The mpoly Toolbox

Fritz Keinert
Department of Mathematics
lowa State University
Ames, IA 50011

keinert@iastate.edu

February 20, 2004

1 Overview

This toolbox defines the data type mpoly (matrix Laurent polynomial) and some basic operations on it. It
uses object-oriented programming, so it requires MAaTLAB® version 5 or higher to run. Please report any
problems or other suggestions to keinert@iastate.edu.

A matrix Laurent polynomial is a polynomial of the form

P(z) = Py, 2™ + Py 2™t + o+ Py 2™

where the coefficients Py, are two-dimensional matrices, all of the same size. The exponents are integers,
possibly negative. Equivalently, P(z) is a matrix with (Laurent) polynomial entries.

The matrices can be either numerical or symbolic. Implementing symbolic matrices has been more of a
headache than anything else; if anything is not working correctly in this toolbox, it will most likely relate
to symbolic matrices. Also, symbolic calculations are noticeably slower than numerical calculations, and
MatLaB® may need some help in simplifying the result.

This toolbox is part of the multiwavelet toolbox, but it can be installed and used independently.

Copyright (©) 2004 by Fritz Keinert (keinert@iastate.edu), Dept. of Mathematics, Iowa State University,
Ames, TA 50011. This software may be freely used and distributed for non-commercial purposes, provided
this copyright statement is preserved, and appropriate credit for its use is given.

2 Installation

Install the directories @mpoly, @double and @sym in a directory in the MaTLAB® path.
There are several test routines in the mw directory. You should run them in the order test_double,
test_sym, test_mpoly_numerical, test_mpoly_symbolic, in order to verify that everything is working.
Notes:

1. Normally MATLAB® will notice new routines that are added while it is running. However, this does
not seem to work for @-directories. Remove the installation directory from the path, and add it again.

2. Don’t worry if the test routines seem to take a long time to run. They use symbolic computation
extensively, which is in fact quite slow, and MaTLAB® also needs to compile each routine in the
toolbox the first time it is run. Numerical computations, after the initial compilation step, will run
much faster.

3 Object-oriented programming in MATLAB®

Up until MaTLAB® version 4, there was essentially only one data type: everything was a double-precision,
complex, two-dimensional matrix. For example, a string was a 1 X n matrix whose entries were interpreted
as ASCII codes; a real scalar was a 1 X 1 matrix with imaginary part 0.

Since version 5, MATLAB® supports several data types; these include double (the default), char (text),
sym (symbolic), cell (cell array), struct (structure), and others. In addition, the user is allowed to define

new data types and their associated operations. This is called object-oriented programming. Data types are
called classes in MATLAB®.
This feature has two main consequences:

1. Several different subroutines can share the same name. This is called operator overloading.

When you call a subroutine in MatLAB® , for example sqrt(x), MATLAB® looks at the data type
of x. If the data type is cell, for example, it looks through all directories called @cell in the path for
a routine sqrt.m; if that is not found, it looks through all the other directories whose names do not
begin with @; finally, it looks for a built-in command called sqrt (which exists, but is not defined for
cell arrays).

If you want to define a square root operation for cell arrays, for example a routine which applies the
standard sqrt to each element, you can write one and place it in a directory @cell somewhere in the
path.

This implies that routines @sym/sqrt.m, @cell/sqrt.m, etc. can happily coexist. MaTLAB® deter-
mines the type of the argument at runtime, and calls the appropriate subroutine.

Remark: If the argument list includes several different data types for which subroutines of that name
have been defined, Marras® by default calls the routine belonging to the first nontrivial data type
it encounters. You can change precedence with the inferiorto and superiorto commands.

2. The usual mathematical notation can be used as an alternative to many subroutine calls.

When you type x+y, MatLAB® actually interprets this as a function call plus(x,y). The plus
function can be overloaded as described above.

For example, if x and y are strings, then typing x+y causes MATLAB® to look for a routine @char/ plus.m.
You could write such a routine which, for example, concatenates the strings. Other mathematical op-
erators are equivalent to subroutine calls in a similar way. Use of this feature can make your code
much more readable.

The standard operators and their equivalent names are given in table 1.

4 The mpoly data type
A matrix Laurent polynomial is a polynomial of the form
P(z2) = PICOZIC(J + Pko+1zk°+1 + - 4+ Py, Zkl,

where the coefficients P are two-dimensional matrices, all of the same size. The exponents are integers,
possibly negative. Equivalently, P(z) is a matrix with (Laurent) polynomial entries.
Internally, this toolbox represents a matrix polynomial as a structure with the fields

coef | A three-dimensional array;

coef(:,:,1) is Py,, coef(:,:,2) is P(k:o + 1), etc.
min | Starting exponent k.

type | one of >’ >symbol’, ’polyphase’

m dilation factor

r multiplicity

Remark: The fields type, m, r are used by the multiwavelet package, and are explained there. If you
just want to use the mpoly package, you can ignore them.

To create an mpoly object, you invoke the constructor routine mpoly(coef ,min). The coefficient matrices
are entered as either a three-dimensional matrix (third dimension = subscript/exponent), or as a cell vector
of coeflicients.

Example: To create

P(2) = Py2? + P32° + Py2*,

you can use either

P = mpoly(cat(3,P2,P3,P4),2);

Table 1: Standard operators and their equivalent function names

Operator notation | Function equivalent

[A, B, C ...] horzcat(4,B,C...)
[A; B; C ...] vertcat(A,B,C...)
B=A(i,j,...) subsref (A,S)
B=A{i,j,...}

B=A.i

A(i,j,...)=B subsasgn(4,S,B)
A{i,j,...}=B (type help substruct for information on S, B)
A.i=B

x(A) subsindex(x,A)
A+B plus(4,B)

+A uplus (A)

A-B minus(A,B)

-A uminus (A)

A *x B mtimes(A,B)

A .x B times (A,B)

A/ B mrdivide(A,B)

A ./ B rdivide(A,B)
A\B mldivide(A,B)

A \B 1divide(A,B)
A~ B mpower (A,B)

A ."B power (A,B)

A’ ctranspose (A)
A transpose(A)
A& B and(A,B)

A|B or(A,B)

~A not (A)

A==B eq(A,B)

A"=B ne(A,B)

A<B 1t(A,B)

A <= B le(A,B)

A>B gt (A,B)

A>=B ge(A,B)

A display(A)

or
P = mpoly({P2,P3,P4},2);
Other examples are
P = mpoly(A);
which creates the constant polynomial P(z) = A, or
P = mpoly(1,1);

which creates the scalar polynomial P(z) = z.
After constructing matrix polynomials, you can use the usual arithmetic operations, which are interpreted
in the matrix polynomial sense.

5 Trimming

When you do calculations with matrix polynomials, the result sometimes has unnecessary zero matrices at
one or both of the ends. (Zero matrices in the middle have to be stored). The trim routine will get rid of
leading and trailing zeros.

After using the toolbox myself for a while and experimenting with various setups, I determined that I
usually want those extra zeros to go away automatically. Thus, the trim routine is invoked automatically at
the end of most calculations. You can suppress the trimming by setting the global variable MPOLY_NOTRIM
to a nonzero value, like this:

global MPOLY_NOTRIM
MPOLY_NOTRIM = 1;

It is sometimes necessary to introduce extra zero matrices at the ends to achieve a given range of
exponents, for example for adding or subtracting matrix polynomials. The trim routine can also be used
for that. This use of trim is not suppressed by MPOLY_NOTRIM.

A related question is: What is a zero? Calculations introduce round-off error. If a matrix has entries of
order 1071, is that a zero matrix? My answer is: usually, it is.

There is second global variable MPOLY_TOLERANCE which determines what numbers are considered negli-
gible. If this variable is not set, the package uses 10712 as a cutoff. You can set this variable to other values,
for example

global MPOLY_TOLERANCE
MPOLY_TOLERANCE = 1.e-15;

If you set this variable to 0, no rounding to zero occurs. Coeflicient matrices which are exactly zero still get
trimmed.
Symbolic matrices are not rounded.

6 Subscripting

There are three kinds of subscripting operations in Marras®: p. field, P(i) and P{i}. I have implemented
all of them for matrix polynomials, with the following effects:

1. P.field gives access to the fields actually stored in the data structure, plus some more that are
calculated. The following fields are recognized:

stored P.min smallest exponent
P.max largest exponent
P.coef matrix of coefficients
P.type type (’?, >symbol’ or ’polyphase’)
P.m dilation factor
P.r multiplicity
calculated | P.length | number of coefficients; this is the same as max-min+1
P.degree | Laurent degree; this is the same as length-1
P.size the size of each coeflicient matrix

The syntax £ = get(P,’field’) is equivalent to £=P.field. The syntax set(P,’field’,f) is equiv-
alent to P.field=f.

Only the stored fields can be used on the left-hand side of an assignment statement.

2. P(x) evaluates the matrix polynomial at the point(s) x. The argument can be a scalar, a matrix, or a
matrix polynomial. The effect is identical to mpolyval(P,x).

3. P(i,j) is used to select a submatrix. For example, if

1 2 3 3.2 1 100
Plz)=14 5 6|+([6 5 4]2z+[0 1 0]z
78 9 9 8 7 00 1

) oy (23 2 1 0 0\ o
P(1.2,2.3)—<5 6>+<5 4>z—|—<1 0>z.

then

4. P{n} is used to select the coefficient matrix that goes with z". For example, for the same P as above,

P{1} =

NelNe)RJV]
o Ot N
LN AN T

If n is outside the range P.min to P.max, a zero matrix of appropriate size is returned.

It is not possible to use more than a single subscript in {} subscripting. To select a subpolynomial
with a contiguous range of exponents, use the trim routine.

Remark: Note the two different kinds of () subscripting: if there is a single subscript (which can be
a matrix), it does point evaluation. If there are two subscripts, it selects a submatrix. So, P(1,2) (two
subscripts; selects scalar sub-polynomial) has a completely different effect from P([1,2]) (one subscript;
evaluates P at two points).

7 List of Routines

A list of routines is given in tables 2 and 3. For details about the routines, use the help function inside
MATLAB®. You can also look at the test routines and routine example_mpoly for examples.

Table 2: List of Routines (Part 1)

Constructor/Conversion Routines | mpoly constructor routine

polyphase | conversion to multiwavelet polyphase matrix

symbol conversion to multiwavelet symbol
Arithmetic Operations ctranspose | complex conjugate transpose

(replaces z by 1/z)

inv inverse

ldivide elementwise left division

minus subtraction

mldivide matrix left division

mpower matrix power

mrdivide matrix right division

mtimes matrix product

plus addition

power elementwise power

rdivide elementwise right division

times elementwise product

transpose | real transpose

uminus unary minus

uplus unary plus

Table 3: List of Routines (Part 2)

Comparison Operators eq equality
isconstant | checks whether P is a constant matrix
isidentity | checks whether P is an identity matrix
ismonomial | checks whether P is a monomial
isnumeric | checks whether P is numeric (see note 1.)
issymbolic | checks whether P contains symbolic variables
(see note 1.)
iszero checks whether P is a zero matrix
ne non-equality
Access To Properties get x=get (P,field) is the same as x=P.field
length length(P) is the same as P.length
set set(P,field,x) is the same as P.field=x
size size(P) is the same as P.size
Subscripting/Concatenation | end for use in subscripts, as in P(:,3:end)
horzcat horizontal concatenation
subsasgn subscripting on left-hand side of assignment
subsindex using an mpoly as a subscript
subsref subscripting on right-hand side of assignment
vertcat vertical concatenation
Standard Routines ceil round towards oo
Extended To Mpoly diag set off-diagonal terms to zero (see note 2.)
double convert symbolic to numeric
expand expand symbolic expressions
fix round towards 0
floor round towards —oo
kron Kronecker product
reshape reshape coefficient matrices
round round towards nearest integer
simplify try to simplify symbolic expressions
sym convert numeric to symbolic
tril set terms in upper triangle to zero
triu set terms in lower triangle to zero
Other det determinant
display display routine
longinv long inversion (based on Kramer’s rule)
match_type | propagate type of operands (’symbol’
or ’polyphase’) to the result of a computation
moment compute moments
mpolyval evaluate mpoly at given points
reverse replace z by 1/z

trim

trim zero matrices at ends

Notes:

1. Routine issymbolic is not the opposite of isnumeric. I distinguish three kinds of allowed entries:
numbers, symbolic constants (symbolic expressions which have a numerical value), and symbolic vari-
ables (symbolic expressions which contain variable names). Some operations (such as determining
whether a matrix is singular) are possible for symbolic constants, but not for symbolic variables in
general. Here is a reference table:

X isnumeric(x) | issymbolic(x)
sqrt(2) true false
sym(’sqrt(2)°’) | false false
2+a false true

2. The diag routine is similar to the built-in diag, but not quite the same. The statement D=diag(P)
returns a vector D if P is a matrix, but it returns a diagonal matrix polynomial D if P is of type mpoly.
The statement P=diag(D) produces a diagonal matrix P if D is a vector; if D is a vector polynomial, P
would be its diagonal, which is a scalar polynomial (the first entry).

However, you can use diag(D,k) to extract the kth diagonal (again, as a matrix), and likewise for
tril, triu.

8 More Than You Wanted To Know About Subscripting

This section explains some aspects of subscripting in MaTLAB® in more detail, including some frustrating
experiences I had in implementing subscripts. This section is only useful if you want to read and understand
the source code. It is not necessary to understand this section in order to apply the toolbox.

Assume P is of class mpoly. A subscripting operation of the form P.field, P(subscript), P{subscript}
on the right-hand side of an assignment statement invokes routine subsref; subscripting on the left-hand
side of an assignment statement invokes subsasgn. If P itself is used as a subscript, as in A(P), it invokes
subsindex.

Normally, if you do subscripting on an mpoly object, MATLAB® will look for the subscripting routines
in directory @mpoly. From routines inside the @mpoly subdirectory, however, MATLAB® always calls the
built-in subscripting routines, not the user-written routines. That makes sense, since you could easily get
into an infinite loop if you don’t watch out.

However, this behavior was different in early versions of MaTLAB® 5. Also, it changed from version to
version with no documentation. Experimentally, I have determined that a subscripting operation from a
routine inside @mpoly calls the following subsref routine:

subscripting MATLAB® version

operation 5.1 5.2 5.3 and higher
. built-in built-in | built-in

O user built-in | built-in

{3} user user built-in

I think I have written the code in such a way that it works in all flavors of MaTLAB® now.

