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1. (a) When introduced into an area containing both fine and coarse sand, ant-lions are thought
to prefer to dig burrows in fine sand, but also to avoid other ant-lions. The data below describe
the results of 62 experiments in which either 3 or 4 ant-lions are introduced into an area with
fine and coarse sand. Explain how you would describe the data by means of a binomial model
with probability p of burrowing in fine sand.

Number of ant-lions Total number Number of ant-lions
introduced of experiments burrowing in fine sand

0 1 2 3 4
3 32 0 7 24 1
4 30 0 3 17 10 0

Obtain the maximum-likelihood estimate p̂, and use it to form expected values corresponding
to the observed values in the above table.

Without formally computing a goodness-of-fit statistic, discuss the goodness-of-fit of the
binomial model to the data by visually comparing observed and expected cell numbers in the
above table. [ 26 marks ]

(b) A species of wasp lays its eggs on larvae. Suppose that any larva has X encounters with
wasps where X has the Poisson distribution,

Pr(X = k) =
e−λλk

k!
, for k = 0, 1, 2, . . .

Suppose that an egg is always laid at the first encounter, but that at all subsequent encounters,
single eggs are laid independently with probability δ < 1 at each encounter. If pr denotes the
probability that a larva receives r eggs, (r = 1, 2, . . .) then

pr = δr−1(δ − 1)−re−λδ
∞∑
i=r

λi(δ − 1)i

i!
.

Verify this for r = 1 and r = 2. [ 14 marks ]
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2. Let x1, . . . , xn denote a random sample from the Cauchy distribution, with single unknown
parameter θ, which has probability density function given by

f(x) =
1

π{1 + (x− θ)2}
, −∞ < x <∞.

(i) Show that the Newton-Raphson iterative method for obtaining the maximum-likelihood
estimate θ̂ has the form below, where θ̂(m) denotes the mth iterate for θ̂:

θ̂(m+1) = θ̂(m) −

∑n
i=1

(xi−θ̂(m))

{1+(xi−θ̂(m))2}∑n
i=1

(xi−θ̂(m))2−1

{1+(xi−θ̂(m))2}2

.

[ 14 marks ]

(ii) Fisher’s expected information is J = n
2 . Write down the corresponding iteration for

the method of scoring. [ 7 marks ]

(iii) A particular sample has the values: 0.11, 1.67, 1.01, –1.20, –2.80, –0.68, 2.28, –1.14,
–7.34, –4,60, resulting in θ̂ = −0.6632.

Let L(θ) denote the likelihood. The hypothesis θ = 0 may be tested by means of the
score, Wald and likelihood–ratio tests. The results of these tests are shown below:

(a)

√
2 log

(
L(−0.6632)

L(0)

)
= 1.026

(b) (0.6632)
√

5 = 1.483

(c)

∑10
i=1

{
d log f(xi)

dθ

}∣∣∣
θ=0√

5
= 0.620

Explain, giving your reasons, which test is used in each of these cases. Comment on
the disparity between the three test results. [ 19 marks ]
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3. In the ABO blood group system there are four blood groups, A, B, AB and O, occuring
with respective relative frequencies, (p2 + 2pr), (q2 + 2qr), 2pq and r2, where p, q and r are
probabilities and p+ q + r = 1.

(i) Write down the likelihood, L, when the different groups are observed with frequencies
nA, nB, nAB and n0 respectively, with n = nA + nB + nAB + n0. [ 8 marks ]

(ii) Writing r = 1− p− q, and treating L as a function of p and q, show that

∂ logL
∂p

=
2r

p(p+ 2r)
nA −

2
(q + 2r)

nB +
1
p
nAB −

2
r
n0.

[ 9 marks ]

(iii) Given that

− ∂2 logL
∂p∂q

=
2

(p+ 2r)2
nA +

2
(q + 2r)2

nB +
2
r2
n0,

show that

− E
[
∂2 logL
∂p∂q

]
=

2n(4r + 3pq)
(p+ 2r)(q + 2r)

.

[ 10 marks ]

(iv) An iterative method for maximising the likelihood is called the gene-counting method.
Here

p̂(i+1) =
(
nA + nAB

2n

)
+

p̂(i)

(p̂(i) + 2r̂(i))
nA
2n

q̂(i+1) =
(
nB + nAB

2n

)
+

q̂(i)

(q̂(i) + 2r̂(i))
nB
2n
,

where q̂(m) and p̂(m) are, respectively, the mth iterates of the maximum-likelihood
estimates, q̂ and p̂. By separately writing each of the frequencies nA and nB as the
sum of two quantities, one of which is missing, explain how gene-counting arises from
applying the EM algorithm. [ 13 marks ]
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4. (a) Describe how to simulate random variables from an exponential distribution with
probability density function

f(x) = λe−λx for x ≥ 0,

using the inversion method. [ 8 marks ]

(b) A Γ(n, 1) random variable has the probability density function

f(x) =
xn−1e−x

Γ(n)
for x ≥ 0, n > 1.

Describe how to simulate such random variables, using the rejection method with envelope

g(x) =
ke−x/n

n
, for x ≥ 0

and suitable k > 1. [ 13 marks ]

(c) Data, x = (x1, x2, x3) arise with the multinomial probability,

f(x|θ, η) ∝ θx1ηx2(1− θ − η)x3 ,

for 0 < θ, η < 1 and θ + η < 1.

The joint prior distribution for the pair of parameters (θ, η) is said to be Dirichlet, with
probability density function

π(θ, η) ∝ θα1ηα2(1− θ − η)α3 ,

for given values of α1, α2 and α3.

Show that the posterior distribution π(θ, η|x) is also Dirichlet. Find the conditional posterior
distributions for θ and η, each given the other, and outline how these might be used in Gibbs
sampling. [ 19 marks ]
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5. (a) A random sample x1, . . . , xn is taken from a probability density function, f(x). Define
the naive estimate of f(x). Explain how the naive estimate differs from a standard histogram.
Explain how the naive estimate of f(x) is a kernel density estimate of f(x). [ 21 marks ]

(b) Given below is a MATLAB function for calculating a kernel density estimate. Explain
how the function works. The function calls a function delta. Explain the role played by delta,
and suggest two possible forms that it might take.

function z=kernel(y,data,k1)

n=length(data);

h=k1*std(data)/n^0.2;

z=0;

for i=1:n

z=z+delta((y-data(i))/h);

end

z=z/(n*h);

[ 13 marks ]

(c) In Monte Carlo inference, parameters are estimated by maximising an approximate
likelihood, obtained from using simulated data. Explain the rôle played by kernel density
estimation in Monte Carlo inference. [ 6 marks ]


