

1. DFT Rules

In §6.6 we discuss the discrete Fourier transforms. GivenN complex numbers, {f(n)}N−1
n=0 ,

their N -point discrete Fourier transform (DFT), denoted by {F (k)}, is given by (6.6.2),
where Fk and fj are now written as F (k) and f(n), respectively. In matrix notation,
this relationship, which is represented by (6.6.4), can be written as F = FN{f}, where
F = [F (0) F (1) . . . F (N − 1)]T and f = [f(0) f(1) . . . f(N − 1)]T , and FN
represents the N ×N matrix

FN =




1 1 1 . . . 1
1 WN W 2

n . . . WN−1
N

1 W 2
n W 4

N . . . W 2N−2
N

...
...

...
...

...
1 WN−1

N W 2N−2
n . . . W

(N−1)(N−1)
N



,

whereWN = e−2iπ/N . Thus, F16 denotes the 16×16 matrix. We use the matrix FN when
we compute a DFT, but we want to avoid generating and storing the N complex numbers
N−1, N−1WN , . . . , N

−1WN−1
N complex numbers, which come to N2 elements of FN .

Since the function N F (k) = f(0) + f(1)W k
N + f(2)

(
W k
N

)2 + · · ·+ f(N − 1)
(
W k
N

)N−1

is a polynomial with the coefficients f(0), f(1), . . . , f(N − 1), and the argument W k
N , we

can use Horner’s algorithm for computing the DFT, which is as follows:

x = 1
W = e−2iπ/N

For k = 0, 1, . . . , N − 1 do
S = f(N − 1)
For m = 2, 3, . . . , N do
S = f(N −m) + x · S

F (k) = S/N
x = x ·W

1

2 BIT REVERSAL ALGORITHMS

The DFT rules to compute FFT are as follows:

1. Linearity Rule: g(n) = c1 f1(n) + · · ·+ cm fm(n)

has the FT G(k) = c1 F1(k) + · · ·+ cm Fm(k). (1.1)

2. Reflection Rule: g(n) = f(−n) has the FT G(k) = F (−k); (1.2)

3. Conjugation Rule: g(n) = f∗(n) has the FT G(k) = F ∗(−k); (1.3)

4. Translation Rule: g(n) = f (n− n0)

has the FT G(k) =W kn0
N F (k), n0 = 0,±1,±2, . . . ; (1.4)

5. Modulation Rule: g(n) =W kn0
N f(n)

has the FT G(k) = F (k − k0) , k0 = 0,±1,±2, . . . ; (1.5)

6. Convolution Rule: g(n) = (f1 ∗ f2) (n)

has the FT G(k) = N F1(k) · F2(k); (1.6)

7. Multiplication Rule: g(n) = f1(n) · f2(n)
has the FT G(k) = (F1 ∗ F2) (k); (1.7)

8. Inversion Rule: g(n) = F (k) has the FT G(k) =
1
N
f(−k); (1.8)

9. Zero Packing Rule: g(n) =
{
f(n/m) n = 0,±m, ±2m, . . . ,
0 otherwise,

has the FT G(k) =
1
m
F (k),; (1.9)

10. Summation Rule: g(n) =
m−1∑
j=0

f(n− jN)

has the FT G(k) = mF (mk), (1.10)

with g on PN in rules 9, and 11, f on PN/m in rule 9, and f on Pm·N in rule 10, where
PN denotes a discrete polygon with N equally spaced points lying on a circle.

Example 1.1. Let (a, b, c, d) have the DFT (A,B,C,D). Then by using the trans-
lation rule (1.4) we get

(d, a, b, c) has the DFT
(
A,W4B,W

2
4C,W

3
4D
)
,

where W4 = e−2iπ/4, and the zero packing rule (1.9) gives

(a, 0, b, 0, c, 0, d, 0) had the DFT 1
2 (A,B,C,D,A,B,C,D).

Let T , E , Z and R denote the translation, exponential modulation, zero packing and
repeat operator, respectively. Then, a 4-component initial vector (a, b, c, d) of Example
1.1 has the following assembly:

BIT REVERSAL ALGORITHMS 3

(a, b, c, d) F−−−−→ (A,B,C,D)

T
�

�E
(d, a, b, c) F−−−−→

(
A,W4B,W

2
4C,W

3
4D
)

(a, b, c, d) F−−−−→ (A,B,C,D)

Z
�

� 1
2 R

(a, 0, b, 0, c, 0, d, 0) F−−−−→ 1
2 (A,B,C,D,A,B,C,D)

Example 1.2. Consider an 8-component initial vector (a, b, c, d, e, f, g, h). A decimation-
in-frequency scheme is as follows:

When (a, b, c, d, e, f, g, h) has the DFT (A,B,C,D,E, F,G,H), then by using the
modulation rule (1.5) we find that(

a,Wb,W 2c,W 3d,W 4e,W 5f,W 6g,W 7h
)

has the DFT (B,C,D,E, F,G,H,A),

and by using the summation rule (1.10) we find that
1
2 (a+ e, b+ f, c+ g, d+ h) has the DFT (A,C,E,G).

The commutative diagrams for the modulation and summation rules are given below.

(a, b, c, d, e, f, g, h) F−−−−→ (A,B,C,D,E, F,G,H)

E
�

�T
(a,Wb,W 2c,W 3d,W 4e,W 5f,W 6g,W 7h) F−−−−→ (B,C,D,E, F,G,H,A)

(a, b, c, d, e, f, g, h) F−−−−→ (A,B,C,D,E, F,G,H)

Σ

�
�Ξ

1
2 (a+ c, b+ f, c+ g, d+ h) F−−−−→ (A,C,E,G)

where Σ and Ξ represents the summation and decimation operator, respectively.

4 BIT REVERSAL ALGORITHMS

2. Bit Reversal Permutation

Let N = 8, and consider the permutation

(f0, f1, f2, f3, f4, f5, f6, f7) −→ (f0, f4, f2, f6, f1, f5, f3, f7).

For the bit reversal permutation consider the radix 2 representation of the integers 1
through 7:

0 = (000)2 −→ (000)2 = 0

1 = (001)2 −→ (100)2 = 4

2 = (010)2 −→ (010)2 = 2

3 = (011)2 −→ (110)2 = 6

4 = (100)2 −→ (001)2 = 1

5 = (101)2 −→ (101)2 = 5

6 = (110)2 −→ (011)2 = 3

7 = (111)2 −→ (111)2 = 7

This shows how we get the above permutation.

The entire process can be described as follows: At the first stage we map

(f0, f1, f2, f3, f4, f5, f6, f7) −→ (f0, f2, f4, f6, f1, f3, f5, f7)

by cyclically permuting the three base 2 index bits, placing the lower-order bit (0 for an
even index, 1 for an odd index) in the high-order position, i.e, 0 for the first half, 1 for
the second half; thus, f [(b3b2b1)] is placed in the position (b1b3b2)2.

At the second stage we map

(f0, f2, f4, f6, f1, f3, f5, f7) −→ (f0, f4, f2, f6, f1, f5, f3, f7)

Thus, f [(b3b2b1)] that was in the position (b1b3b2)2 after the first stage is now placed in
the position (b1b2b3)2.

For N = 16, the bit reversal permutation yields

0 = (0000)2 −→ (0000)2 = 0 8 = (1000)2 −→ (0001)2 = 1

1 = (0001)2 −→ (1000)2 = 8 9 = (1001)2 −→ (1001)2 = 9

2 = (0010)2 −→ (0100)2 = 4 10 = (1010)2 −→ (0101)2 = 5

3 = (0011)2 −→ (1100)2 = 12 11 = (1011)2 −→ (1101)2 = 13

4 = (0100)2 −→ (0010)2 = 2 12 = (1100)2 −→ (0011)2 = 3

5 = (0101)2 −→ (1010)2 = 10 13 = (1101)2 −→ (1011)2 = 11

6 = (0110)2 −→ (0110)2 = 6 14 = (1110)2 −→ (0111)2 = 7

7 = (0111)2 −→ (1110)2 = 14 15 = (1111)2 −→ (1111)2 = 15

BIT REVERSAL ALGORITHMS 5

This gives the following bit reversal:

(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15)

−→ (f0, f8, f4, f12, f2, f10, f6, f14, f1, f9, f5, f13, f3, f11, f7, f15).

In this bit reversal structure, we move the component f [(b4b3b2b1)2] from its original
position (b4b3b2b1)2 successively to the positions (b1b4b3b2)2, (b1b2b4b3)2 and (b1b2b3b4)2.
In general, for N = 2j , j = 1, 2, . . . , we move f

[
(bjbj−1 . . . b2b1)2

]
from the position

(b1b2 . . . bj−1bj)2 for every choice of b1, b2, . . . , bj−1, bj = 0, 1. In the case when s =
(b1b2 . . . bj−1bj)2 is bit-reversed from n = (bjbj−1 . . . b2b1)2, then n is the bit-reversed
form of s, and we interchange the values of f [s] and f [n] to carry out the permutation.
The positions of f [0] = f [(0 0 . . . 0)2] and f(N − 1) = f [(1 1 . . . , 1)2] remain unchanged
during this process. A simple algorithm for applying the bit reversal permutation to an
N -vector function f for N = 2j is as follows:

For n− 1, 2, . . . , N − 2 do
Find the integer s = (b1b2 . . . bj−1bj)2 that corresponds to n = (bjbj−1 . . . b2b1)2

If s > n, then interchange f [s] and f [n]

Example 1.3. Let j = 5 and n = 13 = (01101)2. Then

13/2 = 6 with remainder b1 = 1, s1 = 1,

6/2 = 3 with remainder b2 = 0, s2 = 2s1 + b2 = 2,

3/2 = 1 with remainder b3 = 1, s3 = 2s2 + b3 = 5,

1/2 = 0 with remainder b4 = 1, s4 = 2s3 + b4 = 11,

0/2 = 0 with remainder b5 = 0, s5 = 2s4 + b5 = 22,

which shows that s = (10110)2 = 22.

Given an index n = (bjbj−1 . . . b2b1)2 = b1 + b2 · 2 + b3 · 22 + · · · + bj · 2j−1, we can
generate in tern the bits b1, b2, . . . and compute the corresponding Horner’s sequence
b1, 2b1 + b2, 2(2b1 + b2) + b3, . . . for

s = (b1b2 . . . bj−1bj)2 = bj + bj−1 · 2 + bj−2 · 22 + · · ·+ b1 · 2j−1.

Thus, we use the following algorithm for the bit reversal permutation:

For n = 1, 2, . . . , N − 2 do
s = 0
d = n
For k = 1, 2, . . . , j do
q = �d/2�
b = d− 2q
s = 2s+ b
d = q

If s > n, then interchange f(s) and f(n)

6 BIT REVERSAL ALGORITHMS

While applying the above algorithm, each time we compute the bit-reversed index
s = s(n) from the index n, which computes s(1), s(2), . . . , s(N − 1) in turn, we can
improve upon the computation if we use a recursive scheme which uses a known value
of s(n) to obtain the value of s(n + 1). If n is even, a simple addition computes the
bit-reversed index, as the following example shows.

Example 1.4. To compute s(23) = 29 from s(22) = 13 for N = 25, we find that

Mirror

n = (10110)2 = 22
... (01101)2 = s(n) = 13

+1 = (00001)2 = 1
... +(10000)2 = N/2 = 16
...

n+ 1 = (10111)2 = 23
... +(11101)2 = s(n+ 1) = 29

Note that s(n+ 1) = s(n) +N/2 when s(n) < N/2.

In the case when n is odd, i.e., when s(n) ≥ N/2, we can still generate s(n+ 1) from
s(n), but we must mirror the carry associated with base 2 addition, as shown in the
following example:

Example 1.5. Let N = 25. We compute s(12) = 6 from s(11) = 26 bt reverse carry
method.

Mirror

n = (11011)2 = 11
... (11010)2 = s(n) = 26

+1 = (00001)2 = 1
... +(10000)2 = N/2 = 16
...

carry ↑
... ↑ reverse carry
...

n− 1 = (01010)2 = 10
... (01010)2 = s(n)−N/2 = 10

+2 = (00010)2 = 2
... +(01000)2 = N/2 = 8
...

carry ↑
... ↑ reverse carry
...

n− 1− 2 = (01000)2 = 8
... (00010)2 = s(n)−N/2−N/4 = 2

+4 = (00100)2 = 4
... +(00100)2 = N/8 = 4
...

n+ 1 = (01100)2 = 12
... (00110)2 = s(n+ 1) = 6

BIT REVERSAL ALGORITHMS 7

This leads to the Reverse Carry Algorithm:

s = 0
For n = 1, 2, . . . , N − 2 do
k = N/2
While s ≥ k do
s = s− k
k = k/2

s = s+ k
If s > k, then interchange f(s) and f(n)

The above algorithm generates a complete set of n, s pairs for a given N = 2j by
generating s(n+ 1) from s(n). A better algorithm which is more efficient in storage and
speed is the Bracewell-Buneman algorithm, which is explained below.

For each n = 0, 1, . . . , 2j−1, j = 1, 2, . . . , the functions sj(n) are formed by reversing
the bits of n such that

sj
[
(bjbj−1 . . . b2b1)2

]
= (b1b2 . . . bj−1bj)2.

For example s2(3) = (11)2 = 3, s3(3) = (110)2 = 6, s4(3) = (1100)2 = 12, and so on.
Since

sj+1

[
(bj+1bj . . . b2b1)2

]
= (b1b2 . . . bjbj+1)2
= 2 · (b1b2 . . . bj−1bj)2 + bj+1

= 2sj
[
(bjbj−1 . . . b2b1)2

]
+ bj+1,

we obtain

sj+1(n) =
{

2sj(n) if n = 0, 1, . . . , 2j − 1,

2sj
(
n− 2j

)
+ 1 if n = 2j , 2j+1, . . . , 2j+1 − 1.

Thus, we obtain the left half of the (m+ 1)-st row from the following table:

n
∣∣∣ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s1(n)
∣∣∣ 0 1

s2(n)
∣∣∣ 0 2 1 3

s3(n)
∣∣∣ 0 4 2 6 1 5 3 7

s4(n)
∣∣∣ 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

by doubling the m-th row. We get the right half of the (m + 1)-st row by adding 1 to
each component of the left half. This leads to the following algorithm for generating the
bit-reversed indices sj(0), sj(1), . . . , sj(N − 1), for N = 2j :

8 BIT REVERSAL ALGORITHMS

s(0) = 0
M = 1
While M < N do

For k = 0, 1, . . . ,M − 1 do
T = 2s(k)
s(k) = T
s(k +M) = T + 1

M = 2M

After initializing the array s, the bit reversal permutation can be executed by using

For n = 1, 2, . . . , N − 2 do
If s(n) > n, then interchange s(n) and f(s(n)).

Bracewell (1986) and Buneman (1986) gave a more efficient algorithm that uses only√
2N components of storage. It uses a left-right decomposition of the radix 2 represen-

tations of n and s. For example, for N = 26, a 6-bit index n is represented by

n = (b6b5b4b3b2b1) = 8p+ q,

where p = (b6b5b4)2 and q = (b3b2b1)2. Then s6(n) = (b1b2b3b4b5b6)2 = 8s3(q) + s3(p).
All pairs of the 6 bit reversed pairs n, s, with s > n, can be obtained from the 3-bit
integers p, q, where 8s3(q) + s3(p) > 8p+ q, or s3(q) > p. In the case when s3(q) = p we
also have s3(p) = q, thus s6(n) = n. Then every bit-reversed pair n, s with s > n occurs
precisely once in the list

n = 8p+ q, s = 8s3(q) + s3(p), q = 1, 2, . . . , 7, and p = 0, 1, . . . , s3(q)− 1.

In the general case when N = 2j and j = 2m is even, every bit-reversed pair n.s with
s > n occurs precisely once in the list

n = 2mp+q, s = 2msm(q)+sm(p), q = 1, 2, . . . , 2m−1, and p = 0, 1, . . . , sm(q)−1.

In the case of an odd number of index bits, the above left-right representation of n, s is
modified; for example, for N = 27 we have

n = (b7b6b5b4b3b2b1)2 = 8p+ q,

where p = (b7b6b5b4)2 and q = (b3b2b1)2 = (0b3b2b1)2. Then

s7(n) = (b1b2b3b4b5b6b7)2 = 16s3(q) + s4(p) = 8s4(q) + s4(p).

This means that every bit-reversed pair n, s with s > n occurs precisely once in the list

n = 8p+ q, s = 8s4(q) + s4(p) for q = 1, 2, . . . , 7, and p = 0, 1, . . . , s4(q)− 1.

Thus, in general, for N = 2j , j = 2m+ 1 (odd), we find that every bit-reversed pair n, s
with s > n occurs precisely once in the list

n = 2mp+ q, s = 2msm+1(q) + sm+1(p),
for q = 1, 2, . . . , 2m − 1, and p = 0, 1, . . . , sm+1(q)− 1.

BIT REVERSAL ALGORITHMS 9

These even and odd j representations for the pairs n, s provide the following algorithm
for the bit reversal permutation when N = 2j with j = 2m + l for m = 1, 2, . . . and
l = 0, 1:

For q = 1, 2, . . . , 2m − 1 do
For p = 0, 1, . . . , sm+l(q)− 1 do
n′ = 2mp+ q
s′ = 2msm(q) + sm+l(p)
Interchange f (n′) and f (s′)

However, to avoid the repeated computation of sm+l(0), sm+l(1), . . . , sm+l (2m − 1),
these indices can be generated with a double-add one algorithm and stored in an auxiliary
array (which has 2m+l ≤

√
2N components) as part of the initialization. Then part

of the computation of n′, s′ is done outside the inner loop, which improves efficiency.
The resulting Bracewell-Buneman algorithm for applying the bit reversal permutation to
f(0), f(1), . . . , f(N − 1), N = 2j , is as follows:

m+ = �(j + 1)/2� (i.e., m+ = m+ l)
M = 1
s(0) = 0
For i = 1, 2, . . . ,m+ do

For k = 0, 1, . . . ,M − 1 do
T = 2s(k)
s(k) = T
s(k +M) = T + 1

M =M + 1
If j is odd, then M =M/2 (i.e., M = 2m)
For q = 1, 2, . . . ,M − 1 do
n′ = q −M
s′′ = s(q) ·M
For p = 0, 1, . . . , s(q)− 1 do
n′ = n′ +M (i.e., s′ =M(p+ q))
s′ = s′′ + s(p) (i.e., s′ =Ms(q) + s(p))
Interchange f (n′) and f (s′)

A Fortran code based on this algorithm is given as fft.f90 with ffttest.f90 (on
the CD-R); see also BrucewellBuneman.nb on the CD-R.

