
      

BOUNDARY ELEMENT METHODS

We will study potential and linear elasticity problems which represent a wide range of problems in
applied mathematics, physics and engineering. Some of the physical situations which have models
involving these equations are: Steady-state heat conduction problems, torsion problems in solid
mechanics, diffusion flow in porous media, incompressible inviscid fluid flow, electrostatic potential
problems, Newtonian potentials, and magnetostatics. We will introduce the boundary element method
for two-dimensional steady-state potential and elastic problems. In a very general form, this method
starts by dividing the boundary of the region into finitely many elements (hence the name boundary
element method, or BEM). This article is condensed from Kythe (1995).

Potential Problems

1. Laplace Equation. We will solve the mixed Laplace boundary value problem

∇2u = 0, u = u0 on C1,
∂u

∂n
≡ q = q0 on C2, (1.1)

where C = C1 ∪ C2 is the boundary of a region R. Since −∇2u∗ = δ (x,x′), where u∗(∞) = 0,
and δ denotes the Dirac delta function, the potential boundary value problem with a concentrated
charge acting at a point x′ = xi ≡ i can be written as

∇2u∗ = −δ(i); u∗ = u∗ (x,x′) . (1.2)

The solution of this problem is called the fundamental solution for the potential problem. In view of
the translation property of the delta function,

0 =
∫∫

R

u
[
∇2u∗ + δ(i)

]
dx dy =

∫∫
R

u∇2u∗ dx dy + u(i), (1.3)

where u(i) denotes the value of the unknown potential u at the point i where the charge is applied.
Note that we are writing u(i) for u(xi), where xi is the source point, thus r = |xj − xi|. Now, the
weak variational form for the boundary value problem (1.1) becomes

0 =
∫∫

R

(
∇2u

)
w dxdy

= −
∫∫

R

(∂u
∂x

∂w

∂x
+
∂u

∂y

∂w

∂y

)
dx dy +

∫
C

w
∂u

∂n
ds,

=
∫∫

R

u∇2w dxdy −
∫
C

u
∂w

∂n
ds+

∫
C

w
∂u

∂n
ds.
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Thus,

−
∫∫

R

u∇2w dxdy =
∫
C

w
∂u

∂n
ds−

∫
C

u
∂w

∂n
ds. (1.4)

Since u = u0 on C1 and ∂u/∂n ≡ q = q0 on C2, we replace w by u∗ (and hence, q by q∗) in (1.4),
and from (1.3) and (1.4) we obtain

u(i) =
∫
C1

u∗q ds+
∫
C2

u∗q0 ds−
∫
C1

u0q
∗ ds−

∫
C2

uq∗ ds, (1.5)

where q∗ = ∂u∗/∂n. Recall that for an isotropic two-dimensional region, the fundamental solution

is given by u∗ =
1
2π

log
1
r

, where r = |x − x′| is the distance from the point of application of the

delta function to the point under consideration. The symmetric form of the two-dimensional Laplace
equation in polar cylindrical coordinates is

∂2u∗

∂r2
+

1
r

∂u∗

∂r
= −δ(i). (1.6)

Substituting the above value of u∗ into (1.6) yields δ(i) = 0 for r �= 0. Thus, this equation is satisfied
for any r �= 0. Since at r = 0 the fundamental solution u∗ has a logarithmic singularity, we proceed
as follows: Integrate on a circle K surrounding the boundary point i where the charge is applied.
This gives ∫∫

R

∇2u∗ dx dy = −
∫∫

R

δ(i) dx dy = −1. (1.7)

To show that the first integral in (1.7) is also equal to −1, we find that∫∫
R

∇2u∗ dx dy =
∫
K

q∗ ds =
∫
K

∂u∗

∂r
ds. (1.8)

Substituting the above fundamental solution u∗ into (1.8) we get

∫
K

∂u∗

∂r
ds =

1
2π

∫ 2π

0

(
−1
r

)
r dθ = −1. (1.9)

Note that this result (−1) is independent of r. Thus, the left side goes to −1 as r → 0.
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Fig. 1.1.
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Eq (1.5), where u(i) is the value of the unknown potential u at the point i of the application of
the charge, is valid at any point of the region. However, in order to solve it by the boundary element
method, we will formulate it on the boundary. One of the simplest ways to consider a semicircleCε of
radius ε on the boundary of a two-dimensional regionR, as in Fig. 1.1(a). Assume that the boundary
point i is at the center of this semicircle. As ε→ 0, the semicircle will reduce to the boundary point
i. Further, assume that the boundary C of the region R is smooth, and that C = C1 ∪ C2. Let the
boundary point i be on the C2 portion of C (similar considerations apply if it is on C1). Divide the
boundary C2 into two parts: Cε and C2−ε. Then

∫
C2

uq∗ ds =
∫
C2−ε

uq∗ ds+
∫
Cε

uq∗ ds. (1.10)

Substitute the fundamental solution u∗ into the second integral on the right side and take the limit.
This integral becomes

lim
ε→0

∫
Cε

uq∗ ds = lim
ε→0

∫
Cε

u
(
− 1

2πε

)
ds = − lim

ε→0

u

2πε

∫
Cε

ds = −u
2
, (1.11)

where
∫
Cε
ds = πε (circumference of the semicircle). Now since ε is zero, the boundaryC2−ε again

becomes C2. Also, note that the right side of (1.5) gives

lim
ε→0

∫
Cε

qu∗ ds = lim
ε→0

q

2π
ln

1
ε

∫
Cε

ds = −q
2

lim
ε→0

ε ln ε = 0. (1.12)

Thus, this limiting process does not introduce any new terms in (1.5).

Now, substituting (1.11) into (1.5), we obtain the following two-dimensional BI Eq for a node i
on the boundary C2:

u(i)
2

+
∫
C1

u0q
∗ ds+

∫
C2

uq∗ ds =
∫
C1

u∗q ds+
∫
C2

u∗q0 ds. (1.13)

We will obtain the same result if we consider the point i on the C1 portion of the boundary instead
of C2.

In the three-dimensional case, consider the Laplace equation ∇2u = 0 with the boundary con-
ditions u = u0 on S1 and q = q0 on S2, where S = S1 ∪ S2 is the boundary (surface) of an
isotropic region. We will take a hemisphere Sε (of radius ε and center at i, see Fig. 1.1(b)) such that
S2 = S2−ε + Sε. Then Eq (1.10) becomes

∫∫
S2

uq∗ dS =
∫∫

S2−ε

uq∗ dS +
∫∫

Sε

uq∗ dS. (1.10a)

We substitute the fundamental solution u∗ =
1

4π |x− x′| into the second integral in (1.10a). Then

lim
ε→0

∫∫
Sε

uq∗ dS = lim
ε→0

∫∫
Sε

u
(
− 1

4πε2
)
dS = − lim

ε→0

u

4πε2

∫∫
Sε

dS = −u
2
, (1.11a)
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where
∫∫

Sε

dS = 2πε2 (surface area of the hemisphere). In this limit process the boundary S2−ε

becomes S2, and

lim
ε→0

∫∫
Sε

qu∗ dS = lim
ε→0

q

2πε

∫∫
Cε

dS = lim
ε→0

q

2πε
(
2πε2

)
= 0. (1.12a)

Thus, the three-dimensional BI Eq for a node i on the boundary S2 is given by

u(i)
2

+
∫∫

S1

u0q
∗ dS +

∫∫
S2

uq∗ dS =
∫∫

S1

u∗q dS +
∫∫

S2

u∗q0 dS. (1.13a)
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Fig. 1.2.

In general, BI Eq (1.13) or (1.13a) can be written as

c(i)u(i) +
∫
C

uq∗ ds =
∫
C

u∗q ds, C = C1 ∪ C2, (1.14)

or

c(i)u(i) +
∫∫

S

uq∗ dS =
∫∫

S

u∗q dS, S = S1 ∪ S2, (1.14a)

respectively, under the essential boundary conditions u = u0 on C1 (or on S1) and the natural
boundary condition ∂u/∂n ≡ q = q0 on C2 (or on S2), where in two-dimensional case

c(i) =




0 if i is outside R ∪ C
1 if i is inside R

1/2 if i is on a smooth portion of C

θ/2π if i is at a corner node,

(1.15)

θ being the internal angle (in radian) at the corner at node i (see Fig. 1.2(b)). In Fig. 1.2(a), the
value of c(i) = 1/2. The coefficient c(i) can be evaluated analytically, or by considering different
cases of the values of potential and flux ‘before’ and ‘after’ a corner node (see §2.3). In the case of
a three-dimensional region, c(i) has the same values relative to the boundary surface S except at a
corner node on S where it has the value θ/4π, θ being the solid (internal) angle at that node.

2. Boundary Elements. We discretize (partition) the smooth boundary C of a two-dimen
sional regionR intoN segmentsCj , j = 1, . . . , N (Fig. 2.1). The chords joining the partition points
are called the boundary elements and will be denoted by C̃j , j = 1, . . . , N ; the partition points are
called the extreme points of the boundary elements. The discretization of the boundary produces,
in general, an approximate region R̃ and an approximate (polygonal) boundary C̃ = ∪Nj=1C̃j . The
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portion between the boundaryC and the approximate boundary C̃ will produce a discretization error.
The choice of boundary elements should always minimize the discretization error. If the boundary
conditions are mixed, i.e., if the essential and natural boundary conditions are applied on two portions
C1 and C2 (C = C1 ∪C2), the two points common to these portions are taken as extreme points. In
the case of zero discretization error, we will have R̃ = R and C̃ = C.

The points where both known and unknown values of u and q are considered according to the
prescribed boundary conditions are called nodes. Three types of nodes are explained in Fig. 2.2:

extreme points

boundary element  C
~ boundary segment  C

~

C

C

1

2

j
j

R
R

discretization error

Fig. 2.1.
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Fig. 2.2. Elements, Mid-nodes, and extreme nodes.
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1. Constant elements have mid-nodes, which are taken at the midpoint of each element, as in
Fig. 2.2.(a);

2. Linear elements have extreme nodes, which are at the intersection between two elements, as
in Fig. 2.2.(b); and

3. Quadratic elements have both mid- and extreme nodes, as in Fig. 2.2(c).

2.1. Constant Elements. Let the boundary C of the region R be smooth, and let it be
discretized into N elements, of which N1 elements belong to C1 and N2 to C2. This discretization
produces an approximate region R̃ and an approximate boundary C̃. Assume that the values of u
and q ≡ ∂u/∂n are constant on each element and equal to the value at the mid-node of the respective
element. Eq (1.14) for a given node i becomes in the discretized form

u(i)
2

+
N∑
j=1

uj

∫
C̃j

q∗ ds =
N∑
j=1

qj

∫
C̃j

u∗ ds, (2.1)

where q∗ ≡ ∂u∗/∂n. This BE Eq applies to a particular node i. Note that the terms with
∫
C̃j

relate

to the node i with segment j over which the integral is evaluated. Denote the integrals
∫
C̃j
q∗ ds

on the left side of (2.1) by Ĥij , and the integrals
∫
C̃j
u∗ ds on the right side by Gij . Then Eq (2.1)

becomes
u(i)
2

+
N∑
j=1

ujĤij =
N∑
j=1

qjGij . (2.2)

The integrals Ĥij and Gij are easy to evaluate for the constant element case. However, for higher
order elements they are more difficult to evaluate analytically and will be computed by using the
Gauss-Legendre quadrature rules (see §3.2.2 in the Handbook).

Eq (2.2) relates the value of u at the mid-node i with the value of u and q at all the nodes on the
boundary including i. If we write Eq (2.2) for each mid-node i, we get a system of N equations:

N∑
j=1

Hijuj =
N∑
j=1

Gijqj , (2.3)

where

Hij =



Ĥij for i �= j

Ĥij +
1
2

for i = j.
(2.4)

Eq (2.2) can be written as in matrix form as

HU = GQ. (2.5)

Note thatN = N1 +N2, and that theN1 values of u andN2 values of q are known (prescribed). So
we have a set of N unknowns in (2.5).

The termsHii include the coefficients c(i) (= 1/2 for smooth boundary, see Fig. 1.2(a)). These
terms are evaluated under the condition that when a uniform potential u is applied over the entire
finite region the value of q = ∂u/∂n must be zero. Then (2.5) implies that

HI = 0, (2.6)
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where I is the unit column vector. Eq (2.6) means that the sum of all elements ofH in a row should
be zero. Thus, the values of the diagonal coefficients can be easily computed once all the off-diagonal
coefficients are known, i.e.,

Hii = −
N∑
j=1
i �=j

Hij , i = 1, · · · , N. (2.7)

Let us denote theN2 unknown values of u by û and theN1 values of q by q̂. We can reorder Eq (2.5)
such that all the unknowns (N2 of û andN1 of q̂) are on the right side. Then Eq (2.5) can be written
as

AX = F, (2.8)

where X is the vector of unknowns u and q. Hence, we can determine all the values of u and q on
the entire boundary C̃ from (2.8). Once this is done, we can compute the value of u at any interior
point by using (1.5) which in the discretized form is

u(i) =
N∑
j=1

qjGij −
N∑
j=1

ujĤij . (2.9)

The internal fluxes qx = ∂u/∂x and qy = ∂u/∂y can be computed by differentiating (1.5); thus, at
the node i

qx(i) =
∫
C̃

q
∂u∗

∂x
ds−

∫
C̃

u
∂q∗

∂x
ds,

=
N∑
j=1

qj

(∫
C̃j

∂u∗

∂x
ds

)
−

N∑
j=1

uj

(∫
C̃j

∂q∗

∂x
ds

)
, (2.10a)

qy(i) =
∫
C̃

q
∂u∗

∂y
ds−

∫
C̃

u
∂q∗

∂y
ds

=
N∑
j=1

qj

(∫
C̃j

∂u∗

∂y
ds

)
−

N∑
j=1

uj

(∫
C̃j

∂q∗

∂y
ds

)
, (2.10b)

where
∂u∗

∂x
=

1
2π
∂

∂x
(− ln r) = − 1

2πr
∂r

∂x
,

∂u∗

∂y
=

1
2π
∂

∂y
(− ln r) = − 1

2πr
∂r

∂y
,

∂q∗

∂x
=

1
2π

[
1
r

(
∂r

∂x
n1 +

∂r

∂y
n2

)]
,

∂q∗

∂y
=

1
2π

[
1
r

(
∂r

∂x
n1 +

∂r

∂y
n2

)]
,

(2.11)

and n1, n2 are the components of the unit normal n̂. The integrals in (2.10) are evaluated numerically
by the Gauss-Legendre quadrature. So also are the integrations for Ĥij and Gij done numerically
by Gauss-Legendre quadrature for all elements j �= i. For the node i, note that Ĥii = 0 (due to the
orthogonality of r and n̂), and

Gii =
∫
Ci

u∗ ds =
1
2π

∫
Ci

ln
(1
r

)
ds =

Li
2π

[
1− ln

(Li
2

)]
, (2.12)
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where Li =
√

(xi+1 − xi)2 + (yi+1 − yi)2 is the length of the element i (see Fig. 2.3.).

r = - L/ 2 r = L/ 2

|  r  | =  r1 2 1

→
•

ξ

| r   | = | r   | = r

ξ= 1ξ= −1 ξ= 0

Fig. 2.3. A constant element.

For the derivation of (2.12), we take r = ξLi/2, so r = 0 at ξ = 0 and r = ±Li/2 at ξ = ±1. Then,
since ln(1/r) has a logarithmic singularity at r = ξ = 0,

Gii =
1
2π

∫
C̃i

ln
(1
r

)
ds =

1
2π

2
∫ 1

0

ln
( 2
ξLi

)Li
2
dξ

=
Li
2π

[
ξ ln

2
Li
− ξ ln ξ + ξ

]1

0

=
Li
2π

[
1 + ln

( 2
Li

)]
,

which gives (2.12).
Program Be1

For computer implementation in this case, the program Be1.c solves isotropic potential problems
with constant u and q at the mid-nodes and computes them at the required interior points of the
region. The input file is created in the format explained below. It can be named Be1.in, or any other
name, not to exceed 10 characters including the extension which may be .in or .dat. The output file,
named Be1.out, or any other name not to exceed 10 characters, can be typed (on screen), printed
(hard copy), or used as input for graphics.

Dictionary of Variables:

N Number of boundary elements (same as the
number of mid-nodes in this case)

L Number of interior points where the results are
to be computed

Code Indicator for the type of boundary conditions at
the nodes.
Code= 0: Only the value of u is known at the node.
Code= 1: Only the value of q is known at the node.

X x-coordinate of extreme-points.
Y y-coordinate of extreme-points.
Xm x-coordinate of mid-nodes.
Xm(j) x-coordinate of mid-node j.
Ym y-coordinate of mid-nodes.
Ym(j) y-coordinate of mid-node j.
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G Matrix defined in (2.5).
After the boundary conditions are imposed, the
matrix A of (2.8) is stored in this location.

H Matrix defined in (2.5).
Bc(j) Prescribed values of boundary conditions for

node j.
If Code= 0, then Bc(j) contains prescribed values
of u.
If Code= 1, then Bc(j) contains prescribed values
of q.

F Right side vector in (2.8).
After solution, the values of unknown u and q are
returned in this location.

Xi x-coordinate of the interior point where the
value of u is required.

Yi y-coordinate of the interior point where the
value of u is required.

u Vector of potential values at interior points.
Dim Maximum dimension of the system of Eqs (2.5).
Perp Perpendicular distance from the point (xp, yp)

to the element j (Fig. 2.5a).
Xg, Yg (x, y)-coordinates of Gauss points (nodes) ζi, i = 1, 2, 3, 4
HL Half-length of the element C̃i (= Li/2).
nx, ny nx, ny (components of the unit normal vector n̂).
rx, ry, rn r,x, r,y, r,n (note that r,n = r,xnx + r,yny).

For the values Gauss-Legendre nodes and weights, see Table A.06 on this CD-R.

Input Format: The input file contains the data in the following order:

Entry # Variable Explanation

1 Title Must enter problem title (max 80 chars).
2 N Number of boundary elements.
3 L Number of interior points where

solution is to be computed.
next N -pairs X, Y x, y coordinates of extreme points

(see Note below).
next N -pairs Code, Bc N -pairs of Code (0 or 1) and Bc at

each mid-node, starting with node 1
and ending with node N .

next L-pairs Xi, Yi x and y coordinates of interior points
where the solution is to be computed.

Note: TheN -pairs of entries for the coordinates of the extreme points of boundary elements are
read in counterclockwise order if the region R is interior to the boundary C, and in clockwise order
if R is exterior to the boundary C. The convention is to traverse the boundary in such a manner that
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the region R remains to the left.

The program Be1 calls the following functions: Sys1, Quad1, Diag1, Inter1, and Solve.

Sys1 can be summarized by the following algorithm:

1. Compute the coordinates (Xm, Ym),m = 1, · · · , N , of the mid-nodes from the extreme nodes
(xj , yj):

xn+1 = x1, yn+1 = y1 (see Fig. 2.4.);

Xm =
xj + xj+1

2
, Ym =

yj + yj+1

2
for j = 1 to N.

•

•

•

••

N+1N+1

11

2 2

33= (ξ  , ψ  )

(ξ   , ψ  )

(ξ   , ψ  )(ξ       , ψ      )

N N

N-1 N-1

N   1

N

1
2

N   2
(ξ      , ψ      )

(ξ   , ψ   )

−−

Fig. 2.4.

2. Compute the matrices H and G:

for j = 1 to N

for k = 1 to N

j �= k : call Quad1

j = k : call DIAG1

3. Produce the matrix Eq (2.8) F = AX:

for k = 1 to N

if Code(k) = 1, then for j = 1 to N

temp = Gjk; Gjk = −Hjk;Hjk = −temp = −Gjk,
where temp is a temporary memory location. As a result, the matrix A is in location G; F is not yet
evaluated, but all known terms are in the location ofH and U . The locationH contains both known
G and H , and the location U contains both known U and Q.

4. Finally,

Fj = 0.0 for j = 1 to N

Fj = Fj +Hjk · Bck for k = 1 to N .
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The left side now stores F (all known values). The rearrangement of the system of equations to form
the matrix A (now stored in G) and the left side vector F (stored as F) of Eq (2.8) is explained as
follows: Suppose, Eq (2.4) (or in its matrix form (2.5) ) is written, in the expanded form, as

Code 0 Code 1
H11û1 +H12û2 +H13u3 + · · ·+H1nun = G11q1 +G12q2 +G13q̂3 + · · ·+G1nq̂n

H21û1 +H22û2 +H23u3 + · · ·+H2nun = G21q1 +G22q2 +G23q̂3 + · · ·+G2nq̂n

...

Hn1û1 +Hn2û2 +Hn3u3 + · · ·+Hnnun = Gn1q1 +Gn2q2 +Gn3q̂3 + · · ·+Gnnq̂n,

(2.13)

where û, q̂ denote the unknown values. In view of part 3 of the above algorithm, we note that Gjk
is first stored in the location temp, then −Hjk is moved to Gjk, and finally replace the values Gjk,
stored at temp, to the location −Hjk. The result is the matrix equation (2.8), thus rendering the
system (2.13) into the form

−G11q1 −G12q2 +H13u3 + · · ·+H1nun = −H11û1 −H12û2 +G13q̂3 + · · ·+G1nq̂n

−G21q1 −G22q2 +H23u3 + · · ·+H2nun = −H21û1 −H22û2 +G23q̂3 + · · ·+G2nq̂n

...

−Gn1q1 −Gn2q2 +Hn3u3 + · · ·+Hnnun = −Hn1û1 −Hn2û2 +Gn3q̂3 + · · ·+Gnnq̂n,

which is the expanded form of Eq (2.8).

As mentioned above, Sys1 uses the two functions: Quad1 and Diag1. The function Quad1
computes the off-diagonal elements of H and G by using the Gauss-Legendre quadrature formula.
The variable Ra is explained in Fig. 2.5(a). In order to compute Hij and Gij , i �= j, we consider
two different nodes i and j in Fig. 2.5(a), where (xp, yp) are the coordinates of the node i under
consideration; ζk, k = 1, 2, 3, 4 are the Gauss points (nodes) marked on the element with mid-node
j; ζ = 1 and ζ = −1 are the extreme points with coordinates (xj , yj) and (xj+1, yj+1) respectively
of the node j; m denotes the slope of the boundary element with node j; and Ra is the distance
from node i to a Gauss point (nodes) ζk, k = 1, 2, 3, 4 (Fig. 2.5(a) ). The coordinates of the Gauss
points (nodes) are denoted by (Xg, Y g). If we denote Ax = (xj+1 − xj)/2, Ay= (yj+1 − yj)/2,
Bx= (xj+1 +xj)/2, and By= (yj+1 +yj)/2, thenm = (yj+1−yj)/(xj+1−xj) =Ay/Ax=slope

of the element C̃j . Also, the equation of the element with node j is

m(xj − x)− (yj − y) = 0,

the distance

Ra =
√

(xp −Xg)2 + (yp − Y g)2,

and the half-length of the element C̃i

Li
2

=
√
Ax2 + Ay2 = HL.
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Fig. 2.5.

Also, the directional derivative of ln(1/r) = −1
2

ln(x2 + y2) in the direction of n̂ is given by

Dn̂ ln
(1
r

)
= ∇f · n̂ = − y

x2 + y2

= −r,xnx + r,yny
r2

= −rx · nx + ry · ny
(Ra)2

,

where rx = (Xg− xp)/Ra = cosα, ry = (Yg− xp)/Ra = sinα (see Fig. 2.5(a),(b) ). Then, by an
4-point Gauss-Legendre quadrature, we have

Gij =
∫
C̃j

u∗ ds =
4∑
i=1

ln
(

1
Ra

)
Wi

√
Ax2 + Ay2, (2.14)

Hij =
∫
C̃j

q∗ ds =
4∑
i=1

Dn̂ ln
(1
r

)
i
Wi

√
(xj − xj+1)2 + (yj − yj+1)2

2

= −
4∑
i=1

1
(Ra)2i

(rx · nx + ry · ny) Wi

√
Ax2 + Ay2. (2.15)

We can use a Gauss-Legendre quadrature formula with different Gauss points (nodes). An empirical
rule to decide which one of the Gauss-Legendre quadrature formulas can be used is as follows: Let

s =
1

2Lj

√(
2xp −X(1)−X(2)

)2 +
(
2yp − Y (1)− Y (2)

)2
, (2.16)

where (xp, yp) are the coordinates of the node i, and X(j), Y (j), j = 1, 2, are the coordinates of
the extreme points of the node j of the element of length Lj . Then, use 6-point Gauss-Legendre
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quadrature formula if s ≤ 1.5, 4-point formula if 1.5 < s < 5.5, and 2-point formula if s ≥ 5.5.
However, the 4-point formula gives good results in the constant and linear cases, whereas a 10-point
formula is used with advantage in the quadratic and higher order boundary elements.

Diag1 computes the diagonal elements Gii of the matrix G given by (2.12).

Solve uses the Gauss elimination method to solve the system of equationsAX = F by providing
interchange of rows when a zero diagonal element is present.

Note that since the fundamental solution in the program is taken as ln(1/r), and not
1
2π

ln(1/r),
all elements of H and G are divided by 2π in the end before the output is produced.

Inter1 computes the values of u at interior points by using (2.9). It reorders Bc (boundary
condition vector) and F (unknown vector) such that all values of u are stored in Bc and all values of
q in F. Note that since all H and G terms appear multiplied by 2π, the solution for interior points is
also finally divided by 2π.

We present some examples. Read §9 (last section) before running this and other programs.

Example 2.1. Heat flow problem in the region shown in Fig. 2.6 is the simplest case of a
linear one-directional flow.

× ×
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× ×
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•

•
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•
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•
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•

• •

×
×

×
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789
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• •
(a) (b)  Constant  Elements

(c)  Linear  Elements

5

6

•

Fig. 2.6.

The input file is ex2.1.in and the output file is ex2.1.out. The exact solution for the problem

∇2u = 0 with u(0, y) = 0, u(a, y) = T0 is given by u(x, y) =
T0

a
x. In this example, a = 6,

T0 = 200 gives the exact u = 100x/3, and qx = 100/3, qy = 0.
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Example 2.2. Consider the potential/heat transfer problem represented in Fig. 2.7. The input
file is ex2.2.in and the output file is ex2.2.out.
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Fig. 2.7.
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Fig. 2.8.

Example 2.3. Consider the heat transfer in a hollow circular cylinder of radii 10 and 30 (Fig.
2.8(a)). Because of the axial symmetry we discretize the quarter region into 16 constant elements
(Fig. 2.8(b)). The input file is ex2.3.in and the output file is ex2.3.out. Exact solution for a
hollow cylinder of inner and outer radius a and b respectively is given by

T = Ta +
Ta − Tb
ln(a/b)

ln
r

a
, 10 ≤ r ≤ 30,



       

2.2. LINEAR ELEMENTS 15

where Ta and Tb are the prescribed temperatures on the circular boundaries r = a and r = b
respectively. Exact T (20) = 621.1442. A better accuracy is achieved by taking more elements on
the circular boundaries. See also Example 2.8.

2.2. Linear Elements. The variation of u and q is assumed to be linear within each element.
The nodes are at the intersection of straight elements, and hence called extreme nodes (Fig. 2.2(b)).
In this case the BI Eq (1.14) leads to the BE Eq

c(i)u(i) +
N∑
j=1

∫
C̃j

uq∗ ds =
N∑
j=1

∫
C̃j

qu∗ ds (2.17)

for N elements. Unlike Eq (1.14), we cannot take uj and qj out of the integral sign since they
vary linearly within each element. Also, c(i) = 1/2 only for smooth boundaries. For nonsmooth
boundaries, we will discuss a method to determine c(i) later (see §2.3).

The (Lagrange) interpolation functions for a linear element in normal coordinate system are

• •
ξ

1 2
2 - node  element

(linear)

φ1 =
1
2
(1− ξ)

φ2 =
1
2
(1 + ξ).

(a)

1 2 3

ξ
•• •

3 - node  element
(quadratic)

φ1 = −1
2
ξ(1− ξ)

φ2 = (1− ξ2)

φ3 =
1
2
ξ(1 + ξ).

(b)

ξ
••••

1 2 3 4
4 - node element

(cubic)

φ1 = − 9
16

(1− ξ)(1/9− ξ2)

φ2 =
27
16

(1− ξ2)(1/3− ξ)

φ3 =
27
16

(1− ξ2)(1/3 + ξ)

φ4 = − 9
16

(1 + ξ)(1/9− ξ2).

(c)

Fig. 2.9. Linear Elements in the Normal Coordinate System.

Note that the interpolation functions φi(ξj) are chosen such that

φi(ξj) = δij =
{

1, if i = j
0, if i �= j,

where ξj denotes the ξ-coordinate of the j-th node of the element, φi (i = 1, . . . , n) are polynomials
of degree n− 1 (n being the number of nodes in the element), and δij is the Kronecker delta.

Consider an arbitrary segment as shown in Fig. 2.9(a). The values of u and q at any point of this
segment can be determined in terms of their nodal values and two linear interpolation functions φ1



       

16 BOUNDARY ELEMENT METHODS

and φ2 such that, for the case of both u and q varying linearly, we have

u(ξ) = φ1u1 + φ2u2 = [φ1 φ2] [u1 u2]T ,

q(ξ) = φ1q1 + φ2q2 = [φ1 φ2] [q1 q2]T ,
(2.18)

where ξ is the dimensionless coordinate ξ = x/(l/2) = 2x/l, and φ1 = 1
2 (1− ξ), φ2 = 1

2 (1 + ξ).
The integrals along the element j on the left side of Eq (2.17) is∫

C̃j

uq∗ ds =
∫
C̃j

[φ1 φ2] [u1 u2]T q∗ ds =
∫
C̃j

[φ1 φ2]q∗ ds [u1 u2]T

= [hi1 hi2] [u1 u2]T ,
(2.19)

where

hi1 =
∫
C̃j

φ1q
∗ ds ≡ a1, hi2 =

∫
C̃j

φ2q
∗ ds ≡ a2. (2.20)

For the right side of Eq (2.17)∫
C̃j

qu∗ ds =
∫
C̃j

[φ1 φ2]u∗ ds [q1 q2]T = [gi1 gi2] [q1 q2]T , (2.21)

where

gi1 =
∫
C̃j

φ1u
∗ ds ≡ b1, gi2 =

∫
C̃j

φ2u
∗ ds ≡ b2. (2.22)

Substituting (2.19) and (2.21) for all j elements into (2.17), we get for node i

c(i)u(i) +
[
Ĥi1 Ĥi2 · · · Ĥin

][
u1 u2 · · · un

]T =
[
Gi1 Gi2 · · · Gin

][
q1 q2 · · · qn

]T
, (2.23)

where
Ĥij = hi1 term of element j + hi2 term of element (j − 1) = a1 + a2. (2.24)

Similarly
Gij = gi1 term of element j + gi2 term of element (j − 1) = b1 + b2. (2.25)

Formulas (2.23) and (2.25) represent the assembled equation for the collocation point i. For i = j,

Gii =
1
2π

∫
C̃i

u∗ ds =
1
2π

∫
C̃i

[
u1φ1 + u2φ2

]
ds =

1
2π

(
u1G

1
ii + u2G

2
ii

)
. (2.26)

••η = 0 η = 1

1 2

r = 0

φ φ

ir = L

Fig. 2.10.

But in this case we find that although the interpolation functions φ1,2 = 1
2 (1 ∓ ξ) are used in the

evaluation ofHii, they fail to remove the singularity at ξ = 0 when used to computeGii. Therefore,
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we modify the function φ1,2 by using the translation ξ = 1− 2(1− η), which yields φ1 = 1− η and
φ2 = η, 0 ≤ η ≤ 1. Then, using the substitution r = Liη, so that ds = dr = Lidη (see Fig. 2.10),
we get

G1
ii =

∫
C̃i

φ1 ln
(

1
r

)
ds =

∫ 1

0

(1− η) ln
(

1
Liη

)
Li dη

= Li
∫ 1

0

(1− η) (− lnLi − ln η) dη =
Li
2

[
3
2
− lnLi

]
, (2.27)

G2
ii =

∫
C̃i

φ2 ln
(

1
r

)
ds =

∫ 1

0

η ln
(

1
Liη

)
Li dη

= Li
∫ 1

0

η (− lnLi − ln η) dη =
Li
2

[
1
2
− lnLi

]
. (2.28)

We can now write Eq (2.23) as

c(i)u(i) +
n∑
j=1

Ĥijuj =
n∑
j=1

Gijqj , (2.29a)

or
n∑
j=1

Hijuj =
n∑
j=1

Gijqj , (2.29b)

or, in matrix form, as
HU = GQ. (2.29c)

Note that the value −u/2 obtained in (1.11) is now not valid unless the curve/surface is smooth.
We can always compute the diagonal terms of H by using the fact that when a uniform potential
is applied over the entire boundary, the normal derivative (i.e., q values) must be zero. Hence, Eq
(2.29c) becomes HU = 0. However, the sum of all elements of H in any row cannot be zero, and
the value of the diagonal elements can be easily evaluated once all off-diagonal elements are known,
by using

Hii = 1−
N∑

j=1,j �=i
Hij . (2.30)

Therefore, we need not compute the value of c(i) explicitly. Also, since the fundamental solution in
the program is taken as − ln r, and not as − ln r/(2π), Eq (2.30) is written in the program as

Hii = 2π −
N∑

j=1,j �=i
Hij , i = 1, . . . , N. (2.31)

The results are then finally divided by 2π before the output is produced. The solution at the interior
points is also finally divided by 2π in Inter2 (see program Be2 in the next section). This technique,
simple as it is, is maintained throughout all computer programs to ensure uniformity.

2.3. Discontinuous Elements. A corner node becomes significant in linear and higher
elements where the second node (marked i) of the (i − 1)-st element is the same as the first node
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of the i-th element C̃i (Fig. 2.11(a)). If the potential is the same throughout the boundary, then the
value of u on the C̃i−1 is the same as on C̃i. But this is not, in general, true for the flux q at a corner
since the normals to the adjacent elements may be different, and hence not unique, at a corner; or
the prescribed value of q along an element may possess discontinuities at some points. The former
situation which occurs in most physical problems is solved by rearranging the terms in (2.23)–(2.25),
which leads to the BE Eq

c(i)u(i) +
N∑
j=1

Ĥijuj =
2N∑
j=1

Gijqj , (2.32)

where the upper limit 2N of right sum corresponds to the case when the value of q at node i for the
element C̃i is different from that for the element C̃i−1 (see Fig. 2.11(b)). Defining, as in (2.4),

Hij =

{
Ĥij for i �= j
Ĥij + c(i) for i = j,

(2.33)

we get the same matrix form of the BE Eq as in (2.5), where G is now a N × 2N matrix.
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Fig. 2.11.

The following observations are worth noting: At a corner node the flux ‘before’ and ‘after’ the
node (i.e., the prenodal and postnodal fluxes) may be the same, or they may be prescribed differently.
A similar situation may occur for the prescribed potential. However, only one of these variables
will be unknown at a node. The following four cases arise at a corner node depending on adjacent
boundary conditions:

(i) The prenodal and postnodal values of q are known (unknown: values of u);

(ii) The value of u and the prenodal value of q are known (unknown: postnodal value of q);

(iii) The value of u and the postnodal value of q are known (unknown: prenodal value of q); and

(iv) The values of u are known (unknown: both pre- and postnodal values of q).

Except for the case (iv), there is only one unknown in the three cases which can be computed
by using (2.32) and solving the subsequent matrix equation HU = GQ. The case (iv) can be
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computed by making the two adjacent elements at a corner into two discontinuous elements, by
replacing the corner node i into two nodes i1 and i2 arbitrarily close to i such that |i− i1| = ε1 and
|(i + 1) − i2| = ε2, and ξi1 = 2ε1/Li − 1, and ξi2 = 1 − 2ε2/Li are the local coordinates of the
nodes i1 and i2, and the values of u and q prescribed at node i are now assigned to the nodes i1 and
i2 (Fig. 2.11(b)). Since Eqs (2.18) hold, we have{

ui1
ui2

}
=

[
φ1(ξi1) φ2(ξi1)
φ1(ξi2) φ2(ξi2)

] {
u1

u2

}
. (2.34)

Substituting (2.34) into (2.18) we find that

u(ξ) = [φ1 φ2]Q [ui1 ui2 ]
T
, (2.35)

q(ξ) = [φ1 φ2]Q [qi1 qi2 ]
T
, (2.36)

where

Q =
1

Li − ε1 − ε2

[
Li − ε2 −ε1
−ε2 Li − ε1

]
, (2.37)

where Li− ε1− ε2, denoted byAB in Fig. 2.11(b), is the length of the discontinuous element C̃i. It
should be noted that the coefficient c(i) = 1/2 for discontinuous elements. The integrals hi11, hi21,
gi11, gi21 along the discontinuous elements are then given by

hik1 =
∫
C̃j

φkQq∗ ds, gik1 =
∫
C̃j

φkQu∗ ds, k = 1, 2, (2.38)

which are evaluated by Gauss-Legendre quadrature for the case when the node i does not belong to
the element. In the case when the node i belongs to the element, hi1j = 0 = hi2j , and gi1j , gi2j are
obtained by integration as in (2.26). For the corner nodes, as shown in Fig. 2.11(b), the segments
AD, BC must be treated like additional linear elements. The linear elements of the type AD, BC
may be further discretized to smoothen the corners out, which are thus replaced by polygonal curves.

Besides corner nodes, discontinuous elements also arise in certain cases where the potential u
is undefined (and hence discontinuous) at a point on the boundary C. Example 2.7 discusses this
type of discontinuous elements. For linear elements we will use the program Be2 which is described
below.

Program Be2

This program carries out the computer implementation of the case of linear and discontinuous
elements. It deals with the case of Figs. 2.2.(b) and 2.11, and solves the orthotropic potential
boundary value problems where u and q vary linearly along the boundary elements, with the nodes
same as the extreme points. The Input file is created as, e.g., Be2.in, and it follows the same format
as in Be1.in. However, it should be noted that in this case the dimension of the array Bc becomes
2N , since there are two boundary conditions for each element (one at each node). The dimension
of the array F remains N . The Output file is created as Be2.out which can be typed (on the monitor
screen), printed (as hard copy), or used as input for a graphics subroutine. The program calls the
following functions: Sys2, Quad2, Diag2, Inter2, and Solve.

Quad2 differs from Quad1 in that instead of computing only one value for the boundary element
C̃i along which the integration is carried out, it computes the elements of the matrices H and G
corresponding to the adjacent nodes i and (i± 1).
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Diag2 is a little different from Diag1; it computes the elements of the matrix G along the
boundary elements which include the node under consideration.

Inter2 computes the potential at interior points as given by (2.9), but the values ofGij and Ĥij
to be used in (2.9) are defined by (2.23)–(2.28).

Dictionary of Variables. In addition to the variable defined in the program Be1, the following
variables are also used:

ux, uy u,x, u,y defined analogous to (2.11).
qx, qy q,x, q,y defined analogous to (2.11).

Example 2.4. We solve Example 2.1 with linear elements; use Fig. 2.6(c). The input file is
ex2.4.in and the output file is ex2.4.out.

Example 2.5. Solve the Laplace equation ∇2u = 0 for an elliptic region R, shown in Fig.
2.12, with the semi-axes 2 and 1 respectively, and the boundary condition u = (x2 + y2)/2 on
C. Because of the symmetry about both x and y axes, we consider the quarter region with 11
linear elements (11 nodes). The input file is ex2.5.in and the output file is ex2.5.out. Note
that the first 10 extreme points, marked 1 through 10 in Fig. 2.12, are given by xj = 2 cos jπ/18,
yj = sin jπ/18, j = 0, 1, . . . , 9.

Example 2.6. This is an example of discontinuous elements at corner nodes. The input file
from Fig. 2.13 is ex2.6.in and the ouput file is ex2.6.out.

Example 2.7. Solve the Laplace equation∇2u = 0 in the upper-half circular region of radius
10 (Fig. 2.14(a)). The problem has a discontinuous potential at x = 0 where the flux has a singularity.
We treat the first and the last element as discontinuous elements, although the point x = 0 does not
qualify as a corner (Fig. 2.14(b)). The input file from Fig. 2.13 is ex2.7.in and the ouput file is
ex2.7.out.

The exact solution is

u(x, y) =
100
π

(
π − arctan

y

x

)
, 0 < |x| ≤ 10, 0 ≤ y ≤ 10.

The flux along the x-axis is given by q = −100/πx, 0 < |x| ≤ 10, whereas on the circumference by

q =
100

(x2 + y2)2
(n1y − n2x) = 0.

The graphs for u, and q along the x-axis are shown in Fig. 2.14(c) and (d), respectively.

Example 2.8. We solve the problem of Example 2.3 by treating the four corner nodes as in Fig.
2.15. The input file is ex2.8.in and the ouput file is ex2.8.out. These results can be compared
with Example 2.3.



      

2.3. DISCONTINUOUS ELEMENTS 21

×

•

•

•
•

••
••

5
6

78

1

2

3

4

•

10

1

2×

C

×

×

11•

9

q = 0

q = 0

•

0

Fig. 2.12.

u

1 3 4

9101112
•

•

•

•

• • •• •

•

• _

_

_

||

| |

× ×

×

××

•

•

••13
•

_

_

_

||

| |

14

15

16

2

q

4.2
84.0

168.0

46.19

46.19

46.19

46.19

u = 0

5

6

7

8

Fig. 2.13.



      

22 BOUNDARY ELEMENT METHODS

•

•

•

•

• •

•

•

•• • • • • • • • • • • • ••
1 4 5 6 7 8 9

10

11

12
13

14

15

16

17 18 19 20 21
•

×

×

×

×

×

×

A

B

C

D

E

F

10

u = 0 u = 100

q = 0q = 0

O
10

(a)

(b)

•
25

26•

Potential   u(x, y)

-10

-8
-6

-4

-2
0

2

4

6

8

10

100

120

140

-10

2
4

6

8

10 0

2

4

6

8

10

60

80

00

0 <    ≤ 10−10 ≤    < 0x xX

Y

u

(c)

0

-10 -5 5 10

-300

-200

-100

100

200

300

X

Flux  q  along  x -axis

(d)

q

0

Fig. 2.14.



     

2.4. QUADRATIC AND HIGHER ELEMENTS 23

2.4. Quadratic and Higher Elements. For quadratic elements (Fig. 2.2(c)) we use the
interpolation functions φ1 = − 1

2 ξ(1− ξ), φ2 =
(
1− ξ2

)
, and φ3 = 1

2 ξ(1 + ξ). Then the functions
u and q are written as

u(ξ) = φ1u1 + φ2u2 + φ3u3 = [φ1 φ2 φ3][u1 u2 u3]T ,

q(ξ) = φ1q1 + φ2u2 + φ3u3 = [φ1 φ2 φ3][q1 q2 q3]T .
(2.39)

The functions φ1, φ2, φ3 which vary quadratically give the nodal values of the functions when speci-
fied for the nodes (see Fig. 2.9(b)). Using these interpolation functions, the evaluation of the integrals
along the boundary element j gives (compare with (2.19) and (2.21))∫

C̃j

uq∗ ds = [hj1 hj2 hj3][u1 u2 u3]T , (2.40)

where

hjk =
∫
C̃j

φkq
∗ ds, k = 1, 2, 3. (2.41)

which, using the Jacobian

|J | = ds

dξ
=

√(dx
dξ

)2

+
(dy
dξ

)2

(2.42)

yields ∫
C̃j

uq∗ ds =
∫ (2)

(1)

u(ξ)|J |q∗ ds. (2.43)

Similarly, ∫
C̃j

qu∗ ds =
∫
C̃j

[gj1 gj2 gj3][q1 q2 q3]T ds, (2.44)

where

gjk =
∫
C̃j

φku
∗ ds. (2.45)

Hence, for node i

c(i)u(i) = [Ĥi1 Ĥi2 · · · Ĥin][u1 u2 · · ·un]T = [Gi1Gi2 · · ·Gin][q1 q2 · · · qn]T , (2.46)

where

Ĥij = hi1 term of element (j − 1)+hi2 term of element (j + 1)+hi3 terms of element j, (2.47)

and

Gij = gi1 term of element (j − 1)+gi2 term of element (j + 1)+gi3 terms of element j, (2.48)

(compare with (2.23)).

It is not easy to evaluate Gii for quadratic elements, as we have done in the cases of constant
and linear elements. For better accuracy in numerically computing both Hij and Gij , a 10-point
Gauss-Legendre quadrature is recommended. The value of the Jacobian |J |, defined by (2.42), is
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needed for evaluating (2.43) and (2.44) numerically. It can be computed by defining x and y in terms
of the quadratic interpolation functions φ1, φ2, φ3, defined above, as

x = φ1x
node 1 + φ2x

node 2 + φ3x
node 3,

y = φ1y
node 1 + φ1y

node 2 + φ1y
node 3,

where the superscript refers to the local node number of a quadratic element. Then the derivatives
∂x/∂ξ and ∂y/∂ξ can be easily computed.

3. Poisson Equation. We consider the Poisson boundary value problem

∇2u = b, in R (3.1)

u = u0 on C1;
∂u

∂n
≡ q = q0 on C2, (3.2)

where b = b(x, y) and, as before, C = C1 ∪ C2 is the boundary of a two-dimensional region R.

As in §1, we will start by taking the test function as u∗, where by u∗ =
1
2π

log
1

|x− x′| , is the

fundamental solution of (1.2). This leads to

0 =
∫∫

R

(
∇2u− b

)
u∗ dx dy =

∫∫
R

(
u∇2u∗ − bu∗

)
dx dy +

∫
C1

u∗q ds+

+
∫
C2

u∗q0 ds−
∫
C1

u0q
∗ ds−

∫
C2

uq∗ ds. (3.3)

Using ∇2u∗ = δ(i) , so that
∫∫

R

u∇2u∗ dx dy = −u(i), as in (1.3), we obtain

−
∫∫

R

bu∗ dx dy − u(i) +
∫
C1

u∗q ds+
∫
C2

u∗q ds−
∫
C1

u0q
∗ ds−

∫
C2

uq∗ ds = 0,

or ∫∫
R

bu∗ dx dy + u(i) +
∫
C1

u0q
∗ ds+

∫
C2

uq∗ ds =
∫
C1

u∗q ds+
∫
C2

u∗q0 ds, (3.4)

or, as in the derivation of (1.14), we obtain the two-dimensional BI Eq as

c(i)u(i) +
∫∫

R

bu∗ dx dy +
∫
C

uq∗ ds =
∫
C

u∗q ds, (3.5)

where c(i) is defined by (1.15). Discretization of (3.5) using constant elements, as in the case of Fig.
2.2(a), leads to the BE Eq

c(i)u(i) +
∫∫

R̃

bu∗ dx dy +
N∑
j=1

uj

∫
C̃j

q∗ ds =
N∑
j=1

qj

∫
C̃j

u∗ ds, (3.6a)
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or

c(i)u(i) +Bi +
N∑
j=1

Ĥijuj =
N∑
j=1

Gijqj , (3.6b)

or

Bi +
N∑
j=1

Hijuj =
N∑
j=1

Gijqj , (3.6c)

interior element
boundary
element

Fig. 3.1. Boundary elements and interior cells.

where Hij is defined by (2.4), and Bi is obtained by integrating the domain integral

Bi =
∫∫

R̃

bu∗ dx dy (3.7)

numerically as follows: Partition the region R̃ into a mesh of finite elements which are called interior
cells (see Fig. 3.1). Note that these interior cells are conceptually different from the usual finite
elements although they appear similar. Then use the formula

Bi =
M∑
m=1


 k∑
j=1

Wjbju
∗
j


AM , (3.8)

where M is the number of interior cells, k the number of integration points on each cell, Wj the
weight function, bj the value of b at integration point j, u∗j the value of u∗ at integration point j,and
AM the area of the cell. Thus, in matrix form, the BE Eq for the N nodes of the type as in Fig. 2.2(a)
finally becomes

B +HU = GQ. (3.9)

Note that N1 values of u and N2 values of q are known since they are prescribed on the boundary.
We can then reorder (3.9) such that all unknown quantities (called vector X) are on the left side. Then
Eq (3.9) becomes

AX = F. (3.10)

After solving (3.10), we obtain all values of u and q on the boundary nodes. Then we compute the
value of u and q at an interior point i by using the formulas (2.9) and (2.10).

Example 3.1. Solve the Poisson equation −∇2u = 2 on the elliptic region R shown in Fig.
2.12 with the semi-axes 2 and 1 respectively, and the boundary condition u = 0 on C. The solution
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of this problem can be divided into two parts: u = u1 +u2, where u1 = −(x2 +y2)/2 is a particular
solution and u2 is the complementary function. Since −∇2u1 = 2, the problem reduces to the
Laplace equation ∇2u2 = 0 with the boundary condition u2 = −u1 on C, which can be solved as
in Example 2.5. A similar problem is discussed in the next example.

Example 3.2. The steady Poiseuille flow in a pipe of circular cross section in the direction of
z-axis is defined by

µ

(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂p

∂z
,

where u is the fluid velocity in the z-direction, µ its viscosity, and ∂p/∂z = −G a constant pressure
gradient. The flow is then governed by the Poisson equation −∇2u = G/µ. The exact solution is

u(x, y) =
Ga2b2

µ(a2 + b2)

(
1− x

2

a2
− y

2

b2

)
.

Because of the axial symmetry we will use the quarter region shown in Fig. 2.12. If we takeG/µ = 2,
we solve ∇2u2 = 0 with the same input file as in Example 2.5.

4. Non-convex Surfaces. The above analysis can be extended to problems on non-convex
surfaces (i.e., a region with more than one boundary). An example of such a region is given in Fig.
4.1.

Fig. 4.1. A non-convex surface with one hole

On non-convex surfaces (with holes), the direction of the normal derivatives on the exterior and
interior boundaries is determined by the following rule: For exterior boundaries, the numbering
scheme for boundary elements is carried out in the counterclockwise direction, whereas for interior
boundaries it is defined in clockwise direction. This rule ia analogous to the convention used in
contour integration in complex analysis, maintaining the direction on the boundary so that the region
always remains to the left. This rule will enable us define the normal derivatives in computer
programs.

Program Be5

This program is used for the computer implementation of potential problems on nonconvex
surfaces with constant elements (Fig. 2.2(a)). It starts in the same manner as Be1 and adds two new
variables:
M (≥ 2): Number of different boundaries; if M = 1, use Be1 or Be2.
Last: Number of last node on each different boundary.

Be5 calls the functions Sys5, Quad1, Diag1, Inter5 and Solve.
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Example 4.1. Solve the Poisson equation on an annular region with boundaries as two con-
centric circles of radii 1 and 2. We take 8 boundary elements on each circle (see Fig. 4.2, which
shows a concentric 8-gon annular region).
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•
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×
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×

•

•

•

•

•

•

•
•

•
•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•
•

•
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•

•

•
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23
24 25

26

27

28

29

30

31
32

15

O

×

×

×

×

Fig. 4.2. Fig. 4.3.

Thus, there are 16 (constant) boundary elements and 2 different boundaries. The last numbers of
the nodes on two surfaces are 8 and 16. As boundary conditions, we assume that u = 0 on the
exterior boundary and u = 100 on the interior boundary. The extreme points are numbered in Fig.
4.2 according to the convention mentioned above. This boundary value problem can be viewed as
that of heat transfer between the two concentric circles. Note that
N Number of boundary elements 16
L Number of interior points 4
M Number of different surfaces 2
Last Last node numbers on these surfaces 8, 16

The input file is ex4.1a.in, and the output file is ex4.1a.out.

For the same problem with 32 boundary elements and Last = 16, 32 (Fig. 4.3), the input file is
ex4.1b.in. Note that the coordinates of the outer extreme points are given by

xi = 2 cos
(
iπ

8
− π

2

)
, yi = 2 sin

(
iπ

8
− π

2

)
,

and of the inner extreme points by

xi = cos
(
iπ

8
+
π

2

)
, yi = − sin

(
iπ

8
+
π

2

)
, i = 1, . . . , 16.

5. Domain Integral. The presence of the domain integral termBi, defined by (3.7), in the BE
Eq (3.6) introduces numerical integration on interior cells. This means more lengthy computations as
compared to those performed for integration on the boundary elements. A method that transform the
domain integral into a boundary integral will be helpful in maintaining the computational simplicity
of the BEM.
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A very simple case is when the function b is constant, linear or harmonic. Then ∇2b = 0. Let
v∗(x, y) denote a Galerkin-type function such that∇2v∗ = u∗. Then, using Green’s second identity,
we get ∫∫

R

(
b∇2v∗ − v∗∇2b

)
dx dy =

∫
C

(
b
∂v∗

∂n
− v∗ ∂b

∂n

)
ds, (5.1)

which gives

Bi =
∫
C̃

(
b
∂v∗

∂n
− v∗ ∂b

∂n

)
ds, (5.2)

Since u∗ =
1
2π

ln
(

1
r

)
, a choice of v∗ is obtained by solving ∇2v∗ = u∗, i.e.,

∇2v∗ =
1
r

∂

∂r

(
r
∂v∗

∂r

)
=

1
2π

ln
1
r
, (5.3)

which yields

v∗ =
r2

8π

[
1 + ln

1
r

]
. (5.4)

If we assume that a source of strength Qi is concentrated at an interior point i, then

b = Qiδ(i). (5.5)

If finitely many sources are situated at interior points, then the BI Eq (3.5) becomes

c(i)u(i) +
∫
C

uq∗ ds+Bi +
∑
i

Qiu
∗
i =

∫
C

u∗q ds, (5.6)

whereBi is now defined by (5.2) as a line integral, and the concentrated sources are easy to compute.

Other methods to transform the domain integral Bi into boundary integrals for different types of
the function b will be discussed in detain in Chapter 9.

Example 5.1 Consider the Poisson equation −∇2u = 2 in R with the Dirichlet boundary
condition u = 0 on C, where (a) R is the elliptic region of semi-major axis a1 and semi-minor axis
a2. In this case the exact solution is given by

u =
1

a−2
1 + a−2

2

(
1− x

2

a21
− y

2

a22

)

(see Example 3.1). Taking a1 = 2 and a2 = 1, we get

Interior point u (Be2) u (exact)

(1.5, 0.0) 0.345 0.35
(0.6, 0.45) 0.563 0.566
(0.0, 0.45) 0.634 0.638
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Fig. 5.1.

(b) R is the equilateral triangle of altitude a, (see Fig. 5.1), where, because of the axial symmetry,
we have taken 11 linear elements ( three discontinuous, one at each corner) in the upper half triangle.
The input is ex5.1b.in. The exact solution is given by

u =
2
27
a2 − 1

2
(
x2 + y2

)
+

1
2
a

(
x3 − 3xy2

)
.

6. Unbounded Regions. The BI Eq (1.14) is also valid for unbounded regular domains in
the following sense: Let R∗ be the region exterior to a finite domainD (obstacle) with boundary C,
and letK be a circle in R∗ of radius r and center at a point i on C (see Fig. 5.2) ). Eq (1.14) for the
region outside the boundary C and inside the circleK becomes

c(i)u(i) +
∫
C

u(x)q∗(ξ, x) ds(x) +
∫
K

u(x)q∗(ξ, x) ds(x)

=
∫
C

q(x)u∗(ξ, x) ds(x) +
∫
K

q(x)u∗(ξ, x) ds(x). (6.1)

Now let r → ∞ in (6.1). Then the BI Eq for an unbounded region with a cavity should satisfy the
condition

lim
r→∞

∫
K

[q(x)u∗(ξ, x) ds(x)− u(x)q∗(ξ, x)] ds(x) = 0. (6.2)

The regularity conditions for Eq (6.2) at infinity are as follows: The function u∗ behaves like ln r, its
derivative q∗ is of order O(1/r) as r →∞, and ds(x) = |J | dθ = O(r), where J is the Jacobian of
the transformation from the cartesian to polar cylindrical coordinates. Hence, the two terms in the
integral (6.2) do not approach zero separately as r → ∞, but they must cancel each other. Thus, if
we apply the condition (6.2) to (6.1) as r →∞, we obtain the same BE Eq as (1.14), i.e., the BI Eq
for an unbounded domain with a cavity is the same as that for finite domains. The same is also true



       

30 BOUNDARY ELEMENT METHODS

for points inside an unbounded domain.

•
r

i

C

K

D

R*

Fig. 6.1. Unbounded region with a finite obstacle

However, in the case of an unbounded domain, the matrix H is not defined like (2.2). Instead,
the regularity conditions at infinity will not hold if u is assumed to be constant everywhere in the
unbounded domain Ω, where

lim
r→∞

∫
K

q∗ ds = lim
r→∞

∫ 2π

0

(
− 1

2πr

)
r dθ = −1.

Hence, the coefficients Hii in the case of an unbounded domain are again given by (2.31).

6.1. Exterior Problems. Consider the exterior problem for the domain shown in Fig. 6.2(a).
The boundary of the exterior domain is traversed in the clockwise direction, and the outward normal
is directed inward. Suppose we have N boundary elements, which create a closed polygon with N
sides andN+1 vertices. If we have nodes at each vertex, then there areN+1 nodes, numbered from
1 throughN +1, such that the node 1 and the nodeN +1 coincide. To use formula (1.15) at a corner
(vertex), say at node i, the acute angle αi that lies inside the polygon is actually the exterior angle for
this problem. Then the interior angle θi for the exterior problem is given by θi = 2π − αi. Recall
that the angle αi is the interior angle for the interior problem. To find the angle αi, we consider three
consecutive nodes i−1, i, and i+1, in the clockwise order, where i = 1, 2, . . . , N +1 (Fig. 6.2(b)).

The cartesian coordinates of all these nodes are known, i.e., the node i has coordinates (xi, yi),
i = 1, 2, . . . , N + 1. Then the angle αi is found by using the slopes of the sides joining nodes i to
i− 1, and nodes i to i+ 1. Thus,

αi =
∣∣∣ arctan

( yi+1 − yi
xi+1 − xi

)
− arctan

( yi−1 − yi
xi−1 − xi

)∣∣∣.
Then the required interior angle for the exterior problem is θi = 2π − αi. For the interior angle at
node 1 (which is the same as the node N + 1), use the three consecutive nodes N , 1 and 2 in the
above formula to find the angle θ1 at node 1. Depending on the type of the nodes used, formula
(1.15) is used to obtain the value of c(i).

Note that for the exterior problem the program Be1.c (constant elements) is used without any
change, i.e., without inserting minus sign in (1.14a), provided the coordinates are used in the clockwise
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direction. But in the case of Be2.c, Be5.c and Be11.c, the interior angle θ, which for the exterior
problem is 2π − α, needs special attention. These programs are written for the interior problems
only. So for the exterior problems the computer code should be modified by replacing the angle θ
(of of the interior problem) by 2π− α. recall that the angle α is actually θ for the interior problems.
So in the computer codes replace θ by 2π−α, and remember to take the coordinates of all the nodes
(corner or otherwise) in the clockwise direction for exterior problems.
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•

•

•
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•

•

•

•

•
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•
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Fig. 6.2.

7. Mixed Boundary Conditions. The mixed boundary conditions play an important role
in some boundary value problems. In heat transfer problems, for example, this type of condition has
the form q + β(T − Ta) = q0, where T is the temperature field, Ta the ambient temperature, β the
heat transfer coefficient (also called the film coefficient), and q0 a prescribed heat flux.

Example 7.1. Consider a column of rectangular cross section; a portion of the boundary is
subjected to an internal condition, another portion is subjected the exterior weather conditions, and
the remaining portion is in contact with the abutting wall which separates both portions (see Fig.
7.1(a)). The prescribed boundary conditions on the internal face (x = 0) are: Ta = 50oF and
β = 0.5 Btu/(hft2 oF ), and on the exterior face (x = l): Ta = 0oF and β = 6.0 Btu/(hft2 oF ).
The temperature and the heat transfer coefficient on the faces y = ±6 are noted in Fig. 7.1(a). We
assume that q0 = 0, and the thermal conductivity is 1.0 Btu/(hft oF ). Because of the symmetry
about x-axis, only the half of the structure is discretized into 21 linear elements, and 21 boundary
nodes are marked (Fig. 7.1(b)). We assign Code= 2 for mixed boundary conditions. The input file
is created in the following order:

Entry # Variable Explanation

1 Title Must enter problem title.
2 N Number of boundary elements.
3 L Number of interior points where

solution is to be computed.
1 M Number of different boundaries
4 Last Number of the last node on each

boundary.
next N -pairs X, Y x, y coordinates of extreme points
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next N -triplets Code,β, Ta N -triplets of Code (2), β and Ta
each node, starting with node 1
and ending with node N .

next L-pairs Xi, Yi coordinates of interior points
where the solution is to be computed.

a a

(a)

(b)

Y

X•

• •• •• •• •• • • ••

•

•

• •

•

• • 3456789111316
19

20

21

T  = 50 T  = 0

l = 32

β = 0.5 β = 6.0

a a

β = 0.5 β = 6.0
T  =  100 T  = 0

1

2

Fig. 7.1. A column with an abutting wall.

The inputfile is ex7.1.in. Note that β is assumed to be zero at node 11 as this node is approached
from both sides. The value of β is also halved at nodes 12 and 14 respectively from each side. In the
above input file, Code= 2 defines a linear relation between the potential and the flux. An algorithm
for generating the boundary conditions for Code= 0, 1, or 2 can be written as follows: Let Fj denote
the value of the potential u if Code= 0, the value of the flux q if Code= 1, and the value of the
coefficient β if Code= 2; also, let Sj denote the value of q if Code= 2; here j = 1, . . . , N , whereN
is the total number of boundary elements (hence the total number of boundary conditions). Then

j = 1
For i = 1 to N Do

i1 := j
Read j, Codej , Fj , Sj
j1 := j − i1
j2 := j1 − 1

a1 := Float(j1)

ax := (Fj − Fi1)/a1; ay := (Sj − Si1)/a1



       

8.1. STRESS AND STRAIN 33

For n = 1 to j2 Do

i2 := i1 + n; i3 := i2 − 1
Codei2 := Codei3
Fi2 := Fi3 + ax; Si2 := Si3 + ay.

Program Be5 can then be modified accordingly.

Linear Elasticity

8. Linear Elasticity. We will analyze linear elastic continua under the assumption that they
undergo small strains. The linear theory of elasticity is based on the following two basic assumptions:
(i) The material is subject to an infinitesimal strain and the stress is expressed as a linear function
of strain, and (ii) any variation in the orientation of this material due to displacements is negligible.
These assumptions lead to small strain and equilibrium equations under an undeformed geometry.
The linearity assumption is an attempt to simplify the mathematical aspect of the behavior of solids.
Although we assume that the material properties are linear, the deformations in a body may not be
completely linear. For example, under certain loads, various materials exhibit plastic deformation
while others creep with time, or they may crack in which case the stresses are redistributed.

8.1. Stress and Strain. We will express small strains and related stresses with respect to
a right-hand rectangular coordinate system. Thus, in a cartesian system where the coordinates are
denoted by x = (x1, x2, x3), consider an infinitesimal element. The stress vector is defined by

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (8.1)

Note that if the coordinate system is taken as (x, y, z), instead of (x1, x2, x3), then the normal stresses
σ11, σ22, σ33 are denoted by σx, σy, σz respectively, and the shearing stresses σ12, σ13, σ21, σ23, σ31,
σ32 by τxy , τxz , τyx, τyz , τzx, τzy respectively. The equilibrium of the infinitesimal element implies
that

σ12 = σ21, σ13 = σ31, σ23 = σ32. (8.2)

Thus, we need to consider only three independent components of the shearing stress. Corresponding
to these stresses, the normal and shearing strains are defined as follows:

Normal strains: εii = ui,i, i = 1, 2, 3,

shearing strains: εij =
1
2

(ui,j + uj,i) , i, j = 1, 2, 3 (i �= j),
(8.3)

where (u1, u2, u3) are translations along the (x1, x2, x3) directions respectively. As before, only
three of the above shearing strains

The stress tensor σ satisfies the following three equilibrium equations:

∂σij
∂xj

+ bi = 0, i, j = 1, 2, 3, (8.4)
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where bi are the body forces. The strain-stress relations for an isotropic material are given by

ε11 =
σ11 − νσ22 − νσ33

E
,

ε22 =
−νσ11 + σ22 − νσ33

E
,

ε33 =
−νσ11 − νσ22 + σ33

E
,

ε12 =
σ12

G
,

ε23 =
σ23

G
,

ε31 =
σ31

G
,

(8.5)

where E is the Young’s modulus, G the shear modulus, and ν the Poisson’s ratio (0 < ν < 1/2). In
matrix form, Eq (8.5) is written as

ε = Cσ, (8.6)

where

C =
1
E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)


 (8.7)

is the matrix that relates the strain vector ε to the stress vector σ. The components cij of the matrix
C are called elastic compliances. Inversely, the stress-strain relations from (8.6) are given by

σ = Dε, (8.8)

where the matrix D which relates the stress vector σ to the strain vector ε is

D = C−1 =
E

2(1 + ν)(1− 2ν)
×

×




2(1− ν) ν ν 0 0 0
2ν (1− ν) ν 0 0 0
2ν ν (1− ν) 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν


 .

(8.9)

The components dij of the matrixD are called rigidity coefficients. The relationships (8.6) and (8.8)
can also be expressed in terms of the Lame’s constants λ, µ which are related to E and ν by

λ =
Eε

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
= G.

8.2. Virtual Work. The virtual work δW performed by the external forces σij,i + bj and
p0j − pj in a virtual displacement δu∗j is defined by the equation

δW =
∫∫∫

V

(σij,i + bj)δu∗jdV −
∫∫

S2

(pj − p0j )δu∗jdS

= δ

[∫∫∫
V

(σij, i+ bj)u∗jdV −
∫∫

S2

(pj − p0j )u∗jdS
]
.
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Since δW = 0 in the equilibrium state, this equation gives the principle of virtual displacements for
three dimensional linear elastic problems as∫∫∫

V

(σij,i + bj)u∗jdV −
∫∫

S2

(pj − p0j )u∗jdS = 0. (8.10)

Note that for two dimensional problems, we should replace V byR, dV by dx dy, S2 by C2, and dS
by ds in (8.10). Also, note that if u∗j does not satisfy the homogeneous boundary conditions on S1

(i.e., if u∗j �= 0 on S1), then (8.10) becomes

∫∫∫
V

(σij,i + bj)u∗jdV =
∫∫

S1

(u0
j − uj)p∗jdS +

∫∫
S2

(pj − p0j )u∗jdS, (8.11)

where p∗i = σ∗ijnj are the tractions relative to the u∗i system.

The integral relation between the equilibrium stress field and the virtual displacement field is, in
general, defined by (8.11) which after applying the divergence theorem yields∫∫∫

V

(
σjk,j + bk

)
u∗k dV =

∫∫∫
V

(
bku
∗
k − σjkε∗jk

)
dV +

∫∫
S1+S2

pku
∗
k dS.

Thus,∫∫∫
V

bku
∗
k dV −

∫∫∫
V

σjkε
∗
jk dV =

∫∫
S1

(
u0
k − uk

)
p∗k dS −

∫∫
S2

p0ku
∗
k dS −

∫∫
S1

pku
∗
k dS,

where pk = nkσjk and p∗k = nkσ∗jk. Since uk = u∗k and σjk = σ∗jk, i.e., pk = p∗k on S1, we find
from the above equation that∫∫∫

V

(
σjk,j + bk

)
u∗k dV =

∫∫
S1

u0
kp
∗
k dS −

∫∫
S2

p0ku
∗
k dS −

∫∫
S1

pku
∗
k dS +

∫∫
S2

pku
∗
k dS.

(8.12)
We know from Eq (8.4) that the fundamental solution for the stress tensor satisfies the (three) equations

σ∗jk,j + δl(i) = 0, (8.13)

where δl(i) is the Dirac delta function which represents a unit load at a point i in a direction l (which
can be xl, l = 1, 2, 3). In view of the translation property of the Dirac delta function, we get from
(8.13) ∫∫∫

V

σ∗jk,juk dV = −
∫∫∫

V

δl(i)uk dv = −ul(i).

Thus, we find from (8.12) that the fundamental solution u∗k will satisfy the integral relation

ul(i) +
∫∫

S1

u0
kp
∗
k dS +

∫∫
S2

pku
∗
k dS =

∫∫∫
V

bku
∗
k dV +

∫∫
S1

pku
∗
k dS +

∫∫
S2

p0ku
∗
k dS,

which can be written concisely as

ul(i) +
∫∫

S

ukp
∗
k dS =

∫∫∫
V

bku
∗
k dV +

∫∫
S

pku
∗
k dS, (8.14)
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where S = S1 + S2, uk = u0
k on S1, and pk = p0k on S2.

Since the displacements u∗k and the tractions p∗k (= nkσlk) in the direction l) are the fundamental
solutions, these quantities represent the displacements and tractions due to a concentrated unit load
at a point i in the direction l. The relation (8.14) is valid for a unit force acting in the three directions
X1, X2, X3, where p∗jk denote the surface forces at the point k generated by the unit load at the
point i. Thus, if we consider the unit forces acting in theX1, X2, X3 directions, the relation (8.14)
can be written as

ul(i) +
∫∫

S

ukp
∗
lk dS =

∫∫∫
V

bku
∗
lk dV +

∫∫
S

pku
∗
lk dS, (8.15)

where u∗lk and p∗lk denote the displacements and tractions applied at the point i and acting in the l
direction. Eq (8.15) is known as the Somigliana identity.

In a two-dimensional medium, the fundamental solutions for an isotropic plane strain case are

u∗lk =
1

8πµ(1− ν)r
[
(3− 4ν) ln

(1
r

)
δlk +

∂r

∂xl

∂r

∂xk

]
, (8.16)

p∗lk = − 1
4π(1− ν)

[ ∂r
∂n

{
(1− 2ν)δlk + 2

∂r

∂xl

∂r

∂xk

}
−−(1− 2ν)

( ∂r
∂xl
nk −

∂r

∂xk
nl

)]
.

Note that for the spherical coordinate system, defined by

x1 = r sin θ cosφ,
x2 = r sin θ sinφ,
x3 = r cos θ,




0 ≤ φ ≤ 2π,
0 ≤ θ ≤ π, (8.17)

we have
∂r

∂xk
=
r

xk
, and

∂r

∂xl
nk −

∂r

∂xk
nl =

∂r

∂xl

∂xk
∂r
− ∂r

∂xk

∂xl
∂r

= 0. (8.18)

The fundamental solutions for an isotropic body in a three-dimensional region are given by

u∗lk =
1

16πµ(1− ν)r
[
(3− 4ν)δlk +

∂r

∂xl

∂r

∂xk

]
, (8.19)

p∗lk = − 1
8π(1− ν)r2

[ ∂r
∂n

{
(1− 2ν)δlk + 3

∂r

∂xl

∂r

∂xk

}
−−(1− 2ν)

{ ∂r
∂xl
nk −

∂r

∂xk
nl

}]
, (8.20)

where r is the distance from the (boundary) point of application of the load (point i in Fig. 8.1)
to the (boundary) point under consideration (point k in Fig. 8.1); n̂ is the outward unit normal
to the surface S of the body, with nj as its direction cosines, and δij is the Kronecker delta. The
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fundamental solutions u∗lk have been derived in §4.4.

X   , u

X   , u

X   , upoint  i

point  k
p*

p*

p*

n

33

1 1

2 2

11
12

13

unit load in X   direction1

surface  S

Fig. 8.1. Displacements and Tractions.

8.3. Boundary Integral Equation. We shall start with the integral relation (8.15) and
discretize it for the boundary S. Let us assume that the boundary is smooth and it is the part S2

that contains the point i (the same will hold if the part S1 contains the point i). If we consider the
hemisphere of radius ε on the surface S2 of a three-dimensional region, as in Fig. 1.1(b), and assume
that the point i is at the center of this hemisphere, then in the limiting process the hemisphere reduces
to the point i as ε→ 0. This hemisphere divides the surface S2 into two parts: Sε and S2−ε. Now,
the first integral in Eq (8.15) can be written on S2 as∫∫

S2

ukp
∗
lk dS =

∫∫
Sε

ukp
∗
lk dS +

∫∫
S2−ε

ukp
∗
lk dS.

Note that r = ε and ∂r/∂n = 1 on Sε. In view of (8.18) and (8.20) we find that

lim
ε→0

∫∫
Sε

ukp
∗
lk dS = lim

ε→0

{
−

∫∫
Sε

uk
8π(1− ν)ε2

[
(1− 2ν)δlk + 3

∂ε

∂xl

∂ε

∂xk

]}
dS.

Since ∂r/∂xl = el, we can take, e.g., l = 1 in this equation, and then using the spherical coordinate
system (8.17), we get

lim
ε→0

∫∫
Sε

ukp
∗
lk dS = − 1

8π(1− ν)

∫ 2π

0

∫ π/2

0

{
u1(i)(1− 2ν) + 3u1(i) sin2 θ cos2 φ

+ 3u2(i) sin2 θ cosφ sinφ+ 3u3(i) sin θ cos θ cosφ
}

sin θ dθ dφ = −1
2
u1(i). (8.21)

The same value of the limit of the above integral as ε → 0 is obtained in the cases when l = 2 and
3. Hence, we find that

lim
ε→0

∫∫
Sε

ukp
∗
lk dS = −1

2
ul(i).

Now, the last integral in (8.15) on S2 can be written as∫∫
S2

pku
∗
lk dS =

∫∫
Sε

pku
∗
lk dS +

∫∫
S2−ε

pku
∗
lk dS.



      

38 BOUNDARY ELEMENT METHODS

Since from (8.19)

lim
ε→0

∫∫
Sε

pku
∗
lk dS = lim

ε→0
pku
∗
lk · 2πε2 = 0,

and since S2−ε → S2 as ε→ 0, and recalling that similar results hold for S1, we find that Eq (8.15)
gives the BI Eq for a smooth boundary surface as

1
2
ul(i) +

∫∫
S1

u0
kp
∗
lk dS +

∫∫
S2

ukp
∗
lk dS

=
∫∫∫

V

bku
∗
lk dV +

∫∫
S1

p0ku
∗
lk dS +

∫∫
S2

pku
∗
lk dS. (8.22)

In the case of a nonsmooth boundary surface S, the evaluation of the integral of the type (8.21) on

Sε is different from −1
2
ul(i). However, we do not need an exact value in the nonsmooth case. We

can take the value of this integral as cl(i)ul(i), where cl(i) is the constant c(i) defined in (1.15) and
depends on the geometry of the surface at the point i. Hence, the BI Eq for the nonsmooth body
surface can be written, in general, as

cl(i)ul(i) +
∫∫

S

ukp
∗
lk dS =

∫∫∫
V

bku
∗
lk dV +

∫∫
S

pku
∗
lk dS. (8.23)

The relations (8.22) and (8.23) are the starting point for the boundary element method in linear
elastostatics. In the two-dimensional case, the relations (8.22) and (8.23) remain valid if we replace
V by R, dV by dx1 dx2 (or dx dy), S by C, and dS by ds.

We will rewrite the BI Eq (8.23) for a two-dimensional isotropic elastic medium. Using the
notation u∗ for the displacements u∗lk and p∗ for the tractions p∗lk, we note that both u∗ and p∗ are
2× 2 matrices:

u∗ =
[
u∗11 u12

u∗21 u∗22

]
, p∗ =

[
p∗11 p∗12
p∗21 p∗22

]
.

These displacements and tractions are in the k direction due to a unit force applied in the l direction.
We will further denote the displacement, traction and body forces acting on the body by u, p, b
respectively, each of which is defined as a vector, as follows:

u = [u1 u2]T , p = [p1 p2]T , b = [b1 b2]T .

With this notation, Eq (8.23) becomes

c(i)u(i) +
∫
C

p∗u ds =
∫∫

R

u∗b dx1 dx2 +
∫
C

u∗p ds, (8.24)

whereR is a plane region (plate) in theX1X2-plane (see Fig. 8.2) which depicts the case of constant
boundary elements with mid-nodes (cf. with the case of Fig. 2.2(a), and see Fig. 3.1). The interior

cells are used for the evaluation of the domain integral
∫∫

R

u∗b dx1 dx2 in (8.24) which contains
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the body force terms.

•

• •
•

•

•

••

•

•

nodes

elements

2 2u   , p

1 1u   , p

interior cell

Fig. 8.2. Constant boundary elements and interior cells.

In the case of constant elements, the values of u and p are assumed to be constant on each element
and equal to their values at its mid-node. Hence, in this case Eq (8.24) reduces to the BE Eq

c(i)u(i) +
N∑
j=1

{∫
C̃j

p∗ ds
}

uj =
∫∫

R̃

u∗b dx1 dx2 +
N∑
j=1

{∫
C̃j

u∗ ds
}

pj , (8.25)

where uj and pj are the nodal displacement and traction in the element j = 1, . . . , N .

The interior cells are used to numerically integrate the domain integral (body force terms)

Bi =
∫∫

R̃

u∗b dx1 dx2, (8.26)

which appears in (8.25) (for interior cells, see §3). If there areM interior cells, then

Bi =
M∑
s=1

{ l∑
κ=1

(
u∗b

)
κ
wκ

}
As, (8.27)

where As is the area of the interior cell for s = 1, . . . ,M , wκ are the weights used in the Gaussian

quadrature for integrands with a logarithmic singularity, defined by
∫ 1

0

[ ∫ 1−ξ2
0

f (ξ1, ξ2, ξ3) dξ
]
dξ2 =

n∑
κ=1
wκ f (ξκ1 , ξ

κ
2 , ξ

κ
3 ), and ξ1, ξ2, ξ3 are coordinates of the triangle (see Table A.12 on the CD-R for

these nodes and weights).

We obtain a vector Bi as a result of the numerical integration of the body force terms by (8.27).
In BE Eq (8.25) which corresponds to a node i the integral terms within the braces relate to node i
with the element segment j over which the integrals are computed. Let us denote these integrals by
Ĥij and Gij respectively, i.e.,

Ĥij =
∫
Cj

p∗ ds, Gij =
∫
Cj

u∗ ds,
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each of which is a 2× 2 matrix. Then Eq (8.25) becomes

c(i)u(i) +
N∑
j=1

Hijuj = Bi +
N∑
j=1

Gijpj , (8.28)

which relates the value of u at a mid-node i with the value of u and p at all the nodes j, including i.
Let us write

Hij =

{
Ĥij if i �= j
Ĥij + c(i) if i = j,

where c(i) is a coefficient matrix dependent on the boundary geometry, i.e.,

c(i) =
[
c(i) 0
0 c(i)

]
,

and c(i) is defined in (1.15). Hence, Eq (8.28) can be written as

N∑
j=1

Hijuj = Bi +
N∑
j=1

Gijpj , (8.29a)

or in matrix form, as
HU = B +GP. (8.29b)

Note that in Eq (8.29a) we know N1 values of the displacements uj and N2 values of the tractions
pj ; thus, 2N − (N1 +N2) values are unknown in this equation. As we did in the case of potential
problems (see (2.8)), we will collocate and rearrange Eq (8.29b) in the matrix form

AX = B + F, (8.30)

where the unknowns are denoted by the vector X on the left side.

In Eq (8.29a), the integrals Hij and Gij are evaluated numerically by using the 4-point Gauss-
Legendre quadrature formula except when i = j. The values ofHii are easy to compute using rigid
body considerations, but to compute Gij we can use the logarithmic-Gauss integration formula, or
for the two-dimensional isotropic case Gij can also be evaluated analytically using (8.16) and Fig.
8.3.

•

•

•.
θ

θ(1)
1

(2)

2

r

r

i

(1)

(2)

X

X2

1

Li

L  / 2

- L  / 2

i

i

0 r = ξ L  / 2iξ = −1

ξ = 0

ξ = 1

Fig. 8.3. Geometry at the node i.
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Thus,

G11 =
1

8πµ(1− ν)

[
(3− 4ν)

∫ (2)

(1)

ln
1
r
ds+

∫ (2)

(1)

(
∂r

∂x1

)2

ds

]

=
1

8πµ(1− ν) lim
ε→0

[
(3− 4ν)2

∫ Li/2

ε

ln
1
r
dr + 2

∫ Li/2

ε

cos2 θ dr

]

=
1

4πµ(1− ν) lim
ε→0

[
(3− 4ν)[r − r ln r]Li/2ε +

r21
L2
i

(
Li
2

)]

=
Li

8πµ(1− ν)

[
(3− 4ν)

(
1 + ln

2
Li

)
+
r21
L2
i

]
,

G12 =
1

8πµ(1− ν)

∫ (2)

(1)

∂r

∂x1

∂r

∂x2
ds

=
1

8πµ(1− ν) lim
ε→0

2
∫ Li/2

ε

sin θ cos θ dr

=
1

4πµ(1− ν) lim
ε→0

2
∫ Li/2

ε

r1r2
L2
i

, dr =
r1r2

8πµ(1− ν)Li
= G21,

G22 =
1

8πµ(1− ν)

[
(3− 4ν)

∫ (2)

(1)

ln
1
r
ds+

∫ (2)

(1)

(
∂r

∂x1

)2

ds

]

=
Li

8πµ(1− ν)

[
(3− 4ν)

(
1 + ln

2
Li

)
+
r22
L2
i

]
,

where Li, as defined in (2.12), is the length of the element C̃i. After solving (8.30), we use (8.25)
and (8.27) to compute the displacements at an interior point as follows:

u(i) =
M∑
s=1

{ l∑
κ=1

(
u∗b

)
κ
wκ

}
As +

N∑
j=1

{∫
Cj

u∗ ds
}
pj −

N∑
j=1

{∫
Cj

p∗ ds
}
uj .

The stress components at an interior point can be computed from (8.8), i.e.,

σij =
∫∫

R

Dijb dx1 dx2 +
∫
C

Dijp ds−
∫
C

Siju ds

=
M∑
s=1

{ ∫∫
Rs

Dij dx1 dx2

}
bs +

N∑
j=1

{ ∫
Cj

Dij ds

}
pj −

N∑
j=1

{ ∫
Cj

Sij ds

}
uj ,

where
Dij = [D1 D2], Sij = [S1 S2], p = [p1 p2]T , u = [u1 u2]T ,

and for k = 1, 2,

Dk =
1

4π(1− ν)r
[
(1− 2ν)

{
δkir,j + δkjr,i − δijr,k

}
+ 2r.ir,jr,k

]
,

Sk =
µ

2π(1− ν)r2
[
2
∂r

∂n

{
(1− 2ν)δijr,k + ν

(
δikr,j + δjkr,i

)
− 4r,ir,jr.k

}
+ 2ν

(
nir,jr,k + njr,ir,k

)
+ (1− 2ν)

(
2nkr,ir,j + njδik + niδjk

)
− (1− 4ν)nkδij

]
.



        

42 BOUNDARY ELEMENT METHODS

Program Be11

We will develop this program for two-dimensional linear elastic boundary value problems for the
case of constant elements of Fig. 2.2(a). The input file is created in the following order:
N: Number of boundary elements (same as the number of

nodes in this case)
L: Number of interior points where results are to be

computed
M: Number of different surfaces 1 through 5.
Last: Number of the last node on each different surface. Enter the last

node numbers followed by zeros to a total of five entries
mu: shear modulus µ
nu: Poisson’s ratio ν
X, Y: Coordinates of extreme points of the elements
Xm, Ym: Coordinates of the mid-nodes
G: Matrix defined in (8.29b)

After boundary conditions are applied, the matrix A of (8.26)
is stored in this location.

H: Matrix defined in (8.29b)
Code: = 0 if displacements are prescribed,

= 1 if tractions are prescribed
Bc: Prescribed boundary conditions
F: Vector defined in (8.30)

After solution, the values of the unknowns are located here
Xi, Yi: Coordinates of the interior points

(ξ  ,ψ  )

x   -x

y   -y

(ξ   ,ψ  )

x x x

p p p

p
p

p

p

i i 

i

i+1 i+1

i+1

i

i+1
i

i+1

(ξ      , ψ    )

y      - y

x      - x

node  i

Fig. 8.4.

The output produces solution values of the displacement components at interior points (2 dis-
placement values each point), and solution values of stresses σx, σy, τxy at interior points (3 stress
values at each point). It can be seen from Fig. 8.4(a) that the equation of the boundary element with
mid-node i is

m (xi − x)− (yi − y) = 0,
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and thus,

Perp =
{ ∣∣m(xi − xp)− (yi − yp)

∣∣/√1 +m2, if xi �= xi+1

|xi − xp|, if xi = xi+1.

From Fig. 8.4 it is easy to see that

yi+1 − yp
xi+1 − xp

=
yp − yi
xp − xi

which yields (xp − xi)(yi+1 − yp) − (xi+1 − xp)(yp − yi) ≡ sgn (see (3.8) also). Note that sgn
has the same sign as slope defined in §2.1, where other variables used in the program are also listed.
This program calls the following functions: Sys11, Quad11, Diag11, Inter11, and Solve.

Example 8.1. Consider the case of a circular hole under interior pressure embedded in an
infinite medium, as shown in Fig. 8.5. The data is: E = 94500, ν = 0.1. The input file is ex8.1.in
and the output file is ex8.1.out. Note that the displacement (Code= 0) is prescribed zero at the
nodes 16, 24, and 32 to keep the plate in equilibrium. Mathematically it means that the value of the
constant for the displacement obtained as a result of integration is assumed to be zero. The solution
for radial stress obtained from elasticity theory (see Timoshenko and Goodier 1951 pp. 78) is as
follows:

Table 1.3.1

Point Theoretical solution BEM solution

(4., 0.) −56.25 −56.8348
(6., 0.) −25.0 −25.2413
(10., 0.) −9.0 −9.0869
(50., 0.) −0.36 −0.3635
(200., 0.) −0.0225 −0.0227
(1000., 0.) −0.0009 −0.0009

50 100 200 1000
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303132

3

×

×

6 10 1000

(3, 3)

(-3, -3)

Fig. 8.5. Circular hole in an infinite medium.



        

44 BOUNDARY ELEMENT METHODS

The extreme points X, Y can be computed in the program, instead of being read, by using
the formulas xj = 3 cos ((j − 1)π/16 + 17π/32), yj = −3 sin ((j − 1)π/16 + 17π/32), j =
0, 1, · · · , 32 respectively. The boundary conditions at the nodes j = 1, . . . , 32 are prescribed in
order by the formulas

Bc in x-direction: 100 cos
(
jπ

16
+
π

2

)
, j = 0, 1, . . . , 32,

Bc in y-direction: − 100 sin
(
jπ

16
+
π

2

)
, j = 0, 1, . . . , 32.

Example 8.2. Consider the problem of a hollow circular pipe of radii a = 10 and b = 15
units respectively under an internal pressure p = 100 (see Fig. 8.6). The other data is: µ = 80, 000,
and ν = 0.25. Because of axial symmetry, the input file is created with constant elements as in Fig.
2.8(b). For the plane stress case, the displacements is given by

u(r) =
pa2

E(b2 − a2
[
(1− ν)r + (1 + ν)

b2

r2

]
, a ≤ r ≤ b,

and the stress by

σ(r) =
pa2

E(b2 − a2)

(
1− b

2

r2

)
,

θ(r) =
pa2

E(b2 − a2)

(
1− b

2

r2

)
,

for a ≤ r ≤ b. Both circumferential and radial results for displacements and stresses compares very
well with the exact solutions. However, the boundary element results for the stresses in the vicinity
of the boundary do not match with the exact solutions; but this was expected. It is found that the
boundary element results are, in general, correct for those interior points which lie at a distance more
than half an element length away from the boundary.
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Fig. 8.6. A hollow circular pipe.

If this problem is solved with the finite element method of Fig. 8.6(b), with 52 nodes and 76
triangular elements, the results do not agree with the exact solutions. It means that if constant strains
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are used in linear elasticity, the resulting finite elements computed at the center of each element will
produce poor results. This method should therefore be avoided.

9. README. The software required for BEM is provided on the enclosed CD-Rom. The
programs are written in C, which is a case-sensitive structural language. The modules for each of the
programs be1.c, be2.c, be5.c, and be11.c have the header cbox1.h, cbox2.h, cbox5.h, cbox11.h
respectively, together with the C library headers

〈
stdio.h

〉
and

〈
math.h

〉
. These modules can

be compiled and linked separately for each program. Makefiles in each subdirectory will build the
programs by simply typing ‘make’.

There are two computation codes, one for UNIX and the other for DOS. The programs are run,
e.g., for be1 as follows:

cd UNIX/BE1 or > cd DOS\BE1
be1

FIRST LINE IN THE INPUT FILE SHOULD BE EITHER BLANK OR THE TITLE NOT DATA
Enter the name of the input file:EX5_1.IN
Enter the name of the output file:EX5_1.OUT

Other programs can be similarly run. UNIX C has been used to test run these programs on some
benchmark problems using Sun WorkShop 6 update 2 C 5.3 on Solaris and gcc version 3.3.2 (Red
Hat Linux 3.3.2− 1) on Linux. The DOS directory programs must be compiled and linked with the
command appropriate for the system.

Note. If you have trouble running any one of these programs, note that the programs be1.c, be2.c,
be5.c and be11.c were compiled with C compilers on a UNIX workstations. All these programs, and
specially be11.c works perfectly well on UNIX SUN workstations and produces the same output as
given in the above examples. Other C compiler(s) may give different results than those given above,
or may fail to build the program.


