
      

Algorithms and Transformations

1. Numerical Sequences. The integral Iba(f), −∞ < a ≤ b <∞, can be approximated
by the trapezoidal rule:

∫ b

a

f(x) dx ≈ Tn(f) = hn

n∑
′′

k=0

f (a+ khn) , (1.1)

where hn = (b − a)/2. This rule is derived by partitioning the interval [a, b] into n subin-

tervals (1 ≤ n < ∞), and using the approximation Ib
′
a′(f) ≈ b′ − a′

2
{f(a′) + f(b′)} over

each subinterval [a′, b′] (see §3.3). This method yields two types of sequences of numbers
depending on whether the interval [a, b] is subdivided into 1, 2, 3. . . . subintervals or into
1, 2, 4, . . . subintervals. We discuss these cases separately.

Case 1. The sequence {Tn(f)} is obtained by setting T0 = 0 and n = 1, 2, . . . in formula
(1.1). This yields

T0 = 0, Tn+1 =
n∑
k=0

Ek, En = Tn+1 − Tn for n = 1, 2, . . . . (1.2)

Example 1.1. Consider I1 =
∫ 1

0
1/(x + 1) dx and I2 =

∫ 1

0
e−x dx, with exact values

I1 = ln(2) ≈ 0.69314718 and I2 = 1 − e−1 ≈ 0.63212055. The values of Tn and En are
presented in Table 1.1 for n = 0(1)8.

Table 1.1. Values of Tn and En for n = 0, 1, . . . , 8.

Table 1.1a for I1
∣∣ Table 1.1b for I2

n Tn En
∣∣ Tn En

0 0.000000 0.750000
∣∣ 0.000000 0.683940

1 0.750000 −0.041667
∣∣ 0.683940 −0.038705

2 0.708333 −0.008333
∣∣ 0.645235 −0.007272

3 0.700000 −0.002976
∣∣ 0.637963 −0.002553

4 0.697024 −0.001389
∣∣ 0.635409 −0.00118343

5 0.695635 −0.000758
∣∣ 0.634226 −0.000643

6 0.694877 −0.000458
∣∣ 0.633583 −0.000388

7 0.694420 −0.000298
∣∣ 0.633195 −0.000252

8 0.694122 −0.000204
∣∣ 0.632943 −0.000173
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Case 2. The sequence {Tn} is obtained by successively halving the interval [a, b], for
which we set T0 = 0, and take n = 1, 2, 4, . . . in formula (1.1). This yields

T̂0 = 0, T̂n+1 =
n∑
k=0

Êk, Ên = T̂n+1 − T̂n for n = 0, 1, 2, . . . . (1.3)

Thus in the notation of formula (1.2) we have T̂0 = T0, and T̂n = T2n−1 for n = 1, 2, . . . .
The values of T̂n and Ên for the integrals I1 and I2 are presented in Table 1.2.

Table 1.2. Values of T̂n and Ên for n = 0, 1, . . . , 8.

Table 1.2a for I1
∣∣ Table 1.2b for I2

n Tn En
∣∣ Tn En

0 0.000000 0.750000
∣∣ 0.000000 0.683940

1 0.750000 −0.041667
∣∣ 0.683940 −0.038705

2 0.708333 −0.011310
∣∣ 0.645235 −0.009826

3 0.697024 −0.002902
∣∣ 0.635409 −0.002446

4 0.694122 −0.000731
∣∣ 0.632943 −0.000617

5 0.693391 −0.000183
∣∣ 0.6323266 −0.000154

6 0.693208 −0.000046
∣∣ 0.632172 −0.000039

7 0.693162 −0.000011
∣∣ 0.632133 −0.000010

8 0.693151 −0.000003
∣∣ 0.632124 −0.000002

2. Acceleration Methods. Given a sequence of numbers
{
Sk

}∞
k=0

and a finite number
S, we have two cases: (i) if this sequences converges to S, then S is its limit; (ii) if the
sequences {Sk} diverges, then we say that S is the divergent limit of this sequence (e.g.,
S may be the formal sum of of a divergent power series whose partial sums are Sk). The
problem we seek is to obtain an estimate of the value of S from a limited number of initial
elements of the sequence {Sk}. We will discuss different approaches to this problem.

2.1. The φ-Algorithm. One approach to solve this problem is as follows. Let us
assume that the members of the sequence {Sk} behave like successive values of a function
β(k) that is known to have a limit (or divergent limit) S′ as n → ∞. Also, let β(k) be a
function of a finite number i of free parameters, which can be determined by equating β(k)
to Sk for k = m,m+ 1, . . . ,m+ i− 1, where m > 0 is a smaller integer. Then the value S′

is accepted as a suitable approximation to S. Specifically, let β(k) be taken as a polynomial
of degree n in (σ + k)−1, i.e.,

β(k) = φ+
n∑
j=1

Aj (σ + k)−j , (2.1)

which has n+ 1 quantities, namely φ and Aj (j = 1, 2, . . . , n). These n+ 1 quantities can
be determined by equating β(k) to Sk for k = m,m + 1, . . . ,m + n. The value of φ so
determined is the estimate for S. This method is due to Wynn (1956a) who also suggested
to use the Lagrangian interpolation to determine φ. Since this estimate depends on n, which
is the number of coefficients Aj , and m which is the point at which we equate the values of
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β(k) and Sk, we will denote by φ
(m)
n the number just determined. Then by varying n and

m we obtain a double sequence of estimates of S.

The problem of obtaining the value of φ in formula (2.1) is basically an interpolation
problem: We wish to determine this value of the polynomial β(k) when (σ + k)−1 = 0
under the condition that β(k) must assume the values Sm, Sm+1, . . . , Sm+n when k =
m,m + 1, . . . ,m + n. This interpolation problem is solved by using the Aitken-Neville
algorithm, which in this case yields a simple recursion involving the numbers

{
φ

(m)
n

}
, and

is given by

φ
(m)
0 = Sm, m = 0, 1, . . . , (2.2)

φ
(m)
n+1 = (n+ 1)−1

[
(σ +m+ n+ 1)φ(m+1)

n − (σ +m)φ(m)
n

]
,

n, m = 0, 1, . . . . (2.3)

This is known as the φ-algorithm. Table 2.1 shows a part of the φ-array obtained with σ = 0
from the sequence

Sm =
m−1∑
k=0

(k + 1)−2, m = 0, 1, . . . , (2.4)

where limm→∞ Sm = π2/6 ≈ 1.644934066848.

Table 2.1.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 1.000000 1.500000 1.625000 1.643519 1.644965 1.644951
1 1.000000 1.500000 1.625000 1.643519 1.644965 1.644951
2 1.250000 1.583333 1.638889 1.644676 1.644954
3 1.361111 1.611111 1.642361 1.644861
4 1.423611 1.623611 1.643611
5 1.463611 1.630278
6 1.491389

2.2. Romberg Extrapolation. In the φ-algorithm theory it is natural to take the
points at which β(k) is equated to Sk, and that such points can be chosen from a subset
of the index set k. Since the subset k = 1, 2, 4, . . . arises in numerical integration where
the interval of integration is divided by successive halving of the subintervals into 1, 2, 4, . . .
intervals, the estimate φ̂(m)

n of S is derived from the values of Sk for k = 2m, 2m+1, . . . , 2m+n

with n = 0, 1, . . . and m = 0, 1, . . . . For σ = 0 the recursion for the numbers {φ̂(m)
n } is given

by

φ̂
(0)
0 = 0, φ̂

(m)
0 = S2m−1 m = 1, , 2, . . . ,

φ̂
(m)
n+1 =

(
2n+1 φ̂(m+1)

n − φ̂(m)
n

) [
2n+1 − 1

]−1
, n,m = 0, 1, . . . . (2.5)

This is known as Romberg extrapolation. The numbers {φ̂(m)
n } are set in array similar to
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the φ-array, and computed recursively. Part of the φ̂(m)
n -array obtained for the sequence

Ŝ0 = 0, Ŝm =
2m−1−1∑
k=0

(k + 1)−2, m = 1, , 2, . . . , (2.6)

is presented in Table 2.2.

Table 2.2.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 2.000000 1.333333 1.671958 1.642583 1.645018 1.644933
1 1.000000 1.500000 1.629630 1.644419 1.644942 1.644934
2 1.250000 1.597222 1.642570 1.644910 1.644935
3 1.426311 1.631233 1.644617 1.644933
4 1.527422 1.641271 1.644894
5 1.584347 1.643988
6 1.614167

2.3. The ρ-Algorithm. The limit of the rational function of the form

β(k) =

n∑
j=0

pj k
j

n∑
j=0

qj kj
(2.7)

as k →∞ exists and, therefore, can be used as the basis for extrapolating the limit. The esti-
mates of S in this case are denoted by

{
ρ
(m)
2n

}
, where ρ(m)

2n is derived from Sm, Sm+1, . . . , Sm+2n.
These estimates are constructed by using the Thiele’s interpolation method (see Norlund
1937, Ch. 15). The recursion involves the numbers

{
ρ
(m)
2n

}
and is given by

ρ
(m)
−1 = 0, m = 1, 2, . . . ,

ρ
(m)
0 = Sm, m = 0, 1, . . . ,

ρ
(m)
n+1 = ρ

(m+1)
n−1 + (n+ 1)

[
ρ(m+1)
n − ρ(m)

n

]−1

, n, m = 0, 1, . . . . (2.8)

This is known as the ρ-algorithm (Wynn 1956b). The numbers
{
ρ
(m)
2n

}
are placed in a two-

dimensional array where the superscript m denotes a forward diagonal and the subscript n
a column. This array is constructed from left to right as in the preceding tables. Table 2.3
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shows a part of the ρ-array for the sequence (2.4).

Table 2.3.

m n = 0 n = 1 n = 2 n = 3

1 1.000000 1.666667
2 1.250000 1.650000 1.644737
3 1.361111 1.646825 1.644895 1.644936
4 1.423611 1.645833 1.644923
5 1.463611 1.645429
6 1.491389

2.4. The ρ̂-Algorithm. We can take the points at which the rational function β(k)
defined in (2.7) is equated to Sk from the subset k = 1, 2, 4, . . . . The estimates ρ̂(m)

2n of S
are then derived from the values of Sk for k = 2m, 2m+1, . . . , 2m+2n, . . . with n = 0, 1, . . .
and m = 0, 1, . . . . The recursion involving the numbers ρ̂(m)

2n is given by

ρ̂
(m)
−1 = 0, m = 1, 2, . . . ,

ρ̂
(0)
0 = S0, ρ̂

(m)
0 = S2m−1 , m = 1, 2, . . . ,

ρ̂
(m)
n+1 = ρ̂

(m)
n−1 + 2m

(
2n+1 − 1

) [
ρ̂(m+1)
n − ρ̂(m)

n

]−1

, n, m = 0, 1, . . . . (2.9)

The numbers
{
ρ̂
(m)
2n

}
are set in an array similar to the ρ-array and recursively computed as

before. Table 2.4 shows part of the ρ̂(m)
2n -array for the sequence

S0 = 0, Sm =
2m−1−1∑
k=0

(k + 1)−2, m = 1, 2, . . . . (2.10)

This algorithm requires very large summation indices. For computational purposes see
rhohat.nb.

2.5. The ε-Algorithm. Another form of the function β(k), which is used as a basis
for a system of recursions for extrapolated limits, is defined by

β(k) = S′ +
i∑

j=1

γkj

ij−1∑
l=0

αj,lk
l, (2.11)

where S′ is assumed constant, the factors γj are nonzero and distinct, αj,ij−1 	= 0 for
j = 1, 2, . . . , i, and in the case when the set {γj} contains a unit member, say γl = 1,
then αl,0 = 0, which ensures that the representation (2.11) cannot be reduced to another
form of β(k) containing fewer disposable parameters. The constant S′, the exponential
terms {γj}, the integer distribution {ij} and the coefficients {αj,l} can be evaluated by

equating β(k) to Sk for k = m,m + 1, . . . ,m + 2n when
i∑

j=1

tj = 2n. Note that the
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coefficients of the nonhomogeneous linear difference equations
n∑
k=0

ck Sm+k+k′ =
( n∑
k=0

ck

)
S′

for k′ = 0, 1, . . . , n, can be determined, and the zeros of the polynomial
n∑
k=0

ck γ
k are {γj}

with multiplicity {ij}. Thus, S′ which is the formal limit (or actual limit) of β(k) as k →∞
is the only quantity in the representation (2.11) which must be considered since it is a
rational function of Sk for k = m,m+ 1, . . . ,m+ 2n. The various values of S′ so obtained
are denoted by

{
ε
(m)
2n

}
such that ε(m)

2n is obtained from Sk, k = m,m+ 1, . . . ,m+ 2n. The
sequence

{
ε
(m)
2n

}
is constructed by means of the recursion

ε
(m)
−1 = 0, m = 1, 2, . . . ; ε

(m)
0 = Sm m = 0, 1, . . . ,

ε
(m)
n+1 = ε

(m+1)
n−1 +

[
ε(m+1)
n − ε(m)

n

]−1

n,m = 0, 1, . . . . (2.12)

This is known as the ε-algorithm (Wynn 1956c). The numbers ε(m)
2n are set in an array and

recursively computed as in previous algorithms. Table 2.5 presents the part of the ε-array
from the sequence

Sm =
m−1∑
k=0

(−1)k (k + 1)−1, m = 0, 1, . . . . (2.13)

Note that lim
m→∞

Sm = 0.69314718056.

Table 2.5.

m n = 0 n = 2 n = 4 n = 6

1 1.00000 0.66667
2 0.50000 0.70000 0.69231
3 0.83333 0.69048 0.69333 0.69312
4 0.58333 0.69444 0.69309
5 0.78333 0.69242
6 0.61667

Note that we cannot freely apply the ε-algorithm repeatedly, i.e., we cannot take any
progression of numbers from an even order ε-array and form a new initial sequence which
can again be transformed by means of the ε-algorithm. However, there are two kinds of
repetitions of the ε-algorithm, which are as follows.

2.5.1. The ε-numbers
{

0ε
(m)
n

}
are produced from a prescribed sequence {Sm} and then

successive sets of numbers
{
iε

(m)
n

}
are computed by taking the step-like sequence

i−1ε
(0)
0 , i−1ε

(1)
0 , i−1ε

(0)
2 , i−1ε

(1)
2 , i−1ε

(0)
4 , . . .

as the initial sequence

iε
(0)
0 , iε

(1)
0 , iε

(2)
0 , iε

(3)
0 , iε

(4)
0 , . . . ,



     

7

from which the next ε-array is constructed for i = 1, 2, . . . . This is known as the corre-
sponding repeated application of the ε-algorithm (Wynn 1956d). This kind of repetition is
applied to the sequence (2.13) and Table 2.6 shows the numbers iε

(m)
0 for i = 0, 1, 2 and

m = 0, 1, . . . , 8.

Table 2.6.

m n = 0 n = 1 n = 2

0 0.0000000000 0.0000000000 0.0000000000
1 1.0000000000 1.0000000000 1.0000000000
2 0.5000000000 0.6666666667 0.7500000000
3 0.8333333433 0.7000000036 0.6969696999
4 0.5833333433 0.6923076987 0.6931046866
5 0.7833333462 0.6933333425 0.6931653724
6 0.6166666746 0.6931217032 0.6931517595
7 0.7595238239 0.6931524654 0.6931473196
8 0.6345238239 0.6931464286 0.6931471917

As another example, we consider the sequence

Sm =
m−1∑
k=0

(
α

k

)
(k + 1)−1, m = 0, 1, . . . . (2.14)

Note that lim
m→∞

Sm =
2α+1 − 1
α+ 1

, which for α = −0.5 has the value 0.8284271247461903.

The numbers iε
(m)
0 for i = 0, 1, 2 and m = 0, 1, . . . , 6 for the sequence (2.14) are presented

in Table 2.7.

Table 2.7.

m n = 0 n = 1 n = 2

0 0.0000000000 0.0000000000 0.0000000000
1 1.0000000000 1.0000000000 1.0000000000
2 0.7500000000 0.8000000000 0.8333333333
3 0.8750000000 0.8333333333 0.8285714286
4 0.7968750000 0.8275862069 0.8284263959
5 0.8515625000 0.8285714286 0.8284271284
6 0.8105478750 0.8284023669 0.8284271247

3. Generalized Euler Transformation. (Hartree 1952, Ch. 12) We assume that the
terms {uk} of the infinite series

∞∑
k=0

uk (3.1)

behaves like a geometric progression with ratio t so that we write um = tm vm for m =
0, 1, . . . , where the numbers {vm} are approximately constant. If ∆ is the difference operator
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with respect to m, then the generalized Euler transformation is defined by

∞∑
k=0

uk −→
1

1− t

∞∑
k=0

( t

1− t
)k

∆kv0. (3.2)

It is expected that the successive differences
{
∆kv0

}
will decrease rapidly in magnitude,

and that the transformed series (3.1) converge numerically faster than the series from which
it is derived.

In its delayed form the generalized Euler transformation is

∞∑
k=0

uk −→
m−1∑
k=0

uk +
tm

1− t

∞∑
k=0

( t

1− t
)k

∆kvm. (3.3)

Its partial sums, denoted by S(m)
n and defined by

S(m)
n =

m−1∑
k=0

uk +
tm

1− t

n−1∑
k=0

( t

1− t
)k

∆kvm, (3.4)

form a double sequence of approximations to the sum (or formal sum) of the original series
(3.1). These sums are placed in a two dimensional array similar to the φ-array. The numbers
{S(m)

0 } are the successive partial sums of the original series (3.1), whereas the numbers
{S(0)

n } are the successive partial sums of the transformed series (3.2). The numbers {S(m)
n }

are constructed from the initial values S(m)
0 =

m−1∑
k=0

uk for m = 0, 1, . . . by using the recursion

relations

S
(m)
n+1 = pS(m+1)

n + q S(m)
n , for n,m = 0, 1, . . . , (3.5)

where p = 1/(1− t) and q = −t/(1− t). This transformation is applied to the series whose
terms are u = (k+1)−1 tk, k = 0, 1, . . . , with t = −2. Note that this series is the (divergent)
expansion of the function f(t) = −t−1 ln(1 + t), with the value f(−2) = 0.549306. In
formula (3.4) we take t = −2, vk = (k + 1)−1 for k = 0, 1, . . . . The part of the resulting
array of the values {S(m)

n } are presented in Table 3.1.

Table 3.1.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

1 1.0000 0.3333
2 0.0000 0.6667 0.4444
3 1.3333 0.4444 0.5926 0.4838
4 −0.6667 0.6667 0.5185 0.5679 0.5185
5 2.5333 0.4000 0.5777 0.5383 0.5580 0.5317
6 −2.8000 0.7556 0.5185 0.5580 0.5449 0.5536 0.5390
7 6.3429 0.2476 0.5862 0.5411 0.5524 0.5474 0.5515 0.5432
8 −9.6571 1.0095 0.5016 0.5580 0.5467 0.5505 0.5484 0.5505 0.5456
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4. Application to Sequences Generated by the Trapezoidal Rule. We con-
sider the application of the above algorithms to the sequences of values generated by the
trapezoidal rule to the integral I1 and I2 defined in §1.

4.1. Application of the φ-Algorithm. We apply the φ-algorithm, defined in §2.1
with σ = 0 to the initial values {Sn} of Tables 1.1a and 1.1b, which yields Tables 4.1a and
4.1b, respectively.

Table 4.1a.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 0.750000 0.666667 0.691666 0.693254 0.693170 0.693153
1 0.750000 0.666667 0.691666 0.693254 0.693170 0.693153
2 0.708333 0.683333 0.692857 0.693187 0.693156
3 0.700000 0.688095 0.693055 0.693166
4 0.697024 0.690079 0.693111
5 0.695636 0.691090
6 0.694877

Table 4.1b.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 0.683940 0.606531 0.631861 0.632155 0.632122 0.632115
1 0.683940 0.606531 0.631861 0.632155 0.632122 0.632115
2 0.645235 0.623418 0.632081 0.632129 0.632116
3 0.637963 0.627750 0.632110 0.632120
4 0.635409 0.629494 0.632115
5 0.634226 0.630367
6 0.633583

4.2. Application of Romberg Extrapolation. The Romberg extrapolation is ap-
plied to the initial values {Ŝn} of Tables 1.2a and 1.2b, which yield Tables 4.2a and 4.2b,
respectively.

Table 4.2a.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 1.500000 0.388889 0.735374 0.690385 0.693239 0.693146
1 0.750000 0.666667 0.692064 0.693197 0.693150 0.693147
2 0.708333 0.685714 0.693055 0.693153 0.693147
3 0.697024 0.691220 0.693141 0.693148
4 0.694122 0.692661 0.693147
5 0.693391 0.693025
6 0.693208
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Table 4.2b.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0 0.000000 1.367879 0.352748 0.671818 0.629488 0.692206 0.692119
1 0.683940 0.606531 0.631935 0.632134 0.632121 0.632121
2 0.645235 0.625584 0.632109 0.632121 0.632121
3 0.635409 0.630477 0.632120 0.632121
4 0.632943 0.631709 0.632121
5 0.632326 0.632018
6 0.632172

4.3. Application of the ρ-Algorithm. We apply the ρ-algorithm of §2.3 to the
initial values {Sn} of Tables 1.1a and 1.1b, and the results are given in Tables 4.3a and
4.3b, respectively.

Table 4.3a.

m n = 0 n = 2 n = 4 n = 6

1 0.750000 0.671053
2 0.708333 0.687500 0.693680
3 0.700000 0.690741 0.693165 0.693153
4 0.697024 0.691815 0.693155
5 0.695635 0.692302
6 0.694877

Table 4.3b.

m n = 0 n = 2 n = 4 n = 6

1 0.683940 0.610677
2 0.645235 0.627325 0.632377
3 0.637963 0.630093 0.632122 0.632115
4 0.635409 0.631000 0.632116
5 0.634226 0.631408
6 0.633583

4.4. Application of the ρ̂-Algorithm. We apply the ρ-algorithm of §2.4 to the
initial values {Sn} of Tables 1.2a and 1.2b, and the results are given in Tables 4.4a and
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4.4b, respectively.

Table 4.4a.

m n = 0 n = 2 n = 4 n = 6 n = 8

1 0.750000 0.689189
2 0.708333 0.688705 0.689242
3 0.697024 0.692030 0.692789 0.692921
4 0.694122 0.692868 0.693057 0.693093 0.693106
5 0.693391 0.693077 0.693125 0.693134
6 0.693208 0.693130 0.693142
7 0.693162 0.693143
8 0.693151

Table 4.4b.

m n = 0 n = 2 n = 4 n = 6 n = 8

1 0.683940 0.627480
2 0.645235 0.628354 0.625600
3 0.635409 0.631180 0.631817 0.631927
4 0.632943 0.631885 0.632045 0.632075 0.632086
5 0.632326 0.632062 0.632102 0.632109
6 0.632172 0.632106 0.632116
7 0.632133 0.632117
8 0.632124

4.5. Application of the ε-Algorithm. We apply the ρ-algorithm of §2.5 to the initial
values {Sn} of Tables 1.2a and 1.2b, and the results are given in Tables 4.5a and 4.5b,
respectively.

Table 4.5a.

m n = 0 n = 2 n = 4 n = 6

1 0.750000 0.710526
2 0.708333 0.692810 0.693121
3 0.697024 0.693120 0.693148 0.693147
4 0.694122 0.693145 0.693147
5 0.693391 0.693147
6 0.693208
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Table 4.5b.

m n = 0 n = 2 n = 4 n = 6

1 0.693940 0.647308
2 0.645235 0.632066 0.632117
3 0.635409 0.632117 0.632121 0.632121
4 0.632943 0.632120 0.632121
5 0.632326 0.632121
6 0.632172

4.6. Corresponding Repeated Application of the ε-Algorithm. We apply one
cycle of the corresponding repeated application of the ε-algorithm, which is described in
§2.5.1, to the initial values

{
Ŝn

}
of Tables 1.2a and 1.2b, and obtain the results which are

shown in Tables 4.6a and 4.6b, respectively.

Table 4.6a.

m n = 0 n = 1 n = 2

0 0.0000000000 0.0000000000 0.0000000000
1 0.7500000000 0.7500000000 0.7500000000
2 0.7083333433 0.7105263247 0.7125000080
3 0.6970238239 0.6928104744 0.6783857166
4 0.6941218525 0.6931209674 0.6935168160
5 0.6933912188 0.6931477872 0.6931468452
6 0.6932082027 0.6931471604 0.6931471192
7 0.6931623966 0.6931471007 0.6931471035
8 0.6931509525 0.6931471291 0.6931471127

Table 4.6b.

m n = 0 n = 1 n = 2

0 0.0000000000 0.0000000000 0.0000000000
1 0.6839396954 0.6839396954 0.6839396954
2 0.6452351809 0.6473081781 0.6491704063
3 0.6354094148 0.6320662755 0.6212051356
4 0.6329434216 0.6321171834 0.6324294655
5 0.6323263198 0.6321205681 0.6321205462
6 0.6321720108 0.6321205743 0.6321205734
7 0.6321334057 0.6321205687 0.6321205694
8 0.6321237292 0.6321204544 0.6321205736

4.7. Application of the Generalized Euler Transformation. Since the numbers
En in Tables 1.2a and 1.2b are almost of the form constant×(0.25)n, we will apply the
generalized Euler transformation of §3 with t = 0.25 to the initial values {Ŝn} and present



  

13

the results in Tables 4.8a and 4.8b, respectively.

Table 4.7a.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

1 0.75000
2 0.70833 0.69444
3 0.69702 0.69325 0.69286
4 0.68412 0.69315 0.69312 0.69321
5 0.69339 0.69315 0.69315 0.69315 0.69313
6 0.69321 0.69315 0.69315 0.69315 0.69315 0.69315

Table 4.7b.

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

1 0.68394
2 0.64524 0.63233
3 0.63541 0.63213 0.63207
4 0.63294 0.63212 0.63212 0.63213
5 0.63233 0.63212 0.63212 0.63212 0.63212
6 0.63217 0.63212 0.63212 0.63212 0.63212 0.63212
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5. Fortran Codes. The Fortran codes are as follows.

Subroutine Purpose

eps.f90 Displays ε-algorithm defined by (2.11)
epsr.f90 Displays corresponding repeated application of ε-algorithm

defined in §2.5.1.
eul.f90 Displays generalized Euler transformation defined in §3.1.
f1.f90 Defines integrand in I1
f2.f90 Defines integrand in I2
fn1.f90 Produces Sm defined by (2.13)

fn2.f90 Computes terms of the series
∞∑
m=0

tm

m+ 1
inteps.f90 Displays ε-algorithm defined by (2.11) over the interval (a, b)
intepsr.f90 Displays corresponding repeated application of ε-algorithm over (a, b)
inteul.f90 Displays generalized Euler transformation defined in §3.1 over (a, b)
intphi.f90 Displays φ-algorithm over (a, b)
intrho.f90 Displays ρ-algorithm over (a, b)
intrhohat.f90 Displays ρ̂-algorithm over (a, b)
intromx.f90 Displays Romberg extrapolation over (a, b)
phi.f90 Displays φ-algorithm
rho.f90 Displays ρ-algorithm
romb.f90 Computes T̃n+1 and Ẽn defined in (1.3)
ser1.f90 Computes terms of the series Sm defined by (2.14)
trap.f90 Computes Tn+1 and En defined in (1.2)
sub1.f90 To produce Ŝm+1 defined by (2.6)

The f90 programs to produce most of the tables can be found in the appropriate subdi-
rectory of Algorithms on the CDRom.

For example, to produce Table 2.7, one types ’make’ in the tbl27 subdirectory of the
Algorithms directory. A terminal session is shown below.

make

f95 -c ./ser1.f90

f95 -c ./epsr.f90

f95 -c tbl27.f90

f95 -o tbl27.x tbl27.o epsr.o ser1.o

After typing the executable name ’tbl27.x’, the user is prompted to provide mmax, nor,
kol, with suggested values display with the prompt:

input mmax, nor, kol (5,1,3)

Table 2.7 is then produced. Other tables are produced is the same way.
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