BOUNDARY ELEMENT METHODS

We will study potential and linear elasticity problems which represent a wide range of problemsin
applied mathematics, physics and engineering. Some of the physical situations which have models
involving these equations are: Steady-state heat conduction problems, torsion problems in solid
mechanics, diffusion flow in porous media, incompressible inviscid fluid flow, electrostatic potential
problems, Newtonian potentials, and magnetostatics. Wewill introducetheboundary element method
for two-dimensional steady-state potential and elastic problems. In avery general form, this method
starts by dividing the boundary of the region into finitely many elements (hence the name boundary
element method, or BEM). This article is condensed from Kythe (1995).

Potential Problems

1. Laplace Equation. We will solve the mixed Laplace boundary value problem

0
VZ2u=0, u=ugonCy, %Eq:qo on Cs, (1.1)

where C' = C; U Cy isthe boundary of aregion R. Since —V?u* = § (x,x’), where u*(c0) = 0,
and 6 denotes the Dirac delta function, the potential boundary value problem with a concentrated
charge acting at a point x’ = x; = ¢ can be written as

Viu* = —6(i); u* =u*(x,%). (1.2)

The solution of this problem is called the fundamental solution for the potential problem. In view of
the trandlation property of the delta function,

0= //Ru[v%* +6(i)] dz dy = .//Ruvzu* dz dy + u(i), (1.3)

where u(4) denotes the value of the unknown potential « at the point ¢ where the charge is applied.
Note that we are writing () for u(z;), where z; is the source point, thus r = |z; — z;|. Now, the
weak variational form for the boundary value problem (1.1) becomes

Oz/ (Vzu)wdxdy
auaw auaw
// 9z or a)d d“/ Yon
:// uvzwdxdyf/ua—der/wa—ds.
R C on C on
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Thus,

ou ow
- 2 = —ds — — ds. 14
//RuV wdz dy Cwands Cuands (1.4)

Since u = ugp on Cy and du/On = q = qo on Cq, wereplace w by u* (and hence, ¢ by ¢*) in (1.4),
and from (1.3) and (1.4) we obtain

u(z):/ u*qu+/ u*qods—/ uoq*ds—/ ug™ ds, (1.5)
Cl CQ C1 CQ

where ¢* = du*/0n. Recall that for an isotropic two-dimensional region, the fundamental solution

isgiven by u* zi log 1 where r = |x — x/| isthe distance from the point of application of the
™ r
deltafunction to the point under consideration. The symmetric form of the two-dimensional Laplace
equation in polar cylindrical coordinatesis
O%u*  10u*
2 = 650 1.
or: r or 5() (1.6)

Substituting the above value of w* into (1.6) yields6(:) = 0 forr # 0. Thus, thisequation is satisfied
forany r # 0. Since at » = 0 the fundamental solution «* has alogarithmic singularity, we proceed
as follows:. Integrate on a circle K surrounding the boundary point ¢ where the charge is applied.

This gives
// V2u* dr dy = —// 6(i)drdy = —1. (1.7)
R R

To show that thefirst integral in (1.7) isaso equal to —1, we find that

// VQu*dmdyz/ q*dSZ/ Ou ds. (1.8)
R K K Or

Substituting the above fundamental solution «* into (1.8) we get

ou* 1 [

Note that thisresult (—1) isindependent of . Thus, the left side goesto —1 asr — 0.

Fig. 1.1.
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Eq (1.5), where u(7) is the value of the unknown potential « at the point ¢ of the application of
the charge, isvalid at any point of the region. However, in order to solve it by the boundary element
method, wewill formulateit on theboundary. One of the simplest waysto consider asemicircle C. of
radius e on the boundary of atwo-dimensional region R, asin Fig. 1.1(a). Assume that the boundary
point ; is at the center of this semicircle. Ase — 0, the semicircle will reduce to the boundary point
1. Further, assume that the boundary C' of the region R is smooth, and that C' = C; U C5. Let the
boundary point i be on the C5 portion of C' (similar considerations apply if itison C4). Dividethe
boundary C into two parts: C. and C>_.. Then

/ uq* ds = / uq* ds —|—/ uq® ds. (1.10)
Co Cy—e CE

Substitute the fundamental solution »* into the second integral on the right side and take the limit.
Thisintegral becomes

: .u u
Eh_r% . uq ds-Eh_% Cgu(——) ds-—eh_r%%/cg ds-—g, (1.11)

where | o, ds =me (circumference of the semicircle). Now sincee iszero, theboundary Cs_. again
becomes Cs. Also, note that the right side of (1.5) gives

1
lim qu* ds = lim — P / ds = —Llime Ine = 0. (1.12)
=0 Jo. e—=02m € C. 2 e—0

Thus, this limiting process does not introduce any new termsin (1.5).

Now, substituting (1.11) into (1.5), we obtain the following two-dimensional Bl Eq for anode i
on the boundary Cs:

@Jr/ uoq” ds+/ uq*dSZ/ U*qu+/ uqo ds. (1.13)
2 e Cs C Cs

We will obtain the same result if we consider the point 7 on the C; portion of the boundary instead
of Cs.

In the three-dimensional case, consider the Laplace equation V2 = 0 with the boundary con-
ditionsu = ug on S; and ¢ = g9 on S, where S = 57 U S, is the boundary (surface) of an
isotropic region. We will take ahemisphere S, (of radius e and center at i, see Fig. 1.1(b)) such that
So = Sy + S.. Then Eq (1.10) becomes

// uq* dS = // uq* dS + // ug* dS. (1.10a)
SZ 52—2 SE

. . 1 . . .
We substitute the fundamental solution v* = T =] into the second integra in (1.10a). Then
T lx —

hm // uq dS_;l_r%// 47762 ds = —;llr(l) 47‘(‘82 // dsS =—— (1.11a)
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where / dS = 2me? (surface area of the hemisphere). In this limit process the boundary Ss_ .

S/—:
becomes S5, and

hm // qu*dS = lim — // dS = lim — (27r52) = 0. (1.12a)
e—0 2me e—0 2me

Thus, the three-dimensional Bl Eq for anode ¢ on the boundary S5 is given by

u(?) +// uoq” dS+// uq* dS:// u*qu—i—// u*qo dS. (1.13a)
S1 Sa S1 Sz

. i .
1+1 i+1 -1

Fig. 1.2.

In general, Bl Eq (1.13) or (1.13a) can be written as

c(i)uld) + /

C

i +// uq*dS:// uw*qdS, S=5S1USY,, (1.14a)
s s

respectively, under the essential boundary conditions u = wu on C; (or on S;) and the natura
boundary condition 0u/0n = q = go on Cy (or on Sz), where in two-dimensional case

uqg® ds = / u*qds, C=CyUCQCy, (1.14)
C

or

0 if i isoutside RUC
1 if iisinside R
c(i) = L . (1.15)
1/2 if 4 is on asmooth portion of C
0/2x if ¢ isat acorner node,

6 being the internal angle (in radian) at the corner a node i (see Fig. 1.2(b)). In Fig. 1.2(a), the
value of ¢(i) = 1/2. The coefficient ¢(7) can be evaluated anaytically, or by considering different
cases of the values of potential and flux ‘before’ and *after’ a corner node (see §2.3). In the case of
athree-dimensiond region, ¢(i) has the same values relative to the boundary surface S except a a
corner node on S where it has the value §/4, 0 being the solid (internal) angle at that node.

2. Boundary Elements. We discretize (partition) the smooth boundary C' of a two-dimen
sional region Rinto N segmentsC}, j = 1,..., N (Fig. 2.1). Thechordsjoining the partition points
are called the boundary elements and will be denoted by C*] ,j=1,..., N, thepartition points are
called the extreme points of the boundary elements. The d|scret|zat|on of the boundary produces,

in general, an approximate region R and an approximate (polygonal) boundary C' = UN 1C;. The
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portion between the boundary C' and the approximate boundary C' will produce a discretization error.
The choice of boundary elements should always minimize the discretization error. If the boundary
conditionsaremixed, i.e., if the essential and natural boundary conditions are applied on two portions
C1 and Cy (C = C7 U (Cy), the two points common to these portions are taken as extreme points. In
the case of zero discretization error, we will have R = Rand C = C.

The points where both known and unknown values of u and ¢ are considered according to the
prescribed boundary conditions are called nodes. Three types of nodes are explained in Fig. 2.2:

extreme points

discretization error

boundary segment C;

boundary element EZ]

Fig. 2.1.

mid-node extreme
nodes

/ @
poi {t ; ;
(a) (b)
@(t(r)%me
mid-node node
~
(c)

Fig. 2.2. Elements, Mid-nodes, and extreme nodes.
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1. Constant elements have mid-nodes, which are taken at the midpoint of each element, asin
Fig. 2.2.(a);

2. Linear elements have extreme nodes, which are at the intersection between two elements, as
inFig. 2.2.(b); and

3. Quadratic elements have both mid- and extreme nodes, asin Fig. 2.2(c).

2.1. Constant Elements. Let the boundary C of the region R be smooth, and let it be
discretized into N elements, of which N; elements belong to C; and N> to Cs. This discretization
produces an approximate region 2 and an approximate boundary C'. Assume that the values of u
and ¢ = Ju/0n are constant on each element and equal to the value at the mid-node of the respective
element. Eq (1.14) for agiven node i becomes in the discretized form

@-Fiuj/k q*dSZZN:%/ u’ ds, (2.1)

where ¢* = du*/0n. This BE Eq appliesto aparticular nodei. Note that the terms with féj relate
to the node 7 with segment j over which the integral is evaluated. Denote the integrals fé]_ q*ds

on the left side of (2.1) by I?ij, and the integrals féj u* ds ontheright sideby G;;. Then Eq (2.1)
becomes

u(i) | = al
j=1 j=1

The integrals Hij and G;; are easy to evaluate for the constant element case. However, for higher
order elements they are more difficult to evaluate analytically and will be computed by using the
Gauss-Legendre quadrature rules (see §3.2.2 in the Handbook).

Eq (2.2) relates the value of « at the mid-node ¢ with the value of « and ¢ at al the nodes on the
boundary including . If we write Eq (2.2) for each mid-node ¢, we get asystem of N equations:

N N
> Hiu; =Y Gija, (2.3)
j=1 j=1
where R
H;; fori #£j
H;; = . 1 2.4
! H¢j+§ fori = j. ( )
Eq (2.2) can be written asin matrix form as
HU = GQ. (2.5)

Notethat N = N; + No, and that the V; values of » and N, values of ¢ are known (prescribed). So
we have a set of NV unknownsin (2.5).

Theterms H;; include the coefficients ¢(¢) (= 1/2 for smooth boundary, see Fig. 1.2(a)). These
terms are evaluated under the condition that when a uniform potential « is applied over the entire
finite region the value of ¢ = du/dn must be zero. Then (2.5) impliesthat

HI =0, (2.6)
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where I isthe unit column vector. Eq (2.6) means that the sum of all elements of A in arow should
be zero. Thus, thevalues of the diagonal coefficients can be easily computed once all the off-diagonal
coefficients are known, i.e.,

N
Hy=-> Hy, i=1,-,N. (2.7)

2
L et usdenotethe N, unknown values of « by @ and the NV, values of ¢ by ¢. We can reorder Eq (2.5)
such that al the unknowns (V, of @ and N7 of §) are on theright side. Then Eq (2.5) can be written

as
AX =F, (2.8)

where X isthe vector of unknowns u and ¢. Hence, we can determine all the values of « and g on
the entire boundary C from (2.8). Once thisis done, we can compute the value of « at any interior
point by using (1.5) which in the discretized form is

N N
u(@) =Y q;Giy — Y u;Hy. (2.9)
j=1 j=1

Theinternal fluxes ¢, = du/0dz and g, = Ou/0dy can be computed by differentiating (1.5); thus, at
the node

. ou* aq*
(i) = ~qax dS—/éU%dS,

¢
N N
B ou* aq*
= Zq] (/@ o ds) quj (/@ o ds) , (2.10a)
Jj=1 J J=1 J
ou* dq*
1) = ds— | u ds
qy (1) Dy "By
N N
ou* aq*
= q; ds | — U ds |, 2.10b
where
8u*_i_(_ )__Lar
ox 27 Ox 27r Oz’
0 T
dy 2w Oy 27r Oy’
o0 1 [1(or o (2.11)
or  2n |r \oz " 6yn2 ’
or _ 1[1for or
oy  2m |r oz ! 8yn2 ’

andnq, ne arethe componentsof the unit normal ii. Theintegralsin (2.10) are evaluated numerically
by the Gauss-L egendre quadrature. So also are the integrations for I?ij and G;; done numerically
by Gauss-Legendre quadrature for all elements j + . For the node i, note that H;; = 0 (due to the
orthogonality of r and 1), and

‘s = Do Lify _m(X
Gii:/ciu ds_%/ciln(;)ds_QW[l ln(Q)}, (2.12)
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where L; = \/(zi+1 — ;)% + (yi+1 — y;)? isthelength of the element i (see Fig. 2.3.).

E-1 ol -

r:-L/2 r=L/2

| rel=r Irol=1n =T

Fig. 2.3. A constant element.

For the derivation of (2.12), wetaker = ¢L;/2,s0r =0a{ =0andr = £L;/2a £ = +1. Then,
sinceln(1/r) hasalogarithmic singularity at r = £ = 0,

Gii

%/aln(%)ds:%Q/Olln(gi)%dg
- %[gln%—gm&f}

QL_W 1+ m(%)],

1
0

which gives (2.12).

Program Bel

For computer implementation in this case, the program Bel.c solves isotropic potential problems
with constant « and ¢ at the mid-nodes and computes them at the required interior points of the
region. Theinput fileis created in the format explained below. It can be named Bel.in, or any other
name, not to exceed 10 characters including the extension which may be .in or .dat. The output file,
named Bel.out, or any other name not to exceed 10 characters, can be typed (on screen), printed
(hard copy), or used as input for graphics.

Dictionary of Variables:

N
L

Code

Xm
Xm(j)
Ym
Ym(j)

Number of boundary elements (same as the
number of mid-nodesin this case)

Number of interior points where the results are
to be computed

Indicator for the type of boundary conditions at
the nodes.
Code= 0: Only the value of « isknown at the node.
Code= 1: Only the value of ¢ is known at the node.

x-coordinate of extreme-points.

y-coordinate of extreme-points.

x-coordinate of mid-nodes.

z-coordinate of mid-node j.

y-coordinate of mid-nodes.

y-coordinate of mid-node j.
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G Matrix defined in (2.5).
After the boundary conditions are imposed, the
matrix A of (2.8) is stored in this location.

H Matrix defined in (2.5).

Bc(j) Prescribed values of boundary conditions for
node ;.
If Code= 0, then Bc (j) contains prescribed values
of .
If Code= 1, then Bc(j) contains prescribed values
of q.

F Right side vector in (2.8).
After solution, the values of unknown « and ¢ are
returned in this location.

Xi x-coordinate of the interior point where the
value of u isrequired.

Yi y-coordinate of the interior point where the
value of v isrequired.

u Vector of potential values at interior points.

Dim Maximum dimension of the system of Eqs (2.5).

Perp Perpendicular distance from the point (z,, y,)
tothe element 5 (Fig. 2.5a).

Xg, Yg (z, y)-coordinates of Gauss points (nodes) ¢;, i = 1,2, 3,4

HL Half-length of the dlement C; (= L;/2).

nx, ny ng, Ny (Components of the unit normal vector n).

rx, ry, rn T, Ty, T (NOtethat v, =7 zng + 7 yny).

For the values Gauss-L egendre nodes and weights, see Table A.06 on this CD-R.

Input Format: Theinput file contains the datain the following order:

Entry # Variable  Explanation

1 Title Must enter problem title (max 80 chars).
2 N Number of boundary elements.
3 L Number of interior points where

solution isto be computed.

next N-pairs X, Y x, y coordinates of extreme points
(see Note below).

next N-pairs Code, Bc N-pairsof Code (0 or 1) and Bc at
each mid-node, starting with node 1
and ending with node V.

next L-pairs  Xi, Yi  x andy coordinates of interior points
where the solution is to be computed.

Note: The N-pairsof entriesfor the coordinates of the extreme points of boundary elementsare
read in counterclockwise order if the region R isinterior to the boundary C', and in clockwise order
if R isexterior to the boundary C'. The convention is to traverse the boundary in such a manner that
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theregion R remainsto the left.
The program Bel callsthe following functions: Sys1, Quadl, Diagl, Interl, and Solve.

Sys1 can be summarized by the following algorithm:

1. Computethe coordinates (X,,, Y,,),m = 1,--- , N, of themid-nodes from the extreme nodes
(xja yj):
Tnt1 =T1, Ynt1 = Y1 (Se€Fig. 2.4);
Xm:w7 }/m:w forjzltoN.
2 2
€N-1> VN-1)
N-2

/
© e Vived Egovy)
Fig. 2.4.
2. Compute the matrices H and G
forj=1to N
fork=1to N

j#k: cal Quadl
j=k: cal DIAGL

3. Produce the matrix Eq (2.8) F = AX:
fork=1t0 N
if Code(k) =1,thenforj =1to N
temp = Gjx;  Gjx = —Hji; Hjp = —temp = —Gjg,

where temp is atemporary memory location. Asaresult, the matrix A isinlocation G; F' isnot yet
evaluated, but all known terms areinthelocation of H and U. Thelocation H contains both known

G and H, and thelocation U contains both known U and Q.
4. Finaly,

F; =00 forj=1toN
F; = F; + Hjj, - Bey fork=1toN.
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Theleft side now stores F' (all known values). The rearrangement of the system of equationsto form
the matrix A (now stored in G) and the left side vector F' (stored as F) of Eq (2.8) is explained as
follows. Suppose, Eq (2.4) (or in its matrix form (2.5) ) iswritten, in the expanded form, as

Code 0 Code 1
Hyty + HioGp + Higug + - + Hipun = G11g1 + Gi2q2 + Gi3ds + - + Gindn

Hoytiy + Hootiy + Hogug + -+ - + Hopuy = G211 + Ga2g2 + Ga3ds + - - + Gandn (2.13)

Hnlﬁl + Hn2ﬁ2 + Hn3u3 +-+ Hnnun = Gn1q1 + Gn2q2 + GnBéS +-+ Gnn(jna

where 1, ¢ denote the unknown values. In view of part 3 of the above agorithm, we note that G ;.
isfirst stored in the location temp, then —H ;, is moved to G, and finally replace the values Gy,
stored at temp, to the location —H ;. The result is the matrix equation (2.8), thus rendering the
system (2.13) into the form

—Guq1 — Gi2qe + Hizug + - - - + Hipuy, = —Hi1t — Higtio + Gizds + - + Gingn
—Goqi — Gaagqe + Hagug + -+ - + Hopuy = —Ho1ty — Hootlio + G23Gs + - -+ + Gangn

—Gniqi — Gnaqe + Hpsus + -+ - + Hppup = —Hp1 U1 — Hpotlio + Gpsds + -+ - + Gandn,

which is the expanded form of Eq (2.8).

As mentioned above, Sys1 uses the two functions. Quadl and Diagi. The function Quadi
computes the off-diagonal elements of H and G by using the Gauss-L egendre quadrature formula.
The variable Ra is explained in Fig. 2.5(a). In order to compute H;; and G, i # j, we consider
two different nodes ¢ and j in Fig. 2.5(a), where (z,,y,) are the coordinates of the node ¢ under
consideration; (i, k = 1,2, 3, 4 are the Gauss points (nodes) marked on the element with mid-node
Jj; ¢ = 1and ¢ = —1 arethe extreme points with coordinates (z;, y;) and (xj+1, y;+1) respectively
of the node j; m denotes the slope of the boundary element with node j; and Ra is the distance
from node ¢ to a Gauss point (nodes) (i, k = 1,2,3,4 (Fig. 2.5(8) ). The coordinates of the Gauss
points (nodes) are denoted by (Xg,Yg). If wedenote Ax = (241 — x;)/2, Ay= (y;+1 — v;)/2,
Bx= (741 +%;)/2, andBy = (y;+1 +¥;)/2, thenm = (y;41 —y;)/(xj41 — x;) =Ay/Ax=slope

of the element C;. Also, the equation of the element with node j is

m(z; —z) — (y; —y) =0,

the distance

Ra = \/(:cp - X9)2+ (yp — Y9)?,

and the half-length of the element C;

L
— \/Ax2 + Ay? = HL.

-t
2
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@

i+t , W)

(i w)

®) Ei+15 Vis1)

Gi )

Fig. 2.5.

Also, the directional derivative of In(1/r) = —% In(z? + y?) in the direction of i is given by

1 " Yy
TNy +7T4yNy  IX DX+ Ty-ny
T r2 - (Ra)? ’

whererx = (Xg — z,)/Ra = cos o, ry = (Yg — 2,,) /Ra = sin a (See Fig. 2.5(8),(b) ). Then, by an
4-point Gauss-L egendre quadrature, we have

4
1
Gij = / u*ds = Zln (E) W; \/Ax? + Ay?, (2.14)
Cj 1

i=

4
* 1 V(@ —xi1)? + (g — yie1)?
Hij/éjq ds:leﬁln(;)iWi ity > i — Yj

1=

4

1
Ra)? (rx -nx +ry-ny) W;y/Ax? + Ay2. (2.15)

i=1

We can use a Gauss-L egendre quadrature formulawith different Gauss points (nodes). An empirical
rule to decide which one of the Gauss-L egendre quadrature formulas can be used is as follows:. Let

1

= oV (22, = X(1) = X(@)" + (29, — Y (1) - Y (2))", (2.16)

S

where (z,, y,) are the coordinates of the node ¢, and X (5),Y (j),j = 1, 2, are the coordinates of
the extreme points of the node j of the element of length L;. Then, use 6-point Gauss-Legendre
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quadrature formula if s < 1.5, 4-point formulaif 1.5 < s < 5.5, and 2-point formulaif s > 5.5.
However, the 4-point formula gives good results in the constant and linear cases, whereas a 10-point
formulais used with advantage in the quadratic and higher order boundary elements.

Diag1l computes the diagonal elements G;; of the matrix G given by (2.12).
Solve usesthe Gauss elimination method to solvethe system of equations AX = F' by providing
interchange of rows when a zero diagonal element is present.

Note that since the fundamental solution in the program istaken as1n(1/r), and not QL In(1/r),
v
all elements of H and G are divided by 27 in the end before the output is produced.
Inter1l computes the values of « at interior points by using (2.9). It reorders B¢ (boundary
condition vector) and F (unknown vector) such that all values of « are stored in Bc and all values of

q inF. Notethat since all H and G terms appear multiplied by 27, the solution for interior pointsis
also finally divided by 2.

We present some examples. Read §9 (last section) before running this and other programs.

ExamMPLE 2.1. Heat flow problem in the region shown in Fig. 2.6 is the simplest case of a
linear one-directiona flow.

=0 e . 8, 2
6 T T
109 » 6
-+ A X X C 4+
u=0 u=200 110 BX > 5
- AX X Cc
12¢ > 4
Py | Py | Py
q=0 6 1 ! 2 3
@ (b) Constant Elements
9 . 8 . 7
A d hd
10 6
- A X C L 3
1 BX 5
- A X X C o
12 x 4
& &
hd hd
1 2 3
(c) Linear Elements
Fig. 2.6.

Theinput fileisex2.1.in and the output fileisex2. 1. out. The exact solution for the problem
. L T .
V2u = 0 with u(0,y) = 0,u(a,y) = Tp is given by u(z,y) = “Y%. Inthis example, a = 6,
a
Ty = 200 gives the exact u = 100z/3, and ¢, = 100/3, ¢, = 0. =
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ExAMPLE 2.2. Consider the potential/heat transfer problem represented in Fig. 2.7. Theinput
fileisex2.2.in and the output fileisex2.2.out. =

231.6
148.5
u 453
T 9 8§ , 7 q —>
L —o —e
10 ¢ 6 48.9
- X X =
11 ¢ X » 5 437
N x % o
12¢ ® 4 48.9
Py [ o [ Py
1 2 3
o u=0
Fig. 2.7.

@

E
v
Fig. 2.8.

ExAMPLE 2.3. Consider the heat transfer in a hollow circular cylinder of radii 10 and 30 (Fig.
2.8(a)). Because of the axial symmetry we discretize the quarter region into 16 constant elements
(Fig. 2.8(b)). Theinput fileis ex2.3.in and the output file is ex2.3.out. Exact solution for a
hollow cylinder of inner and outer radius a and b respectively is given by

Ta — Tb T

T=T,+-2 "1 " 10<r<30,
+1n(a/b) ta "
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where T, and T), are the prescribed temperatures on the circular boundariesr = a and r = b
respectively. Exact T/(20) = 621.1442. A better accuracy is achieved by taking more elements on
the circular boundaries. See also Example 2.8. =

2.2. Linear Elements. Thevariation of u and ¢ isassumed to be linear within each element.
The nodes are at the intersection of straight elements, and hence called extreme nodes (Fig. 2.2(b)).
In this case the Bl Eq (1.14) leads to the BE Eq

N N
c(i)u(i) + Z/C ug* ds = Z/C qu* ds (2.17)

for N elements. Unlike Eq (1.14), we cannot take u; and g; out of the integral sign since they
vary linearly within each element. Also, ¢(i) = 1/2 only for smooth boundaries. For nonsmooth
boundaries, we will discuss a method to determine c(¢) later (see §2.3).

The (Lagrange) interpolation functions for alinear element in normal coordinate system are

s 6= 3(1-0)
1 '2 1 (a)

2-n(c|J?IneeE;erl)ement ¢2 = 5(1 +£).

. o1 = —%f(l —£)
_ _¢#2

.—L«l A s P2 = (11 £°) (b)

3- ?gggd%?g)]em ¢3 = 55(1 +&).

9
p1 = _E(l - &)(1/9-¢)
o7

¢2 (1-€)1/3-¢)

T
(©
ks b5 = 25 (1-€)(1/3+€)
1 A 2 g e|3 . 4 9 )
- Pode dmen b=~ (14 8)(1/9 - &)

Fig. 2.9. Linear Elementsin the Normal Coordinate System.

Note that the interpolation functions ¢;(§;) are chosen such that
1, ifi=j
0, ifi#j,

where ¢; denotesthe ¢-coordinate of the j-th node of theelement, ¢; (¢ = 1,... ,n) arepolynomials
of degreen — 1 (n being the number of nodes in the element), and 6;; is the Kronecker delta.

$i(&5) = bij = {

Consider an arbitrary segment as shown in Fig. 2.9(a). Thevalues of v and ¢ at any point of this
segment can be determined in terms of their nodal values and two linear interpolation functions ¢,
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and ¢- such that, for the case of both « and ¢ varying linearly, we have

u(€) = drus + pous = b1 o] [ug ua]”,

2.18
q(&) = dr1a1 + P2q2 = [¢1 D2] [0 2], (2.18)

where ¢ isthe dimensionless coordinate ¢ = z/(1/2) = 2z/l,and ¢1 = § (1 — &), g2 = 5 (1 +&).
Theintegrals along the element j on the left side of Eq (2.17) is

/C uq" ds = /C (61 2] [ua ua] " ds = /C (61l ds " o)

= [hi1 hio) [ug u2) 7,

where
hil = [ qblq* ds =4ai, hiQ = /~ qbgq* dS = Q2. (2.20)
o Cj
For theright side of Eq (2.17)
/ qu” ds = / [p1 polu* ds[q1 g2)” = (g1 9i2) (01 q2)7, (2.21)
Cj Cj
where
gi1 = [ ¢1U* dS = bl, gi2 = / ¢2U* ds = bQ. (222)
é; ¢
Substituting (2.19) and (2.21) for al j elementsinto (2.17), we get for node i
c(i)u(i) + [Ha Hiz -+ Hin[u1 ug - Un}T =[G Gia -~ Ginl[01 q2 -+~ Qn}Ta (2.23)
where R
H;; = h; term of element j + h;o term of element (j — 1) = a3 + ao. (2.24)
Similarly
Gi; = gi1 termof element j + g;» term of element (j — 1) = by + bo. (2.25)

Formulas (2.23) and (2.25) represent the assembled equation for the collocation point i. For i = j,

1 1 1
Gii = 5= “ds = — ds = — (u1G; G2). 2.26
2m Ja, e s /él [u1¢1 * UQ(bQ} 5 27 (ul i T U2 ”) ( )
91 92
I
I I
n=0 n=1
r=0 r=1L
Fig. 2.10.

But in this case we find that although the interpolation functions ¢; 2 = 3 (1 F £) are used in the
evaluation of H;;, they fail to remove the singularity at ¢ = 0 when used to compute GG;;. Therefore,
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we modify the function ¢, » by using thetranslation{ = 1 — 2(1 — ), whichyields¢; = 1 —nand
¢2 =n,0 < n < 1. Then, using the substitution » = L;n, so that ds = dr = L;dn (see Fig. 2.10),

we get
L 1 ! 1
G;;, = op1ln{-)ds= [ (1-n)ln L;dn
Cs r 0 Lln

1
L;
= Li/ (1-n)(=InL; —Inn) dn= 5 B - lnLl} , (2.27)
0
1 ! 1
G?i:/ ¢>21H<) ds:/ nln( )Lidn
i r 0 Lin
! L; 1
:Li/ n(—InL;,—Inn)dyp=—|=—-InL;|. (2.28)
0 212
We can now write Eq (2.23) as
c(i)u(i) + Z Hiju; = ZGijqj) (2.29a)
j=1 j=1
or . .
Y Hijuj =) Gijq;, (2.29b)
j=1 j=1
or, in matrix form, as
HU = GQ. (2.29¢)

Note that the value —u/2 obtained in (1.11) is now not valid unless the curve/surface is smooth.
We can always compute the diagonal terms of H by using the fact that when a uniform potential
is applied over the entire boundary, the normal derivative (i.e., ¢ values) must be zero. Hence, Eq
(2.29¢) becomes HU = 0. However, the sum of all elements of H in any row cannot be zero, and
the value of the diagonal elements can be easily evaluated once all off-diagonal elements are known,
by using
N
H;=1- Z Hij. (2.30)
j=1j#

Therefore, we need not compute the value of ¢() explicitly. Also, since the fundamental solutionin
the program istaken as — Inr, and not as — In r/(2), Eq (2.30) iswritten in the program as

N
H; =27 — Z Hij, i=1,...,N. (2.31)
J=1,j#i
The results are then finally divided by 27 before the output is produced. The solution at the interior

pointsisalso finally divided by 27 in Inter2 (see program Be2 in the next section). Thistechnique,
simpleasit is, is maintained throughout all computer programs to ensure uniformity.

2.3. Discontinuous Elements. A corner node becomes significant in linear and higher
elements where the second node (marked ) of the (¢ — 1)-st element is the same as the first node
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of the i-th element C; (Fig. 2.11(a)). If the potentia is the same throughout the boundary, then the
value of w onthe C;_; isthe sameason C;. But thisisnot, in general, truefor the flux ¢ at acorner
since the normals to the adjacent elements may be different, and hence not unique, at a corner; or
the prescribed value of ¢ along an element may possess discontinuities at some points. The former
situation which occursin most physical problemsis solved by rearranging thetermsin (2.23)—2.25),
which leads to the BE Eq

N 2N
Jj=1 j=1

where the upper limit 2V of right sum corresponds to the case when the value of ¢ at node i for the
element C; is different from that for the element C;_; (see Fig. 2.11(b)). Defining, asin (2.4),

-E[ij for ¢ 7&]
Hij +c(i) fori=j,

Hij =

(2.33)

we get the same matrix form of the BE Eq asin (2.5), where G isnow a N x 2N matrix.

v \
AB= Li—¢e1—-¢p

Fig. 2.11.

The following observations are worth noting: At a corner node the flux ‘before’ and ‘&after’ the
node (i.e., the prenodal and postnodal fluxes) may be the same, or they may be prescribed differently.
A similar situation may occur for the prescribed potential. However, only one of these variables
will be unknown at a node. The following four cases arise at a corner node depending on adjacent
boundary conditions:

(i) The prenodal and postnodal values of ¢ are known (unknown: values of u);

(i) The value of u and the prenodal value of ¢ are known (unknown: postnodal value of g);

(iii) The value of « and the postnodal value of ¢ are known (unknown: prenodal value of ¢); and
(iv) The values of u are known (unknown: both pre- and postnodal values of ¢).

Except for the case (iv), there is only one unknown in the three cases which can be computed
by using (2.32) and solving the subsequent matrix equation HU = GQ. The case (iv) can be
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computed by making the two adjacent elements at a corner into two discontinuous elements, by
replacing the corner node ¢ into two nodes i, and i, arbitrarily closeto : such that |i —i1| = ¢; and
[(i +1) —ig| = &g, and &, = 2e1/L; — 1,and §;, = 1 — 25/ L; arethelocal coordinates of the
nodes i, and i,, and the values of u and ¢ prescribed at node 7 are now assigned to the nodes 7, and
1o (Fig. 2.11(b)). Since Egs (2.18) hold, we have

{m}=[oe) s {m). 280

Substituting (2.34) into (2.18) we find that

w€) =[pr ¢o] Qlui, wiy]” (2.35)
9€) =[o1 ) Qlai, )", (2.36)
where . ;
- i — €2 —€1
Q= Li—¢e1—e { —€2 Li—gl] ’ (2.37)

where L; — e, — &5, denoted by AB in Fig. 2.11(b), isthe length of the discontinuous element C;. It
should be noted that the coefficient ¢(i) = 1/2 for discontinuous elements. Theintegrals h;,1, hiy1,
gi,1, gi»1 dong the discontinuous elements are then given by

hikl = / ¢qu* d87 Gix1 = / qkaU* dS, k= 1727 (238)
Cj Cj

which are evaluated by Gauss-L egendre quadrature for the case when the node ¢ does not belong to
the element. In the case when the node ¢ belongs to the element, h;,; = 0 = h;,;, and g;, ;, gi,; are
obtained by integration asin (2.26). For the corner nodes, as shown in Fig. 2.11(b), the segments
AD, BC must be treated like additional linear elements. The linear elements of the type AD, BC
may be further discretized to smoothen the corners out, which are thus replaced by polygonal curves.

Besides corner nodes, discontinuous elements also arise in certain cases where the potential «
is undefined (and hence discontinuous) at a point on the boundary C'. Example 2.7 discusses this
type of discontinuous elements. For linear elementswe will use the program Be2 which is described
bel ow.

Program Be2

This program carries out the computer implementation of the case of linear and discontinuous
elements. It deals with the case of Figs. 2.2.(b) and 2.11, and solves the orthotropic potential
boundary value problems where v and ¢ vary linearly aong the boundary elements, with the nodes
same as the extreme points. The Input fileis created as, e.g., Be2.in, and it follows the same format
asin Bel.in. However, it should be noted that in this case the dimension of the array Bc becomes
2N, since there are two boundary conditions for each element (one at each node). The dimension
of the array F remains N. The Output file is created as Be2.out which can be typed (on the monitor
screen), printed (as hard copy), or used as input for a graphics subroutine. The program calls the
following functions: Sys2, Quad2, Diag2, Inter2, andSolve.

_ Quad2 differsfrom Quad1 in that instead of computing only one value for the boundary element
C; dong which the integration is carried out, it computes the elements of the matrices H and G
corresponding to the adjacent nodes and (i + 1).
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Diag?2 is a little different from Diag1; it computes the elements of the matrix G along the
boundary elements which include the node under consideration.

Inter2 computesthe potential at interior points as given by (2.9), but the values of G;; and Flij
to be used in (2.9) are defined by (2.23)—(2.28).

Dictionary of Variables. Inadditiontothevariabledefinedintheprogram Bel, thefollowing
variables are also used:

ux, uy U 4, U,y defined analogous to (2.11).
gx, qy ¢, 4,y defined analogousto (2.11).

ExAMPLE 2.4. We solve Example 2.1 with linear elements; use Fig. 2.6(c). Theinput fileis
ex2.4.in and theoutput fileisex2.4.out. =

ExXAMPLE 2.5. Solve the Laplace equation V2u = 0 for an eliptic region R, shown in Fig.
2.12, with the semi-axes 2 and 1 respectively, and the boundary condition u = (22 + y*)/2 on
C. Because of the symmetry about both x and y axes, we consider the quarter region with 11
linear elements (11 nodes). The input file is ex2.5.in and the output file is ex2.5.0out. Note
that the first 10 extreme points, marked 1 through 10 in Fig. 2.12, are given by z; = 2 cos j=/18,
y; = sinjn/18,7=0,1,...,9. =

ExaMPLE 2.6. Thisisan example of discontinuous elements at corner nodes. The input file
fromFig. 2.13isex2.6.in and theouput fileisex2.6.out. =

EXAMPLE 2.7. Solvethe Laplace equation V2« = 0 in the upper-half circular region of radius
10(Fig. 2.14(a)). Theproblem hasadiscontinuouspotential at = = 0 wheretheflux hasasingularity.
We treat the first and the last element as discontinuous elements, although the point z = 0 does not
qualify as a corner (Fig. 2.14(b)). Theinput file from Fig. 2.13isex2.7.in and the ouput fileis

ex2.7.out.

The exact solution is
1
u(z,y) = 100 (7r - arctany) , 0<|z] <10,0 <y <10.
T x

Theflux adong the z-axisisgivenby ¢ = —100/7z, 0 < |z| < 10, whereas on the circumference by

100
q= ( (n1y — noz) = 0.

I2 + y2)2
The graphs for u, and ¢ along the x-axis are shown in Fig. 2.14(c) and (d), respectively. =

ExamMPLE 2.8. We solvethe problem of Example 2.3 by treating the four corner nodesasin Fig.
2.15. Theinput fileisex2.8.in and the ouput fileis ex2.8.out. These results can be compared
with Example 2.3. =
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2.4. Quadratic and Higher Elements. For quadratic elements (Fig. 2.2(c)) we use the
interpolation functions ¢ = —2 £(1—¢), ¢ = (1 — €2), and g3 = 3 £(1 +€). Thenthefunctions
u and ¢ are written as

u(€) = drus + dous + Pauz = (1 Pa da)[ug ug us]”,

2.39
q(&) = d1q1 + Paus + Pauz = (b1 P2 B3)[q1 g2 g3]" - (2.39)

Thefunctions ¢4, ¢, ¢3 Which vary quadratically give the nodal values of the functions when speci-
fiedfor thenodes(seeFig. 2.9(b)). Using theseinterpolation functions, the evaluation of theintegrals
along the boundary element ; gives (compare with (2.19) and (2.21))

/~ uq* ds = [hjl hjg hj3} [u1 us u;),}T, (240)
C;
where
B :/ brg*ds, k=1,2,3. (2.41)
Cj
which, using the Jacobian
_ds dx\? dy\ 2
=2 = (dg) +(d§) (2.42)
yields
2
[ uq* ds = / w(§)|J|q" ds. (2.43)
Cj (1)
Similarly,
/ qu” ds = / 951 952 9j3)[a1 a2 3] dis, (2.44)
where
gjk = / Pru” ds. (2.45)
Cj
Hence, for node i
c(i)u(i) = [Hin Hiz -+ Hil[ur up -+ un)” = [Gi1 Gz - Ganllar a2 -+ a7 (2.46)

where

Hij = h;; term of element (j — 1)+h;o term of element (j + 1)+ h;3 termsof element j, (2.47)
and

Gij = gi1 termof element (j — 1) + g, term of element (j + 1) + g,3 terms of element 5, (2.48)

(compare with (2.23)).

It is not easy to evaluate G;; for quadratic elements, as we have done in the cases of constant
and linear elements. For better accuracy in numerically computing both H;; and G;, a 10-point
Gauss-L egendre quadrature is recommended. The value of the Jacobian |.J|, defined by (2.42), is
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needed for evaluating (2.43) and (2.44) numericaly. It can be computed by defining = and i interms
of the quadratic interpolation functions ¢1, ¢2, ¢3, defined above, as

de 1 de 2 de 3
T = ¢1:L,1'10 e _~_¢2mno e +¢3xn0 e ,

y= d)lynode 1 + (blynode 2 + ¢1ynode 37

where the superscript refers to the local node number of a quadratic element. Then the derivatives
Oz /0 and Oy /O¢ can be easily computed.

3. Poisson Equation. We consider the Poisson boundary value problem

V2u=b, inR (3.1)
0

u=1ug onCy; —qu:qO on Cs, (3.2)
on

where b = b(x,y) and, as before, C = C; U C5 is the boundary of atwo-dimensional region R.
Asin §1, we will start by taking the test function as u*, where by u* = QL log |17/| is the

v X —X
fundamental solution of (1.2). Thisleadsto

R R C
+/ u*quS—/ uoq” ds—/ uq* ds. (3.3)
Ca C1 Cs

Using V2u* = §(i) , so that // uV3u* dx dy = —u(i), asin (1.3), we obtain
R

—// bu*dmdy—u(i)—i—/ u*qu+/ u*qu—/ uoq*ds—/ ug* ds = 0,

R C] Cg Cl CQ

// bu* dx dy + u(i) + / uoq™ ds + / uq® ds = / u*qds + / u*qo ds, (3.4)
R Cl Cz Cl CZ

or, asin the derivation of (1.14), we obtain the two-dimensional Bl Eq as

c(z)u(z)—!—// bu* dxdy—t—/ uq” ds:/u*qu, (3.5)
R C C

where ¢(7) isdefined by (1.15). Discretization of (3.5) using constant elements, asin the case of Fig.
2.2(a), leads to the BE Eq

N N
c(i)u(i)Jr// bu* dxderZuj/ 7 dSZqu/ u* ds, (3.6a)
R = e = o

or
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or
N N
c(iyu(@) + B; + ) Hiju; = Gija, (3.6b)
Jj=1 j=1
or
N N
Bi+ ) Hiju; =) _Gijaj, (3.6¢)
j=1 j=1
boundary
interior element element

Fig. 3.1. Boundary elements and interior cells.

where H;; is defined by (2.4), and B; is obtained by integrating the domain integral

B, = // bu* dx dy (3.7)
R

numerically asfollows: Partition theregion R into amesh of finite elements which are called interior
cells (see Fig. 3.1). Note that these interior cells are conceptually different from the usual finite
elements although they appear similar. Then use the formula

M k
Bi=> (Z ijju’;) A, (3.8)

m=1 \ j=1

where M is the number of interior cells, k£ the number of integration points on each cell, W; the
weight function, b; the value of b at integration point j, u; the value of w* at integration point j,and
Ay theareaof thecell. Thus, in matrix form, the BE Eq for the N nodes of thetypeasin Fig. 2.2(a)
finally becomes

B+ HU = GQ. (3.9)

Note that NV; values of v and Ny values of ¢ are known since they are prescribed on the boundary.
We can then reorder (3.9) such that all unknown quantities (called vector X) areontheleft side. Then
Eq (3.9) becomes

AX =F. (3.10)

After solving (3.10), we obtain al values of u and ¢ on the boundary nodes. Then we compute the
value of v and ¢ at an interior point ¢ by using the formulas (2.9) and (2.10).

ExXAMPLE 3.1. Solve the Poisson equation —V2u = 2 on the elliptic region R shown in Fig.
2.12 with the semi-axes 2 and 1 respectively, and the boundary condition v = 0 on C'. The solution
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of this problem can be divided into two parts: u = u; +us, whereu; = — (22 +y?)/2 isaparticular
solution and u- is the complementary function. Since —V?2u; = 2, the problem reduces to the
Laplace equation V2u; = 0 with the boundary condition uy = —u, on C, which can be solved as
in Example 2.5. A similar problem is discussed in the next example. =

ExAaMPLE 3.2. The steady Poiseuille flow in apipe of circular cross section in the direction of

z-axisis defined by
0%u  0%u Op
B\as3tT335 )= 57
0x2 = 0y? 0z
where v isthe fluid velocity in the z-direction, p itsviscosity, and Op/0~z = —G aconstant pressure
gradient. The flow isthen governed by the Poisson equation —V2u = G /. The exact solution is

oy G (@
Y — u(a? +b2) a2 )

Because of theaxial symmetry wewill usethequarter regionshowninFig. 2.12. If wetakeG/u = 2,
we solve V2uy = 0 with the same input file asin Example 2.5. =

4. Non-convex Surfaces. The above analysis can be extended to problems on non-convex
surfaces (i.e., aregion with more than one boundary). An example of such aregionisgivenin Fig.
4.1.

Fig. 4.1. A non-convex surface with one hole

On non-convex surfaces (with holes), the direction of the normal derivatives on the exterior and
interior boundaries is determined by the following rule: For exterior boundaries, the numbering
scheme for boundary elementsis carried out in the counterclockwise direction, whereas for interior
boundaries it is defined in clockwise direction. This rule ia analogous to the convention used in
contour integration in complex analysis, maintaining the direction on the boundary so that the region
always remains to the left. This rule will enable us define the normal derivatives in computer
programs.

Program Beb

This program is used for the computer implementation of potentia problems on nonconvex
surfaces with constant elements (Fig. 2.2(a)). It starts in the same manner as Bel and adds two new
variables:

M (> 2): Number of different boundaries; if M = 1, use Bel or Be2.
Last: Number of last node on each different boundary.

Be5 callsthe functions Sys5, Quadl, Diagl, Inter5 and Solve.
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ExaMPLE 4.1. Solve the Poisson equation on an annular region with boundaries as two con-
centric circles of radii 1 and 2. We take 8 boundary elements on each circle (see Fig. 4.2, which
shows a concentric 8-gon annular region).

Fig. 4.2, Fig. 4.3.

Thus, there are 16 (constant) boundary elements and 2 different boundaries. The last numbers of
the nodes on two surfaces are 8 and 16. As boundary conditions, we assume that « = 0 on the
exterior boundary and v = 100 on the interior boundary. The extreme points are numbered in Fig.
4.2 according to the convention mentioned above. This boundary value problem can be viewed as
that of heat transfer between the two concentric circles. Note that

N Number of boundary elements 16
L Number of interior points 4
M Number of different surfaces 2

Last Last node numbersonthese surfaces 8, 16
Theinput fileisex4.1a.in, and the output fileisex4.1a.out. =

For the same problem with 32 boundary elementsand Last = 16, 32 (Fig. 4.3), theinput fileis
ex4.1b.in. Notethat the coordinates of the outer extreme points are given by

9 o o T
T; = 2cos 3 5 ) Yi = 28In 3 5 )

and of the inner extreme points by
mT mom
P = 3 J— — s i:—‘. —_— — 5 .:1’...,1.
T cos<8+2> Y 51n<8+2> ) 6

5. Domain Integral. The presenceof thedomainintegral term B;, defined by (3.7), inthe BE
Eq (3.6) introduces numerical integration on interior cells. Thismeans morelengthy computationsas
compared to those performed for integration on the boundary elements. A method that transform the
domain integral into a boundary integral will be helpful in maintaining the computational simplicity
of the BEM.
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A very simple case is when the function b is constant, linear or harmonic. Then V2b = 0. Let
v*(x,y) denote aGalerkin-type function such that V2v* = w*. Then, using Green’s second identity,

we get

ov* ab
2 % *v72 _ kY
//R (bV vt —v*V b) dxdy/c<b o v 871) ds,

ov* L Ob
Bi/@(ban —v (971) ds,

) 1 1 . . . . .
Sinceu* = 7 In (;) , achoice of v* isobtained by solving V2v* = u*, i.e,
™

which gives

VQU*—l 0 ( Ov ):ilnl,

T ror TW 2t r
which yields

r2 1
= —|14+In—].
v 877{+nr]

If we assume that a source of strength @; is concentrated at an interior point ¢, then

b= Q:6(3).

If finitely many sources are situated at interior points, then the Bl Eq (3.5) becomes

c(i)u(i)+/ ug”ds + B + 3 Quu :/u*qu,
c - c

(5.1)

(5.2)

(5.3)

(5.6)

where B; isnow defined by (5.2) asalineintegral, and the concentrated sources are easy to compute.

Other methods to transform the domain integral B; into boundary integrals for different types of

the function b will be discussed in detain in Chapter 9.

ExAMPLE 5.1 Consider the Poisson equation —V2u = 2 in R with the Dirichlet boundary
condition w = 0 on C, where (a) R isthe elliptic region of semi-major axis a; and semi-minor axis

as. Inthis case the exact solution is given by

1 1’2 y2
u=-———|(l-m5 -
CLl +LLQ a’l a2

(see Example 3.1). Takinga; = 2 and as = 1, we get

Interior point  u (Be2) wu (exact)

(1.5,0.0) 0.345 0.35
(0.6,0.45) 0563  0.566
(0.0,0.45)  0.634  0.638m




6. UNBOUNDED REGIONS 29

10
Fig. 5.1.

(b) R isthe equilateral triangle of altitude a, (see Fig. 5.1), where, because of the axial symmetry,
we havetaken 11 linear elements ( three discontinuous, one at each corner) in the upper half triangle.
Theinputisex5.1b.in. The exact solution is given by

20 Lo oy L3 L
u=g-a 2(3: +y)+2a(m 3zy?) . m

6. Unbounded Regions. The Bl Eq (1.14) isaso valid for unbounded regular domainsin
thefollowing sense: Let R* be the region exterior to afinite domain D (obstacle) with boundary C,
and let K beacirclein R* of radius r and center at apoint : on C (see Fig. 5.2) ). Eq (1.14) for the
region outside the boundary C' and inside the circle K becomes

c(i)u(i) + /

JC

:/ﬁmmm@@@+/qmmmm@w. (6.1)
C

K

u@f@m@m+ﬁymf@m@w

Now let r — oo in (6.1). Then the Bl Eq for an unbounded region with a cavity should satisfy the
condition

lim [q(x)u* (&, z)ds(x) — u(x)g* (&, x)] ds(x) = 0. (6.2)

T™—00 K

Theregularity conditionsfor Eq (6.2) at infinity are asfollows: Thefunction «* behaveslikeln r, its
derivative ¢* isof order O(1/r) asr — oo, and ds(z) = |J| d0 = O(r), where J isthe Jacobian of
the transformation from the cartesian to polar cylindrical coordinates. Hence, the two termsin the
integral (6.2) do not approach zero separately asr — oo, but they must cancel each other. Thus, if
we apply the condition (6.2) to (6.1) asr — oo, we obtain the same BE Eq as (1.14), i.e., the Bl Eq
for an unbounded domain with a cavity is the same as that for finite domains. The sameisalso true
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for points inside an unbounded domain.

Fig. 6.1. Unbounded region with afinite obstacle

However, in the case of an unbounded domain, the matrix H is not defined like (2.2). Instead,
the regularity conditions at infinity will not hold if « is assumed to be constant everywhere in the
unbounded domain €2, where

. 2

1
lim/ q*ds = lim/ (f—)rdt?:fl.
r—o0 |- r—oo Jo 2rr

Hence, the coefficients H;; in the case of an unbounded domain are again given by (2.31).

6.1. Exterior Problems. Consider the exterior problem for the domain showninFig. 6.2(a).
The boundary of the exterior domain is traversed in the clockwise direction, and the outward normal
isdirected inward. Suppose we have N boundary elements, which create a closed polygon with NV
sidesand N + 1 vertices. If wehave nodes at each vertex, thenthereare IV + 1 nodes, numbered from
1 through N + 1, such that the node 1 and the node NV + 1 coincide. To useformula(1.15) at acorner
(vertex), say at node i, the acute angle o; that liesinside the polygon is actually the exterior angle for
this problem. Then the interior angle 6; for the exterior problem is given by 6, = 27 — «;. Recall
that the angle «; istheinterior angle for theinterior problem. To find the angle «;, we consider three
consecutive nodesi — 1, 4, and i + 1, in the clockwise order, where: = 1,2, ... , N +1 (Fig. 6.2(b)).

The cartesian coordinates of all these nodes are known, i.e., the node ¢ has coordinates (z;, y; ),
i=1,2,...,N + 1. Then the angle «; isfound by using the slopes of the sides joining nodes i to
¢ —1,and nodesi toi + 1. Thus,

arctan (7'%+1 Ui ) — arctan (7%_1 Ui ) ‘
Li+1 — T4 Ti—1 — &4

o =

Then the required interior angle for the exterior problem is 6; = 27 — «;. For the interior angle at
node 1 (which is the same as the node N + 1), use the three consecutive nodes N, 1 and 2 in the
above formula to find the angle 6, at node 1. Depending on the type of the nodes used, formula
(1.15) is used to obtain the value of ¢(i).

Note that for the exterior problem the program Bel.c (constant elements) is used without any
change, i.e., without insertingminussignin (1.144), provided the coordinatesareused in the clockwise
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direction. But in the case of Be2.c, Beb.c and Bell.c, the interior angle 0, which for the exterior
problem is 2w — «, needs special attention. These programs are written for the interior problems
only. So for the exterior problems the computer code should be modified by replacing the angle 6
(of of theinterior problem) by 27w — «. recall that the angle o is actually 6 for the interior problems.
So inthe computer codes replace 6 by 27 — «, and remember to take the coordinates of all the nodes
(corner or otherwise) in the clockwise direction for exterior problems.

N-1

itl
(a) (b)
Fig. 6.2.

7. Mixed Boundary Conditions. The mixed boundary conditions play an important role
in some boundary value problems. In heat transfer problems, for example, this type of condition has
theform g + 8(T — T,) = qo, where T is the temperature field, T,, the ambient temperature, 3 the
heat transfer coefficient (also called the film coefficient), and ¢y a prescribed heat flux.

ExaMPLE 7.1. Consider a column of rectangular cross section; a portion of the boundary is
subjected to an internal condition, another portion is subjected the exterior weather conditions, and
the remaining portion is in contact with the abutting wall which separates both portions (see Fig.
7.1(a)). The prescribed boundary conditions on the internal face (z = 0) are: T, = 50°F and
B = 0.5 Btu/(hft? °F), and on the exterior face (x = [): T,, = 0°F and 3 = 6.0 Btu/(hft* °F).
The temperature and the heat transfer coefficient on the facesy = +6 are noted in Fig. 7.1(a). We
assume that ¢y = 0, and the thermal conductivity is 1.0 Btu/(hft °F). Because of the symmetry
about z-axis, only the half of the structure is discretized into 21 linear elements, and 21 boundary
nodes are marked (Fig. 7.1(b)). We assign Code= 2 for mixed boundary conditions. The input file
is created in the following order:

Entry # Variable  Explanation
1 Title Must enter problem title.
N Number of boundary elements.
3 L Number of interior points where
solution isto be computed.
1 M Number of different boundaries
4 Last Number of the last node on each
boundary.

next N-pairs X, Y x, y coordinates of extreme points
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next N-triplets Code,3,T, N-tripletsof Code (2), 5and T,
each node, starting with node 1
and ending with node N.
next L-pairs Xi, Yi  coordinates of interior points
where the solution is to be computed.

T,=50 T,=0

I
T =
Ty= 100: / R T;=0
©) =05, q p=6.
Rl o SRR -
B=05 B=6.0

16 /{1/987654
19 13 3

209 » 2

(b)

27 1 X

=32

Fig. 7.1. A column with an abutting wall.

Theinputfileisex7.1.1in. Notethat 3 isassumedtobezero at node 11 asthisnodeisapproached
from both sides. Thevalue of 5 isalso halved at nodes 12 and 14 respectively from each side. In the
above input file, Code= 2 defines alinear relation between the potential and the flux. An algorithm
for generating the boundary conditionsfor Code = 0, 1, or 2 can bewritten asfollows: Let F; denote
the value of the potential u if Code= 0, the value of the flux ¢ if Code= 1, and the value of the
coefficient 3 if Code= 2; also, let S; denotethevalueof ¢ if Code= 2; herej =1,..., N, where N
isthe total number of boundary elements (hence the total number of boundary conditions). Then

7=1

Fori:=1to N Do

1 =]

Read j, Code;, Fj, S;
ni=j—n
Je=J1—1

ay := Float(j1)

az = (Fj — Fy,)/a1; ay := (Sj — Si,)/ax
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For n = 1to j, Do

t9 :=11 +Mnjig =19 — 1

Code;, := Code;,

Fi, = Fiy +ag; Sy, = Si, +ay.

Program Be5 can then be modified accordingly.

Linear Elasticity

8. Linear Elasticity. We will analyze linear elastic continua under the assumption that they
undergo small strains. Thelinear theory of elasticity isbased on thefollowing two basic assumptions:
(i) The material is subject to an infinitesimal strain and the stress is expressed as a linear function
of strain, and (ii) any variation in the orientation of this material due to displacementsis negligible.
These assumptions lead to small strain and equilibrium equations under an undeformed geometry.
The linearity assumption is an attempt to simplify the mathematical aspect of the behavior of solids.
Although we assume that the material properties are linear, the deformations in a body may not be
completely linear. For example, under certain loads, various materials exhibit plastic deformation
while others creep with time, or they may crack in which case the stresses are redistributed.

8.1. Stress and Strain. We will express small strains and related stresses with respect to
aright-hand rectangular coordinate system. Thus, in a cartesian system where the coordinates are
denoted by x = (x1, x2, x3), consider an infinitesimal element. The stress vector is defined by

011 012 013
O = (021 022 023 | . (81)
031 032 033

Notethat if the coordinate systemistaken as (z, y, z), instead of (x1, 2, x3), thenthe normal stresses
o11, 092, 033 aredenoted by o, 0, o, respectively, and the shearing stresses o2, 013, 021, 023, 031,
032 BY Ty Tazs Tyzs Tyz Tza, Ty reSpectively. The equilibrium of the infinitesimal element implies
that

012 = 021, 013 =031, 023 = 032. (82)

Thus, we need to consider only three independent components of the shearing stress. Corresponding
to these stresses, the normal and shearing strains are defined as follows:

Normal strains:  e;; = u;,;, ©=1,2,3,

. . 1 8.3
shearing strains. - &5 = o (wij+ujq), 4,7=1,2,3 (i#j), (53)

where (u1, us, us) are trandations along the (x1, xo, x3) directions respectively. As before, only
three of the above shearing strains

The stress tensor ¢ satisfies the following three equilibrium equations:

80'ij

bi =0, i,j=123, 8.4
aij’ i,J (8.4)
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where b; are the body forces. The strain-stress relations for an isotropic materia are given by

_ 011 — V022 — V033 012
€11 = E ) €12 = el
—V011 + 022 — V033 023

€29 = i , €23 = = (8.5)
_ TVO11 — V0322 + 033 Eay = 031
€33 = E s 31 G’

where FE isthe Young's modulus, G the shear modulus, and v the Poisson’sratio (0 < v < 1/2). In
matrix form, Eq (8.5) iswritten as

e=Co, (8.6)
where
1 —v —v 0 0 0
-v 1 —v 0 0 0
1 |- —v 1 0 0 0
C=Zlo o o 2(1 4 v) 0 0 (8.7)
0 0 0 0 2(1 + v) 0
0 0 0 0 0 2(1+v)

isthe matrix that relates the strain vector e to the stress vector o. The components c;; of the matrix
C are caled elastic compliances. Inversely, the stress-strain relations from (8.6) are given by

o = De, (8.8)

where the matrix D which relates the stress vector o to the strain vector < is

E
-1
b= =sarna—am~
2(1 —v) v v 0 0 0
2v (1-v) v 0 0 0 (8.9)
y 2v v (1-v) 0 0 0
0 0 0 1—-2v 0 0
0 0 0 0 1-2v 0
0 0 0 0 0 1-2v

The components d;; of thematrix D are called rigidity coefficients. Therelationships (8.6) and (8.8)
can also be expressed in terms of the Lame’s constants A\, i which are related to £ and v by

Ee E
M-y My O

8.2. Virtual Work. The virtual work 6§W performed by the external forces o;;; + b, and
p‘; — pj inavirtual displacement v} is defined by the equation

oW = /// (0ij,i +bj) 6u dV — // pj 5u ds
Sa

_5[/// oij, i+ bj)uzdV — // pjudS]
Sa
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Since W = 0 in the equilibrium state, this equation gives the principle of virtual displacements for
three dimensiona linear elastic problems as

/// (0474 + busdV — //S yutds = 0. (8.10)

Notethat for two dimensional problems, we should replace V' by R, dV by dx dy, S3 by C3, and dS
by ds in (8.10). Also, note that if u} does not satisfy the homogeneous boundary conditions on .Sy
(i.e, if u # 0 on Sy), then (8.10) becomes

///V(Uij,i + bj)ujdV = //S1 (uf — u;)pidS + //S2 — pO)uds, (8.11)

where p; = o7;n; arethetractionsrelative to the u; system.

Themtegral relation between the equilibrium stress field and the virtual displacement field is, in
general, defined by (8.11) which after applying the divergence theorem yields

/// (ij,j —|—bk) uy, dV = /// (bku’,; — ojkajk) dV + // pruy, dS.
\% \% S1+S2
Thus,
/// bkuZde/// ojks;fk,dvz// (ug—uk)pZde// pguZdS—// pruj dS,
1% 174 S1 SQ Sl

where p,, = nyoj, and p;, = nkKO - Sinceu, = uj, and o, = Ok i.e, pr = p; on Sy, wefind
from the above equation that

/// (Ujk,j +bk)u}; dV = // ugpz ds — // pgu}; ds — // DrU, dS+// pruy, dS.
1% Sa S1 Sa

(8.12)
Weknow from Eq (8.4) that thefundamental solution for the stresstensor sati sfiesthe (three) equations

]kj—i—él( i) = (8.13)

where é;(i) isthe Dirac deltafunction which represents aunit load at apoint 7 in adirection I (which
canbex;, | = 1,2,3). Inview of the translation property of the Dirac delta function, we get from

(8.13)
///v T uk dV = — // V(Sl(i)uk dv = —uy(i).

Thus, we find from (8.12) that the fundamental solution u; will satisfy the integral relation

+// ugp;;ds+// pku;;dsz/// bkuZdV—i—// pku,’;dS+// phuj dS,
Sl S2 \4 Sl S2

which can be written concisely as

+// ukPZdS:/// bkuZdVJr// pruy, dS, (8.14)
s JJv S
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where S = Sy + S, ug, = ul on Sy, and p, = p{ on Ss.

Sincethe displacements«; and thetractions p;, (= nyoy,) inthedirection {) are the fundamental
solutions, these quantities represent the displacements and tractions due to a concentrated unit load
at apoint; inthedirection . Therelation (8.14) isvalid for aunit force acting in the three directions
X1, X, X3, where p, denote the surface forces at the point & generated by the unit load at the
point i. Thus, if we consider the unit forces acting in the X, X», X3 directions, the relation (8.14)

can be written as
u (i) + // ugpp, dS = /// brugy, dV + // prufy dS, (8.15)
S 1% s

where v}, and pj, denote the displacements and tractions applied at the point  and acting in the [
direction. Eq (8.15) is known as the Somigliana identity.

In atwo-dimensional medium, the fundamental solutions for an isotropic plane strain case are

. 1 1 or Or
U= e T (38— 4v) 1n(;)5,k + aTclaT,J’ (8.16)
. 1 or or Or or or
b= =g =y L L (1~ 20 + 2505 b = == 20) (G = )|
Note that for the spherical coordinate system, defined by
o _rs?nch)sz’ 0<¢<2m
xg = rsinfsin @, 0<6<n (8.17)
r3 = rcosf,
we have or = L, and
8$k Tl
or or or Oxy, or Ox
- =y == 7. 1
ox; Mt oy K Ox; Or Oxy Or 0 (8.18)
The fundamental solutions for an isotropic body in athree-dimensional region are given by
1 or Or
* =—-— — 4 . —_— .1
Wi = Tor i = (3= s+ 5], (8.19)
. 1 or or Or or or
Ve = ~gr o7 Lo | (0~ 20350 o b= (=2 { ghm = G|, (320)

where r is the distance from the (boundary) point of application of the load (point ¢ in Fig. 8.1)
to the (boundary) point under consideration (point & in Fig. 8.1); i is the outward unit normal
to the surface S of the body, with n; as its direction cosines, and ¢;; is the Kronecker delta. The
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fundamental solutions v;, have been derivedin §4.4.

surface S
\ X3, ug

point i X5, up

unit load in X1 direction

Xl , U 1
Fig. 8.1. Displacements and Tractions.

8.3. Boundary Integral Equation. We shall start with the integral relation (8.15) and
discretize it for the boundary S. Let us assume that the boundary is smooth and it is the part S
that contains the point i (the same will hold if the part S; contains the point 7). If we consider the
hemisphere of radius e on the surface S5 of athree-dimensional region, asin Fig. 1.1(b), and assume
that the point 7 is at the center of this hemisphere, then in the limiting process the hemisphere reduces

tothe point s ase — 0. This hemisphere divides the surface S, into two parts. S. and Sy_.. Now,
thefirst integral in Eq (8.15) can be written on S5 as

// ugpy dS = // ugpy, S + // ugpyy dS.
52 Sg 5275

Notethat » = ¢ and 9r/0n = 1 on S.. Inview of (8.18) and (8.20) we find that

Oe Oe
hm// ukplde—hm // 87T1—V52 [( )5lk+3%a—m]}d3

Since 9r/dx; = e;, we cantake, e.g., | = 1 in this equation, and then using the spherical coordinate
system (8.17), we get

27
hm// uRpp, dS = (l—y / / {u1(4)(1 = 2v) + 3uy (4) sin®  cos® ¢

+ 3uz (i) sin® 0 cos ¢ sin ¢ + 3us (i) sin 6 cos f cos ¢ } sin 6 d dep = f%ul(i). (8.21)

The same value of the limit of the above integral ase — 0 is obtained in the caseswhen ! = 2 and

3. Hence, we find that
hm // ugpp, dS = ——ul( ).

Now, the last integral in (8.15) on S, can be written as

// Pruf, dS = // prug, dS + // iy, dS.
SQ Sg S2—s
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Since from (8.19)

m // pruf, dS = lim prujy, - 27e? = 0,
S. e—0

li
e—0

andsince So_. — S ase — 0, and recalling that similar results hold for S;, wefind that Eq (8.15)
gives the Bl Eq for a smooth boundary surface as

1 . " *
§Ul(l) + // uppfy, dS + // ugppy dS
Sl 52
\% S1 Sa

In the case of a nonsmooth boundary surface S, the evaluation of the integral of the type (8.21) on
S. isdifferent from —%ul (7). However, we do not need an exact value in the nonsmooth case. We

can take the value of thisintegral as ¢;(i)w, (), where ¢;(¢) isthe constant c¢(¢) defined in (1.15) and
depends on the geometry of the surface at the point i. Hence, the Bl Eq for the nonsmooth body
surface can be written, in general, as

c()u (i) + //S uppy dS = ///V brujy, dV + //Spkufk ds. (8.23)

The relations (8.22) and (8.23) are the starting point for the boundary element method in linear
elastostatics. In the two-dimensional case, the relations (8.22) and (8.23) remain valid if we replace
V by R, dV by dz; dzo (or dz dy), S by C, and dS by ds.

We will rewrite the Bl Eq (8.23) for a two-dimensional isotropic elastic medium. Using the
notation u* for the displacements v;;, and p* for the tractions pj, , we note that both u* and p* are

2 x 2 matrices:
. | Ul w2 «_ | Pl Pio
u - * * ) p - * * N
Uz Uz P21 P22

These displacements and tractions are in the k direction due to aunit force applied in the [ direction.
We will further denote the displacement, traction and body forces acting on the body by u, p, b
respectively, each of which is defined as a vector, as follows:

u=[u;u), p=I[pip]’, b=[b b

With this notation, Eq (8.23) becomes

c(i)u(i)—i—/ p*uds:// u*bdr, da:2+/ u*pds, (8.24)
c R c

where R isaplaneregion (plate) in the X; X>-plane (see Fig. 8.2) which depictsthe case of constant
boundary elements with mid-nodes (cf. with the case of Fig. 2.2(a), and see Fig. 3.1). Theinterior

cells are used for the evaluation of the domain integral / / u*bdzx dzs in (8.24) which contains
JR
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the body force terms.

Fig. 8.2. Constant boundary elements and interior cells.

Inthe case of constant e ements, the values of u and p are assumed to be constant on each el ement
and egual to their values at its mid-node. Hence, in this case Eq (8.24) reducesto the BE Eq

N . N
c(i)u(i) + Z [ pdsyu; = /[ u*bdz; dze + Z [ u*ds ¢ pj, (8.25)
S i ] ([ v
where u; and p; are the nodal displacement and traction intheelement j =1,..., N.

Theinterior cells are used to numerically integrate the domain integral (body force terms)

Bi = // u*b dxl dﬂ?g, (826)
R

which appearsin (8.25) (for interior cells, see §3). If there are M interior cells, then

M l
B; = > {3 (ub) w.} 4, (8.27)
s=1 k=1
where A, isthe area of the interior cell for s = 1,..., M, w, aretheweights used in the Gaussian

guadraturefor integrandswith alogarithmic singul arity, defined by fol [ 01_52 f(&1,6,83) dg} déy =

Zn: wy f(EF,85,€5), and &1, &2, &3 are coordinates of the triangle (see Table A.12 on the CD-R for

k=1
these nodes and weights).

We obtain avector B, as aresult of the numerical integration of the body force terms by (8.27).
In BE Eq (8.25) which corresponds to a node i the integral terms within the braces relate to node i
with the element segment j over which the integrals are computed. Let us denote these integrals by
I’LJ‘ and Gij r%pectively, i.e,

.ZEIZ']‘ :/ p* dS, Gij :/ u” dS7
C. C.

J J
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each of whichisa2 x 2 matrix. Then Eq (8.25) becomes
N N
j=1 j=1
which relates the value of u at amid-node ¢ with the value of u and p at al the nodes j, including i.
Let uswrite .
H;; ifi £y
HU:{A : .%#2
Hij +C<Z) |fZ:],

where c(¢) is a coefficient matrix dependent on the boundary geometry, i.e.,

and ¢(7) isdefined in (1.15). Hence, Eq (8.28) can be written as

N N
> Hiju; =B+ Gyp;, (8.29a)
j=1 j=1
or in matrix form, as
HU = B+ GP. (8.29b)

Note that in Eq (8.29a) we know N, values of the displacements u; and N, values of the tractions
p;; thus, 2N — (N7 4+ N3) values are unknown in this equation. Aswe did in the case of potential
problems (see (2.8)), we will collocate and rearrange Eq (8.29b) in the matrix form

AX =B+ F, (8.30)

where the unknowns are denoted by the vector X on the left side.

In Eq (8.29a), the integrals H;; and G;; are evaluated numerically by using the 4-point Gauss-
Legendre quadrature formula except when i = j. The values of H;; are easy to compute using rigid
body considerations, but to compute G;; we can use the logarithmic-Gauss integration formula, or
for the two-dimensional isotropic case G;; can also be evaluated analytically using (8.16) and Fig.
8.3.

)
. =1
@ - Li/2
X2 g=-1

1
Xl ( )- Li/2

Fig. 8.3. Geometry at the node i.
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Thus,

1 @ 4 @ 7/ gr\2
Gii=—"7""— 3—41// ln—ds+/ (—) ds
H 87T/J,(1 — V) |} ) (1) T (1) (91'1

1 Li/2 1 Li/2 )
— lim 4 In - 2
87ru(1 —y i (3 —4v)2 /s n . dr + /8 cos” O dr

=——lim [(3—4v)[r —rlnr]L /2+ﬁ L
drp(l —v) e—0 L2\ 2

:ﬁ {(3—4@ (Hm%) +£—i}

1 ar Or
Gio= — / o Oy
12 ) (1) 8.%‘1 81‘2

L;i/2
—  lim 2/ sin 0 cos 6 dr
87T,u(1 —v)e—0 J,

i/2 rir r1r
_ lim 2 12 o 172 —a
drp(l —v) 0 /6 L2’ " 8ru(l —v)L; o

1 @ 1 @ 7 or\?
[ — 3—41// ln—ds+/ <—> ds
22 8mu(l —v) [< ) any T 1) \9z1

&W(Lli_y) {(34@ (1+1nL) +L22}

where L;, as defined in (2.12), is the length of the element C;. After solving (8.30), we use (8.25)
and (8.27) to compute the displacements at an interior point as follows:

u(i) = i{Z( *b) wK}A + Z{/ : ds}pj - zN:{/C p* ds}u]

s=1 k= j=1 J

The stress components at an interior point can be computed from (8.8), i.e.,

:// Dijbd$1d$2+/ Dijpds_/ S’ijuds
R c ¢
M N N
Z{// Dijdxldzg}bs+2{/ Dide}ij{/ Sijds}uja

s=1 s J=1 J Jj=1

where
Dyj = [Dy D3], Sij =[S1 S2), p=I[pipa”, u=usug]”,
andfork =1,2,
1
4r(1 —v)r
or
or i 2o 10 -

+ 2v(nir g+ myrr ) + (1= 20) (2ngr i + 1, 4+ nidje) — (1 — 4y)nk6ij]

Dy = {(1 — 21/){(%1‘7’7]' =+ 6kj7”71' — 61'1'7‘716} =+ 2T.iT7jT,k:| ,

S, = 2U>6ij7ﬂ’k + V((Sikr)j + 63‘;97“,,‘) — 47“)2‘7“’]'7“,]@}
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Program Bell

We will develop this program for two-dimensional linear elastic boundary value problemsfor the
case of constant elements of Fig. 2.2(a). Theinput fileis created in the following order:

N: Number of boundary elements (same as the number of
nodesin this case)

L: Number of interior points where results are to be
computed

M: Number of different surfaces 1 through 5.

Last!: Number of the last node on each different surface. Enter the last
node numbers followed by zerosto atotal of five entries

mu: shear modulus p

nu: Poisson’'sratio v

X, Y: Coordinates of extreme points of the elements

Xm, Ym: Coordinates of the mid-nodes

G: Matrix defined in (8.29b)

After boundary conditions are applied, the matrix A of (8.26)
is stored in this location.

H: Matrix defined in (8.29b)

Code: = 0 if displacements are prescribed,
= 1 if tractions are prescribed

Bc: Prescribed boundary conditions

F: Vector defined in (8.30)

After solution, the values of the unknowns are located here
Xi, Yi: Coordinates of theinterior points

(§i+1’ ‘Vi+1)
—
node i
Ep-¥p) Yisr"Yp
Xi+1-X
—] Xp-X
i *p Yi+1
Fig. 8.4.

The output produces solution values of the displacement components at interior points (2 dis-
placement values each point), and solution values of stresses o, o, 7,y @t interior points (3 stress
values at each point). It can be seen from Fig. 8.4(a) that the equation of the boundary element with
mid-nodei is

m(z; — ) — (yi —y) =0,
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and thus,
Perp — { |m(z; —xp) — (g —yp)|/VI+m2,  ifzi #zi

|£L'i — LCp|7 if Ti = Tj41-

From Fig. 8.4 itiseasy to seethat

Yi41 —Yp _ Yp — Ui

Ti+1 — Tp Tp — T4

which yields (z, — ;) (Yi+1 — Yp) — (@it1 — 2p)(Yp — ¥;) = sgn (see (3.8) also). Note that sgn
hasthe same sign as s1ope defined in §2.1, where other variables used in the program are al so listed.
This program callsthe following functions: Sys11, Quadil, Diagil, Interil, and Solve.

ExAMPLE 8.1. Consider the case of a circular hole under interior pressure embedded in an
infinite medium, asshowninFig. 8.5. Thedatais: £ = 94500, v = 0.1. Theinputfileisex8.1.in
and the output file is ex8.1.out. Note that the displacement (Code= 0) is prescribed zero at the
nodes 16, 24, and 32 to keep the plate in equilibrium. Mathematically it means that the value of the
constant for the displacement obtained as a result of integration is assumed to be zero. The solution
for radial stress obtained from elasticity theory (see Timoshenko and Goodier 1951 pp. 78) is as
follows:

Table 1.3.1
Point Theoretical solution  BEM solution
(4.,0.) —56.25 —56.8348
(6.,0.) —25.0 —25.2413
(10.,0.) -9.0 —9.0869
(50.,0.) —0.36 —0.3635
(200.,0.) —0.0225 —0.0227
(1000.,0.) —0.0009 —0.0009
15 16
. 17 18 x (3,3)
12 20
11 21
10 3 22
9 23
; o 6 10 1000
6 26
5 27
4 28
x 3 29
(-3,-3) 2 3 31 30

/tm 50 100 200 1000
: i — - -
how

Fig. 8.5. Circular hole in an infinite medium.
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The extreme points X, Y can be computed in the program, instead of being read, by using
the formulas z; = 3cos ((j — 1)m/16 + 177/32), y; = —3sin((j — 1)7/16 +177/32), j =
0,1,---,32 respectively. The boundary conditions at the nodes j = 1,...,32 are prescribed in
order by the formulas

Bc in x-direction: 100 cos (% + g) ,j=0,1,...,32,

Bc in y-direction: — 100sin (% n g) L j=0,1,...,32.m
ExaMPLE 8.2. Consider the problem of a hollow circular pipe of radii a = 10 and b = 15
units respectively under an internal pressure p = 100 (see Fig. 8.6). The other datais: . = 80, 000,
and v = 0.25. Because of axial symmetry, the input file is created with constant elementsasin Fig.
2.8(b). For the plane stress case, the displacements is given by

u(r)z% |:(1—V)7“—|—(1+l/)b—:|, a<r<hb,

and the stress by

0= g (7).
0= g (1-3)

for a < r < b. Both circumferential and radial results for displacements and stresses compares very
well with the exact solutions. However, the boundary element results for the stresses in the vicinity
of the boundary do not match with the exact solutions; but this was expected. It is found that the
boundary element results are, in general, correct for thoseinterior pointswhich lie at a distance more
than half an element length away from the boundary.

Fig. 8.6. A hollow circular pipe.

If this problem is solved with the finite element method of Fig. 8.6(b), with 52 nodes and 76
triangular elements, the results do not agree with the exact solutions. 1t meansthat if constant strains
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areused in linear elasticity, the resulting finite elements computed at the center of each element will
produce poor results. This method should therefore be avoided. =

9. README. The software required for BEM is provided on the enclosed CD-Rom. The
programs arewrittenin C, which isa case-sensitive structural language. The modulesfor each of the
programs bel.c, be2.c, beb.c, and bell.c have the header cbox1.h, cbox2.h, cbox5.h, cbox11.h
respectively, together with the C library headers (stdio.h) and (math.h). These modules can
be compiled and linked separately for each program. Makefiles in each subdirectory will build the
programs by simply typing ‘ make'.

There are two computation codes, one for UNIX and the other for DOS. The programs are run,
e.g., for bel asfollows:

cd UNIX/BE1 or > cd DOS\BE1
bel

FIRST LINE IN THE INPUT FILE SHOULD BE EITHER BLANK OR THE TITLE NOT DATA
Enter the name of the input file:EX5_1.IN
Enter the name of the output file:EX5_1.0UT

Other programs can be similarly run. UNIX C has been used to test run these programs on some
benchmark problems using Sun WorkShop 6 update 2 C 5.3 on Solaris and gcc version 3.3.2 (Red
Hat Linux 3.3.2 — 1) on Linux. The DOS directory programs must be compiled and linked with the
command appropriate for the system.

Note. If youhavetroublerunning any oneof theseprograms, notethat the programsbel.c, be2.c,
be5.c and bell.c were compiled with C compilerson aUNIX workstations. All these programs, and
specialy bell.c works perfectly well on UNIX SUN workstations and produces the same output as
given in the above examples. Other C compiler(s) may give different results than those given above,
or may fail to build the program.



