.17 (b). The numerical solution and
simulation results are shown together in Figure 7.18, and they agree very well.

>> [t,x,y]=sim(’exc7s2’); plot(t,y);

eq=’D4y+4*D3y+6*D2y+4*Dy+y=exp(-3*t)+exp(-5*t)*sin(4*t+pi/3)’;

y=dsolve(eq,’y(0)=0’,’Dy(0)=0’,’D2y(0)=1/2’,’D3y(0)=0.2’)

hold on; ezplot(y,[0,10])

the analytical solution can be written as

y = − 1

2048
e−5t sin 4t−

√
3

2048
e−5t cos 4t +

1

16
e−3t +

(
− 1

16
+

√
3

2048

)
e−t
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(b) modeling differential equation (file: exc7s2.mdl)

FIGURE 7.17: Simulink description of differential equations

+

(
65

512
−
√

3

512

)
e−tt +

15

128
e−tt2 +

(
181

480
+

√
3

96

)
e−tt3
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FIGURE 7.18: Solution of differential equation

25. Consider further a time-varying linear differential equations

y(4) + 4ty(3) + 6t2ÿ + 4ẏ + y = e−3t + e−5t sin(4t + π/3)

with the initial conditions y(0) = 1, ẏ(0) = ÿ(0) = 1/2, y(3)(0) = 0.2. Construct
a Simulink model to describe and solve the equation and draw the solutions.

Solution It is not likely to get the analytical solutions to the revised time-varying
differential equation. Simulink can still be used to model the equation. The
Simulink model for the system is established as shown in Figure 7.19, and the
solution to the equation is obtained via simulation method, and is shown in
Figure 7.20.

26. Consider the delay differential equation

y(4)(t) + 4y(3)(t− 0.2) + 6ÿ(t− 0.1) + 6ÿ(t) + 4ẏ(t− 0.2) + y(t− 0.5) = e−t2 .
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FIGURE 7.19: Time-varying equation (file: exc7s3.mdl)
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FIGURE 7.20: Time-varying system response

It is assumed that for t 6 0, the equation has zero initial conditions. Construct a
Simulink model and solve the solutions. Also the function dde23() can be used
to solve the same problem. Compare the two methods and draw the solution
y(t).

Solution Delay systems can be modeled easily with Simulink. The delay blocks
in Continuous group can be applied directly to generate delay signals. The
Simulink diagram of the equation is shown in Figure 7.21.
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FIGURE 7.21: Delay equation (file: exc7s4.mdl)
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Running the simulation model, the system response can be obtained as shown
in Figure 7.22.
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FIGURE 7.22: Delay system response

To solve the problem with MATLAB functions, one has to introduce state
variables as x1 = y, x2 = ẏ, x3 = ÿ, and x4 = y(3). Thus the delay differential
equation can be rewritten as




ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = x4(t)

ẋ4(t) = −x1(t−0.5)−4x2(t−0.2)−6x3(t)−6x3(t−0.1)−4x4(t−0.2) + e−t2

Assume that τ1 = 0.5, τ2 = 0.2, τ3 = 0.1. The M-function for such an equation
can be written as

1 function dx=exc7md(t,x,z)

2 xd1=z(:,1); xd2=z(:,2); xd3=z(:,3);

3 dx=[x(2); x(3); x(4);

4 -xd1(1)-4*xd2(2)-6*x(3)-6*xd3(3)-4*xd2(4)+exp(-t^2)];

The following MATLAB statements can be used to solve the problem by func-
tion calls, and the curve is also shown in Figure 7.22. It can be seen that the
results by the two methods agree well.

>> del=[0.5,0.2,0.1]; tx=dde23(’exc7md’,del,zeros(4,1),[0,10]);

hold on; plot(tx.x,tx.y(1,:))

It can also be seen that the block diagram method is far much simpler than the
use of the dde23() function.
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Chapter 8

Data Interpolation and Functional
Approximation Problems

Exercises and Solutions

1. Generate a sparsely distributed data from the the following functions. Use
one-dimensional interpolation method to fit the curves, with different fitting
methods. Compare the interpolation results with the theoretical curves.

(i) y(t) = t2e−5t sin t, where t ∈ (0, 2),

(ii) y(t) = sin(10t2 + 3), for t ∈ (0, 3).

Solution (i) Sparsely distributed samples can be generated with the following
statements and the samples are illustrated in Figure 8.1 (a).

>> t=0:0.2:2; y=t.^2.*exp(-5*t).*sin(t); plot(t,y,’o’)
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(a) sample distribution
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(b) fitting by spline interpolation

FIGURE 8.1: Spline fitting of the generated samples

From these samples, the interpolation are made using various of interpolation
algorithms, and among these algorithms, the spline method gives the best
fitting, as shown in Figure 8.1 (b), with other fittings omitted. It can be seen
that the fitting quality is satisfactory.

>> ezplot(’t.^2.*exp(-5*t).*sin(t)’,[0,2]);

x1=0:0.01:2; y1=interp1(t,y,x1,’spline’); line(x1,y1)

(ii) The sample data and interpolation results are shown respectively in Figures
8.2 (a) and (b), and it can be seen that the fitting quality is quite poor.

79
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>> t=0:0.2:3; y=sin(10*t.^2+3); plot(t,y,’o’)

figure; ezplot(’sin(10*t^2+3)’,[0,3]); x1=0:0.001:3;

y1=interp1(t,y,x1,’spline’); line(x1,y1)

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1
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(b) spline interpolation results

FIGURE 8.2: Curve fitting results

Due to the fast changing nature of the function, the fitting results cannot be
made satisfactory, since the samples are not informative. In order to make
sure good interpolation quality, samples must be increased. For this example,
smaller step-size must be used in the fast changing region.

>> t=[0:0.1:1,1.1:0.04:3]; y=sin(10*t.^2+3); plot(t,y,’o’)

figure; ezplot(’sin(10*t^2+3)’,[0,3]);

x1=0:0.001:3; y1=interp1(t,y,x1,’spline’); line(x1,y1)
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FIGURE 8.3: Fitting with more samples

2. Generate a set of mesh grid data and randomly distributed data from the

prototype function f(x, y) =
1

3x3 + y
e−x2−y4

sin(xy2 + x2y). Fit the original

3D surface with two-dimensional interpolation methods and compare the results
with the theoretical ones.

Solution A set of mesh grid data can be generated and the surface plot can be
obtained as shown in Figure 8.4 (a).
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>> [x,y]=meshgrid(0.2:0.2:2);

z=exp(-x.^2-y.^4).*sin(x.*y.^2+x.^2.*y)./(3*x.^3+y); surf(x,y,z)
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FIGURE 8.4: Spline fitting of surface

Generate denser mesh grid and the surface can be calculated through two-
dimensional interpolation and the new surface is as shown in Figure 8.4 (b). The
error between the interpolated and theoretical surface are obtained as shown in
Figure 8.5, and it can be seen that the interpolated surface is satisfactory.

>> [x1,y1]=meshgrid(0.2:0.02:2);

z1=interp2(x,y,z,x1,y1,’spline’); surf(x1,y1,z1)

z0=exp(-x1.^2-y1.^4).*sin(x1.*y1.^2+x1.^2.*y1)./(3*x1.^3+y1);

figure; surf(x1,y1,abs(z1-z0))
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FIGURE 8.5: Absolute error surface of interpolation

If the samples are randomly distributed rather than in mesh grids, the following
statements can be used to draw the distribution of the samples in Figure 8.6
(a) and the interpolation surface is shown in Figure 8.6 (b). It can be seen that
the fitting is also satisfactory.

>> x=0.2+1.8*rand(400,1); y=0.2+1.8*rand(400,1);

z=exp(-x.^2-y.^4).*sin(x.*y.^2+x.^2.*y)./(3*x.^3+y); plot(x,y,’x’)

[x1,y1]=meshgrid(0.3:0.02:1.9); z1=griddata(x,y,z,x1,y1,’v4’);

figure; surf(x1,y1,z1)
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FIGURE 8.6: Interpolation from scatter distributed samples

3. Assume that a set of data is given as shown below. Fit the data into a smooth
curve in the interval x ∈ (−2, 4.9). Compare the advantages and disadvantages
of the algorithms.

xi −2 −1.7 −1.4 −1.1 −0.8 −0.5 −0.2 0.1 0.4 0.7 1 1.3

yi 0.1029 0.1174 0.1316 0.1448 0.1566 0.1662 0.1733 0.1775 0.1785 0.1764 0.1711 0.1630

xi 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9

yi 0.1526 0.1402 0.1266 0.1122 0.0977 0.0835 0.0702 0.0579 0.0469 0.0373 0.0291 0.0224

Solution For the given sample points, cubic and spline interpolation algorithms
can be used and the interpolation results are obtained as shown in Figure 8.7.
It can be seen that both the algorithms give satisfactory fitting effect.

>> x=[-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,...

1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9];

y=[0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,...

0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,...

0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,...

0.03729,0.02914,0.02236];

x0=-2:0.02:4.9; y1=interp1(x,y,x0,’cubic’);

y2=interp1(x,y,x0,’spline’); plot(x0,y1,’:’,x0,y2,x,y,’o’)
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FIGURE 8.7: Fitting effect of two interpolation algorithms
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4. Assume that a set of measured data is given in a file c8pdat.dat. Draw the 3D
surface using interpolation methods.

Solution The sample data in the scatter form, not the mesh grid form. Thus,
the vectors x, y, z can be read from the data file, and interpolation range can
be found from the data. Interpolation is shown in Figure 8.8.

>> load c8pdat.dat; x=c8pdat(:,1); y=c8pdat(:,2); z=c8pdat(:,3);

v=[max(x), min(x) max(y), min(y)] % find interpolation range

[x1,y1]=meshgrid(0:0.02:1); z1=griddata(x,y,z,x1,y1,’v4’);

surf(x1,y1,z1)
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FIGURE 8.8: Interpolation surface

5. Assume that a set of measured data is given in a file c8pdat3.dat, whose 1∼3
columns are the coordinates of x, y, z, and the fourth column saves the measured
function value V (x, y, z). Perform three-dimensional interpolation from the
data.

Solution Four-dimensional display can be implemented using slice visualization
approach, as shown in Figure 8.9.

>> load c8pdat3.dat

x=c8pdat3(:,1); y=c8pdat3(:,2); z=c8pdat3(:,3); V=c8pdat3(:,4);

[x1,y1,z1]=meshgrid(0.1:0.05:0.9); V1=griddata3(x,y,z,V,x1,y1,z1);

xs=[0.1,0.6]; ys=[0.2 0.5]; zs=[0.2 0.6];

slice(x1,y1,z1,V1,xs,ys,zs)

6. Generate a set of data from the function f(x) =

√
1 + x−√x− 1√
2 + x +

√
x− 1

, for x =

3 : 0.4 : 8. The cubic splines and B-splines can be used to perform data
interpolation tasks. From the fitted splines, take the second-order derivatives
and compare the results with the theoretical curves.

Solution Let’s first consider piecewise cubic interpolation algorithm, the fitting
results are shown in Figure 8.10 (a) and it can be seen that the fitting is
satisfactory.

>> x=3:0.4:8; y=(sqrt(1+x)-sqrt(x-1))./(sqrt(2+x)+sqrt(x-1));

S=csapi(x,y); S.coefs

ezplot(’(sqrt(1+x)-sqrt(x-1))./(sqrt(2+x)+sqrt(x-1))’,[3,8]);
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FIGURE 8.9: Interpolation of 3D functions and 4D slice view

hold on; fnplt(S)
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FIGURE 8.10: Interpolation by piecewise cubic splines

The second-order derivative of the function can be calculated from the spline
object, as shown in Figure 8.10 (b). The calculated curve is compared with the
theoretical curve, and it can be seen that when x is small, the fitting is not
satisfactory.

>> syms x; y=(sqrt(1+x)-sqrt(x-1))/(sqrt(2+x)+sqrt(x-1));

y2=diff(y,x,2); ezplot(y2,[3,8]); hold on

S2=fnder(S,2); fnplt(S2)

Now let’s try the B-spline. The curve fitting and derivative fitting are shown in
Figures 8.10 (a) and (b), and it can be seen that the results are far much better
than the piecewise cubic interpolations.

>> x=3:0.4:8; y=(sqrt(1+x)-sqrt(x-1))./(sqrt(2+x)+sqrt(x-1));

S=spapi(6,x,y);

ezplot(’(sqrt(1+x)-sqrt(x-1))./(sqrt(2+x)+sqrt(x-1))’,[3,8]);

hold on; fnplt(S)

7. Assume that the measured data are given below. Draw the 3D surface plot for
(x, y) within the rectangular intervals (0.1, 0.1) ∼ (1.1, 1.1).
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FIGURE 8.11: B-spline interpolation

yi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.1 0.8304 0.8272 0.824 0.8209 0.8182 0.8161 0.8148 0.8146 0.8157 0.8185 0.823

0.2 0.8317 0.8324 0.8358 0.842 0.8512 0.8637 0.8797 0.8993 0.9226 0.9495 0.9801

0.3 0.8358 0.8434 0.8563 0.8746 0.8986 0.9284 0.9637 1.0045 1.0502 1.1 1.1529

0.4 0.8428 0.8601 0.8853 0.9186 0.9598 1.0086 1.0642 1.1253 1.1903 1.2569 1.3222

0.5 0.8526 0.8825 0.9228 0.9734 1.0336 1.1019 1.1763 1.254 1.3308 1.4017 1.4605

0.6 0.8653 0.9104 0.9684 1.0383 1.118 1.2045 1.2937 1.3793 1.4539 1.5086 1.5335

0.7 0.8807 0.9439 1.0217 1.1117 1.2102 1.311 1.4063 1.4859 1.5377 1.5484 1.5052

0.8 0.899 0.9827 1.082 1.1922 1.3061 1.4138 1.5021 1.5555 1.5572 1.4915 1.346

0.9 0.92 1.0266 1.1482 1.2768 1.4005 1.5034 1.5661 1.5678 1.4888 1.3156 1.0454

1 0.9438 1.0752 1.2191 1.3624 1.4866 1.5684 1.5821 1.5032 1.315 1.0155 0.6247

1.1 0.9702 1.1278 1.2929 1.4448 1.5564 1.5964 1.5341 1.3473 1.0321 0.6126 0.1476

Solution Direct interpolation method can be used to solve the problem, and the
interpolation surface can be obtained as shown in Figure 8.12 (a).

>> [x,y]=meshgrid(0.1:0.1:1.1);

z=[0.8304,0.8272,0.824,0.8209,0.8182,0.8161,0.8148,0.8146,0.8157,0.8185,0.823;

0.8317,0.8324,0.8358,0.842,0.8512,0.8637,0.8797,0.8993,0.9226,0.9495,0.9801;

0.8358,0.8434,0.8563,0.8746,0.8986,0.9284,0.9637,1.0045,1.0502,1.1,1.1529;

0.8428,0.8601,0.8853,0.9186,0.9598,1.0086,1.0642,1.1253,1.1903,1.2569,1.3222;

0.8526,0.8825,0.9228,0.9734,1.0336,1.1019,1.1763,1.254,1.3308,1.4017,1.4605;

0.8653,0.9104,0.9684,1.0383,1.118,1.2045,1.2937,1.3793,1.4539,1.5086,1.5335;

0.8807,0.9439,1.0217,1.1117,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;

0.899,0.9827,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5572,1.4915,1.346;

0.92,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4888,1.3156,1.0454;

0.9438,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.6247;

0.9702,1.1278,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.6126,0.1476];

[x1,y1]=meshgrid(0.1:0.02:1.1);

z1=interp2(x,y,z,x1,y1,’spline’); surf(x1,y1,z1)

axis([0.1,1.1,0.1,1.1,min(z1(:)),max(z1(:))])

In fact, if the user is not interested in the interpolation data, it is better
to perform interpolation using the shading interp command, with the effect
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FIGURE 8.12: Interpolation surface

shown in Figure 8.12 (b). It can be seen that the method gives much smoother
surface.

>> surf(x,y,z); shading interp

8. For the measured data samples (xi, yi) given below, piecewise cubic polynomial
splines can be used and find the coefficients of each polynomial.

xi 1 2 3 4 5 6 7 8 9 10

yi 244.0 221.0 208.0 208.0 211.5 216.0 219.0 221.0 221.5 220.0

Solution The cubic spline interpolation obtained is shown in Figure 8.13. It can
be seen that the fitting is satisfactory.

>> x=1:10;

y=[244.0,221.0,208.0,208.0,211.5,216.0,219.0,221.0,221.5,220.0];

S=csapi(x,y); fnplt(S); hold on; plot(x,y,’o’)
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FIGURE 8.13: Cubic spline interpolation surface

9. The one-dimensional and two-dimensional data given in Exercises 3 and 7 can
be used for cubic splines and B-splines interpolation. Find the derivatives of
the related interpolated functions.

Solution Consider first the problem in Exercise 3, the cubic and B-splines can
be used to interpolate the function and its derivative, the interpolation results
are shown respectively in Figures 8.14 (a) and (b).
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>> x=[-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,...

1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9];

y=[0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,...

0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,...

0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,...

0.03729,0.02914,0.02236];

S=csapi(x,y); S1=spapi(6,x,y); fnplt(S); hold on; fnplt(S1)

figure; Sd=fnder(S); S2=fnder(S1); fnplt(Sd), hold on; fnplt(S2)
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FIGURE 8.14: Interpolation comparisons with cubic and B-splines

Now consider the problem in Exercise 7. The original data format is slightly
different from the necessary ndgrid() function. Here x and y should be given in
vectors, and z should be assigned as the transpose of the original matrix z. The
following statements can be used to establish cubic and B-spline interpolation
models, and the interpolation surfaces are respectively shown in Figures 8.15
(a) and (b). It can be seen that they are very close.

>> [x,y]=meshgrid(0.1:0.1:1.1);

z=[0.8304,0.8272,0.824,0.8209,0.8182,0.8161,0.8148,0.8146,0.8157,0.8185,0.823;

0.8317,0.8324,0.8358,0.842,0.8512,0.8637,0.8797,0.8993,0.9226,0.9495,0.9801;

0.8358,0.8434,0.8563,0.8746,0.8986,0.9284,0.9637,1.0045,1.0502,1.1,1.1529;

0.8428,0.8601,0.8853,0.9186,0.9598,1.0086,1.0642,1.1253,1.1903,1.2569,1.3222;

0.8526,0.8825,0.9228,0.9734,1.0336,1.1019,1.1763,1.254,1.3308,1.4017,1.4605;

0.8653,0.9104,0.9684,1.0383,1.118,1.2045,1.2937,1.3793,1.4539,1.5086,1.5335;

0.8807,0.9439,1.0217,1.1117,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;

0.899,0.9827,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5572,1.4915,1.346;

0.92,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4888,1.3156,1.0454;

0.9438,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.6247;

0.9702,1.1278,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.6126,0.1476];

x0=[0.0:0.1:1]; y0=x0; z=z’; S=csapi({x0,y0},z); fnplt(S)

figure; S1=spapi({5,5},{x0,y0},z); fnplt(S1)

The partial derivative surface can also be obtained with the B-spline, as shown
respectively in Figures 8.16 (a) and (b).

>> S1x=fnder(S1,[0,1]); fnplt(S1x)

figure; S1y=fnder(S1,[0,1]); fnplt(S1y)
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FIGURE 8.15: Fitting effect comparisons of the two algorithms
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FIGURE 8.16: B-spline interpolation of partial derivatives

10. Consider again the data in Exercise 3. Polynomial fitting can be used to model
the data. Select a suitable degree such that good approximation by polynomials
can be achieved. Compare the results with interpolation methods.

Solution Select different degrees such as 3,5,7,9, and 11, the polynomial fitting
results are shown in Figure 8.17.

>> x=[-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,...

1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9];

y=[0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,...

0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,...

0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,...

0.03729,0.02914,0.02236];

x0=-2:0.02:4.9; p3=polyfit(x,y,3); y3=polyval(p3,x0);

p5=polyfit(x,y,5); y5=polyval(p5,x0); p7=polyfit(x,y,7);

y7=polyval(p7,x0); p9=polyfit(x,y,9); y9=polyval(p9,x0);

p11=polyfit(x,y,11); y11=polyval(p11,x0);

plot(x0,[y3; y5; y7; y9; y11])

It can be seen from the results that fifth-degree polynomial can fit the data
satisfactorily.

11. Consider again the data in Exercise 3. Assumed that it is known the prototype
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FIGURE 8.17: Polynomial fitting results

of the function for the data is y(x) =
1√
2πσ

e
−(x−µ)2/2σ2

. However the values of

the parameters µ and σ are not known. Use least squares curve fitting methods
to see whether suitable µ and σ can be identified. Observe the fitting results.

Solution Let a1 = µ, a2 = σ, the prototype function can be expressed by

y(a, x) =
1√

2πa2

e
−(x−a1)2/2a2

2

which can be modeled by an anonymous function

>> f=@(a,x)exp(-(x-a(1)).^2/2/a(2)^2)/(sqrt(2*pi)*a(2));

where a1, a2 are undetermined parameters, with the values a1 = 0.3461, a2 =
2.2340. The fitting results are shown in Figure 8.18, and the fitting results are
satisfactory.

>> x=[-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,...

1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9];

y=[0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,...

0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,...

0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,...

0.03729,0.02914,0.02236];

a=lsqcurvefit(f,[1,1],x,y), x0=-2:0.02:5; y0=f(a,x0);

plot(x0,y0,x,y,’o’)

12. Express the constant e in terms of continued fractions. Observe that how much
of continued fraction stages are expected to get suitable approximations.

Solution Continued fraction to a constant can be obtained with

>> maple(’with(numtheory):’); f=maple([’cfe:=cfrac(exp(1),20)’])

n1=maple(’nthnumer’,’cfe’,8); d1=maple(’nthdenom’,’cfe’,8);

[vpa(n1),vpa(d1)], err1=abs(exp(1)-vpa(n1)/vpa(d1))

n2=maple(’nthnumer’,’cfe’,20); d2=maple(’nthdenom’,’cfe’,20);

[vpa(n2),vpa(d2)], err2=abs(exp(1)-vpa(n2)/vpa(d2))

Reserving the first 8 terms, an approximate rational 1264/465 can be used
for the value of e, with an error level of 10−6. With 20 terms, the rational
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FIGURE 8.18: Data fitting by least squares method

approximation is 410105312/150869313, with error level of 10−15. Continued
fraction can be expressed as

e≈2+
1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+
1

1+
1

1+
1

8+
1

1+
1

1+
1

10+
1

1+
1

1+
1

12+
1

1+
1

1+
1

14+

13. Find good approximations to the functions given below using continued fraction
expansions and Padé approximations. Observe the fitting results obtained and
find suitable degrees of the rational functions.

(i) f(x) = e−2x sin 5x, (ii) f(x) =
x3 + 7x2 + 24x + 24

x4 + 10x3 + 35x2 + 50x + 24
e−3x

Solution (i) The 10-term continued fraction expression can be written as
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>> syms x; fun=’sin(5*x)*exp(-2*x)’;

maple(’with(numtheory):’); f=maple([’cfe:=cfrac(’ fun ’,x,10)’])

the continued fraction is

f(x) ≈ 5x

1 +
2x

1− 37x

12 +
673x

37 +
15983x

673 +
76954709x

79915− 8067507978993x

58235996 +
37499813958898841x

· · ·

.

The following statements can be used to extract rational approximation

>> n=collect(maple(’nthnumer’,’cfe’,4),x);

d=collect(maple(’nthdenom’,’cfe’,4),x); [n,d]=numden(n/d); G1=n/d

n=collect(maple(’nthnumer’,’cfe’,6),x);

d=collect(maple(’nthdenom’,’cfe’,6),x); [n,d]=numden(n/d); G2=n/d

n=collect(maple(’nthnumer’,’cfe’,8),x);

d=collect(maple(’nthdenom’,’cfe’,8),x); [n,d]=numden(n/d); G3=n/d

n=collect(maple(’nthnumer’,’cfe’,10),x);

d=collect(maple(’nthdenom’,’cfe’,10),x); [n,d]=numden(n/d); G4=n/d

the first two rational approximations are

G1 = −30
x (58 x− 37)

673 x2 + 96 x + 222

G2 = −5
x

(
4048829 x2 − 484416 x− 958980

)

4159714 x3 + 2833713 x2 + 2402376 x + 958980
.

The quality of fitting is shown in Figure 8.19.

>> syms x;ezplot(sin(5*x)*exp(-2*x),[0,1]);hold on;ezplot(G1,[0,1]);

ezplot(G2,[0,1]); ezplot(G3,[0,1]); ezplot(G4,[0,1]);

Padé approximation gives the same results.

>> f=taylor(sin(5*x)*exp(-2*x),x,12)

syms x; ezplot(sin(5*x)*exp(-2*x),[0,1]); hold on; c=sym2poly(f);

[n,d]=padefcn(c,5,6); G=poly2sym(n)/poly2sym(d); ezplot(G,[0,1])

[n,d]=padefcn(c,3,4); G=poly2sym(n)/poly2sym(d); ezplot(G,[0,1])

14. Assume that the data in Exercise 7 satisfies a prototype function of z(x, y) =
a sin(x2y) + b cos(y2x) + cx2 + dxy + e. Identify the values of a, b, c, d, e with
least squares method. Verify the identification results.

Solution One may use least squares method to estimate the undetermined
coefficients, where a = [−0.8922, 3.0939,−0.1220, 2.7085,−2.4253].

>> [x,y]=meshgrid(0.1:0.1:1.1);

z=[0.8304,0.8272,0.824,0.8209,0.8182,0.8161,0.8148,0.8146,0.8157,0.8185,0.823;
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FIGURE 8.19: Continued fraction approximation results

0.8317,0.8324,0.8358,0.842,0.8512,0.8637,0.8797,0.8993,0.9226,0.9495,0.9801;

0.8358,0.8434,0.8563,0.8746,0.8986,0.9284,0.9637,1.0045,1.0502,1.1,1.1529;

0.8428,0.8601,0.8853,0.9186,0.9598,1.0086,1.0642,1.1253,1.1903,1.2569,1.3222;

0.8526,0.8825,0.9228,0.9734,1.0336,1.1019,1.1763,1.254,1.3308,1.4017,1.4605;

0.8653,0.9104,0.9684,1.0383,1.118,1.2045,1.2937,1.3793,1.4539,1.5086,1.5335;

0.8807,0.9439,1.0217,1.1117,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;

0.899,0.9827,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5572,1.4915,1.346;

0.92,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4888,1.3156,1.0454;

0.9438,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.6247;

0.9702,1.1278,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.6126,0.1476];

x1=x(:); y1=y(:); z1=z(:);

A=[sin(x1.^2.*y1) cos(y1.^2.*x1) x1.^2 x1.*y1 ones(size(x1))];

theta=A\z1

The fitting quality can be obtained as shown in Figure 8.20.

>> [x,y]=meshgrid(0.1:0.02:1.1);

z=theta(1)*sin(x.^2.*y)+theta(2)*cos(y.^2.*x)+theta(3)*x.^2+...

theta(4)*x.*y+theta(5)

surf(x,y,z)
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FIGURE 8.20: Surface obtained by least squares fitting

15. Assume that a function is given by f(t) = e−3t cos(2t+π/3)+e−2t cos(t+π/4).
Evaluate the formula of the auto-correlation function of the signal. Generate
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a sequence of randomly distributed data and verify the results in a numerical
way.

Solution The auto-correlation function can be evaluated from

>> syms T t tau; f=exp(-3*t)*cos(2*t+pi/3)+exp(-2*t)*cos(t+pi/4);

R=int(f*subs(f,t,t+tau),t,0,inf); R=simple(R)

with the result
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16. Evaluate the auto-correlation function for the Gaussiandistribution function

defined as f(t) =
1√
2π3

e−t2/32
. Generate a sequence of signals and compare

them using Gaussian distributed data to check whether the results description
is close to the theoretical results.

Solution The following statements can be used to calculate the auto-correlation
function

>> syms T t tau; f=exp(-t^2/2/3^2)/sqrt(2*pi)/3;

R=int(f*subs(f,t,t+tau),t,0,inf); R=simple(R)

with

Rtt(τ) = − 2535301200456458802993406410752

95578603511896716839471878476363

√
πe−τ2/36

(
−1 + erf

(
1

6
τ

))

17. Assume that the noised signal can be generated with the following statements

>> t=0:0.005:5; y=15*exp(-t).*sin(2*t);

r=0.3*randn(size(y)); y1=y+r;

find the Nyquist frequency of the signal. Based on such a frequency, design an
eighth-order Butterworth filter which can be used to effectively filter out noises,
while having a relatively small delay.

Solution It can be found that the Nyquist frequency is 100000Hz. The corrupted
signal is shown in Figure 8.21 (a).

>> h=0.005; t=0:0.005:5; y=15*exp(-t).*sin(2*t);

r=0.3*randn(size(y)); y1=y+r; f=t/h;

Nf=floor(length(f)/2)/h, plot(t,y1)
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FIGURE 8.21: Signal filtering

With an eighth-order Butterworth filter, the filtered signal is shown in Figure
8.21 (b). It can be seen that the filtered signal is satisfactory, however inevitably,
there exists delays in the filtered signal.

>> [b,a]=butter(8,0.1); y2=filter(b,a,y1); plot(t,y2,’:’,t,y,’r-’)

18. High-pass filters can be used to filter out information with low-frequencies, and
retain the high-frequency details. Design a high-pass filter for the data shown
in Exercise 8.17, the noise information can be returned. Compare the statistical
behavior of the noise signal obtained.

Solution It can be seen from the filter that, the high-pass filter is in fact
equivalent to 1 minus the low-pass filter. Thus the noise signal to be filtered
out from the filter can be extracted by a high-pass filter, shown in Figure 8.22.

>> h=0.005; t=0:0.005:5; y=15*exp(-t).*sin(2*t);

r=0.3*randn(size(y)); y1=y+r;

[b,a]=butter(8,0.6); b1=b-a; y2=filter(b1,a,y1); plot(t,y2)
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FIGURE 8.22: Extracted noise signal
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Chapter 9

Probability and Mathematical
Statistics Problems

Exercises and Solutions

1. The PDF of Rayleigh distribution is given by pr(x) =





x

b2
e
− x2

2b2 x > 0

0 x < 0

.

Derive analytically the CDF, mean, variance, central moment and raw moments
of the distribution. Generate a pseudo-random sequence satisfying Rayleigh
distribution, verify numerically whether the calculation is correct.

Solution Based on the relevant mathematical formulas, the distribution function,
mean, variance and moments can be derived

>> syms x; syms b positive; p=x*exp(-x^2/2/b^2)/b^2*heaviside(x);

syms tau; F=int(subs(p,x,tau),tau,-inf,x)

m=simple(int(x*p,x,-inf,inf)),

v=simple(int((x-m)^2*p,x,-inf,inf))

Ev=int(x^r*p,x,0,inf), Evm=int((x-m)^r*p,x,0,inf)

and it is found that the distribution function is expressed by a piecewise function

F (x) =

{
1− ex2/(2b2), x > 0
0, x 6 0

The mean and variance are m =
√

2πb/2, v = −b2 (π − 4) /2. The raw moment
can be expressed by 2r/2brΓ (r/2 + 1). Direct integration above cannot find the
central moments for symbolic r. One may use loop structure to find the first
five central moments

>> for r=1:5, mu=simple(int((x-m)^r*p,x,0,inf)), end

which can be written as µ1 = 0, µ2 = −b2 (π − 4) /2, µ3 = b3
√

2π (−3 + π) /2,
µ4 =

(
8− 3π2

)
b4/4, and µ5 = b5

√
2π

(
π2 − 25 + 5π

)
/2.

2. Assume that between Locations A and B, there are six sets of traffic lights. The
probability of red light at each set of traffic lights is the same, with p = 1/3.
Suppose the number of red traffic lights on the road for Locations A to B satisfies
a binomial distribution B(6, p). Find the probability of one meets only once
the red traffic light from A to B. Varying the value of p to draw the probability
curve.

95
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Solution The probability density function of binomial distribution can be eval-
uated with binopdf(). Denote the time one meets red light by x, which
may contain 0, 1, 2, · · · , 6, the probability density function, in other words, the
probability to meet red lights, can be evaluated from

>> x=0:6; y=binopdf(x,6,1/3)

It can be found that y = [0.0878, 0.2634, 0.3292, 0.2195, 0.0823, 0.0165, 0.0014].
The probability to meet only once red traffic light is 0.2634. The probability
to meet at least once the red light can be obtained by two ways. One way is to
add up all the terms except the first one in vector y. The other is to subtract
the from term of y from 1. Thus the solution can be obtained as P = 91.22%.

>> P=1-y(1) % or P=sum(y(2:end))

One may change the value of p continuously to draw the probability curve with
the following commabds, and the probability curve is shown in Figure 9.1.

>> p0=0.05:0.05:0.95; y=[];

for p=p0, y=[y binopdf(1,6,p)]; end

plot(p0,y)
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FIGURE 9.1: Probability of meet only once red traffic light

3. Assume that in a foreign language examination, the randomly selected samples
indicate that the scores satisfies approximately the normal distribution, with a
mean value of 72. The number of those whose scores are higher than 96 is 2.3%
of all the number of students. Find the probability of a student whose score is
between 60 and 80.

Solution The standard deviation σ should be obtained first. The problem can
mathematically be expressed as

P (x > 96) = P

(
X − 72

σ
> 96− 72

σ

)
= 1− Φ

(
24

σ

)
= 0.023

with Φ(24/σ) = 1− 0.023, which can be used to evaluate σ = 12.0277.

>> p1=norminv(1-0.023,0,1), sigma=24/p1

With the value of σ, the probability of the score between (60, 80) can be obtained
as P = 58.78%.

>> P=normcdf(80,72,sigma)-normcdf(60,72,sigma)
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4. Generate 30000 pseudo-random numbers satisfying normal distribution of N(0.5,
1.42). Find the mean and standard deviation of the data. Observe the histogram
of the data to see whether they agree with theoretical distribution. Change the
width of the bins and see what may happen.

Solution The random numbers can be generated and the mean and variance of
the numbers can be calculated, with m = 0.5040, s = 1.4045. The PDF from
the generated data can be obtained as shown in Figure 9.2 (a).

>> x=normrnd(0.5,1.4,30000,1); m=mean(x), s=std(x)

xx=-5:0.3:5; yy=hist(x,xx); bar(xx,yy/length(x)/0.3);

x0=-5:0.1:5; y0=normpdf(x0,0.5,1.4); line(x0,y0)
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FIGURE 9.2: PDF fitting from the generated random numbers

If the width of the bins increase, the PDF is shown in Figure 9.2 (b).

>> xx=-5:0.8:5; yy=hist(x,xx); bar(xx,yy/length(x)/0.8); line(x0,y0)

5. Assume that a set of data was measured as shown below. Use MATLAB to
perform the following hypothesis tests:
(i) Assume that the data satisfies normal distribution with a standard deviation
of 1.5. Test whether the mean value of the data is 0.5.
(ii) If the standard deviation is not known, test whether the mean is still 0.5.
(iii) Test whether the distribution of the data is normal.

Solution (i) Two hypotheses can be introduced first{
H0 : µ = µ0 µ satisfies the requirement

H1 : reject the hypothesis H0

Thus, using MATLAB statements, it is found that u = −0.1886.

>> x=[-1.7908,0.0903,3.9223,0.4135,3.2618,-1.0665,0.5169,-1.2615,...

1.8206,-0.0652,1.5803,2.0033,0.3237,2.5006,5.6959,1.6804,...

0.4734,2.5546,0.6258,-1.9909,1.5924,0.4887,-0.1214,3.372,...

4.6927,-0.6757,0.7327,-1.3172,2.031,-4.8202,2.7277,0.9925,...

1.0887,3.2303,-0.118,0.2004,-2.3586,-3.2431,-1.083,1.1319,...

-0.7177,-2.5004,2.9135,-1.1022,0.4746,0.4981,-0.0612,1.3923,...

-0.094,-3.244,-1.8152,1.047,-2.3273,-0.2811,-1.6181,-2.1427,...
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−1.7908 0.3238 4.6927 −2.3586 −0.0940 2.8943 5.3067 3.1634 −3.2812 −3.4389

0.0903 2.5006 −0.6758 −3.2431 −3.2440 −0.0521 −0.0796 0.4653 −0.7905 2.0690

3.9223 5.6959 0.7327 −1.083 −1.8152 −2.9145 −2.6714 1.7065 0.0819 2.3258

0.4135 1.6804 −1.3172 1.132 1.047 0.5219 4.4827 −1.112 0.5201 1.9318

3.2618 0.4735 2.031 −0.7177 −2.3273 0.6606 1.2325 −0.9750 2.3831 3.4477

−1.0665 2.5546 −4.8203 −2.5004 −0.2812 1.2122 −2.0178 1.2073 −1.1251 1.236

0.5169 0.6259 2.7278 2.9135 −1.6181 1.6246 1.8958 0.7403 −1.1234 −1.0142

−1.2615 −1.9909 0.9925 −1.1022 −2.1428 3.3757 3.357 4.6585 0.04734 0.1640

1.8206 1.5924 1.0887 0.47461 −1.7976 −0.7326 −1.5161 −0.1190 0.4540 −5.0103

−0.0652 0.48874 3.2303 0.49816 −0.40375 1.0868 0.80414 5.4782 1.1275 1.5649

1.5803 −0.1215 −0.118 −0.0612 0.8908 0.4704 0.1872 3.8942 2.8812 0.7631

2.0033 3.372 0.2005 1.3923 0.23873 −0.80559 −2.1176 −3.8764 1.8988 −0.8300

-1.7976,-0.4037,0.8907,0.2387,2.8943,-0.0521,-2.9145,0.5219,...

0.6605,1.2122,1.6246,3.3757,-0.7325,1.0868,0.4703,-0.8055,...

5.3067,-0.0796,-2.6714,4.4827,1.2325,-2.0177,1.8958,3.357,...

-1.5161,0.8041,0.1871,-2.1176,3.1634,0.4652,1.7065,-1.112,...

-0.975,1.2073,0.7403,4.6585,-0.1189,5.4782,3.8942,-3.8764,...

-3.2812,-0.7904,0.0819,0.5201,2.3831,-1.1251,-1.1234,0.0473,...

0.4539,1.1275,2.8812,1.8988,-3.4389,2.069,2.3258,1.9318,...

3.4477,1.236,-1.0142,0.164,-5.0103,1.5649,0.7631,-0.8299];

u=sqrt(length(x))*(mean(x)-0.5)/1.5

Since |u| < 1.96, the hypothesis H0 can be accepted.
(ii) Since the variance is not known, T test should be used

>> [H,p,ci]=ttest(x,0.5,0.02),

Since H = 0, the hypothesis H0 cannot be rejected. Also the confidential
interval is [0.014, 0.9343].
(iii) Jarque-Bera hypothesis test should be used and since h = 0, the distribution
satisfies a normal distribution.

>> [h,s]=jbtest(x,0.05)

6. Suppose that tests have been made on a group of randomly selected fuse, and
it is found that the burn-out current of the fuse are 10.4, 10.2, 12.0, 11.3,
10.7, 10.6, 10.9, 10.8, 10.2, 12.1 A. Suppose that these values satisfies normal
distribution, find the mean value of burn-out current and its confidence interval
under confidence level α 6 0.05.

Solution Method (i), normfit() function can be used to evaluate the mean and
confidence interval, with the mean of 10.92 A, and the confidence interval of
(10.43, 11.41) A.

>> x=[10.4,10.2,12,11.3,10.7,10.6,10.9,10.8,10.2,12.1];

[m1,s1,ma,sa]=normfit(x,0.05); m1, ma

Method (ii), to test whether the mean, mean(x), can be accepted under T test.
Meanwhile, the mean and confidence intervals can be obtained.
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>> x=[10.4,10.2,12,11.3,10.7,10.6,10.9,10.8,10.2,12.1]; mean(x)

[H,p,ci]=ttest(x,mean(x),0.05)

7. Assume that the boiling point under a certain atmospheric pressure are tested
with the multiple measured data 113.53, 120.25, 106.02, 101.05, 116.46, 110.33,
103.95, 109.29, 93.93, 118.67◦C. Check whether they satisfy normal distribution
under the confidence level of α 6 0.05.

Solution The data can be entered first, and since H = 0, the data satisfies a
normal distribution. Further with the normfit() function, it can be found that
the mean of the data is 109.3480, within the interval [103.4030, 115.2930], and
the standard deviation is 8.3105, within the interval [5.7162, 15.1717].

>> x=[113.53,120.25,106.02,101.05,116.46,110.33,103.95,...

109.29,93.93,118.67];

[H,p,c,d]=jbtest(x,0.05)

[m1,s1,ma,sa]=normfit(x,0.05)

8. Assume that 12 samples are measured for a random variable and they are 9.78,
9.17, 10.06, 10.14, 9.43, 10.60, 10.59, 9.98, 10.16, 10.09, 9.91, 10.36. Find the
deviation of the data and its confidence interval.

Solution Assume first the variable satisfy a normal distribution. Such a hypoth-
esis can be tested with the following statements, and H = 0 indicates that the
hypothesis can be accepted.

>> x=[9.78,9.17,10.06,10.14,9.43,10.6,10.59,9.98,...

10.16,10.09,9.91,10.36];

[H,p,c,d]=jbtest(x,0.05);

Since the normal distribution is confirmed, the normfit() function can be used
to find the variance and its confidence interval, with s1 = 0.4220, and sa =
[0.2990, 0.7166].

>> [m1,s1,ma,sa]=normfit(x,0.05)

9. Twenty patients suffered from insomnia are divided randomly into groups A and
B, with ten patients each. They were given medicines A, B respectively. The
extended sleeping hours are measured as shown below. Judge whether there
are significant differences in healing effect.

A 1.9 0.8 1.1 0.1 −0.1 4.4 5.5 1.6 4.6 3.4

B 0.7 −1.6 −0.2 −1.2 −0.1 3.4 3.7 0.8 0 2

Solution The two sets of data can be entered into MATLAB first

>> x=[1.9,0.8,1.1,0.1,-0.1,4.4,5.5,1.6,4.6,3.4];

y=[0.7,-1.6,-0.2,-1.2,-0.1,3.4,3.7,0.8,0,2];

There are two methods in solving the problem, one is to introduce z = x − y
and hypothesis H0 : d = 0, where d is the mean value of z. The alternative
method is to test whether the hypothesis H0 : µ1 = µ2 is satisfied.
For the former method, the algorithm in the book can be used directly, where
a statistics quantity T = (z̄ − d)/σ∗z can be introduced, who satisfies T distri-
bution, with T = 4.0621, and T0 = 2.2622
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>> z=x-y; T=(mean(z)-0)/std(z)*sqrt(10), T0=abs(tinv(0.05/2,9))

Since T > T0, the hypothesis should be rejected, i.e., there exists significant
differences in the two groups.

For the second method, a statistics quantity T =
x̄− ȳ√
s∗21 + s∗22

√
n can be estab-

lished, who satisfies T distribution, with the degree of freedom n1 + n2 − 2.
The following statements can be used to perform the hypothesis test, with
T = 1.8608, T0 = 2.1009.

>> T=(mean(x)-mean(y))/sqrt(cov(x)+cov(y))*sqrt(10)

T0=abs(tinv(0.05/2,18))

Since T < T0, the hypothesis cannot be rejected.
However for this problem, obvious the two conclusions are not the same. Nor-
mally the latter hypothesis test method should be adopted.

10. For a prototype function y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5, with five
independent variables x1, x2, x3, x4, x5 and one output y, the following data
are obtained. Find the values ai and their confidence intervals using linear
regression method.

x1 8.11 9.25 7.63 7.89 12.94 10.11 7.57 9.92 7.74 7.3 9.48 11.91

x2 2.13 2.66 0.83 1.54 1.74 0.79 0.68 2.93 2.01 1.35 2.81 2.23

x3 3.98 −0.68 1.42 −0.96 −0.28 3.37 4.58 2.15 2.66 3.69 1 −0.98

x4 6.55 6.85 6.25 5.34 6.85 7.2 6.12 6.07 5.51 6.6 6.15 6.43

x5 5.92 7.54 5.39 4.65 6.47 5.1 6.04 5.37 6.54 6.55 5.8 3.95

y 27.676 38.774 23.314 23.828 35.154 21.779 25.516 29.845 32.642 28.443 31.5 23.554

Solution The undetermined coefficients can be obtained with a = [1, 2,−0.3,
−2, 5]T, and the maximum fitting error is 2.0606×10−13.

>> X=[8.11,9.25,7.63,7.89,12.94,10.11,7.57,9.92,7.74,7.3,9.48,11.91;

2.13,2.66,0.83,1.54,1.74,0.79,0.68,2.93,2.01,1.35,2.81,2.23;

3.98,-0.68,1.42,-0.96,-0.28,3.37,4.58,2.15,2.66,3.69,1,-0.98;

6.55,6.85,6.25,5.34,6.85,7.2,6.12,6.07,5.51,6.6,6.15,6.43;

5.92,7.54,5.39,4.65,6.47,5.1,6.04,5.37,6.54,6.55,5.8,3.95];

Y=[27.676,38.774,23.314,23.828,35.154,21.779,25.516,29.845,...

32.642,28.443,31.5,23.554];

a=X’\Y’, norm(X’*a-Y’)

Alternatively, regress() function can be used to get the regression parameters,
which are the same as the ones obtained above.

>> [a b]=regress(Y’,X’)

11. Assume that a set of measured data xi and yi are given below, and the prototype
function is f(x) = a1e

−a2x cos(a3x + π/3) + a4e
−a5x cos(a6x + π/4). Estimate

the values of ai and their confidence intervals.

x 1.027 1.319 1.204 0.684 0.984 0.864 0.795 0.753 1.058 0.914 1.011 0.926

y 8.8797 5.9644 7.1057 8.6905 9.2509 9.9224 9.8899 9.6364 8.5883 9.7277 9.023 9.6605
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Solution Using least squares method, the coefficient vector can be obtained
c = [23.8088, 0.9857, 1.8439,−26.1630, 3.7301, 6.1293]T. It should be noted that
the fitting vector is not unique, the fitting results using the coefficient vector is
shown in Figure 9.3 and the quality of fitting is high.

>> x=[1.027,1.319,1.204,0.684,0.984,0.864,0.795,0.753,1.058,...

0.914,1.011,0.926];

y=[-8.8797,-5.9644,-7.1057,-8.6905,-9.2509,-9.9224,-9.8899,...

-9.6364,-8.5883,-9.7277,-9.023,-9.6605];

f=@(a,x)a(1)*exp(-a(2)*x).*cos(a(3)*x+pi/3)+...

a(4)*exp(-a(5)*x).*cos(a(6)*x+pi/4);

[c,ci]=nlinfit(x,y,f,[1;2;3;4;5;6])

[x1,ii]=sort(x); y1=y(ii); y2=f(c,x1); plot(x1,y1,x1,y2)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−10
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FIGURE 9.3: Fitting result by least squares method

12. For a prototype function y = a1e
−a2x1(a3x2 + x3) + a4x4(a5x5 + 1), assume

that the measured data are given below. Estimate the values of ai and their
confidence intervals.

x1 8.11 9.25 7.63 7.89 12.94 10.11 7.57 9.92 7.74 7.3 9.48 11.91

x2 2.13 2.66 0.83 1.54 1.74 0.79 0.68 2.93 2.01 1.35 2.81 2.23

x3 3.98 −0.68 1.42 −0.96 −0.28 3.37 4.58 2.15 2.66 3.69 1 −0.98

x4 6.55 6.85 6.25 5.34 6.85 7.2 6.12 6.07 5.51 6.6 6.15 6.43

x5 5.92 7.54 5.39 4.65 6.47 5.1 6.04 5.37 6.54 6.55 5.8 3.95

y 8.19 7.68 5.42 3.98 5.99 6.19 7.09 6.83 7.23 8.06 6.74 4.24

Solution The undetermined coefficients ai can be obtained with the least squares
method in Chapter 8

>> X=[8.11,9.25,7.63,7.89,12.94,10.11,7.57,9.92,7.74,7.3,9.48,11.91;

2.13,2.66,0.83,1.54,1.74,0.79,0.68,2.93,2.01,1.35,2.81,2.23;

3.98,-0.68,1.42,-0.96,-0.28,3.37,4.58,2.15,2.66,3.69,1,-0.98;

6.55,6.85,6.25,5.34,6.85,7.2,6.12,6.07,5.51,6.6,6.15,6.43;

5.92,7.54,5.39,4.65,6.47,5.1,6.04,5.37,6.54,6.55,5.8,3.95];

Y=[8.19,7.68,5.42,3.98,5.99,6.19,7.09,6.83,7.23,8.06,6.74,4.24];
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f=@(a,X)a(1)*exp(-a(2)*X(1,:)).*[a(3)*X(2,:)+X(3,:)]+...

a(4)*X(4,:).*[a(5)*X(5,:)+1]; c0=zeros(5,1);

c=lsqcurvefit(f,c,X,Y)

and the vector c = [1.0015, 0.1002, 1.9987, 0.1010, 0.9875]T. Of course, the
function nlinfit() presented in Chapter 9 can also be used to identify the
coefficients

>> [c,r,J]=nlinfit(X,Y,f,c0); c, ci=nlparci(c,r,J)

The estimated parameters are exactly the same as the ones obtained above.
Moreover the estimated intervals for these parameters are (0.9937, 1.0093),
(0.0991, 0.1013), (1.9895, 2.0079), (0.0986, 0.1034) (0.9603, 1.0146).

13. Assume the measured data given below satisfies the following prototype function
y(t) = c1e

−5t sin(c2t) + (c3t
2 + c4t

3)e−3t. Find from the data the parameters
ci’s and their confidence interval.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y 0 0.1456 0.2266 0.2796 0.3187 0.3479 0.3677 0.3777 0.3782 0.37

t 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

y 0.3546 0.3335 0.3085 0.2812 0.253 0.225 0.198 0.1726 0.1492 0.1279

t 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

y 0.109 0.0922 0.0776 0.065 0.0541 0.0449 0.0371 0.0305 0.025 0.0204

Solution The following statements can be used to find the estimated parameters
can be obtained as c = [0.9858, 2.0268, 3.0096, 3.9926]T. Under these parame-
ters, the fitting results can be obtained as shown in Figure 9.4. It can be seen
that the fitting results are satisfactory.

>> t=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,...

1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9];

y=[0,0.1456,0.2266,0.2796,0.3187,0.3479,0.3677,0.3777,0.3782,...

0.37,0.3546,0.3335,0.3085,0.2812,0.253,0.225,0.198,0.1726,...

0.1492,0.1279,0.109,0.0922,0.0776,0.065,0.0541,0.0449,...

0.0371,0.0305,0.025,0.0204];

f=@(c,t)c(1)*exp(-5*t).*sin(c(2)*t)+(c(3)*t.^2+...

c(4)*t.^3).*exp(-3*t);

[chat,r,j]=nlinfit(t,y,f,[1;2;3;4]); chat

y2=f(chat,t); plot(t,y,’-o’,t,y2,’-’)

14. Assume that 12 sample plants each are randomly selected from areas A and
B. The iron element content in µg/g are measured as shown below. Assume
that the iron element content in the plant satisfies a normal distribution and
the variance of distribution is not affected by the area. Judge whether the
distribution of the iron element content is the same.

area A 11.5 18.6 7.6 18.2 11.4 16.5 19.2 10.1 11.2 9 14 15.3

area B 16.2 15.2 12.3 9.7 10.2 19.5 17 12 18 9 19 10

Solution The following statements can be used to calculate the value of T =
−0.2853. Since |T | < |T0|, the hypothesis can b e accepted, which means that
there is no significant differences between them.
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FIGURE 9.4: Fitting result by the estimated parameters

>> x=[11.5,18.6,7.6,18.2,11.4,16.5,19.2,10.1,11.2,9,14,15.3];

y=[16.2,15.2,12.3,9.7,10.2,19.5,17,12,18,9,19,10];

T=(mean(x)-mean(y))/sqrt(cov(x)+cov(y))*sqrt(length(x))

15. Assume that there are random variables A and B, whose samples are given
below. Judge whether they have significant differences.

A 10.42 10.48 7.98 8.52 12.16 9.74 10.78 10.18 8.73 8.88 10.89 8.1

B 12.94 12.68 11.01 11.68 10.57 9.36 13.18 11.38 12.39 12.28 12.03 10.8

Solution Similar to the previous examples, one can give the following statements

>> x=[10.42,10.48,7.98,8.52,12.16,9.74,10.78,10.18,8.73,...

8.88,10.89,8.1];

y=[12.94,12.68,11.01,11.68,10.57,9.36,13.18,11.38,...

12.39,12.28,12.03,10.8];

T=(mean(x)-mean(y))/sqrt(cov(x)+cov(y))*sqrt(length(x))

It is found that T = −3.9518. Since |T | > |T0|, the hypothesis should be
rejected, that is, there are significant differences between variables A and B.

16. Suppose that five different dyeing technics are tested for the same cloth. Dif-
ferent dyeing technics and different machines are tested randomly, and the
percentage of washing shrinkage are given below. Judge whether the dyeing
technics have significant effect on the washing shrinkage.

machine dyeing technic machine dyeing technic

number 1 2 3 4 5 number 1 2 3 4 5

1 4.3 6.1 6.5 9.3 9.5 2 7.8 7.3 8.3 8.7 8.8

3 3.2 4.2 8.6 7.2 11.4 4 6.5 4.2 8.2 10.1 7.8

Solution The variance analysis to the problem can be performed with the
following statements and the ANOVA table and boxed plot are obtained as
shown in Figures 9.5 (a) and (b).

>> A=[4.3,6.1,6.5,9.3,9.5; 7.8,7.3,8.3,8.7,8.8;

3.2,4.2,8.6,7.2,11.4; 6.5,4.2,8.2,10.1,7.8];

[p,tbl,stats]=anova1(A)
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(a) ANOVA table
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FIGURE 9.5: Variance analysis results of Exercise 16

Since the probability p = 0.0041 is too small, there exists significant differences
among the means, i.e., the washing shrinkage. From the boxed plot, it is readily
seen that the effect of dyeing tactics 1 and 5 have significant differences.

17. Assume that the heights of randomly selected Year 5 pupils in three schools
are measured in the table given below. Check whether there are significant
differences in the heights in the three school. (α = 0.05)

school measured height data

1 128.1 134.1 133.1 138.9 140.8 127.4

2 150.3 147.9 136.8 126 150.7 155.8

3 140.6 143.1 144.5 143.7 148.5 146.4

Solution Variance analysis to the problem can be performed with the following
statements and the ANOVA table and boxed plot are obtained as shown in
Figures 9.6 (a) and (b).

>> A=[ 128.1 134.1 133.1 138.9 140.8 127.4;

150.3 147.9 136.8 126 150.7 155.8;

140.6 143.1 144.5 143.7 148.5 146.4];

[p,tbl,stats]=anova1(A)

The probability obtained is p = 0.7838, which is not close to zero, thus the
hypothesis, i.e., the mean of heights of the groups are the same, cannot be
rejected.

18. The table below recorded the day output of three operators on four different
machines. Check the following
(i) whether there are significant differences in the skill of the operators.
(ii) whether there are significant differences in the machines.
(iii) whether the interaction significant (α = 0.05).
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(a) ANOVA table
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FIGURE 9.6: Variance analysis results of Exercise 17

machine operator number machine operator number

number 1 2 3 number 1 2 3

M1 15 15 17 19 19 16 16 18 21 M3 15 17 16 18 17 16 18 18 18

M2 17 17 17 15 15 15 19 22 22 M4 18 20 22 15 16 17 17 17 17

Solution Two-way variance analysis can be performed with the following state-
ments and the ANOVA table is obtained as shown in Figure 9.7.

>> A=[15,15,17,19,19,16,16,18,21; 17,17,17,15,15,15,19,22,22;

15,17,16,18,17,16,18,18,18; 18,20,22,15,16,17,17,17,17];

[p,tbl]=anova2(A)

FIGURE 9.7: Two-way ANOVA table
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Chapter 10

Non-traditional Solution Methods
for Mathematical Problems

Exercises and Solutions

1. Consider a tipping problem in a restaurant[7]. Assume that the average rate for
the tips is 15% of the consumption. The service level and food quality are used
to calculate the tip. The service level can be written as “good”, “average” and
“poor”, and the food quality can also be expressed as other fuzzy descriptions.
Establish a fuzzy inference system for evaluating the tips.

Solution In this problem, there are two inputs, u1 for food quality, u2 for service
level, and one output, v for tip level. The universes of the inputs and output
should be given first, for instance, u1, u2 for [0,100] interval, and v for [0,20],
meaning 0% to 20%. One can then define the membership functions for these
properties, an example of these is shown in Figure 10.1.

FIGURE 10.1: Fuzzy membership function dialog box

A fuzzy inference table can be established as shown in Table 10.1, and based
on the table, the fuzzy inference system can be established as shown in Figure
10.2. It should be noted that the establishment of this fuzzy inference system
depend heavily upon the opinion of the designer. One can save the system to
file exc10fz.fis, from which the tip level can be evaluated directly from it.

2. Consider the sample data of (xi, yi) given below. Construct a neural network
model, from which draw the curve in the interval x ∈ (1, 10). Different neural
network structures and training algorithms can be tested and compare the
fitting results.

107
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TABLE 10.1: Rule table
u2

poor average good

poor low low medium

u1 average average average high

good medium high high

FIGURE 10.2: Fuzzy inference system

xi 1 2 3 4 5 6 7 8 9 10

yi 244.0 221.0 208.0 208.0 211.5 216.0 219.0 221.0 221.5 220.0

Solution Six hidden layer nodes can be selected and also assume that the transfer
functions of each layer are defined as tansig(). The following statements can
be used to design and train the network.

>> x=1:10;

y=[244.0,221.0,208.0,208.0,211.5,216.0,219.0,221.0,221.5,220.0];

net=newff([1,10],[6,1],{’tansig’,’tansig’});

net.trainParam.epochs=100; net=train(net,x,y);

x1=1:0.1:10; y1=sim(net,x1); plot(x1,y1,x,y,’o’)

It seems that the BP network may not work, another network structure, for
instance, the RBF network can be used, and the fitting results in Figure 10.3.
However even with RBF network, the fitting quality is not as good as the spline
fitting method.

>> x1=1:0.1:10; net=newrbe(x,y); y1=sim(net,x1);

y2=interp1(x,y,x1,’spline’);

plot(x,y,’o’,x1,y1,x1,y2,’:’);
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FIGURE 10.3: RBF network fitting

3. Assume that the actual measured data given below. Construct a neural network
to fit the surface in the rectangular region (0.1, 0.1) ∼ (1.1, 1.1). Compare the
results with data interpolation algorithms.

yi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.1 0.8304 0.8273 0.8241 0.8210 0.8182 0.8161 0.8148 0.8146 0.8158 0.8185 0.8230

0.2 0.8317 0.8325 0.8358 0.8420 0.8513 0.8638 0.8798 0.8994 0.9226 0.9496 0.9801

0.3 0.8359 0.8435 0.8563 0.8747 0.8987 0.9284 0.9638 1.0045 1.0502 1.1 1.1529

0.4 0.8429 0.8601 0.8854 0.9187 0.9599 1.0086 1.0642 1.1253 1.1904 1.257 1.3222

0.5 0.8527 0.8825 0.9229 0.9735 1.0336 1.1019 1.1764 1.254 1.3308 1.4017 1.4605

0.6 0.8653 0.9105 0.9685 1.0383 1.118 1.2046 1.2937 1.3793 1.4539 1.5086 1.5335

0.7 0.8808 0.9440 1.0217 1.1118 1.2102 1.311 1.4063 1.4859 1.5377 1.5484 1.5052

0.8 0.8990 0.9828 1.082 1.1922 1.3061 1.4138 1.5021 1.5555 1.5573 1.4915 1.346

0.9 0.9201 1.0266 1.1482 1.2768 1.4005 1.5034 1.5661 1.5678 1.4889 1.3156 1.0454

1 0.9438 1.0752 1.2191 1.3624 1.4866 1.5684 1.5821 1.5032 1.315 1.0155 0.6248

1.1 0.9702 1.1279 1.2929 1.4448 1.5564 1.5964 1.5341 1.3473 1.0321 0.6127 0.1476

Solution The data can be entered with the following statements

>> A=[0.83,0.827,0.824,0.82,0.818,0.816,0.814,0.814,0.815,0.818,0.823;

0.831,0.832,0.835,0.842,0.851,0.863,0.879,0.899,0.922,0.949,0.98;

0.835,0.843,0.856,0.874,0.898,0.928,0.963,1.004,1.05,1.1,1.152;

0.842,0.86,0.885,0.918,0.959,1.008,1.064,1.125,1.19,1.257,1.322;

0.852,0.882,0.922,0.973,1.033,1.101,1.176,1.254,1.33,1.401,1.46;

0.865,0.91,0.968,1.038,1.118,1.204,1.293,1.379,1.453,1.508,1.533;

0.88,0.943,1.021,1.111,1.21,1.311,1.406,1.485,1.537,1.548,1.505;

0.899,0.982,1.082,1.192,1.306,1.413,1.502,1.555,1.557,1.491,1.346;

0.92,1.026,1.148,1.276,1.4,1.503,1.566,1.567,1.488,1.315,1.045;

0.943,1.075,1.219,1.362,1.486,1.568,1.582,1.503,1.315,1.015,0.624;

0.97,1.127,1.292,1.444,1.556,1.596,1.534,1.347,1.032,0.612,0.147];
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[X,Y]=meshgrid(0.1:0.1:1.1);

We can then set up a BP network with the following statements, and perform
training, it can be seen that the fitting is again not satisfactory.

>> x=X(:); y=Y(:); z=A(:);

[x1,y1]=meshgrid(0.1:0.02:1.1);

x2=x1(:); y2=y1(:);

net=newff([0.1,1.1; 0.1,1.1], ...

[10,8,1],{’tansig’,’tansig’,’tansig’});

net=train(net,[x’; y’],z’);

The RBF network can be tested again, such that the fitting is should in Figure
10.4 (a).

>> net=newrbe([x’; y’],z’);

z1=sim(net,[x2’; y2’]); z2=reshape(z1,size(x1));

surf(x1,y1,z2)
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(a) RBF network fitting
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(b) Interpolation fitting

FIGURE 10.4: Two-dimensional surface fitting

Using the interpolation method, the fitting results are obtained as shown in
Figure 10.4 (b). It can be seen that the quality of two fitting methods is close
for this example.

>> z3=interp2(X,Y,A,x1,y1,’spline’); surf(x1,y1,z3)

4. Solve the constrained optimization problem with genetic algorithms and PSO
methods and compare the results with traditional algorithms.

min

x s.t.





0.003079x3
1x3

2x5−cos3 x6>0

0.1017x3
3x3

4−x2
5 cos3 x6>0

0.09939(1+x5)x3
1x2

2−cos2 x6>0

0.1076(31.5+x5)x3
3x2

4−x2
5 cos2 x6>0

x3x4(x5+31.5)−x5[2(x1+5) cos x6+x1x2x5]>0

0.26x160.5,14<6x2622,0.356x360.6,

166x4622,5.86x566.5,0.146x660.2618

1

2 cos x6

[
x1x2(1 + x5) + x3x4

(
1 +

31.5

x5

)]

Solution (i) with GAOT, the objective function can be expressed by

1 function [sol,y]=exc10f2(sol,opt)
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2 x=sol(1:6); cx6=cos(x(6));

3 c=[0.003079*x(1)^3*x(2)^3*x(5)-cx6^3;

4 0.1017*x(3)^3*x(4)^3-x(5)^2*cx6^3;

5 0.09939*(1+x(5))*x(1)^3*x(2)^2-cx6^2;

6 0.1076*(31.5+x(5))*x(3)^3*x(4)^2-x(5)^2*cx6^2;

7 x(3)*x(4)*(x(5)+31.5)-x(5)*(2*(x(1)+5)*cx6+x(1)*x(2)*x(5))];

8 if any(c<0), y=-100;

9 else, y=-(x(1)*x(2)*(1+x(5))+x(3)*x(4)*(1+31.5/x(5)))/2/cx6;

10 end

The following statements can be used to solve the problem of GA

>> xm=[0.2; 14; 0.35; 16; 5.8; 0.14];

xM=[0.5; 22; 0.6; 22; 6.5; 0.2618]; xx=[xm xM];

x=gaopt(xx,’exc10f2’,[],[],[],’maxGenTerm’,1500)

with x = [0.2216, 16.7496, 0.3596, 19.6057, 6.0943, 0.1661]T, which is exactly the
same as the one in Exercise 7 of Chapter 6.

5. Solve the benchmark problems in Exercise 7 of Chapter 6 using genetic algo-
rithms and PSO methods.

Solution For the benchmark problems, GA and PSO algorithms can be used.
The objective functions for GAOT solver are written as

1 function [sol,f]=exc10o1(sol,x)

2 x=sol(1:end-1); x=x(:); f=-x.’*x;

1 function [sol,f]=exc10o2(sol,x)

2 x=sol(1:end-1); x=x(:);

3 f=-(1+x.’*x/4000-prod(cos(x./cos(sqrt(1:length(i))))))

1 function [sol,f]=exc10o3(sol,x)

2 x=sol(1:end-1); x=x(:);

3 f=-20-1e-20*exp(-0.2*sqrt(sum(x.^2)/20))+exp(sum(cos(2*pi*x))/20);

>> xx=ones(20,1); xx=[-512*xx,512*xx];

[a b c]=gaopt(xx,’exc10o1’)

Unfortunately, the direct result may not be exact, or even acceptable, due to
the fewer generations used. One should increase the number of generations
to larger numbers. For instance, after 1500 generations, good solutions to the
problem may be obtained.

>> [a b c]=gaopt(xx,’exc10o1’,[],[],[],’maxGenTerm’,1500);

x1=a(1:end-1)

with x1 = [−0.0008,−0.0002,−0.0000,−0.0004,−0.0014,−0.0001,−0.0004,
0.0006, 0.0001,−0.0001,−0.0001, 0.0004,−0.0004, 0.0000,−0.0005, 0.0008, 0.0003,
−0.0000, 0.0015,−0.0031]T.
The other two benchmark problems can be solved in a similar manner, and the
results are all acceptable.



“math˙sol˙eng” — 2008/5/1 — 8:02 — page 112 — #117

112 Solving Applied Mathematical Problems with MATLAB

>> [a1 b c]=gaopt(xx,’exc10o2’,[],[],[],’maxGenTerm’,1500);

[a2 b c]=gaopt(xx,’exc10o3’,[],[],[],’maxGenTerm’,1500);

x2=a1(1:20), x3=a2(1:20)

6. Assume that the corrupted signal is established from

>> t=0:0.005:5;y=15*exp(-t).*sin(2*t);r=0.3*randn(size(y));y1=y+r;

Perform de-noising tasks with wavelet transforms and compare the results with
the filter techniques in Exercise 8.8.

Solution For three-level wavelet decomposition, with ’coif4’ wavelet basis,
the following statements can be used to perform de-noising tasks. The signal,
before and after the process can be obtained as shown in Figures 10.5 (a) and
(b) respectively. It can be seen that the de-noising effect is satisfactory.

>> t=0:0.005:5; y=15*exp(-t).*sin(2*t); r=0.3*randn(size(y));

y1=y+r; plot(t,y1), figure

[C,L]=wavedec(y1,3,coif4); A3a=wrcoef(a,C,L,coif4,3);

plot(t,A3a)
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FIGURE 10.5: Corrupted signal de-noising

7. Assume that series of experimental data is given file c10rsdat.txt which is made
up a 60×13 table. Each column corresponds to an attribute and the last column
is the decision attribute. Use rough set reduction technique to check which of
the attributes are important to the event in the decision.

Solution Run rsdav3 program, which gives the graphical user interface for rough
set based data analysis program, shown in Figure 10.6. Click button Browse,
one may load the data file into the interface. Then reduction can be done by
clicking the redu(C,D,X) button. The reduced results are shown in the interface,
which means that the conditional attributes 3,4,5,8,9,10 are important to the
decision, and others can be neglected.

8. For the signal f(t) = e−3t sin(t+π/3)+t2+3t+2, find the 0.2th order derivative
and 0.7th order integral. Draw the relevant curves.

Solution The 0.2th-order differentiation and 0.7th-order integration, i.e. −0.7th-
order differentiation can be obtained with the following statements and the
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FIGURE 10.6: Graphical user interface for data analysis with rough sets

results are shown in Figure 10.7. It should be noted that, one can reduce the
step-size to solve the problem again, which give the same results. This means
that the results obtained are reliable and accurate.

>> t=0:0.01:10; y=exp(-3*t).*sin(t+pi/3)+t.^2+3*t+2;

y1=glfdiff(y,t,0.2); y2=glfdiff(y,t,-0.7); plot(t,y1,t,y2,’--’)
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FIGURE 10.7: The 0.2th- and 0.7th-order derivative of f(t)

9. Design a filter for Exercise 8. The fractional-order derivatives and integrals can
be obtained with the filter. Compare the results with the ones obtained with
Grünwald-Letnikov method.

Solution Select the interested frequency range of (10−3, 103), and N = 3, the
Oustaloup filter and improved Oustaloup filter from

>> w1=1e-3; w2=1e3; N=3; n1=0.2; n2=-0.7;

G11=zpk(ousta_fod(n1,N,w1,w2)), G12=zpk(new_fod(n1,N,w1,w2))
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G21=zpk(ousta_fod(n2,N,w1,w2)), G22=zpk(new_fod(n2,N,w1,w2))

t=0:0.01:10; y=exp(-3*t).*sin(t+pi/3)+t.^2+3*t+2;

y11=lsim(G11,y,t); y12=lsim(G12,y,t);

y21=lsim(G21,y,t); y22=lsim(G22,y,t);

y1=glfdiff(y,t,0.2); y2=glfdiff(y,t,-0.7);

plot(t,y1,t,y2,t,y11,t,y12,t,y21,t,y22)

The filter by Oustaloup algorithm for the 0.2th order is

G11 =
3.9811(s+306)(s+42.52)(s+5.91)(s+0.821)(s+0.1141)(s+0.016)(s+0.002)

(s+454.1)(s+63.1)(s+8.767)(s+1.218)(s+0.1693)(s+0.02352)(s+0.003268)

and other filters can also be obtained. The solutions of the problems are
obtained and shown in Figure 10.8, together with the one evaluated from
Grünwald-Letnikov definition. It can be seen that the Oustaloup filter is good
for the 0.2th-order derivative, while for the −0.7th-order, the filter results are
not satisfactory. The improved filter, however, gives accurate results.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

y1, y11, y12

y2, y22

y21

FIGURE 10.8: Comparisons of fractional-order derivatives

10. Consider a fractional-order linear differential equation is described by[8]

0.8D2.2
t y(t) + 0.5D0.9

t y(t) + y(t) = 1, y(0) = y′(0) = y′′(0) = 0.

Solve the solution using numerical methods. If one changes the orders of 2.2 and
0.9 respectively to 2 and 1, an approximate integer-order differential equation
can be obtained. Compare the accuracy of the integer-order approximation.

Solution If the fractional-orders are approximated by integer-orders, analytical
solutions to the integer-order differential equation can be obtained with

>> y=dsolve(’0.8*D2y+0.5*Dy+y=1’,’y(0)=0’,’Dy(0)=0’)

and the solution is

y(t) = −
√

295

59
e−5t/16 sin

√
295t

16
− e−5t/16 cos

√
295t

16
+ 1

The numerical solution of the fractional-order system can be obtained with the
statements

>> t=0:0.01:10; u=ones(size(t));

G=fotf([0.8 0.5 1],[2.2 0.9 0],1,0); y1=lsim(G,u,t);
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FIGURE 10.9: Solutions of the linear fractional-order equation

The exact and approximate solutions of the equations are obtained as shown in
Figure 10.9. It can be seen that although with integer-order approximations the
analytical solutions can be obtained, the accuracy is not very high for original
fractional-order models. Fractional-order algorithms should be used.

11. Evaluate and draw the following Mittag-Leffler functions and verify (10.43).
(i) E1,1(z), (ii) E2,1(z), (iii) E1,2(z), (iv) E2,2(z)

Solution With the ml fun() function can be used to draw the requested Mittag-
Leffler functions, as shown in Figure 10.10.

>> z=0:0.001:1;

subplot(221), y1=ml_fun(1,1,z,0,1e-10); plot(z,y1)

subplot(222), y2=ml_fun(2,1,z,0,1e-10); plot(z,y2)

subplot(223), y3=ml_fun(1,2,z,0,1e-10); plot(z,y3)

subplot(224), y4=ml_fun(2,2,z,0,1e-10); plot(z,y4)
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FIGURE 10.10: The Mittag-Leffler functions
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12. Evaluate the following Mittag-Leffler functions and show graphically that the
equations below are identical.
(i) Eα,β(x) + Eα,β(−x) = 2Eα,β(x2) (ii) Eα,β(x)− Eα,β(−x) = 2xEα,α+β(x2)

(iii) Eα,β(x) =
1

Γ(β)
+Eα,α+β(x) (iv) Eα,β(x) = βEα,β+1(x)+αx

d

dx
Eα,β+1(x)

Solution To show the two sides are equal, one can chose randomly the values of
α and β, and assign a vector x, then compare the curves of the two sides equal
or not.

>> a=fix(100*rand(1))*0.01, b=fix(100*rand(1))*0.01

x=0:0.0001:0.2; y11=ml_fun(a,b,x,0,1e-10)+ml_fun(a,b,-x,0,1e-10);

y12=2*ml_fun(a,b,x.^2,0,1e-10); plot(x,y11,x,y12,’--’)

y21=ml_fun(a,b,x,0,1e-10)-ml_fun(a,b,-x,0,1e-10);

y22=2*x.*ml_fun(a,a+b,x.^2,0,1e-10); plot(x,y21,x,y22,’--’)

y31=ml_fun(a,b,x,0,1e-10); y32=1/gamma(b)+ml_fun(a,a+b,x,0,1e-10);

plot(x,y31,x,y32,’--’) y41=y31;

y42=b*ml_fun(a,b+1,x,0,1e-10)+a*x.*ml_fun(a,b+1,x,1,1e-10);

plot(x,y41,x,y42,’--’)

13. Find the closed-loop model from the typical feedback structure.

(i) G(s) =
12
√

s + 31

(
√

s + 20)(
√

s + 100)(
√

s + 1)
, Gc(s) =

18s + 20

s(s + 4)
, H(s) = 1

(ii) G(s)=
s0.4 + 5

s3.1+2.8s2.2+1.5s0.8+4
, Gc(s)=3+2.5s−0.5+1.4s0.8, H(s)=1

Solution (i) The plant model G(s) can be entered first, then the closed-loop
system model can be obtained with the following statements

>> G=fotf([1 20],[0.5 0],[12 31],[0.5 0])*fotf([1 100],[0.5,0],1,0)*...

fotf([1 1],[0.5 0],1,0); Gc=fotf([1 4],[2 1],[18 20],[1 0]);

H=fotf(1,0,1,0); Ga=feedback(G*Gc,H)

with the closed-loop model given by

Ga =
216s1.5 + 558s + 240s0.5 + 620

s3.5 + 121s3 + 2124s2.5 + 2484s2 + 8696s1.5 + 8558s + 240s0.5 + 620
.

(ii) The closed-loop model can be constructed with

>> G=fotf([1 2.8 1.5 4],[3.1 2.2 0.8 0],[1 5],[0.4 0]);

Gc=fotf(1,0,3,0)+fotf(1,0.5,2.5,0)+fotf(1,0,1.4,0.8);

H=fotf(1,0,1,0); Ga=feedback(G*Gc,H)

and the closed-loop model

Ga(s) =
1.4s1.7 + 7s1.3 + 3s0.9 + 15s0.5 + 2.5s0.4 + 12.5

s3.6 + 2.8s2.7 + 1.4s1.7 + 8.5s1.3 + 3s0.9 + 19s0.5 + 2.5s0.4 + 12.5
.

14. Consider the linear fractional-order differential equation given by

D2αx(t) +

(
9

1 + 2λ

)α

Dαx(t) + x(t) = 1, 0 < α < 1

where λ = 0.5, α = 0.25. Solve the equation numerically.

Solution The solutions to the equation can be obtained with the lsim() function,
and the solution is shown in Figure 10.11.
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>> lam=0.5; alpha=0.25; a1=(9/(1+2*lam))^alpha;

G=fotf([1 a1 1],[2*alpha alpha 0],1,0); t=0:0.002:1;

u=ones(size(t)); x1=lsim(G,u,t); plot(t,x1)
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FIGURE 10.11: Solutions of the linear fractional-order equation

15. Find a good approximation for the modified Oustaloup’s filter, to s0.7 and see
which N can best fit the fractional-order differentiator.

Solution Suppose that the frequency range of interest is (10−3, 103), different
values of N ’s can be tested for Oustaloup and improved Oustaloup filter, shown
respectively in Figures 10.12 (a) and (b). It can be seen that N = 2 is not a
good choice. If N > 3, the fitting quality is normally acceptable. Also for the
same order N , the improved Oustaloup filter appears to be better than the
original filter.

>> nn=[2:5]; gam=0.7; wm=1e-3; wM=1e3;

for N=nn, G1=ousta_fod(gam,N,wm,wM); bode(G1); hold on; end

figure; for N=nn, G1=new_fod(gam,N,wm,wM); bode(G1); hold on; end
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FIGURE 10.12: Filter approximation to differentiators
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16. Solve the following nonlinear fractional-order differential equation with the
block diagram based algorithm

D2x(t) + 6D1.455x(t) + 13
[
D0.555x(t)

]2

+ 12x3(t) = sin t.

Solution The signal D2x(t) is in fact ẍ(t), thus the original equation can be
converted to

x(t) = sin t− 6D1.455x(t)− 13
[
D0.555x(t)

]2

− 12x3(t).

The implementation of the equation can be modeled with Simulink, as shown
in Figure 10.13.

Out1

1

sin

Integrator1

1
s

Integrator

1
s

13

6

12

Fractional
Der  s^0.555

Fractional
Der  s^0.455

Clock

Add

FIGURE 10.13: Simulink model (file: exc10m1.mdl)

Performing simulation to the original block diagram, the solutions of the fractional-
order differential equation can be obtained as shown in Figure 10.14. Modifying
the control parameters, the solutions are still the same, which means that the
solutions are correct.
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FIGURE 10.14: Solutions of the fractional-order equation
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