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Preface

We are pleased that this solution manual for the textbook1 is now available. The authors hope that
the textbook readers find this manual useful as they proceed through learning and teaching advanced
mathematical statistics. For the student readers, it is expected the manual to be consulted after their
own earlier attempts to solve the problems. For the course instructors, it is hoped the manual to be
an aid in offering extra solved lecture examples and extra help.

These offered solutions are for the 110 odd-numbered problems to have a balanced situation. In one
hand, it helps those self-studying readers to get some help with content and, on the other hand it allows
the instructors to choose assignments and doctoral comprehensive exam questions from unsolved even-
numbered problems.

Throughout the solutions, the same notational conventions as those in the textbook have been used.
Furthermore, it has been heavily emphasized to the content of the textbook by frequent referral to
theorems, examples and pages numbers. The goal was to help the reader to learn the textbook content
by frequent referrals. In some areas, we put some gaps named “(Exercise !)” to make the readers
involved in the process of solutions. On some other cases, some references were used in the solutions
and were cited in the “Reference Section” at the end of manual.

This solution manual has modified some typos in the textbook content aimed to be addressed for the
second edition of the textbook. The solutions themselves may have some errors. In case of any potential
error, then please e-mail Professor Keith Knight in order to amend them as soon as possible. Finally,
extra solutions for the solved problems are welcomed for consideration in the subsequent editions of
this solution manual.

Mohsen Soltanifar,MSc, PhD(c)
Toronto, Canada. 2018
mohsen.soltanifar@mail.utoronto.ca

Professor Keith Knight,PhD
Toronto, Canada. 2018
keith@utstat.toronto.edu

1Knight, K. (2000) Mathematical Statistics, CRC Press, Boca Raton, ISBN: 1-58488-178-X
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Chapter 1

Introduction to Probability

Problem 1.1. Show that

P (A1 ∪ · · · ∪An) =
n∑
i=1

P (Ai)−
∑∑

i<j

P (Ai ∩Aj)

=
∑∑ ∑

i<j<k

P (Ai ∩Aj ∩Ak)− · · · − (−1)n.P (A1 ∩ · · · ∩An).

Solution. We prove the assertion by induction on n. For the case n = 1 it trivially holds. Assume for
the case n = N it holds (induction hypothesis). Then, using Proposition 1.1.(c) for A =

⋃N
k=1Ak and

B = AN+1 and two applications of induction hypothesis it follows that:

P (
N+1⋃
k=1

Ak) = P (
N⋃
k=1

Ak) + P (AN+1)− P (
N⋃
k=1

Ak ∩AN+1)

= P (

N⋃
k=1

Ak) + P (AN+1)− P (

N⋃
k=1

(Ak ∩AN+1))

=
N∑
k=1

(−1)k−1
∑

i1<···<ik

P (Ai1 ∩ · · · ∩Aik) + P (AN+1)

−
N∑
k=1

(−1)k−1
∑

i1<···<ik

P (Ai1 ∩ · · · ∩Aik ∩AN+1)

=
N+1∑
k=1

(−1)k−1
∑

i1<···<ik

P (Ai1 ∩ · · · ∩Aik)

proving the assertion for the case n = N + 1.
�
Problem 1.3. Consider an experiment where a coin is tossed an infinite number of times ; the prob-
ability of heads on the kth toss is exactly one head (1/2)k.

(a) Calculate (as accurately as possible ) the probability that at least one head is observed.

(b) Calculate (as accurately as possible) the probability that exactly one head is observed.

Solution. (a) First, let Ak (k ≥ 1) be the event of head outcome on the k-th toss with P (Ak) = 1
2k
.
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Second, let A denote the event of at least one head in infinite number of times. Then, using log(1+x) ≈
x (|x| < 1) it follows that:

P (A) = 1− P (Ac) = 1− P (

∞⋂
k=1

Ack) = 1−
∞∏
k=1

P (Ack) = 1−
∞∏
k=1

(1− 1

2k
) = 1− exp(log(

∞∏
k=1

(1− 1

2k
)))

= 1− exp(

∞∑
k=1

log(1− 1

2k
)) ≈ 1− exp(−

∞∑
k=1

1

2k
) = 1− e−1.

(b) First, let Bk (k ≥ 1) be the event of observing one head on the k−th toss and no head in the other
times with

P (Bk) =

∏∞
k=1(1− 1

2k
)

(1− 1
2k

)
.(

1

2k
) =

∏∞
k=1(1− 1

2k
)

2k − 1
.

Second, let B be the event of exactly one head in infinite number of times. Then, using
∑106

k=1
1

2k−1
=

1.6067 it follows that:

P (B) = P (
∞⋃
k=1

Bk) =
∞∑
k=1

P (Bk) =
∞∑
k=1

∏∞
k=1(1− 1

2k
)

2k − 1
= (

∞∏
k=1

(1− 1

2k
))(
∞∑
k=1

1

2k − 1
) ≈ 1.6067e−1.

�

Problem 1.5. (a) Suppose that {An} is a decreasing sequence of events with limit A; that is An+1 ⊂ An
for all n ≥ 1 with

A =
∞⋂
n=1

An

Using Axioms of Probability show that

lim
n→∞

P (An) = P (A).

(b)Let X be a random variable and suppose that {xn} is strictly increasing sequence of numbers(that
is, xn > xn+1 for all n)whose limit is x0. Define An = [X ≤ xn]. Show that

∞⋂
n=1

An = [X ≤ x0]

and hence (using part (a)) that P (Xn ≤ xn)→ P (X ≤ x0).
(c) Now let {xn} be strictly increasing sequence of numbers (that is, xn < xn+1 for all n)whose limit
is x0. Again defining An = [X ≤ xn] Show that

∞⋃
n=1

An = [X < x0]

and hence that P (Xn ≤ xn)→ P (X < x0).

Solution. (a) Using Proposition 1.1.(d) for the increasing sequence {Acn} it follows that:

lim
n→∞

P (An) = lim
n→∞

1− P (Acn) = 1− lim
n→∞

P (Acn) = 1− P (

∞⋃
n=1

Acn) = P (

∞⋂
n=1

An) = P (A).
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(b) First, as xn ↓ x0 and [X ≤ x0] ⊆ [Xn ≤ xn] (n ≥ 1) it follows that:

[X ≤ x0] ⊆
∞⋂
n=1

An. (∗)

Second, let w ∈
⋂∞
n=1An, then X(w) ≤ xn for all n ≥ 1; and, consequently, X(w) ≤ infn≥1(xn) =

limn→∞ xn = x0 implying w ∈ [X ≤ x0]. Hence:

∞⋂
n=1

An ⊆ [X ≤ x0]. (∗∗)

Now, by (∗) and (∗∗) the assertion follows.

(c) First, as xn ↑ x0 and [X ≤ xn] ⊆ [X < x0] (n ≥ 1) it follows that:

∞⋃
n=1

An ⊆ [X < x0]. (∗ ∗ ∗)

Second, let w ∈ [X < x0], then X(w) < x0 ; but, supn≥1(xn) = limn→∞ xn = x0 and hence for some N
we have X(w) ≤ xN < x0 yielding w ∈ [X ≤ xN ] = AN ⊆

⋃∞
n=1An. Thus,

[X < x0] ⊆
∞⋃
n=1

An. (∗ ∗ ∗∗)

Now, by (∗ ∗ ∗) and (∗ ∗ ∗∗) the assertion follows.
�

Problem 1.7. Suppose that F1(x), · · · , Fk(x) are distribution functions.
(a) Show that G(x) = p1.F1(x) + · · · + pk.Fk(x) is a distribution function provided that pi ≥ 0(i =
1, · · · , k) and p1 + · · ·+ pk = 1.
(b)If F1(x), · · · , Fk(x) have density (frequency) functions f1(x), · · · , fk(x), show that G(x) defined in
(a) has density (frequency) function g(x) = f1(x) + · · ·+ fk(x).

Solution. (a) It is sufficient to prove basic properties of the distribution function for G. First, let
x ≤ y then Fi(x) ≤ Fi(y), (1 ≤ i ≤ k) implying:

G(x) =
k∑
i=1

pi.Fi(x) ≤
k∑
i=1

pi.Fi(y) = G(y).

Second, as limy↓x Fi(y) = Fi(x) (1 ≤ i ≤ k), it follows that:

lim
y↓x

G(y) = lim
y↓x

k∑
i=1

pi.Fi(y) =
k∑
i=1

pi. lim
y↓x

Fi(y) =
k∑
i=1

pi.Fi(x) = G(x).

Third, as limy↑∞ Fi(y) = 1 (1 ≤ i ≤ k), it follows that:

lim
y↑∞

G(y) = lim
y↑∞

k∑
i=1

pi.Fi(y) =
k∑
i=1

pi. lim
y↑∞

Fi(y) =
k∑
i=1

pi.1 = 1.
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Finally, the case limy↓−∞G(y) = 0 is left for the reader as Exercise.

(b) First, let X be a continuous random variable. Then, as fi(x) ≥ 0(1 ≤ i ≤ k) it follows that
g(x) =

∑k
i=1 pi.fi(x) ≥ 0 for all x. Next, let −∞ < a < b <∞, then:

PG(a ≤ X ≤ b) = G(b)−G(a) =
k∑
i=1

pi.Fi(b)−
k∑
i=1

pi.Fi(a) =
k∑
i=1

pi.(Fi(b)− Fi(a))

=

k∑
i=1

pi.PFi(a ≤ X ≤ b) =

k∑
i=1

pi.

∫ b

a
fi(x)dx =

∫ b

a

k∑
i=1

pi.fi(x)dx =

∫ b

a
g(x)dx.

Second, let X be a discrete random variable. Since fi(x) = PFi(X = x) (1 ≤ x ≤ k) for all x it follows
that:

g(x) =
k∑
i=1

pi.fi(x) =
k∑
i=1

pi.PFi(X = x) =
k∑
i=1

pi.(Fi(x)− lim
y↑x

Fi(y))

=
k∑
i=1

pi.Fi(x)− lim
y↑x

k∑
i=1

pi.Fi(y) = G(x)− lim
y↑x

G(y) = PG(X = x).

�

Problem 1.9. Suppose that X is a random variable with distribution function F and inverse (or
quantile function) F−1. Show that

E(X) =

∫ 1

0
F−1(t)dt

if E(X) is well-defined.

Solution. It is sufficient to prove the assertion for X ≥ 0 (Exercise). First, assume for some 0 < b <∞
to have FX(b) = 1. Then, an application of Charles-Ange Laisant formulae for function FX : [0, b] →
[0, 1] yields: ∫ 1

0
F−1(t)dt+

∫ b

0
F (x)dx = b,

or equivalently: ∫ 1

0
F−1(t)dt =

∫ b

0
(1− F (x))dx. (∗)

On the other hand, by definition:

E(X) =

∫ b

0
(1− F (x))dx, (∗∗)

and a comparison of (∗) and (∗∗) proves the assertion for this case. Second, let for all 0 < b < ∞ to
have FX(b) 6= 1. Consider an increasing sequence {xn} such that

∫∞
xn

(1 − F (x))dx ≤ 1
n (n ≥ 1) and

xn ↑ ∞. Define Xn = X.1[0,xn] (n ≥ 1), the by above conditions:

FXn(x) = FX(x).1[0,xn](x) + 1(xn,∞)(x), (n ≥ 1)∫ 1

0
(F−1

X (t)− F−1
Xn

(t))dt =

∫ ∞
xn

(1− F (x))dx ≤ 1

n
(n ≥ 1).
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Consequently, an application of the first case yields:

E(X) = lim
n→∞

E(Xn) = lim
n→∞

∫ 1

0
F−1
Xn

(t)dt =

∫ 1

0
F−1
X (t)dt.

�

Problem 1.11. Let X be a random variable with finite expected value E(X) and suppose that g(x)
is a convex function:

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

for 0 ≤ t ≤ 1.
(a) Show that for any x0, there exists a linear function h(x) = ax + b such that h(x0) = g(x0) and
h(x) ≤ g(x) for all x.
(b) Prove Jensen’s inequality: g(E(X)) ≤ E(g(X)).

Solution. (a) For any x0, the left derivative g
′
(x−0 ) exists and it is sufficient to consider the left tangent

line at x0 given by h(x) = g
′
(x−0 ).(x− x0) + g(x0). Next, considering:

g(x) ≥ g(t.x+ (1− t).x0)− (1− t)g(x0)

t
=
g(t.x+ (1− t).x0)− g(x0)

t
+ g(x0)

=
g(t.x+ (1− t).x0)− g(x0)

tx+ (1− t)x0 − x0
(x− x0) + g(x0) (∗)

and taking limit from both sides of (∗) as t ↓ 0, it follows that g(x) ≥ h(x).
(b) For h(x) = ax+ b we have:

E(g(X)) ≥ E(h(X)) = E(aX + b) = aE(X) + b = h(E(X)) = g(E(X)).

�

Problem 1.13. Suppose X ∼ Gamma(α, λ). Show that
(a) E(Xr) = Γ(r + α)/(λrΓ(α))for r > −α;
(b) V ar(X) = α/λ2.

Solution.(a)

E(Xr) =

∫ ∞
0

xr.f(x)dx =

∫ ∞
0

λα.xα+r−1

Γ(α)
.e−λ.xdx =

Γ(r + α)

λr.Γ(α)

∫ ∞
0

λα+r.xα+r−1

Γ(α+ r)
.e−λ.xdx =

Γ(r + α)

λr.Γ(α)
.

(b)

V ar(X) = E(X2)− E2(X) =
Γ(2 + α)

λ2.Γ(α)
− (

Γ(1 + α)

λ1.Γ(α)
)2 =

(α+ 1)(α)Γ(α)

λ2.Γ(α)
− (

(α)Γ(α)

λ1.Γ(α)
)2 =

α

λ2
.

�
Problem 1.15. Suppose that X ∼ N(0, 1).
(a) Show that E(Xk) = 0 if k is odd.
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(b) Show that E(Xk) = 2k/2Γ((k + 1)/2)/Γ(1/2) if k is even.

Solution.(a) For odd k, the function g(x) = xk.fX(x) is an integrable odd function over real line and
hence, E(X) =

∫∞
−∞ g(x)dx = 0.

(b) Let k = 2m. Since X2

2 = W ∼ Gamma(1/2, 1), it follows from Problem 1.13(a) that:

E(Xk) = E(X2m) = 2m.E(Wm) = 2m
Γ(1/2 +m)

Γ(1/2)
= 2k/2

Γ((1 + k)/2)

Γ(1/2)
.

�

Problem 1.17. Let m(t) = E[exp(tX)] be the moment generating function of X. c(t) = ln(mX(t)) is
often called the cumulant generating function of X.
(a) Show that c′(0) = E(X) and c”(0) = V ar(X).
(b) Suppose that X has a Poisson distribution with parameter λ as in Example 1.33. Use the cumulant
generating function of X to show that E(X) = V ar(X) = λ.
(c) The mean and variance are the first two cumulants of a distribution; in general, the k-th cumulant
is defined to be c(k)(0). Show that the third and fourth cumulants are

c(3)(0) = E(X3)− 3E(X)E(X2) + 2[E(X)]3,

c(4)(0) = E(X4)− 4E(X3)E(X) + 12E(X2)[E(X)]2 − 3[E(X2)]2 − 6[E(X)]4

(d) Suppose that X ∼ N(µ, σ2). Show that all but the first two cumulants of X are exactly 0.

Solution. (a)

c
′
(0) =

d

dt
log(mX(t))|t=0 =

m
′
X(t)

mX(t)
|t=0 =

E(X)

1
= E(X),

c”(0) =
d2

dt2
log(mX(t))|t=0 =

m”
X(t)mX(t)−m′X(t)m

′
X(t)

m2
X(t)

|t=0 =
E(X2)− E2(X)

1
= V ar(X).

(b) Since, cX(t) = log(mX(t)) = log(exp(λ.(et − 1))) = λ.et − 1, by part (a) it follows that:

E(X) = c
′
(0) = λ.et|t=0 = λ,

E(X) = c”(0) = λ.et|t=0 = λ.

(c) First, we have:

c(t) = log(mX(t)),

c(1)(t) = m
(1)
X (t).m−1

X (t),

c(2)(t) = m
(2)
X (t).m−1

X (t)− (m
(1)
X (t))2.m−2

X (t),

c(3)(t) = m
(3)
X (t).m−1

X (t)− 3.m
(2)
X (t).m

(1)
X (t).m−2

X (t) + 2(m
(1)
X (t))3.m−3

X (t),

c(4)(t) = m
(4)
X (t).m−1

X (t)− 4.m
(3)
X (t).m

(1)
X (t).m−2

X (t)− 3(m
(2)
X (t))2.m−2

X (t)

+ 12.(m
(1)
X (t))2.m

(2)
X (t).m−3

X (t)− 6(m
(1)
X (t))4.m−4

X (t),
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and using m
(i)
X (t) = E(Xi), (0 ≤ i ≤ 4) the assertion follows.

(d)Since c(t) = log(mX(t)) = log(exp(µ.t+ σ2.t2

2 )) = µ.t+ σ2.t2

2 , it follows that:

c(1)(t) = µ+ σ2.t, c(2)(t) = σ2, c(n)(t) = 0, (n ≥ 3) (∗)

and letting t = 0 in (∗) the assertion is proved.
�

Problem 1.19. The Gompertz distribution is sometimes used as a model for the length of human life;
this model is particular good for modelling survival beyond 40 years. Its distribution function is:

F (x) = 1− exp[−β(exp(αx)− 1)] forx ≥ 0

where α, β > 0.
(a) Find the hazard function for this distribution.
(b) Suppose that X has distribution function F . Show that

E(X) =
exp(β)

α

∫ ∞
1

exp(−β.t)
t

dt

while the median of F is

F−1(1/2) =
1

α
ln(1 + ln(2)/β).

(c) Show that F−1(1/2) ≥ E(X) for all α > 0, β > 0.

Solution. (a)

λ(x) =
d
dxF (x)

1− F (x)
=
β.α. exp(αx) ∗ exp[−β(exp(αx)− 1)]

exp[−β(exp(αx)− 1)]
= β.α. exp(αx). (x ≥ 0)

(b)First, using change of variable technique with t = exp(α.x) and dt = α.tdx it follows that:

E(X) =

∫ ∞
0

(1− F (x))dx =

∫ ∞
0

exp[−β(exp(αx)− 1)]dx = exp(β)

∫ ∞
0

exp[−β(exp(αx))]dx

= exp(β)

∫ ∞
1

exp(−β.t) dt
α.t

=
exp(β)

α

∫ ∞
1

exp(−β.t)
t

dt.

Second, solving equation F (x) = 1
2 , one concludes:

exp[−β(exp(αx)− 1)] =
1

2
⇔ exp(αx)− 1 =

log(2)

β
⇔Med(x) =

log(1 + log(2)
β )

α
.

(c) Fix α > 0, and define :

H(β) = α.(F−1(1/2)− E(X))

= α.(
1

α
ln(1 + ln(2)/β)− exp(β)

α

∫ ∞
1

exp(−β.t)
t

dt)

= log(1 +
log(2)

β
)−

∫ ∞
0

e−β.t

t+ 1
dt.

The following plot of H shows that it takes both positive and negative values. Hence, the given
inequality does not hold for all β > 0.
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Figure 1.1 Plot of function H(β) = log(1 + log(2)
β )−

∫∞
0

e−β.t

t+1 dt

�
Problem 1.21. Suppose that X is a non-negative random variable where E(Xr) is finite for some
r > 0. Show that E(Xs) is finite for 0 ≤ s ≤ r.

Solution. For given 0 ≤ s ≤ r, we have xs−1 ≤ xr−1 (x ≥ 1). Hence, by Problem 1.20(a) and the
given assumption it follows that:

E(Xs) = s

∫ ∞
0

xs−1(1− F (x))dx = s(

∫ 1

0
xs−1(1− F (x))dx+

∫ ∞
1

xs−1(1− F (x))dx)

= s(

∫ 1

0
xs−1(1− F (x))dx) + s(

∫ ∞
1

xs−1(1− F (x))dx) ≤ s(
∫ 1

0
xs−1dx) + r(

∫ ∞
1

xr−1(1− F (x))dx)

≤ 1 + r(

∫ ∞
0

xr−1(1− F (x))dx) = 1 + E(Xr) <∞.

�
Problem 1.23. Suppose that X is a non-negative random variable with distribution function F (x) =
P (X ≤ x). Show that

E(Xr) = r

∫ ∞
0

xr−1(1− F (x))dx,

for any r > 0.

Solution. Using Fubini’s Theorem for 0 < x < t <∞ we have:∫ ∞
0

r.xr−1(1− F (x))dx =

∫ ∞
0

r.xr−1(

∫ ∞
x

f(t)dt)dx =

∫ ∞
0

∫ ∞
x

(r.xr−1f(t))dtdx

=

∫ ∞
0

∫ t

0
(r.xr−1f(t))dxdt =

∫ ∞
0

trf(t)dt = E(Xr).
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�
Problem 1.25. Suppose that X has a distribution function F (x) with inverse F−1(t).
(a) Suppose also that E(|X|) < ∞ and define g(t) = E(|X − t|). Show that g is minimized at t =
F−1(1/2).
(b) The assumption that E(|X|) <∞ in (a) is unnecessary if we define g(t) = E[|X − t| − |X|]. Show
that g(t) is finite for all t and that t = F−1(1/2) minimizes g(t).
(c) Define ρα(x) = α.x.I(x ≥ 0) + (α − 1).x.I(x < 0) for some 0 < α < 1. Show that g(t) =
E[ρα(X − t)− ρα(X)] is minimized at t = F−1(α).

Solution.(a) Since:

g(t) = E(|X − t|) =

∫ ∞
−∞
|x− t|f(x)dx =

∫ t

−∞
−(x− t)f(x)dx+

∫ ∞
t

(x− t)f(x)dx

= −
∫ t

−∞
x.f(x)dx+ t.

∫ t

−∞
f(x)dx+

∫ ∞
t

x.f(x)dx− t
∫ ∞
t

f(x)dx,

we have:

d

dt
g(t) = −t.f(t) + F (t) + t.f(t) + t.f(t)− (1− F (t))− t.f(t) = 2.F (t)− 1 = 0,

and consequently t = F−1(1/2) minimizes g.

(b) First,

|g(t)| = |E(|X − t| − |X|)| ≤ E(||X − t| − |X||) ≤ E(|X − t−X|) = |t| <∞.

Second,

g(t) = E(|X − t| − |X|) =

∫ ∞
−∞

(|x− t| − |x|)f(x)dx

=

∫ ∞
−∞

[−1(−∞,t)(x)(x− t) + 1(t,∞)(x)(x− t)− (−1(−∞,0)(x).x+ 1(0,∞)(x).x)]f(x)dx

=

∫ ∞
−∞

[x(−1(−∞,t)(x) + 1(t,∞)(x) + 1(−∞,0)(x)− 1(0,∞)(x)) + t(1(−∞,t)(x)− 1(t,∞)(x))]f(x)dx

=

∫ ∞
−∞

[x((1− 2.1(−∞,t)(x)) + (2.1(−∞,0)(x)− 1)) + t(2.1(−∞,t)(x)− 1)]f(x)dx

= 2(

∫ 0

−∞
x.f(x)dx−

∫ t

−∞
x.f(x)dx) + t.(2F (t)− 1),

yields:
d

dt
g(t) = −2t.f(t) + 2F (t)− 1 + 2t.f(t) = 2F (t)− 1 = 0,

and thus t = F−1(1/2) minimizes g.

(c) Given d
dt(ρα(x − t) − ρα(x))) = −α + 1(−∞,t)(x), we may generalize the solution in part (b) as

follows:

d

dt
g(t) = E(

d

dt
(ρα(X − t)− ρα(X))) = E(−α+ 1(−∞,t)(X)) = −α+ F (t) = 0,
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and hence t = F−1(α) minimizes g.
�

Problem 1.27. Let X be a positive random variable with distribution function F . Show that E(X) <
∞ if, and only if,

∞∑
k=1

P (X > kε) <∞

for any ε > 0.

Solution. First, to prove the necessity, let ε = 1
2 , and consider [X] ≤ X < [X] + 1, then by rearrange-

ment of sums:

E([X]) =
∞∑
l=1

l.P ([X] = l) =
∞∑
l=1

P (l ≤ X < l + 1)

=

∞∑
k=1

∞∑
m=0

P (k +m ≤ X < k +m+ 1) =

∞∑
k=1

P (X ≥ k)

<

∞∑
k=1

P (X >
k

2
) <∞,

and hence by E(X) < E([X]) + 1, the assertion follows.

Second, to prove the sufficiency, let ε > 0, then :

∞∑
k=1

P (X > k.ε) ≤
∞∑
k=1

P (X ≥ k.ε) =

∞∑
k=1

P (
X

ε
≥ k) = E([

X

ε
]) ≤ E(

X

ε
) =

1

ε
.E(X) <∞.

�



Chapter 2

Random Vector and Joint Distribution

Problem 2.1. Suppose that X and Y are independent Geometric random variables with frequency
function f(x) = θ.(1− θ)x for x = 0, 1, 2, · · ·

(a) Show that Z = X + Y has a Negative Binomial distribution and identify the parameters of Z.
(b) Extend the result of part (a): If X1, · · · , Xn are i.i.d. Geometric random variables, show that
S = X1 + · · ·+Xn has a Negative Binomial distribution and identify the parameters of S.

Solution. (a) Using C(n, k) as the notation for binomial coefficient we have:

P (Z = z) = P (X + Y = z)

=
∞∑
y=0

P (X + Y = z|Y = y)P (Y = y)

=
∞∑
y=0

P (X = z − y)P (Y = y)

=
z∑
y=0

P (X = z − y)P (Y = y)

=

z∑
y=0

(θ.(1− θ)z−y.θ.(1− θ)y)

= (z + 1)θ2.(1− θ)z

= C(2 + z − 1, z).θ2.(1− θ)z.

So, Z ∼ NB(2, θ).

(b)We claim Sn ∼ NB(n, θ) (n ≥ 1). For the case n = 1 as S1 = X1 it trivially holds. Let it hold for
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the case n > 1(induction hypothesis). Then, for Sn+1 = Sn +Xn+1 it follows that:

P (Sn+1 = s) = P (Sn +Xn+1 = s) =

∞∑
x=0

P (Sn +Xn+1 = s|Xn+1 = x)P (Xn+1 = x)

=
∞∑
x=0

P (Sn = s− x)P (Xn+1 = x) =
s∑

x=0

P (Sn = s− x)P (Xn+1 = x)

=

s∑
x=0

C(n+ s− x− 1, s− x).θn.(1− θ)s−x.θ.(1− θ)x

=
s∑

x=0

C(n+ s− x− 1, s− x).θn+1.(1− θ)s

= C(n+ 1 + s− 1, s)θn+1.(1− θ)s, s = 0, 1, · · · .

where in the last equation, the equality
∑s

x=0C(n + s − x − 1, s − x) = C(n + s, s) was used in
which can be proved by induction on s and Pascal’s rule for binomial coefficients. Consequently,
Sn+1 ∼ NB(n+ 1, θ).
�

Problem 2.3. If f1(x), · · · , fk(x) are density(frequency) functions then

g(x) = p1.f1(x) + · · ·+ pk.fk(x)

is also a density (frequency) function provided that pi ≥ 0(i = 1, · · · , k) and p1 + · · · + pk = 1. We
can thin of sampling from g(x) as first sampling a discrete random variable Y taking values 1 through
k with probabilities p1, · · · , pk and then, conditional on Y = i, sampling from fi(x). The distribution
whose density or frequency function is g(x) is called a mixture distribution.
(a) Suppose that X has frequency function g(x). Show that

P (Y = i|X = x) =
pifi(x)

g(x)

provided that g(x) > 0.
(b) Suppose that X has a density function g(x). Show that we can reasonably define

P (Y = i|X = x) =
pifi(x)

g(x)

in the sense that P (Yi = i) = E(P (Y = i|X)).

Solution.(a) Using Bayes Theorem (Proposition 1.5.) it follows that:

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)
=
fi(x).pi
g(x)

, (g(x) > 0).

(b)We prove the assertion for discrete random variable X :

E(P (Y = i|X)) =
∑
x

P (Y = i|X = x)P (X = x) =
∑
x

pi.fi(x)

g(x)
g(x)

= pi.
∑
x

fi(x) = pi = P (Y = i) (1 ≤ i ≤ k).
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The proof for the continuous random variable X is similar by replacing sums in above by integrals.
�

Problem 2.5.Mixture distributions can be extended in the following way. Suppose that f(x; θ) is a
density or a frequency function where θ lies in some set Θ ⊆ R. Let p(θ) be a density function on Θ
and define

g(x) =

∫
Θ
f(x; θ)p(θ)dθ.

Then g(x) is itself a density or frequency function. As before, we can review sampling from g(x) as
first sampling from p(θ) and that given θ, sampling from f(x; θ).
(a) Suppose that X has the mixture density or frequency function g(x). Show that

E(X) = E(E(X|θ))

and
V ar(X) = V ar(E(X|θ)) + E(V ar(X|θ))

where E(X|θ) and V ar(X|θ) are the mean and variance of a random variable with density or frequency
function f(x; θ).
(b) The Negative Binomial distribution introduced in Example 1.12 can be obtained as a Gamma
mixture of Poisson distributions. Let f(x;λ) be a Poisson frequency function with mean λ and p(λ)
be a Gamma distribution with mean µ and variance µ2/α. Show that the mixture distribution has
frequency function

g(x) =
Γ(x+ α)

x!Γ(α)
(

α

α+ µ
)α(

µ

α+ µ
)x

for x = 0, 1, 2, · · · . Note that this form of the Negative Binomial is richer than the form given in
Example 1.12.
(c) Suppose that X has a Negative Binomial distribution as given in part (b). Find the mean and
variance of X.
(d) Show that the moment generating function of the Negative Binomial distribution in (b) is

m(t) = (
α

α+ µ(1− exp(t))
)α. for t < ln(1 + α/µ)

Solution.(a) First, using Fubini’s Theorem it follows that:

E(E(X|θ)) =

∫
Θ
E(X|θ)p(θ)dθ =

∫
Θ

(

∫
χ
x.f(x; θ)dx)p(θ)dθ

=

∫
Θ

∫
χ
(x.f(x; θ)p(θ))dxdθ =

∫
χ
x.(

∫
Θ
f(x; θ)p(θ)dθ)dx

=

∫
χ
x.g(x)dx = E(X).

Second, using E(Y ) = E(E(Y |θ)) for Y = (X − E(X))2 we have:

V ar(X) = E((X − E(X))2) = E(E((X − E(X))2|θ)) = E(E(X2 − 2.E(X).X + E2(X)|θ))
= E(E(X2|θ)− 2.E(X.E(X)|θ) + E2(X)) = E(E(X2|θ)− 2E(X).E(X|θ) + E2(X))

= E((E(X2|θ)− E2(X|θ)) + (E2(X|θ)− 2E(X).E(X|θ) + E2(X)))

= E(E(X2|θ)− E2(X|θ)) + E((E(X|θ)− E(X))2)

= E(V ar(X|θ)) + E((E(X|θ)− E(E(X|θ)))2)

= E(V ar(X|θ)) + V ar(E(X|θ)).
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(b)

g(x) =

∫ ∞
0

f(x, λ)p(λ)dλ =

∫ ∞
0

(
e−λλx

x!
∗ λ

α−1.e−α.λ/µ

Γ(α)(µ/α)α
)dλ

=
1

x!Γ(α)

∫ ∞
0

λx+α−1

(µ/α)α
.e−(1+α/µ)λdλ

=
1

x!Γ(α)
.

1

(µ/α)α

∫ ∞
0

((1 + α/µ)λ)x+α−1

(1 + α/µ)x+α
.e−(1+α/µ)λd((1 + α/µ)λ)

=
1

x!Γ(α)
.
αα

µα
.

µx+α

(µ+ α)x+α
.Γ(1)

=
1

x!Γ(α)
.(

α

α+ µ
)α.(

µ

α+ µ
)x x = 0, 1, · · · .

(c)
E(X) = E(E(X|λ)) = E(λ) = µ.

V ar(X) = V ar(E(X|λ)) + E(V ar(X|λ)) = V ar(λ) + E(λ) =
µ2

α
+ µ.

(d)Using Poisson moment generating function and Gamma moment generating function we have:

MX(t) = E(et.X) = E(E(et.X |λ)) = E(MX|λ(t)) = E(eλ(et−1))

= Mλ(et − 1) = (
1

1− µ
α(et − 1)

)α = (

α
α+µ

( α
α+µ)(1 + µ

α −
µ
α .e

t)
)α

= (

α
α+µ

(1− µ
α+µ).et)

)α = (

α
α+µ

(1− (1− α
α+µ)).et)

)α. for t < ln(1 +
α

µ
)

�
Problem 2.7.Suppose that X1, · · · are i.i.d. random variables with moment generating function
m(t) = E(exp(t.Xi)). Let N be a Poisson random variable (independent of Xi’s) with parameter λ and
define the compound Poisson random variable

S =

N∑
i=1

Xi

where S = 0 if N = 0.
(a) Show that the moment generating function of S is

E(exp(tS)) = exp(λ(m(t)− 1)).

(b) Suppose that the Xi’s are Exponential with E(Xi) = 1 and λ = 5. Evaluate P (S > 5).

Solution.(a)

MS(t) = E(et.S) = E(E(et.S |N)) = E(E(et.
∑N
i=1Xi |N))

= E(E(

N∏
i=1

et.Xi |N)) = E(

N∏
i=1

E(et.Xi |N))

= E(

N∏
i=1

E(et.Xi)) = E(m(t)N ) = E(elog(m(t)).N )

= MN (log(m(t))) = eλ.(e
exp(log(m(t))−1) = eλ.(m(t)−1).
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(b) By Problem 1.14, S|N ∼ Gamma(N, 1) and P (S > s|N) =
∑N−1

j=0
e−s.sj

j! . Then:

P (S > 5) = E(1S>5) = E(E(1S>5|N)) = E(P (S > 5|N))

= E(

N−1∑
j=0

e−5.5j

j!
) = E(

N−1∑
j=0

P (N = j))

= E(P (N < N)) = E(0) = 0.

�
Problem 2.9. Consider the experiment in Problem 1.3. where a coin is tossed an infinite number of
times where the probability of heads on the k−th toss is (1/2)k. Define X to be the number of heads
observed in the experiment.
(a) Show that the probability generating function of X is

p(t) =

∞∏
k=1

(1− 1− t
2k

).

(b) Use the result of part (a) to evaluate P (X = x) for x = 0, · · · , 5.

Solution. (a) Let X =
∑∞

k=1 1Ak in which 1Ak ∼ Bernouli(1/2k), (k ≥ 1) and M1Ak
(t) = (1− 1

2k
) +

( 1
2k

)et, (k ≥ 1). Then:

pX(t) = MX(log(t)) =
∞∏
k=1

M1Ak
(log(t)) =

∞∏
k=1

((1− 1

2k
) + (

1

2k
)elog(t)) =

∞∏
k=1

(1− 1− t
2k

).

(b) Using Problem 1.18(c):

PX(X = x) =
1

x!

dx

dtx
p(t)|t=0 x = 0, 1, 2, 3, 4, 5.

Next, define u(t) =
∑∞

k=1 log(1− 1−t
2k

), then p(t) = eu(t). Consequently:

P (X = 0) =
1

0!
(eu(0)),

P (X = 1) =
1

1!
(u(1)(0).eu(0)),

P (X = 2) =
1

2!
((u(2)(0) + u(1)2

(0)).eu(0)),

P (X = 3) =
1

3!
((u(3)(0) + 3u(1)(0)u(2)(0) + u(1)2

(0)).eu(0)),

P (X = 4) =
1

4!
((u4(0) + 3u(2)2

(0) + 4u(1)(0)u(3)(0) + 6u(1)2
(0)u(2)(0) + u(1)4

(0)).eu(0)),

P (X = 5) =
1

5!
((u(5)(0) + 10.u(2)(0).u(3)(0) + 5.u(1)(0)u(4)(0) + 15.u(1)(0)u(2)2

(0)

+10.u(1)2
(0)u(3)(0) + 10.u(1)3

(0).u(2)(0) + u(1)5
(0)).eu(0)),

where in which u(0) =
∑∞

k=1 log(2k−1
2k

), and u(x)(0) =
∑∞

k=1
(−1)x+1.(x−1)!

(2k−1)x
for x = 1, 2, 3, 4, 5.

�

Problem 2.11. Suppose we want to generate random variables with a Cauchy distribution. As an
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alternative to the method described in Problem 1.24, we can generate independent random variables
V and W where P (V = 1) = P (V = −1) = 1/2 and W has density

g(x) =
2

π(1 + x2)
for |x| ≤ 1.

(W can be generated by using the rejection method in Problem 2.10) Then we define X = W V ; show
that X has Cauchy distribution.

Solution.For Z=1/W, an application of Theorem 2.3 with h−1(Z) = 1/Z implies fZ(x) =
2.1|x|>1

π(1+x2)
.

Consequently:

fX(x) = P (W V = x) = P (W V = x|V = 1)P (V = 1) + P (W V = x|V = −1)P (V = −1)

= P (W = x)
1

2
+ P (W−1 = x)

1

2
=
fW (x) + fZ(x)

2

=
( 2
π(1+x2)

).(1|x|≤1 + 1|x|>1)

2
=

1

π(1 + x2)
.

�
Problem 2.13.Suppose that X1, · · · , Xn are i.i.d. Uniform random variables on [0, 1]. Define Sn =
(X1 + · · ·+Xn) mod1; Sn is simply the “decimal” part of X1 + · · ·+Xn.
(a) Show that Sn = (Sn−1 +Xn) mod1 for all n ≥ 2.
(b) Show that Sn ∼ Unif(0, 1) for all n ≥ 1.

Solution.(a) By definition Sn = {
∑n

i=1Xi} =
∑n

i=1Xi − [
∑n

i=1Xi]. Hence:

{Sn−1 +Xn} = (Sn−1 +Xn)− [Sn−1 +Xn]

= (

n−1∑
i=1

Xi − [

n−1∑
i=1

Xi] +Xn)− [

n−1∑
i=1

Xi − [

n−1∑
i=1

Xi] +Xn]

=

n∑
i=1

Xi − [

n−1∑
i=1

Xi]− [

n∑
i=1

Xi − [

n−1∑
i=1

Xi]]

=
n∑
i=1

Xi − [

n−1∑
i=1

Xi]− [
n∑
i=1

Xi] + [[
n−1∑
i=1

Xi]]

=
n∑
i=1

Xi − [
n∑
i=1

Xi] = Sn.

(b) We prove the assertion by induction on n. As for n = 1, we have S1 = X1 it trivially holds. Let
it hold for case n > 1(induction hypothesis). Then, by Part (a), Sn+1 = Sn + Xn − [Sn + Xn] and



© 2018 by Chapman & Hall/CRC 17

consequently:

FSn+1(t) = P (Sn+1 ≤ t) = P (Sn +Xn+1 ≤ [Sn +Xn+1] + t)

=

n+1∑
k=0

P (Sn +Xn+1 ≤ [Sn +Xn+1] + t, [Sn +Xn+1] = k)

=
n+1∑
k=0

P (Sn +Xn+1 ≤ k + t, k ≤ Sn +Xn+1 < k + 1)

=
n+1∑
k=0

P (k ≤ Sn +Xn+1 ≤ k + t)

= P (0 ≤ Sn +Xn+1 ≤ t) + P (1 ≤ Sn +Xn+1 ≤ 1 + t)

=
t2

2
+ (t− t2

2
) = t. if 0 ≤ t ≤ 1

Also, by the first line above and the fact that [Sn +Xn+1] ≤ Sn +Xn+1 < [Sn +Xn+1] + 1, it is clear
that FSn+1(t) = 0 if t < 0 and FSn+1(t) = 1 if t > 1. Accordingly, Sn+1 ∼ Unif(0, 1).
�

Problem 2.15. Suppose X1, · · · , Xn are independent nonnegative continuous random variables where
Xi has hazard function λi(x) (i = 1, · · · , n).
(a) If U = min1≤i≤n(Xi), show that the hazard function of U is λU (x) = λ1(x) + · · ·+ λn(x).
(b) If V = max1≤i≤n(Xi), show that the hazard function of V satisfies λV (x) ≤ min(λ1(x), · · · , λn(x)).
(c) Show that the result of (b) holds even if the Xis are not independent.

Solution.(a)Since:

FU (x) = 1− SU (x) = 1− P (U ≥ x) = 1− P ( min
1≤i≤n

(Xi) ≥ x)

= 1−
n∏
i=1

P (Xi ≥ x) = 1−
n∏
i=1

(1− FXi(x)),

we have:

fU (x) =
d

dx
FU (x) = −

n∑
j=1

(
∏
j 6=i

(1− FXj (x))(−fXj (x))) =

n∑
j=1

(
∏
j 6=i

(1− FXj (x))(fXj (x))).

Hence:

λU (x) =
fU (x)

SU (x)
=

∑n
j=1(

∏
j 6=i(1− FXj (x))(fXj (x)))∏n
j=1(1− FXj (x))

=

n∑
j=1

fXj (x)

(1− FXj (x))
=

n∑
j=1

λj(x).

(b),(c) We prove the assertion for cumulative hazard function Λ(x) =
∫ x

0 λ(t)dt. By,

exp(−ΛV (x)) = SV (x) = P (X ≥ x) ≥ P (Xi ≥ x) = SXi(x) = exp(−Λi(x)),

and taking log it follows that ΛV (x) ≤ Λi(x) (1 ≤ i ≤ n), and hence:

ΛV (x) ≤ min
1≤i≤n

Λi(x).
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As a counterexample for the hazard function case, let n = 2 and Xi ∼ exp(λi) (i = 1, 2) with λ1 < λ2

be independent and V = max(X1, X2). Then:

FV (x) = 1− exp(−λ1.x)− exp(−λ2.x) + exp(−(λ1 + λ2).x),

SV (x) = exp(−λ1.x) + exp(−λ2.x)− exp(−(λ1 + λ2).x),

fV (x) = λ1. exp(−λ1.x) + λ2. exp(−λ2.x)− (λ1 + λ2). exp(−(λ1 + λ2).x),

implying:

λV (x) =
fV (x)

SV (x)
=
λ1. exp(λ2.x) + λ2. exp(λ1.x)− (λ1 + λ2)

exp(λ2.x) + exp(λ1.x)− 1
≤ λ1 = min(λ1(x), λ2(x)),

and hence x ≤ 1
λ1

log( λ2
λ2−λ1 ), a contradiction to unboundedness of range of x.

�

Problem 2.17. Suppose that X and Y are random variables such that both E(X2) and E(Y 2) are
finite. Define g(t) = E((Y + t.X)2).

(a) Show that g(t) is minimized at t = −E(XY )
E(X2)

.

(b) Show that (E(XY ))2 ≤ E(X2).E(Y 2); this is called the Cauchy-Schwarz inequality.
(c) Use part (b) to show that |Corr(X,Y )| ≤ 1.

Solution. (a) Since:

g(t) = E((Y + t.X)2) = E(Y 2 + 2tX.Y + t2.X2) = E(X2)t2 + 2E(XY )t+ E(Y 2),

it follows that g(1)(t) = 2E(X2)t+ 2E(XY ) = 0, and hence t = −E(XY )
E(X2)

minimizes g.

(b)Since (Y + t.X)2 ≥ 0, we have g(t) = E((Y + t.X)2) ≥ 0, and consequently:

0 ≤ g(
−E(XY )

E(X2)
) = E(X2).(

−E(XY )

E(X2)
)2 + 2E(XY ).(

−E(XY )

E(X2)
) + E(Y 2)

=
E2(XY )

E(X2)
− 2E2(XY )

E(X2)
+ E(Y 2) =

−E2(XY ) + E(X2)E(Y 2)

E(X2)
,

implying: E2(XY ) ≤ E(X2).E(Y 2).

(c) First, assume E(X) = E(Y ) = 0, then, by Cauchy-Schwarz inequality in Part (b):

|Corr(X,Y )| = | Cov(X,Y )√
V ar(X).V ar(Y )

| = | E(XY )√
E(X2)E(Y 2)

| ≤ 1.

Second, for the case of E(X) 6= 0 or E(Y ) 6= 0, define X∗ = X − E(X) and Y ∗ = Y − E(Y ). Then,
Cov(X,Y ) = Cov(X∗, Y ∗) , V ar(X) = V ar(X∗) and V ar(Y ) = V ar(Y ∗). Consequently:

|Corr(X,Y )| = | Cov(X,Y )√
V ar(X).V ar(Y )

| = | Cov(X∗, Y ∗)√
V ar(X∗).V ar(Y ∗)

| = |Corr(X∗, Y ∗)| ≤ 1.

�
Problem 2.19. Suppose that X and Y are independent random variables with X discrete and Y
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continuous. Define Z = X + Y.
(a) Show that Z is a continuous random variable with

P (Z ≤ z) =
∑
x

P (Y ≤ z − x)P (X = x).

(b) If Y has a density function fY (y), show that the density of Z is

fZ(z) =
∑
x

fY (z − x)fX(x)

where fX(x) is the frequency function of X.

Solution.(a)

FZ(z) = P (Z ≤ z) = P (X + Y ≤ z) =
∑
x

P (X + Y ≤ z,X = x)

=
∑
x

P (X + Y ≤ z|X = x)P (X = x) =
∑
x

P (Y ≤ z − x)P (X = x)

=
∑
x

FY (z − x)P (X = x).

As Y is continuous random variable, Gx(z) = FY (z − x) is continuous CDF and so is Hx(z) = FY (z −
x).P (X = x). Hence, FZ as the sum of continuous functions Hx is continuous, as well.

(b) By Part (a):

FZ(z) =
∑
x

FY (z − x).fX(x) =
∑
x

(

∫ z−x

−∞
fY (y)dy)fX(x) =

∑
x

∫ z−x

−∞
(fY (y)fX(x))dy

=
∑
x

∫ z

−∞
(fY (y∗ − x)fX(x))dy∗ =

∫ z

−∞
(
∑
x

(fY (y∗ − x)fX(x)))dy∗,

accordingly:

fZ(z) =
d

dz
FZ(z) =

∑
x

(fY (z − x)fX(x)).

�
Problem 2.21.(a) Show that

Cov(X,Y ) = E(Cov(X,Y |Z)) + Cov(E(X|Z), E(Y |Z)).

(b) Suppose that X1, X2, · · · be i.i.d. Exponential random variables with parameter 1 and take N1, N2

to be independent Poisson random variables with parameters λ1, λ2 that are independent of the X ′is.
Define compound Poisson random variables

S1 =

N1∑
i=1

Xi S2 =

N2∑
i=1

Xi

and evaluate Cov(S1, S2) and Corr(S1, S2). When is this correlation maximized ?
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Solution. (a)

E(Cov(X,Y |Z)) + Cov(E(X|Z), E(Y |Z)) = E(E(XY |Z)− E(X|Z)E(Y |Z))

+ E(E(X|Z)E(Y |Z))− E(E(X|Z)).E(E(Y |Z))

= E(E(XY |Z))− E(E(X|Z)E(Y |Z))

+ E(E(X|Z)E(Y |Z))− E(E(X|Z)).E(E(Y |Z))

= E(XY )− E(X).E(Y ) = Cov(X,Y ).

(b) We have:

Cov(S1, S2) = E(S1.S2)− E(S1).E(S2). (∗)

Using Theorem 2.8 the first term in the right hand side of (*) can be evaluated as follows:

E(S1.S2) =
∞∑

n1=1

E(S1.S2|N1 = n1)P (N1 = n1)

=
∞∑

n1=1

(
∞∑

n2=1

E(S1.S2|N1 = n1, N2 = n2)P (N2 = n2))P (N1 = n1)

=
∞∑

n1=1

∞∑
n2=1

E((

n1∑
i=1

Xi)(

n2∑
j=1

Xj))P (N2 = n2)P (N1 = n1)

=
∞∑

n1=1

∞∑
n2=1

(

n1∑
i=1

n2∑
i=1

E(Xi.Xj))P (N2 = n2)P (N1 = n1)

=

∞∑
n1=1

∞∑
n2=1

(

n1∑
i=1

n2∑
i=1

(1 + Cov(Xi, Xj)))P (N2 = n2)P (N1 = n1)

=
∞∑

n1=1

∞∑
n2=1

(n1.n2 +

n1∑
i=1

n2∑
i=1

Cov(Xi, Xj))P (N2 = n2)P (N1 = n1)

=

∞∑
n1=1

∞∑
n2=1

(n1.n2 + min(n1, n2))P (N2 = n2)P (N1 = n1)

=
∞∑

n1=1

∞∑
n2=1

(n1.n2)P (N2 = n2)P (N1 = n1) +
∞∑

n1=1

∞∑
n2=1

(min(n1, n2))P (N2 = n2)P (N1 = n1)

= E(N1.N2) + E(min(N1, N2))

= λ1.λ2 + E(min(N1, N2)|N1 ≤ N2).P (N1 ≤ N2) + E(min(N1, N2)|N1 ≥ N2).P (N1 ≥ N2)

= λ1.λ2 + E(N1).P + E(N2).(1− P ) (defineP = P (N1 ≤ N2))

= λ1.λ2 + λ1.P + λ2.(1− P ). (∗∗)

By Example 2.14 for µ = σ2 = 1 we have:

E(S1) = λ1 V ar(S1) = 2.λ1

E(S2) = λ2 V ar(S2) = 2.λ2. (∗ ∗ ∗)

Accordingly, by (*), (**) and (***) it follows that:

Cov(S1, S2) = λ1.P + λ2.(1− P ) : P = P (N1 ≤ N2) =
∞∑
n=0

FN1(n).fN2(n). (†)
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Next, using (†) it follows that:

Corr(S1, S2) =
Cov(S1, S2)√

V ar(S1).V ar(S2)
=
λ1.P + λ2.(1− P )

2
√
λ1.λ2

. (††)

Finally, to find the maximum value of Corr(S1, S2) using (††) we define:

H(λ1, λ2) =
λ1.P + λ2.(1− P )

2
√
λ1.λ2

. († † †)

A simple calculus for the bivariate function H in († † †) shows that max(H) = 1
2 , (Exercise!).

�
Problem 2.23. The mean residual life function r(t) of a nonnegative random variable X is defined to
be

r(t) = E(X − t|X ≥ t).

(r(t) would be of interest, for example , to a life insurance company.)
(a) Suppose that F is the distribution function of X. Show that

r(t) =
1

1− F (t)

∫ ∞
t

(1− F (x))dx.

(b) Show that r(t) is constant if, and only if, X has an Exponential distribution.
(c) Show that

E(X2) = 2

∫ ∞
0

r(t)(1− F (t))dt.

(d) Suppose that X has a density function f(x) that is different and f(x) > 0 for x > 0. Show that

lim
t→∞

r(t) = lim
t→∞

(− f(t)

f ′(t)
).

(e) Suppose that X has a Gamma distribution:

f(x) =
1

Γ(α)
λαxα−1 exp(−λ.x) forx > 0.

Evaluate the limit in part (c) for this distribution. Give an interpretation of this result.

Solution. (a) By Fubini’s Theorem:

r(t) = E(X − t|X ≥ t) =

∫ ∞
t

(x− t) dF (x)

P (X > t)
=

∫∞
t

∫ x
t dydF (x)

1− F (t)

=

∫∞
t (
∫∞
y dF (x))dy)

1− F (t)
=

∫∞
t (1− F (y))dy

1− F (t)
.

(b)

r(t) = c ⇔ c(1− F (t)) =

∫ ∞
t

(1− F (x))dx⇔ −c.f(t) = F (t)− 1

⇔ f(t)

1− F (t)
=

1

c
⇔ λ(x) =

1

c

⇔ X ∼ exp(
1

c
).



22 © 2018 by Chapman & Hall/CRC

(c)

E(X2) =

∫ ∞
0

x2.f(x)dx =

∫ ∞
0

∫ x

0
2tdtf(x)dx =

∫ ∞
0

∫ x

0
2tf(x)dtdx

=

∫ ∞
0

∫ ∞
t

2t.f(x)dxdt =

∫ ∞
0

2t(

∫ ∞
t

f(x)dx)dt =

∫ ∞
0

2t(1− F (t))dt

=

∫ ∞
0

(2

∫ t

0
ds)(1− F (t))dt = 2

∫ ∞
0

∫ t

0
(1− F (t))dsdt = 2

∫ ∞
0

∫ ∞
s

(1− F (t))dtds

= 2

∫ ∞
0

r(s)(1− F (s))ds = 2

∫ ∞
0

r(t)(1− F (t))dt.

(d) Using L’Hospital’s Rule it follows:

lim
t→∞

r(t) =definition lim
t→∞

∫∞
t (1− F (x))dx

1− F (t)
=LHR lim

t→∞

d/dt
∫∞
t (1− F (x))dx

d/dt(1− F (t))

= lim
t→∞

F (t)− 1

−f(t)
=LHR lim

t→∞

d/dt(F (t)− 1)

d/dt(−f(t))
= lim

t→∞
(− f(t)

f ′(t)
).

(e) By Part (d) we have:

lim
t→∞

r(t) = lim
t→∞

(− f(t)

f ′(t)
) = lim

t→∞

− 1
Γ(α)λ

αtα−1 exp(−λ.t)
1

Γ(α)λ
αtα−2 exp(−λ.t)(α− 1− λ.t)

= lim
t→∞
−(

t

α− 1− λ.t
) =

1

λ
=

1

α
.E(X).

The mean residual life function of Gamma distribution is asymptotically proportional to its mean.
�
Problem 2.25. Suppose that X1, · · · , Xn are i.i.d. continuous random variables with distribution
function F (x) and density function f(x); let X(1) < X(2) < · · · < X(n) be the order statistics.
(a) Show that the distribution function of X(k) is

Gk(x) =
n∑
j=k

C(n, j)F (x)j(1− F (x))n−j .

(b) Show that the density function of X(k) is

gk(x) =
n!

(n− k)!(k − 1)!
F (x)k−1(1− F (x))n−kf(x).

Solution.(a) For S =
∑n

k=1 I(Xk≤x) ∼ Binomial(n, F (x)) we have:

Gk(x) = P (X(k) ≤ x) = P (S ≥ k) =

n∑
j=k

P (S = j) =

n∑
j=k

C(n, j)F (x)j(1− F (x))n−j .
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(b) As C(n, j + 1).(j + 1) = C(n, j).(n− j), from Part (a) it follows:

gk(x) =
d

dx
Gk(x)

=
n∑
j=k

C(n, j)(jF (x)j−1(1− F (x))n−j .f(x)− (n− j)F (x)j(1− F (x))n−j−1f(x))

= C(n, k).(kF (x)k−1(1− F (x))n−k.f(x))

+
n∑

j=k+1

C(n, j)(jF (x)j−1(1− F (x))n−jf(x))

−
n−1∑
j=k

C(n, j)(n− j)(F (x)j(1− F (x))n−j−1f(x))

=
n!

(n− k)!(k − 1)!
F (x)k−1(1− F (x))n−kf(x)

+
n−1∑
j=k

C(n, j + 1)(j + 1)(F (x)j(1− F (x))n−j−1f(x))

−
n−1∑
j=k

C(n, j)(n− j)(F (x)j(1− F (x))n−j−1f(x))

=
n!

(n− k)!(k − 1)!
F (x)k−1(1− F (x))n−kf(x).

�
Problem 2.27. Suppose that X1, · · · , Xn+1 be i.i.d. Exponential random variables with parameter
λand define

Uk =
1

T

k∑
i=1

Xi fork = 1, · · · , n

where T = X1 + · · ·+Xn+1.
(a) Find the joint density of (U1, · · · , Un, T ). (Note that 0 < U1 < U2 < · · · < Un < 1.)
(b) Show that the joint distribution of (U1, · · · , Un) is exactly the same as the joint distribution of the
order statistics of an i.i.d. sample of n observations from a Uniform distribution on [0, 1].

Solution. (a) Since Uk.T =
∑k

i=1Xi we have:

Xk =

k∑
i=1

Xi −
k−1∑
i=1

Xi = Uk.T − Uk−1.T = (Uk − Uk−1).T. (1 ≤ k ≤ n)

Defining U0 = 0 and Un+1 = 1 there will be an extension of above equality to :

Xk = (Uk − Uk−1).T. (1 ≤ k ≤ n+ 1)

Now, define transformation h via:

(U1, · · · , Un, T ) = h(X1, · · · , Xn, Xn+1).
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Then, by Theorem 2.3. we have:

f(U1,··· ,Un,T )(u1, · · · , un, t) = f(X1,··· ,Xn,Xn+1)(h
−1(u1, · · · , un, t))|J(h−1(u1, · · · , un, t))|

= f(X1,··· ,Xn,Xn+1)((u1 − u0)t, (u2 − u1)t, · · · , (un − un−1)t, (un+1 − un)t)

|d(X1, · · · , Xn, Xn+1)

d(u1, · · · , un, t)
|

=
n+1∏
i=1

fXi((ui − ui−1)t).det(


+t 0 · · · 0 0 u1 − u0

−t +t · · · 0 0 u2 − u1

· · · · · ·
0 0 · · · −t +t un − un−1

0 0 · · · 0 −t 1− un

)

= (
n+1∏
i=1

λ.e−λ(ui−ui−1)t).tn.10<u1<···<un<1(u1, · · · , un)

= λn+1.e−λ.ttn.10<u1<···<un<1(u1, · · · , un).

(b) By Part (a):

f(U1,··· ,Un)(u1, · · · , un) =

∫ ∞
0

f(U1,··· ,Un,T )(u1, · · · , un, t)dt

= 10<u1<···<un<1(u1, · · · , un)

∫ ∞
0

λn+1.e−λ.ttndt

= Γ(n+ 1) 10<u1<···<un<1(u1, · · · , un)

= n! 10<u1<···<un<1(u1, · · · , un).

�
Problem 2.29. Suppose that X and Y are independent Exponential random variables with parameters
λ and µ respectively. Define random variables

T = min(X,Y ) ∆ = 1 if X < Y, 0 otherwise.

Note that T has a continuous distribution while ∆ is discrete. (This is an example of type I censoring
in reliability or survival analysis.)
(a) Find the density of T and the frequency function of ∆.
(b) Find the joint distribution function of (T,∆).

Solution.(a) First,

fT (t) =
d

dt
FT (t) =

d

dt
(1− ST (t)) = − d

dt
ST (t) = − d

dt
P (T ≥ t)

= − d

dt
(P (X ≥ t)P (Y ≥ t)) = − d

dt
(SX(t).SY (t)) = − d

dt
(e−(λ+µ)t)

= (λ+ µ)(e−(λ+µ)t),
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and hence, T ∼ exp(λ+ µ). Second,

P (∆ = 1) = P (X < Y ) =

∫ ∫
X<Y

λe−λ.x.µ.e−µ.ydxdy

=

∫ ∞
0

∫ ∞
x

λe−λ.x.µ.e−µ.ydydx =

∫ ∞
0

λe−λ.x(

∫ ∞
x

µ.e−µ.ydy)dx

=

∫ ∞
0

λe−λ.xe−µ.xdx = (
λ

λ+ µ
)

∫ ∞
0

(λ+ µ)e−(λ+µ).xdx

=
λ

λ+ µ
,

implying ∆ ∼ Bernouli( λ
λ+µ).

(b) Since:

fT,∆(t, 1) = P (min(X,Y ) = t,X < Y ) = P (X = t, t < Y )

= PX(X = t).PY (t < Y ) = λ.e−λ.t.e−µ.t

= λ.e−(λ+µ)t,

and

fT,∆(t, 0) = P (min(X,Y ) = t,X ≥ Y ) = P (Y = t,X ≥ t)
= PY (Y = t).PX(X ≥ t) = µ.e−µ.t.e−λ.t

= µ.e−(λ+µ)t,

it follows that:

fT,∆(t, δ) = (δ.λ+ (1− δ).µ).e−(λ+µ)t δ = 0, 1, 0 < t.

�
Problem 2.31.Suppose that X has a Beta distribution with parameters α and β.
(a) Find the density function of Y = X(1−X)−1.
(b) Suppose that α = m/2 and β = n/2 and define Y as in part (a). Using the definition of F
distribution, show that nY/m ∼ F (m,n).

Solution.(a) Define Y = h(X) = X
1−X , then X = h−1(Y ) = Y

1+Y . By Theorem 2.3:

fY (y) = fX(h−1(y))|dh
−1(y)

dy
| = fX(

y

1 + y
)(

1

(1 + y)2
)

=
1

B(α, β)
(

y

y + 1
)α−1(

1

y + 1
)β−1(

1

(1 + y)2
)

=
1

B(α, β)
yα−1(y + 1)−(α+β). (0 < y <∞)

(b) Let U =d χ2(m) and V =d χ2(n) be independent . Then, U
U+V =d B(m2 ,

n
2 ) and F = U/m

V/n =d

F (m,n). Consequently:

nY

m
=

n

m

X

1−X
=

X/m

(1−X)/n
=d

U/(U+V )
m

V/(U+V )
n

=
U/m

V/n
=d F (m,n).
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�
Problem 2.33. Suppose that X ∼ χ2(n).
(a) Show that E(Xr) = 2rΓ(r + n/2)/Γ(n/2) if r > −n/2.
(b) Using part (a), show that E(X) = n and V ar(X) = 2n.

Solution. (a)

E(Xr) =

∫ ∞
0

xrfX(x)dx =

∫ ∞
0

xr(
1

Γ(n/2)2n/2
xn/2−1e−x/2)dx

=
Γ(n/2 + r)2n/2+r

Γ(n/2)2n/2

∫ ∞
0

xn/2+r−1e−x/2

Γ(n/2 + r)2n/2+r
dx =

Γ(n/2 + r)

Γ(n/2)
.2r if r + n/2 > 0.

(b)

E(X) =
Γ(n/2 + 1)

Γ(n/2)
.2 =

(n/2)Γ(n/2)

Γ(n/2)
.2 = n.

E(X2) =
Γ(n/2 + 2)

Γ(n/2)
.22 =

(n/2 + 1)(n/2)Γ(n/2)

Γ(n/2)
.22 = (n+ 2)n.

V ar(X) = E(X2)− E2(X) = 2n.

�
Problem 2.35. Suppose that W ∼ F (m,n). Show that

E(W r) = (
n

m
)r

Γ(r +m/2)Γ(−r + n/2)

Γ(m/2)Γ(n/2)

if −m/2 < r < n/2.

Solution. As for two independent U, V with U =d χ2(m) and V =d χ2(n) we have W =d U/m
V/n =d

F (m,n), two applications of Problem 2.33(a) imply:

E(W r) = E((
U/m

V/n
)r) = (

n

m
)rE(U rV −r) = (

n

m
)r.E(U r).E(V −r)

= (
n

m
)r.(2r

Γ(r +m/2)

Γ(m/2)
).(2−r

Γ(−r + n/2)

Γ(n/2)
)

= (
n

m
)r

Γ(r +m/2)Γ(−r + n/2)

Γ(m/2)Γ(n/2)
if −m/2 < r < n/2.

�
Problem 2.37. Suppose that X ∼ Nn(µ, I); the elements of X are independent Normal random
variables with variances equal to 1.
(a) Suppose that O is an orthogonal matrix whose first row is µT /‖µ‖ and let Y = OX. Show that
E(Y1) = ‖µ‖ and E(Yk) = 0 for k ≥ 2.
(b) Using part (a), show that the distribution of ‖X‖2 is the same as that of ‖Y ‖2 and hence depends
on µ only through its norm ‖µ‖.
(c) Let θ2 = ‖µ‖2. Show that the density of V = ‖X‖2 is

fV (x) =

∞∑
k=0

exp(−θ2/2)(θ2/2)k

k!
f2k+n(x)
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where f2k+n(x) is the density function of a χ2 random variable with 2k+n degrees of freedom. (V has
a non-central χ2 distribution with n degrees of freedom and non-centrality parameter θ2.)

Solution.(a) Let O =

aT11 · · · aT1n
· · ·

aTn1 · · · aTnn

 and X =

X1

· · ·
Xn

 Then:

Y1 = (aT11, · · · , aT1n)

X1

· · ·
Xn

 =
n∑
i=1

aT1i.Xi =
n∑
i=1

µTi
‖µ‖

Xi,

and hence:

E(Y1) =
n∑
i=1

µTi
‖µ‖

E(Xi) =
n∑
i=1

µTi .µi
‖µ‖

=
(‖µ‖)2

‖µ‖
= ‖µ‖.

Next, as (aTk1, · · · , aTkn) = Yk ⊥ Y1 = (µ1, · · · , µn) (k ≥ 2) it follows that:

E(Yk) = E(
n∑
i=1

aTki.Xi) =
n∑
i=1

aTki.E(Xi) =
n∑
i=1

aTki.µi = 0.

(b)

‖Y ‖2 = Y T .Y = (OX)T .(OX) = XT .(OT .O).X = XT .X = ‖X‖2.

(c) First, V = ‖X‖2 = ‖Y ‖2 =
∑n

i=1 Y
2
i = Y 2

1 +
∑n

i=2 Y
2
i = U +W such that U = Y 2

1 (Y1 =d N(0, 1))
and W =

∑n
i=2 Y

2
i =d χ2(n− 1). Furthermore:

fU (t) =
eθ

2/2

2
√

2π
√
t
(eθ
√
t + e−θ

√
t).e−t/2 (t > 0), (∗)

and

fW (t) =
t(n−1)/2−1.e−t/2

2(n−1)/2.Γ((n− 1)/2)
(t > 0). (∗∗)
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Second, using (*) and (**) it follows that:

fV (x) =

∫ x

0
fU (x).fW (x− t)dt

=

∫ x

0
(
eθ

2/2

2
√

2π
√
t
(eθ
√
t + e−θ

√
t).e−t/2) ∗ (

(x− t)(n−1)/2−1.e−(x−t)/2

2(n−1)/2.Γ((n− 1)/2)
)dt

= e−θ
2/2.(

∫ x

0
(
eθ
√
t + e−θ

√
t

2
)(

(x− t)(n−1)/2−1

√
2π
√
t2(n−1)/2Γ((n− 1)/2)

)).e−x/2

= e−θ
2/2.(

∫ x

0
(

∞∑
k=0

(θ.
√
t)2k

(2k)!
)(

(x− t)(n−1)/2−1

√
2π
√
t2(n−1)/2Γ((n− 1)/2)

)).e−x/2

= e−θ
2/2.(

∞∑
k=0

(
(θ2/2)k

k!
)(

∫ x

0

t(2k+1)/2−1(x− t)(n−1)/2−1

( (2k)!
k! )
√

2π2(n−1)/2−kΓ((n− 1)/2)
)).e−x/2

= e−θ
2/2.(

∞∑
k=0

(
(θ2/2)k

k!
)(
x(2k+n)/2−1.B((2k + 1)/2), (n− 1)/2

( (2k)!
k! )
√

2π2(n−1)/2−kΓ((n− 1)/2)
)).e−x/2

= e−θ
2/2.(

∞∑
k=0

(
(θ2/2)k

k!
)(

x(2k+n)/2−1

2(2k+n)/2Γ((2k + n)/2)
)).e−x/2

=
∞∑
k=0

(e−θ
2/2.

(θ2/2)k

k!
)(

x(2k+n)/2−1

2(2k+n)/2Γ((2k + n)/2)
.e−x/2)

=
∞∑
k=0

(e−θ
2/2.

(θ2/2)k

k!
)f2k+n(x).

�
Problem 2.39. Consider the marked Poisson process in Example 2.22 where the call starting times
arrive as a homogeneous Poisson process (with rate λ calls/minute) on the entire real line and the call
lengths are continuous random variables with density function f(x). In Example 2.22, we showed that
the distribution of N(t) is independent of t.
(a) Show that for any r,

Cov(N(t), N(t+ r)) = λ

∫ ∞
|r|

xf(x)dx = λ[|r|(1− F (|r|)) +

∫ ∞
|r|

(1− F (x))dx]

and hence is independent of t and depends only on |r|.
(b) Suppose that the call lengths are Exponential random variables with mean µ. Evaluate Cov(N(t), N(t+
r)). (This is called the autocovariance function of N(t).)
(c) Suppose that the call lengths have a density function

f(x) = α.x−α−1 if x ≥ 1.

Show that E(Xi) <∞ if, and only if, α > 1 and evaluate Cov(N(t), N(t+ r)) in this case.
(d) Compare the autocovariance functions obtained in parts (b) and (c). For which distribution does
Cov(N(t), N(t+ r)) decay to 0 more slowly as |r| → ∞?
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Solution. (a) Fix r > 0, then:

Cov(N(t), N(t+ r)) = Cov(
∞∑
i=1

I(Si≤t,t≤Si+Xi<t+r) +
∞∑
i=1

I(Si≤t,t+r<Si+Xi),

∞∑
i=1

I(Si≤t,t+r≤Si+Xi) +
∞∑
i=1

I(t<Si≤t+r,t+r≤Si+Xi))

= Cov(
∞∑
i=1

I(Si≤t,t+r≤Si+Xi),
∞∑
i=1

I(Si≤t,t+r≤Si+Xi))

= Cov(
∞∑
i=1

I(Si≤t,t≤Si+Xi.1Xi>r)
,
∞∑
i=1

I(Si≤t,t≤Si+Xi.1Xi>r)
)

= V ar(
∞∑
i=1

I(Si≤t,t≤Si+Xi.1Xi>r)
)

= E(

∞∑
i=1

I(Si≤t,t≤Si+Xi.1Xi>r)
)

= λ.E(X.1X>r) = λ.

∫ ∞
0

x.1x>rf(x)dx = λ.

∫ ∞
r

x.f(x)dx.

(b)

AF1(r) = Cov(N(t), N(t+ r)) = λ.(|r|.SX(|r|) +

∫ ∞
|r|

SX(x)dx)

= λ.(|r|.e−µ|r| +
∫ ∞
|r|

e−µ.xdx)

= λ.|r|.e−µ|r|(|r|+ 1

µ
).

(c)First,

E(X) =

∫ ∞
1

x.fX(x)dx =

∫ ∞
1

α

xα
dx <∞⇔ α > 1.

Second,

AF2(r) = Cov(N(t), N(t+ r)) = λ.

∫ ∞
|r|

x.f(x)dx

= λ.

∫ ∞
|r|

α

xα
dx = λ.

α

α− 1
.(1/|r|)α−1.

(d)First, as

lim
r→∞

AF1(r)

AF2(r)
= lim

r→∞

λ.|r|.e−µ|r|(|r|+ 1
µ)

λ. α
α−1 .(1/|r|)α−1

= lim
r→∞

(
α− 1

α
)(
|r|α + |r|α−1/|µ|

eµ.|r|
) = 0,

it follows that AF1 = o(AF2) and AF2 tends to 0 slower than AF1.
Second, define:

G(r) =def AF1(r)

AF2(r)
= (

α− 1

α
)(
|r|α + |r|α−1/|µ|

eµ.|r|
) −∞ < r <∞.

Then, limr→±∞G(r) = 0 = limr→0G(r) and G(r) ≥ 0 (−∞ < r < ∞). Furthermore, G takes its

maximum value at r0 =
(α−1)+

√
(α−1)2+4(α−1)

2µ , (Exercise!). Hence: AF1 ≤ G(r0).AF2.
�
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Chapter 3

Convergence of Random Variables

Problem 3.1. (a) Suppose that {X(1)
n }, · · · , {X(k)

n } are sequences of random variables with X
(i)
n →p 0

as n→∞ for each i = 1, · · · , k. Show that

max
1≤i≤k

|X(i)
n | →p 0

as n→∞.
(b) Find an example to show that the conclusion of (a) is not necessarily true if the number of sequences
k = kn →∞.

Solution. (a) We prove the assertion by induction on k. For k = 1, it trivially holds. Let it hold

for k > 1, (induction hypothesis). Then, for ε > 0, as limn→∞ P (max1≤i≤k |X
(i)
n | ≤ ε) = 1 =

limn→∞ P (|X(k+1)
n | ≤ ε), it follows that:

1 = lim
n→∞

P ( max
1≤i≤k

|X(i)
n | ≤ ε) ≤ lim

n→∞
P (( max

1≤i≤k
|X(i)

n | ≤ ε) ∪ (|X(k+1)
n | ≤ ε)) ≤ 1,

and consequently:
lim
n→∞

P (( max
1≤i≤k

|X(i)
n | ≤ ε) ∪ (|X(k+1)

n | ≤ ε)) = 1. (∗)

Now, using (*) and another application of above assumptions and Proposition 1.1.(c), it follows that:

lim
n→∞

P ( max
1≤i≤k+1

|X(i)
n | > ε) = lim

n→∞
P (max( max

1≤i≤k
|X(i)

n |, |X(k+1)
n |) > ε)

= 1− lim
n→∞

P (max( max
1≤i≤k

|X(i)
n |, |X(k+1)

n |) ≤ ε)

= 1− lim
n→∞

P (( max
1≤i≤k

|X(i)
n | ≤ ε) ∩ (|X(k+1)

n | ≤ ε))

= 1− lim
n→∞

[P ( max
1≤i≤k

|X(i)
n | ≤ ε) + P (|X(k+1)

n | ≤ ε)

− P (( max
1≤i≤k

|X(i)
n | ≤ ε) ∪ (|X(k+1)

n | ≤ ε))]

= 1− (1 + 1− 1) = 0.

(b) Fix 1 ≤ i, and define {X(i)
n }∞n=1 = { i

n2 }∞n=1. Then, limn→∞X
(i)
n =P 0 (1 ≤ i). Furthermore, for

k(n) = n2, we have max1≤i≤k(n) |X
(i)
n | = 1, and consequently, limn→∞max1≤i≤k(n) |X

(i)
n | =P 1 6= 0.

�
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Problem 3.3. Suppose that X1, · · · , Xn are i.i.d Exponential random variables with parameter λ and
let Mn = max(X1, · · · , Xn). Show that Mn − ln(n)/λ→d V where

P (V ≤ x) = exp[− exp(−λx)]

for all x.

Solution.

lim
n→∞

P (Mn −
ln(n)

λ
≤ x) = lim

n→∞
P (Mn ≤

ln(n)

λ
+ x) = lim

n→∞

n∏
i=1

P (Xi ≤
ln(n)

λ
+ x)

= lim
n→∞

n∏
i=1

(1− e−λ(
ln(n)
λ

+x))) = lim
n→∞

(1− e−(ln(n)+λ.x)))n

= lim
n→∞

(1− −e
−λ.x

n
)n = exp(− exp(−λ.x)) −∞ < x <∞.

�
Problem 3.5. Suppose that XN has a Hyper-geometric distribution (see Example 1.13) with the
following frequency function

fN (x) =
C(MN , x)C(N −MN , rN − x)

C(N, rN )

for x = max(0, rN + MN − N), · · · ,min(MN , rN ). When the population size N is large, it becomes
somewhat difficult to compute probabilities using fN (x) so that it is desirable to find approximations
to the distribution of XN as N →∞.
(a) Suppose that RN → r(finite) and MN/N → θ for 0 < θ < 1. Show that XN →d Bin(r, θ) as
N →∞.
(b) Suppose that rN →∞ with rNMN/N → λ > 0. Show that XN →d Pois(λ) as N →∞.

Solution. (a) Using Stirling’s formulae we have:
lim

rN→r,
MN
N
→θ fN (x) =

lim
rN→r,

MN
N
→θ

C(MN ,x)C(N−MN ,rN−x)
C(N,rN ) =

lim
rN→r,

MN
N
→θ

(
MN !

(MN−x)!x!
)(

(N−MN )!

(N−MN−(rN−x))!(rN−x)!
)

( N !
(N−rN )!rN !

)
=

lim
rN→r,

MN
N
→θ[

rN !
(rN−x)!x!

MN !(N−MN )!(N−rN )!
(MN−x)!(N−MN−(rN−x))!N ! ] =

C(r, x). lim
rN→r,

MN
N
→θ

(M
MN+1/2

N )((N−MN )N−MN+1/2)((N−rN )N−rN+1/2)

((MN−x)MN−x+1/2)((N−MN−(rN−x))N−MN−(rN−x)+1/2)(NN+1/2)
=

C(r, x). lim
rN→r,

MN
N
→θ[(

MN
MN−x)MN ∗ ( MN

MN−x)1/2 ∗ ( N−MN
N−MN−(rN−x))1/2 ∗ ( (MN−x)x(N−MN−(rN−x))rN−x

(N−rN )rN ) ∗

(N−rNN )N ∗ (N−rNN )1/2 ∗ ( N−MN
N−MN−(rN−x))N−MN ] =

C(r, x). lim
rN→r,

MN
N
→θ[e

x ∗ 1 ∗ 1 ∗ ((MN−x
N−rN )x(N−MN−(rN−x)

N−rN )rN−x) ∗ e−r ∗ 1 ∗ er−x] =

C(r, x).θx.(1− θ)r−x.
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(b) Using Stirling’s formulae as in part (a) we have:

lim
rN→∞,rN

MN
N
→λ

fN (x) = lim
rN→∞,rN

MN
N
→λ

C(MN , x).C(N −MN , rN − x)

C(N, rN )

= lim
rN→∞,rN

MN
N
→λ

e−xrxNe
xMx

Ne
x(N −MN )rN−xerN−x

N rN erN

=
1

x!
lim

rN→∞,rN
MN
N
→λ

(
rNMN

N
)x(

N −MN

N
)rN−x

=
1

x!
.λx. lim

rN→∞,rN
MN
N
→λ

(1−
rN

MN
N

rN
)rN

=
1

x!
.λx.e−λ.

�

Problem 3.7. (a) Let {Xn} be a sequence of random variables. Suppose that E(Xn)→ θ(where θ is
finite) and V ar(Xn)→ 0. Show that Xn →p θ.
(b) A sequence of random variables {Xn} converges in probability to infinity (Xn →p ∞) if for each
M > 0,

lim
n→∞

P (Xn ≤M) = 0.

Suppose that E(Xn)→∞ and V ar(Xn) ≤ k.E(Xn) for some k <∞. Show that Xn →p ∞.

Solution. (a) Given ε > 0, then by Theorem 3.7:

lim
n→∞

P (|Xn − θ| > ε) ≤ lim
n→∞

E((Xn − θ)2)

ε2

= lim
n→∞

V ar(Xn) + (E(Xn)− θ)2

ε2

= 0,

implying: limn→∞ P (|Xn − θ| > ε) = 0.

(b) Given M > 0, then there is N ≥ 1 such that for any n ≥ N we have M < (1 − 1
M2+1

)E(Xn).

Consequently, for ε = 1
M2+1

an application of Theorem 3.7 yields:

lim
n→∞

P (Xn ≤M) ≤ lim
n→∞

P (Xn ≤ (1− ε)E(Xn)) = lim
n→∞

P (Xn − E(Xn) ≤ −ε.E(Xn))

≤ lim
n→∞

P (|Xn − E(Xn)| ≥ ε.E(Xn)) ≤ lim
n→∞

E(|Xn − E(Xn)|2)

ε2.E2(Xn)

≤ lim
n→∞

k

ε2.E2(Xn)
= 0,

and consequently, limn→∞ P (Xn ≤M) = 0.
�
Problem 3.9. Suppose that X1, · · · , Xn are i.i.d. Poisson random variables with mean λ. By the
CLT, √

n(Xn − λ)→d N(0, λ).
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(a) Find the limiting distribution of
√
n(ln(Xn)− ln(λ)).

(b) Find a function g such that

√
n(g(Xn)− g(λ))→d N(0, 1).

Solution. (a) By Theorem 3.4. for an =
√
n, g(x) = ln(x) (g′(x) = 1

x) and Xn instead of Xn we
have:

lim
n→∞

√
n(ln(Xn)− ln(λ)) =d 1

λ
.N(0, λ) =d N(0,

1

λ
).

(b) One non-trivial answer is g(x) = 2
√
x (g′(x) = 1√

x
) :

lim
n→∞

√
n(2

√
Xn − 2

√
λ) =d 1√

λ
N(0, λ) =d N(0, 1).

�
Problem 3.11. The sample median of i.i.d. random variables is asymptotically Normal provided
that the distribution function F has a positive derivative at the median; when this condition fails, an
asymptotic distribution may still exist but will be non-Normal. To illustrate this, let X1, · · · , Xn be
i.i.d. random variables with density

f(x) =
1

6
|x|−2/3 for|x| ≤ 1.

(Notice this density has a singularity at 0.)
(a) Evaluate the distribution function Xi and its inverse (the quantile function).
(b) Let Mn be the sample median of X1, · · · , Xn. Find the limiting distribution of n3/2Mn.

Solution. (a) As,

FX(x) = P (X ≤ x) = 1[−1,1](x).(
1 + x1/3

2
) + 1(1,∞)(x).

it follows: F−1(t) = (2t− 1)3 (0 < t < 1).

(b) First, for U1, · · · , Un ∼ Unif [0, 1] with E(Ui) = 1/2 and V ar(Ui) = 1/12 as application of Theorem
3.8 yields: √

n(Un − 1/2)→d N(0, 1/12). (∗)

Second, by Problem 3.10(c) for k ≥ 1 :

akn(g(Xn)− g(θ))→d
1

k!
g(k)(θ)Zk (∗∗)

Now, in (*) and (**) take g(θ) = F−1(θ). Then, g(1)(1/2) = g(2)(1/2) = 0, and g(3)(1/2) = 48 6= 0.
Consequently:

(
√
n)3.(F−1(Un)− F−1(1/2))→d

1

3!
48Z3, (∗ ∗ ∗)

and by F−1(Un) = Mn and F−1(1/2) = 0 it follows from (***) that:

n3/2Mn →d 8Z3 : Z ∼ N(0, 1/12).

�
Problem 3.13. Suppose that X1, · · · , Xn be i.i.d. discrete random variables with frequency function

f(x) =
x

21
for x = 1, 2, · · · , 6.
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(a) Let Sn =
∑n

k=1 k.Xk. Show that

(Sn − E(Sn))√
V ar(Sn)

→d N(0, 1).

(b) Suppose n = 20. Use a Normal approximation to evaluate P (S20 ≥ 1000).
(c) Suppose n = 5. Compute the exact distribution of Sn using the probability generating function of
Sn (See Problems 1.18 and 2.8).

Solution. (a) As E(X) = 13
3 and V ar(X) = 20

9 it follows that V ar(Sn) = 20
9

∑n
k=1 k

2. Hence, by

Theorem 3.9 for X∗k = Xk−E(Xk)√
20/9

in which E(X∗k) = 0 and V ar(X∗k) = 1 it follows that:

lim
n→∞

(Sn − E(Sn))√
V ar(Sn)

= lim
n→∞

∑n
k=1 k.Xk − E(

∑n
k=1 k.Xk)√

20/9
∑n

k=1 k
2

= lim
n→∞

1√∑n
k=1 k

2

n∑
k=1

k.X∗k

=d N(0, 1).

(b) As E(Sn) = 13
6 n(n+ 1) and V ar(Sn) = 10

27n(n+ 1)(2n+ 1) (n ≥ 1), it follows that:

P (S20 ≥ 1000) = P (
S20 − E(S20)√

V ar(S20)
≥ 1000− (13/6).20.21√

(10/27).20.21.41
) = P (Z ≥ 1.127) ≈ 0.13.

(c) By:

PS5(t) =
5∏

k=1

Pk.Xk(t) =
5∏

k=1

E(tk.X) =
5∏

k=1

(
6∑

x=1

(tk)x.
x

21
)

= (
1

21
)5

5∏
k=1

(
6∑

x=1

x.tk.x) =

∑6
x1=1

∑6
x2=1

∑6
x3=1

∑6
x4=1

∑6
x5=1(x1.x2.x3.x4.x5)tx1+2.x2+3.x3+4.x4+5.x5

215
,

it follows that:

P (S5 = k) =
P

(k)
S5

(0)

k!
=

∑
x1+2.x2+3.x3+4.x4+5.x5=k:1≤xi≤6(x1.x2.x3.x4.x5)

215
.

�
Problem 3.15. Suppose that Xn1, Xn2, · · · , Xnn are independent Bernoulli random variables with
parameters θn1, · · · , θnn respectively. Define Sn = Xn1 +Xn2 + · · ·+Xnn.
(a) Show that the moment generating function of Sn is

mn(t) =

n∏
i=1

(1− θni + θni exp(t)).

(b) Suppose that
n∑
i=1

θni → λ > 0 and max
1≤i≤n

θni → 0
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as n→∞. Show that

ln(mn(t)) = λ[exp(t)− 1] + rn(t)

where for each t, rn(t)→ 0 as n→∞.
(c) Deduce from part (b) that Sn →d Pois(λ).

Solution. (a)

mn(t) = E(et.Sn) = E(et.
∑n
i=1Xni) =

n∏
i=1

E(et.Xni) =
n∏
i=1

((1− θni) + θni.e
t).

(b) By definition:

lim
n→∞

ln(mn(t)) = lim
n→∞

n∑
i=1

ln(1 + θni(e
t − 1))

= lim
n→∞

n∑
i=1

(

∞∑
k=1

(−1)k−1(θni(e
t − 1))k

k
)

= lim
n→∞

n∑
i=1

(θni.(e
t − 1) +

∞∑
k=2

(−1)k−1(θni(e
t − 1))k

k
)

= lim
n→∞

[
n∑
i=1

θni.(e
t − 1) +

n∑
i=1

(
∞∑
k=2

(−1)k−1(θni(e
t − 1))k

k
)]

= λ.(et − 1) + lim
n→∞

rn(t),

in which

lim
n→∞

|rn(t)| ≤ lim
n→∞

n∑
i=1

(
∞∑
k=2

(θni|(et − 1))k|
k

)

≤ lim
n→∞

[
n∑
i=1

θni ∗ (
∞∑
k=2

(θni|(et − 1))k−1|
k

|et − 1|)]

≤ lim
n→∞

[
n∑
i=1

θni ∗ (
∞∑
k=2

(max1≤i≤n(θni)|(et − 1))k−1|
k

|et − 1|)]

= lim
n→∞

[
n∑
i=1

θni] ∗ lim
n→∞

[(
∞∑
k=2

(max1≤i≤n(θni)|(et − 1))k−1|
k

|et − 1|)]

= λ ∗ 0 = 0,

or limn→∞ |rn(t)| = 0.

(c) As

lim
n→∞

mSn(t) = lim
n→∞

(eλ(exp(t)−1).ern(t)) = eλ(exp(t)−1) = mPois(λ)(t) −∞ < t <∞,

by second method described on page 126, it follows that:

lim
n→∞

Sn =d Pois(λ).
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�

Problem 3.17. Suppose that X1, · · · , Xn are independent nonnegative random variables with hazard
functions λ1(x), · · · , λn(x) respectively. Define Un = min(X1, · · · , Xn).
(a) Suppose that for some α > 0,

lim
n→∞

1

nα

n∑
i=1

λi(t/n
α) = λ0(t)

for all t > 0 where
∫∞

0 λ0(t)dt =∞. Show that nαUn →d V where P (V > x) = exp(−
∫ x

0 λ0(t)dt).
(b) Suppose that X1, · · · , Xn are i.i.d. Weibull random variables (see Example 1.19) with density
function

f(x) = λ.β.xβ−1 exp(−λ.xβ) (x > 0)

where λ, α > 0. Let Un = min(X1, · · · , Xn) and find α such that nαUn →d V.

Solution. (a) By fundamental relationship between survival and hazard functions in page 28 it follows:

lim
n→∞

Snα.Un(t) = lim
n→∞

n∏
i=1

Snα.Xi(t) = lim
n→∞

n∏
i=1

SXi(t/n
α)

= lim
n→∞

n∏
i=1

exp(−
∫ t/nα

0
λi(u)du) = lim

n→∞
exp(−

n∑
i=1

∫ t

0
λi(u/n

α)du)

= exp(−
∫ t

0
lim
n→∞

∑n
i=1 λi(u/n

α)

nα
du) = exp(−

∫ t

0
λ0(u)du) = SV (t). (0 < t <∞)

(b) By Part (a) it is sufficient to find α > 0 such that limn→∞
1
nα
∑n

i=1 λi(t/n
α) = λ0(t) in which∫∞

0 λ0(t)dt =∞. But by Example 1.19, λi(t) = λ.β.tβ−1 (t > 0), and furthermore:

lim
n→∞

1

nα

n∑
i=1

λi(t/n
α) = lim

n→∞

n(λ.β.(t/nα)β−1)

nα

= lim
n→∞

λ.β.tβ−1 1

nα.β−1

= λ.β.tβ−1 if α =
1

β
.

Note that,
∫∞

0 λ.β.tβ−1dt =∞, hence we may take λ0(t) = λ.β.tβ−1 (t > 0).
�
Problem 3.19. Suppose that {Xn} is a sequence of random variables such that Xn →d X where E(X)
is finite. We would like to investigate sufficient conditions under which E(Xn)→ E(X) (assuming that
E(Xn) is well-defined). Note that in Theorem 3.5, we indicated that this convergence holds if the X ′ns
are uniformly bounded.
(a) Let δ > 0. Show that

E(|Xn|1+δ) = (1 + δ)

∫ ∞
0

xδP (|Xn| > x)dx.

(b) Show that for any M > 0 and δ > 0,∫ M

0
P (|Xn| > x)dx ≤ E(|Xn|) ≤

∫ M

0
P (|Xn| > x)dx+

1

M δ

∫ ∞
M

xδP (|Xn| > x)dx.



38 © 2018 by Chapman & Hall/CRC

(c) Again let δ > 0 and suppose that E(|Xn|1+δ) ≤ K < ∞ for all n. Assuming that Xn →d X, use
results of parts (a) and (b) to show that E(|Xn|)→ E(|X|) and E(Xn)→ E(X).

Solution. (a) This follows from Problem 1.20 with replacing X with |Xn| and r = 1 + δ.

(b) Given M > 0. By definition in Page 33, we have:∫ M

0
P (|Xn| > x)dx ≤

∫ ∞
0

P (|Xn| > x)dx = E(|Xn|)

=

∫ M

0
P (|Xn| > x)dx+

∫ ∞
M

P (|Xn| > x)dx

≤M<x

∫ M

0
P (|Xn| > x)dx+

∫ ∞
M

(
x

M
)δP (|Xn| > x)dx.

(c) Fix, M > 0 and n ≥ 1. Then, by Part (b):∫ M

0
P (|Xn| > x)dx ≤ E(|Xn|) ≤

∫ M

0
P (|Xn| > x)dx+

1

M δ

∫ ∞
M

xδP (|Xn| > x)dx

≤
∫ M

0
P (|Xn| > x)dx+

E(|Xn|1+δ)

M δ

≤
∫ M

0
P (|Xn| > x)dx+

K

M δ
. (∗)

Taking limit as n→∞ from three sides of (*) it follows that:∫ M

0
P (|X| > x)dx ≤ lim

n→∞
(E(|Xn|)) ≤

∫ M

0
P (|X| > x)dx+

K

M δ
. (∗∗)

Next, taking limit as M →∞ from three sides of (**) it follows that:∫ ∞
0

P (|X| > x)dx ≤ lim
n→∞

(E(|Xn|)) ≤
∫ ∞

0
P (|X| > x)dx. (∗ ∗ ∗)

Consequently, by (***) and definition E(|X|) =
∫∞

0 P (|X| > x)dx, the assertion follows. Finally, the
later assertion follows by considering |E(Xn)− E(X)| ≤ E(|Xn −X|) (n ≥ 1) and applying the first
assertion for the case X∗n = Xn −X (n ≥ 1).
�
Problem 3.21. If {Xn} is bounded in probability, we often write Xn = OP (1). Likewise, if Xn →p 0
then Xn = oP (1). This useful shorthand notation generalizes the big-oh and little-oh notation that is
commonly used for sequences of numbers to sequences of random variables. If Xn = OP (Yn) (Xn =
oP (Yn)) then Xn/Yn = OP (1) (Xn/Yn = oP (1)).
(a) Suppose that Xn = OP (1) and Yn = op(1). Show that Xn + Yn = OP (1).
(b) Let {an} and {bn} be sequences of constants where an/bn → 0 as n→∞ (that is, an = o(bn)) and
suppose that Xn = OP (an). Show that Xn = oP (bn).

Solution. (a) Given ε > 0, by assumption there is N > 1 and Mε > 0 such that:

P (|Xn| > ε) <
ε

2
(n ≥ N), P (|Yn| > Mε) <

ε

2
(n ≥ 1).
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Then:

P (|Xn + Yn| > Mε + ε) ≤ P (|Xn|+ |Yn| > Mε + ε)

= P (|Xn|+ |Yn| > Mε + ε ∩ |Xn| > ε) + P (|Xn|+ |Yn| > Mε + ε ∩ |Xn| ≤ ε)
≤ P (|Xn| > ε) + P (|Yn| ≥Mε)

≤ ε/2 + ε/2 = ε. (n ≥ N)

Next, for 1 ≤ n ≤ N, take Mn,ε > 0 such that P (|Xn + Yn| > Mn,ε) ≤ ε. Finally, take

M∗ε = max( max
1≤n≤N

Mn,ε,Mε + ε),

then:

sup
1≤n≤∞

P (|Xn + Yn| > M∗ε ) ≤ ε.

(b) Given ε > 0. There is Mε > 0 such that sup1≤n<∞ P (|Xnan | > Mε) ≤ ε. Then, there is N > 1 such
that for any n > N we have: |anbn | <

ε
Mε
. Accordingly,

P (|Xn

bn
| > ε) = P (|Xn

an
| > ε

(|an/bn|)
) ≤ P (|Xn

an
| > Mε) ≤ ε (n > N).

�

Problem 3.23. Suppose that A1, A2, · · · is a sequence of events. We are sometimes interested in
determining the probability that infinitely many of the A′ks occur. Define the event:

B = ∩∞n=1 ∪∞k=n Ak.

It is possible to show that an outcome lies in B if, and only if, it belongs to infinitely many of the A′ks.
(a) Prove the first Borel-Cantelli Lemma: If

∑∞
k=1 P (Ak) <∞ then

P (Ak infinitely often) = P (B) = 0.

(b) When the A′ks are mutually independent, we can strengthen the first Borel-Cantelli Lemma. Sup-
pose that

∞∑
k=1

P (Ak) =∞

for mutually independent events {Ak}. Show that

P (Ak infinitely often) = P (B) = 1;

this result is called the second Borel-Cantelli Lemma.

Solution.(a) By definition:

0 ≤ P (B) = P (∩∞n=1 ∪∞k=n Ak) ≤ inf
n≥1

P (∪∞k=nAk) ≤ inf
n≥1

∞∑
k=n

P (Ak) = 0,

as
∑∞

k=1 P (Ak) <∞. Hence, P (B) = 0.
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(b) Given the assumption
∑∞

k=1 P (Ak) =∞ we have
∑∞

k=n P (Ak) =∞ (n ≥ 1) and hence:

0 ≤ P (Bc) = P (∪∞n=1 ∩∞k=n A
c
k) ≤

∞∑
n=1

P (∩∞k=nA
c
k) =

∞∑
n=1

(
∞∏
k=n

(1− P (Ak)))

≤
∞∑
n=1

(
∞∏
k=n

exp(−P (Ak))) =
∞∑
n=1

exp(−
∞∑
k=n

P (Ak)) =
∞∑
n=1

0 = 0,

implying P (Bc) = 0 or P (B) = 1.
�

Problem 3.25. Suppose that X1, X2, · · · are i.i.d. random variables with E(Xi) = 0 and E(X4
i ) <∞.

Define:

Xn =
1

n

n∑
i=1

Xi.

(a) Show that E(|Xn|4) ≤ k/n2 for some constant k.
(b) Using the first Borel-Cantelli Lemma, show that

Xn →wp1 0.

(This gives a reasonably straightforward proof of the SLLN albeit under much stronger than necessary
conditions.).

Solution. (a) By Problem 1.21, E(X2), E(X3) <∞. Next, by Cauchy-Schwartz inequality in Problem
2.17 it follows:

E(|Xn|4) =
1

n4
E(|

n∑
i=1

Xi|4) =
1

n4
E(

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

Xi1Xi2Xi3Xi4)

=
1

n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E(Xi1Xi2Xi3Xi4)

=
1

n4
[C(4, 2)

∑
i1 6=i2

E(X2
i1 .X

2
i2) +

∑
i1

E(X4
i1)

+C(4, 1)
∑

i1 6=i2=i3=i4

E(Xi1Xi2Xi3Xi4)

+C(4, 2)
∑

i1 6=i2=i3 6=i4

E(Xi1Xi2Xi3Xi4)

+
∑

i1 6=i2 6=i3 6=i4

E(Xi1Xi2Xi3Xi4)]
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≤ 1

n4
[C(4, 2)n2E(X4

i ) + n.E(X4
i )

+C(4, 1)
∑

i1 6=i2=i3=i4

E(Xi1)E(Xi2Xi3Xi4)

+C(4, 2)
∑

i1 6=i2=i3 6=i4

E(Xi1)E(Xi2Xi3)E(Xi4)

+
∑

i1 6=i2 6=i3 6=i4

E(Xi1)E(Xi2)E(Xi3)E(Xi4)]

≤ 2.C(4, 2).n2

n4
E(X4

i ) =
2.C(4, 2).E(X4

i )

n2
,

and hence for k = 2.C(4, 2).E(X4
i ) the assertion follows.

(b) Referring to discussion of Page 159, it is sufficient to prove that for any ε > 0, we have

P (∩∞n=1 ∪∞k=n |Xk| > ε) = 0. (∗)

To do so, let Ak = (|Xk| > ε) (k ≥ 1) and take g(x) = x4 in Problem 3.8. Then:

∞∑
k=1

P (Ak) ≤
∞∑
k=1

E(|Xk|4)

ε4
≤ k

ε4

∞∑
k∗=1

(
1

k∗2
) =

k.π2

6.ε4
<∞,

and the (*) follows by the first Borel-Cantelli Lemma.
�
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Chapter 4

Principles of Point Estimation

Problem 4.1. Suppose that X = (X1, · · · , Xn) has a one-parameter exponential family distribution
with joint density or frequency function

f(x; θ) = exp[θ.T (x)− d(θ) + S(x)]

where the parameter space Θ is an open subset of R. Show that

Eθ[exp(sT (X))] = exp(d(θ + s)− d(θ))

if s is sufficiently small.

Solution. Fix θ ∈ Θ. Given open Θ ⊂ R, there is ε > 0 such that for the open ball B(θ, ε) we have
B(θ, ε) ⊂ Θ. Consequently, for any s ∈ B(θ, ε) :

Eθ[exp(sT (X))] =

∫
χ
exp(sT (x)).f(x; θ)dx =

∫
χ
exp(sT (x) + θ.T (x)− d(θ) + S(x))dx

= (

∫
χ
exp((s+ θ)T (x)− d(θ + s) + S(x))dx)exp(d(θ + s)− d(θ))

= (

∫
χ
f(x; s+ θ)dx)exp(d(θ + s)− d(θ))

= exp(d(θ + s)− d(θ)).

�
Problem 4.3. suppose that X1, · · · , Xn are i.i.d. random variables with density

f(x; θ1, θ2) = a(θ1, θ2)h(x) for θ1 ≤ x ≤ θ2; 0, otherwise

where h(x) is a known function defined on the real line.
(a) Show that

a(θ1, θ2) = (

∫ θ2

θ1

h(x)dx)−1.

(b) Show that (X(1), X(2)) is sufficient for (θ1, θ2).

Solution.(a) As

a(θ1, θ2).

∫ θ2

θ1

h(x)dx =

∫ θ2

θ1

a(θ1, θ2).h(x)dx =

∫
χ
f(x; θ1, θ2)dx = 1,
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it follows that: a(θ1, θ2) = 1/(
∫ θ2
θ1
h(x)dx).

(b) Using Theorem 4.2 for the joint density function of X = (X1, · · · , Xn) it follows:

f(x; θ1, θ2) =
n∏
i=1

f(xi; θ1, θ2) =
n∏
i=1

(a(θ1, θ2).h(xi).1[θ1,θ2](xi))

= (a(θ1, θ2)n.1[θ1,+∞)(X(1)).1(−∞,θ2](X(n))).(
n∏
i=1

h(xi))

= g∗((X(1), X(n)); (θ1, θ2)).h∗(x),

and accordingly, (X(1), X(2)) is sufficient for (θ1, θ2).
�

Problem 4.5.Suppose that the lifetime of an electrical component is known to depend on some stress
variable that varies over time; specifically, if U is the lifetime of the component, we have

lim
∆↓0

1

∆
P (x ≤ U ≤ x+ ∆|U ≥ x) = λ. exp(β.φ(x))

where φ(x) is the stress at time x. Assuming that we can measure φ(x) over time, we can conduct
an experiment to estimate λ and β by replacing the component when it fails and observing the failure
times of the components. Because φ(x) is not constant, the inter-failure times will not be i.i.d. random
variables.
Define non-negative random variables X1 < · · · < Xn such that X1 has hazard function

λ1(x) = λ. exp(β.φ(x))

and conditional on Xi = xi, Xi+1 has hazard function

λi+1(x) = 0 if x < xi; λ. exp(β.φ(x)), if x ≥ xi

where λ, β are unknown parameters and φ(x) is a known function.
(a) Find the joint density of (X1, · · · , Xn).
(b) Find sufficient statistics for (λ, β).

Solution. (a) Using fundamental relationship between density function and hazard function (page
29), it follows that:

fX1,··· ,Xn(x1, · · · , xn) =

n−1∏
i=0

(
fX1,··· ,Xi+1(x1, · · · , xi+1)

fX1,··· ,Xi(x1, · · · , xi)
) =

n−1∏
i=0

fXi+1|X1,··· ,Xi(xi+1|x1, · · · , xi)

=

n−1∏
i=0

[λXi+1|X1,··· ,Xi(xi+1)exp(−
∫ xi+1

xi

λXi+1|X1,··· ,Xi(t)dt)]

=

n−1∏
i=0

[λ.1[xi,∞)(xi+1).exp(β.φ(xi+1)).exp(−
∫ xi+1

xi

λXi+1|X1,··· ,Xi(t)dt)]

= 10<x1<···<xn(x1, · · · , xn).λn.exp(

n∑
i=1

β.φ(xi)).exp(−λ.
n∑
i=1

∫ xi

xi−1

exp(β.φ(t))dt)

= 10<x1<···<xn(x1, · · · , xn).λn.exp(

n∑
i=1

(β.φ(xi))− λ.
∫ xn

0
exp(βφ(t))dt).
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(b) Using Theorem 4.2 for the joint density function of X = (X1, · · · , Xn) we have:

fX1,··· ,Xn(x1, · · · , xn) = λn.exp(
n∑
i=1

(β.φ(xi))− λ.
∫ xn

0
exp(βφ(t))dt).10<x1<···<xn(x1, · · · , xn)

= g∗((
n∑
i=1

φ(xi), xn); (β, λ)).h∗(x1, · · · , xn),

and, thus (
∑n

i=1 φ(xi), xn) is sufficient for (β, λ).
�

Problem 4.7. Suppose that X1, · · · , Xn are i.i.d. Uniform random variables on [0, θ] :

f(x; θ) =
1

θ
for 0 ≤ x ≤ θ.

Let X(1) = min(X1, · · · , Xn) and X(n) = max(X1, · · · , Xn).
(a) Define T = X(n)/X(1). Is T ancillary for θ ?
(b) Find the joint distribution of T and X(n). Are T and X(n) independent ?

Solution. (a) First, let X1, · · · , Xn be a random sample from a population with CDF FX and pdf fX .
then, for the ordered statistics X(1) < · · · < X(n) and 1 ≤ i 6= j ≤ n we have (Casella & Berger, 2002):

fXi,Xj (u, v) =
n!.fX(u).fX(v).FX(u)i−1.(FX(v)− FX(u))j−1−i(1− FX(v))n−j

(i− 1)!(j − 1− i)!(n− j)!
.1u<v(u, v)

Thus, for our case of i = 1 and j = n it follows that:

fX(1),X(n)
(u, v) =

n(n− 1)

θ.n
(
v − u
n

)n−210<u<v<θ(u, v) =
n(n− 1)(v − u)n−2

θn
.10<u<v<θ(u, v).

Consequently:

FT (t) = P (T ≤ t) = P (X(n) ≤ t.X(1)) =

∫ ∫
X(n)≤t.X(1)

fX(1),X(n)
(u, v)dudv

=

∫ θ

0

∫ v

v/t

n(n− 1)(v − u)n−2

θn
dudv.1[1,∞)(t) = (1− 1

t
)n−1.1[1,∞)(t),

implying:

fT (t) =
d

dt
FT (t) =

(n− 1).(t− 1)n−2

tn
1[1,∞)(t). (∗)

Thus, the density of T is independent of θ and hence T is ancillary statistics for it.

(b) Take T =
X(n)

X(1)
and W = X(n); then, X(1) = W

T , X(n) = W, and J =
d(X(1),X(n))

d(T,W ) = −W
T 2 . Now, by

Theorem 2.3:

fT,W (t, w) = fX(1),X(n)
(
w

t
,w).|J | = n(n− 1)

θn
.(w − w

t
)n−2.

w

t2
.1w

t
<w

=
n(n− 1)

θn
.wn−1.(1− 1

t
)n−2.

1

t2
.11<t =

n(n− 1)

θn
.
wn−1.(t− 1)n−2

tn
.11<t. (0 ≤ w ≤ θ) (∗∗)
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Thus:

fW (w) =

∫ ∞
1

fT,W (t, w)dt =
n.wn−1

θn

∫ ∞
1

(n− 1).(t− 1)n−2

tn
dt =

n.wn−1

θn
. (0 ≤ w ≤ θ) (∗ ∗ ∗)

Finally, by (∗), (∗∗) and (∗ ∗ ∗) it follows that fT,W (t, w) = fT (t).fW (w), and thus W and T are inde-
pendent.
�

Problem 4.9. Consider the Gini Index θ(F ) as defined in example 4.21.
(a) Suppose that X ∼ F and let G be the distribution function of Y = aX for some a > 0. Show that
θ(G) = θ(F ).
(b) Suppose that Fp is a discrete distribution with probability p at 0 and probability 1 − p at x > 0.
Show that θ(Fp)→ 0 as p→ 0 and θ(Fp)→ 1 as p→ 1.
(c) Suppose that F is a Pareto distribution whose density is

f(x;α) =
α

x0
(
x

x0
)−α−1 for x > x0 > 0 α > 0,

(This is sometimes used as a model for income exceeding a threshold x0). Show that θ(F ) = (2.α −
1)−1 forα > 1. (f(x;α) is a density for α > 0 but for α ≤ 1, the expected value is infinite.)

Solution. (a) Referring to pages 191-192 we have:

θ(FX) = 1− 2.

∫ 1

0
qFX (t)dt = 1− 2.

∫ 1

0
(

∫ t
0 F
−1
X (s)ds∫ 1

0 F
−1
X (s)ds

)dt. (∗)

Next:

F−1
Y (s) = inf{x : FY (x) ≥ s} = inf{x : FX(

x

a
) ≥ s} = a. inf{x

a
: FX(

x

a
) ≥ s} = a.F−1

X (s). (∗∗)

Now, by (∗) and (∗∗) it follows that:

θ(FY ) = 1− 2.

∫ 1

0
(

∫ t
0 F
−1
Y (s)ds∫ 1

0 F
−1
Y (s)ds

)dt = 1− 2.

∫ 1

0
(

∫ t
0 a.F

−1
X (s)ds∫ 1

0 a.F
−1
X (s)ds

)dt = θ(FX).

(b)Using (∗) in part (a) and considering F−1
p (s) = x.1(p,1](s) it follows that:

θ(Fp) = 1− 2.

∫ 1

0
(

∫ t
0 x.1(p,1](s)ds∫ 1
0 x.1(p,1](s)ds

)dt = 1− 2.

∫ 1

0
(

∫ 1
0 1[0,t]∩(p,1](s)ds∫ 1

0 1(p,1](s)ds
)dt. (†)

Next, two times usage of (†), it follows that:

lim
p→0

θ(Fp) = 1− 2.

∫ 1

0
lim
p→0

(

∫ 1
0 1[0,t]∩(p,1](s)ds∫ 1

0 1(p,1)(s)ds
)dt = 1− 2.

∫ 1

0
tdt = 1− 1 = 0,

lim
p→1

θ(Fp) = 1− 2.

∫ 1

0
lim
p→1

(

∫ 1
0 1[0,t]∩(p,1](s)ds∫ 1

0 1(p,1)(s)ds
)dt = 1− 2.

∫ 1

0
0dt = 1− 0 = 1.

(c) As,

F (x;α) =

∫ x

x0

α.xα0
tα+1

dt = 1− (
x0

x
)α.1x>x0 .
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it follows that:

F−1(s) = inf{x : F (x) ≥ s} = inf{x : 1− (
x0

x
)α ≥ s} = x0.(1− s)−

1
α ,

implying: ∫ t

0
F−1(s)ds =

∫ t

0
x0.(1− s)−

1
αds = x0.

α

α− 1
.[1− (1− t)1− 1

α ], (0 ≤ t ≤ 1). (††)

Finally, by (∗) and (††) we have:

θ(F ) = 1− 2.

∫ 1

0
(
x0.

α
α−1 .[1− (1− t)1− 1

α ]

x0.
α
α−1

)dt = 1− 2[1− α

2.α− 1
] =

1

2α− 1
.

�

Problem 4.11.the influence curve heuristic can be used to obtain the joint limiting distribution of
a finite number of substitution principle estimators. Suppose that θ1(F ), · · · , θk(F ) are functional
parameters with influence curves φ1(x : F ), · · · , φk(x : F ). The if X1, · · · , Xn is an i.i.d. sample from
F , we typically have:

√
n(θj(F̂n)− θj(F )) =

1√
n

n∑
i=1

φj(Xi;F ) +Rnj (1 ≤ j ≤ k)

where Rnj →p 0 (1 ≤ j ≤ k).
(a) Suppose that X1, · · · , Xn are i.i.d. random variables from a distribution F with mean µ and median
θ; assume that V ar(Xi) = σ2 and F ′(θ) > 0. If µ̂n is the sample mean and θ̂n is the sample median ,
use the influence curve heuristic to show that

√
n

(
µ̂n − µ
θ̂n − θ

)
→d N2(0,C)

and give the elements of the variance-covariance matrix C.

(b) Now assume that the X ′is are i.i.d. with density

f(x; θ) =
p

2Γ(1/p)
exp(−|x− θ|p)

where θ is the mean and median of the distribution and p > 0 is another parameter (that may be
known or unknown). show that the matrix C in part (a) is:

C =

(
Γ(3/p)/Γ(1/p) Γ(2/p)/p

Γ(2/p)/p [Γ(1/p)/p]2

)
(c) Consider estimators of the θ of the form θ̃n = s.µ̂n + (1 − s).θ̂n. For given s, find the limiting
distribution of

√
n(θ̃n − θ).

(d) For a given value of p > 0, find the value of s that minimizes the variance of this limiting distribution.
For which value(s) of p is this optimal value equal to 0; for which values(s) is it equal to 1 ?
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Solution. (a) Take

X∗i =

(
φ1(Xi, F )
φ2(Xi, F )

)
(1 ≤ i ≤ n) and R∗n =

(
Rn1

Rn2

)
(n ≥ 1).

Then,
√
n

(
µ̂n − µ
θ̂n − θ

)
=

1√
n
.
n∑
i=1

(
φ1(Xi, F )
φ2(Xi, F )

)
+

(
Rn1

Rn2

)
=

1√
n
.
n∑
i=1

X∗i +R∗n = S∗n +R∗n,

in whichR∗n →p

(
0
0

)
. But, by Theorem 3.12, S∗n →d N2(0,C) in which Cij = Cov(φ1(Xi;F ), φ2(Xj ;F )) (1 ≤

i, j ≤ 2). Hence, by Theorem 3.3.

√
n

(
µ̂n − µ
θ̂n − θ

)
→d N2(02×1,C2×2) : Cij = Cov(φ1(Xi;F ), φ2(Xj ;F )) (1 ≤ i, j ≤ 2).

To compute the entries of the matrix C, using Example 4.28 and argument in page 200, we have:

C22 = V ar(φ2(X;F )) = V ar(
sgn(x− θ(F ))

2.F ′(θ(F ))
) =

∫ ∞
−∞

(
sgn(x− θ(F ))

2.F ′(θ(F ))
)2dF (x) =

1

(2.F ′(θ))2
, (θ(F ) = θ)

C11 = V ar(φ1(X;F )) = V ar(x− θ(F )) =

∫ ∞
−∞

(x− θ(F ))2dF (x) = σ2, (θ(F ) = µ)

C12 = C21 = Cov(φ1(X;F ), φ2(X;F )) =

∫ ∞
−∞

(
sgn(x− θ)

2F ′(θ)
).(x− µ)dF (x) = E(

sgn(X − θ).(X − µ)

2.F ′(θ)
),

giving the following form of the variance-covariance matrix:

C =

(
σ2 E( sgn(X−θ).(X−µ)

2.F ′(θ) )

E( sgn(X−θ).(X−µ)
2.F ′(θ) ) 1

(2.F ′(θ))2

)
.

(b) Using answer given in part (a) it follows that:

C11 = σ2 = E((X − θ)2) =

∫ ∞
−∞

p

2.Γ(1/p)
|x− θ|2.e−|x−θ|pdx

=
p

Γ(1/p)

∫ ∞
θ

(x− θ)2.e−(x−θ)pdx =
p

Γ(1/p)

∫ ∞
0

y2/p.e−y
dy

p.y(p−1)/p

=

∫∞
0 y3/p−1.e−ydy

Γ(1/p)
=

Γ(3/p)

Γ(1/p)
,

C22 =
1

(2.F ′(θ))2
=

1

(2.f(θ; θ))2
=

1

(p/Γ(1/p))2
= (

Γ(1/p)

p
)2,

C12 = E(
sgn(X − θ).(X − θ)

2.F ′(θ)
) =

Γ(1/p)

p
E(sgn(X − θ).(X − θ))

=
Γ(1/p)

p

∫ ∞
−∞

[
p

pΓ(1/p)
exp(−|x− θ|p).sgn(x− θ).(x− θ)]dx

=

∫ ∞
θ

(x− θ).exp(−(x− θ)p)dx =

∫ ∞
0

y1/p.e−y
dy

p.y1−1/p

=
1

p

∫ ∞
0

y2/p−1.e−ydy =
1

p
Γ(

2

p
).
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(c) By Theorem 3.2. for continuous function g(

(
U
V

)
) = s.U + (1 − s).V, θ̃n = s.µ̂n + (1 − s).θ̂n, and

parts (a) and (b) we have:

lim
n→∞

√
n(θ̃n − θ) = lim

n→∞

√
n(µ̂n + (1− s).θ̂n − (s.θ + (1− s).θ))

= lim
n→∞

[s.(
√
n(µ̂n − θ)) + (1− s).(

√
n(θ̂n − θ))]

=d s.N(0,
Γ(3/p)

Γ(1/p)
) + (1− s).N(0, (

Γ(1/p)

p
)2)

= s.X(p) + (1− s).Y (p),

in which X(p) =d N(0, Γ(3/p)
Γ(1/p)) and Y (p) =d N(0, (Γ(1/p)

p )2), may have non-zero covariance.

(d) Define:

V arp(s) = V ar(s.X(p) + (1− s).Y (p))

= V ar(X(p)).s2 + V ar(Y (p)).(1− s)2 + 2.Cov(X(p), Y (p)).s.(1− s)
= (V ar(X(p)) + V ar(Y (p))− 2.Cov(X(p), Y (p))).s2

+2.(Cov(X(p), Y (p))− V ar(Y (p))).s+ V ar(Y (p))

= (V ar(X(p)− Y (p))).s2

+2.Cov(X(p)− Y (p), Y (p)).s+ V ar(Y (p))

= ap.s
2 + bp.s+ cp :

ap = V ar(X(p)− Y (p)),

bp = 2.Cov(X(p)− Y (p), Y (p)),

cp = V ar(Y (p)).

Then:

d

ds
V arp(s) = 0 ⇒ smin(p) =

−bp
2.ap

= −Cov(X(p)− Y (p), Y (p))

V ar(X(p)− Y (p))
,

smin(p) = 0 ⇒ Cov(X(p)− Y (p), Y (p)) = 0,

smin(p) = 1 ⇒ Cov(X(p)− Y (p), X(p)) = 0.

�

Problem 4.13. Suppose that X1, · · · , are i.i.d. non-negative random variables with distribution
function F and define the functional parameter

θ(F ) =
(
∫∞

0 xdF (x))2∫∞
0 x2dF (x)

.

(Note that θ(F ) = (E(X))2/E(X2) where X ∼ F.)
(a) Find the influence curve of θ(F ).
(b) Using X1, · · · , Xn, find a substitution principle estimator, θ̂n, of θ(F ) and find the limiting distri-
bution of

√
n(θ̂n − θ).
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Solution. (a) Let θ1(F ), and θ2(F ) have corresponding influence curves φ1(x;F ) and φ2(x;F ), re-
spectively. Then (Exercise !):

(i) φθ1∗θ2(x;F ) = θ1(F ) ∗ φ2(x;F ) + φ1(x;F ) ∗ θ2(F ),

(ii) φ θ1
θ2

(x;F ) =
φ1(x;F ) ∗ θ2(F )− θ1(F ) ∗ φ2(x;F )

θ2
2(F )

. (∗)

By results of page 200 for h1(x) = x and h2(x) = x2 we have:

θ(F ) =
E2(X)

E(X2)
=
θ2

1(F )

θ2(F )
= θ1(F ) ∗ θ1

θ2
(F ). (∗∗)

Considering φ1(x;F ) = x−µ1 and φ2(x;F ) = x2−µ2, an application of equations in (∗) and equation
(∗∗) yields:

φ
θ1∗( θ1θ2 )

(x;F ) = φθ1(x;F ).
θ1(F )

θ2(F )
+ θ1(F ).φ θ1

θ2

(x;F )

= (x− µ1) ∗ µ1

µ2
+ µ1 ∗

(x− µ1).µ2 − µ1(x2 − µ2)

µ2
2

=
−µ2

1

µ2
2

.x2 + 2.
µ1

µ2
.x− µ2

1

µ2
.

(b) Let in solution to part (a), φ
θ1∗( θ1θ2 )

(x;F ) = A(µ1, µ2).x2 + B(µ1, µ2).x + C(µ1, µ2) in which

A(µ1, µ2) =
−µ21
µ22
, B(µ1, µ2) = 2.µ1µ2 and C(µ1, µ2) = −µ21

µ2
. then, by the argument on page 200, we

have: √
n(θ(F̂n)− θ(F ))→d N(0, σ2(F ))

where:

σ2(F ) =

∫ ∞
−∞

φ2(x;F )dF (x) = E((A(µ1, µ2).X2 +B(µ1, µ2).X + C(µ1, µ2))2)

= E(A(µ1, µ2)2.X4 +B(µ1, µ2)2X2 + C(µ1, µ2)2

+2.A(µ1, µ2).B(µ1, µ2).X3 + 2.A(µ1, µ2).C(µ1, µ2).X2 + 2.B(µ1, µ2).C(µ1, µ2).X)

= E(A(µ1, µ2)2.X4 + 2.A(µ1, µ2).B(µ1, µ2).X3 + (B(µ1, µ2)2 + 2.A(µ1, µ2).C(µ1, µ2)).X2

+2.B(µ1, µ2).C(µ1, µ2).X + C(µ1, µ2)2)

= A(µ1, µ2)2.E(X4) + 2.A(µ1, µ2).B(µ1, µ2).E(X3) + (B(µ1, µ2)2 + 2.A(µ1, µ2).C(µ1, µ2)).E(X2)

+2.B(µ1, µ2).C(µ1, µ2).E(X) + C(µ1, µ2)2

= A(µ1, µ2)2.µ4 + 2.A(µ1, µ2).B(µ1, µ2).µ3 + (B(µ1, µ2)2 + 2.A(µ1, µ2).C(µ1, µ2)).µ2

+2.B(µ1, µ2).C(µ1, µ2).µ1 + C(µ1, µ2)2

= (
−µ2

1

µ2
2

)2.µ4 + 2.(
−µ2

1

µ2
2

).(2.
µ1

µ2
).µ3 + ((2.

µ1

µ2
)2 + 2.(

−µ2
1

µ2
2

).(−µ
2
1

µ2
)).µ2

+2.(2.
µ1

µ2
).(−µ

2
1

µ2
).µ1 + (−µ

2
1

µ2
)2.

�
Problem 4.15. Suppose that X1, · · · , Xn are i.i.d. Normal random variables with mean 0 and
unknown variance σ2.
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(a) Show that E(|Xi|) = σ.
√

2/π.
(b) Use the result of (a) to construct a method of moments estimator, σ̂n, of σ. Find the limiting
distribution of

√
n(σ̂n − σ).

(c) Another method of moments estimator of σ is:

σ̃n = (
1

n

n∑
i=1

X2
i )1/2.

Find the limiting distribution of
√
n(σ̃n − σ) and compare the results of parts (b) and (c).

Solution. (a)

E(|Xi|) =
1√
2πσ

∫ ∞
−∞
|x|.e−x2/2.σ2

dx =
2√
2πσ

∫ ∞
0

x.e−x
2/2.σ2

dx

=
2σ√
2πσ

∫ ∞
0

x.e−x
2/2.σ2

d(x2/2.σ2) = σ.
√

2/π.

∫ ∞
0

e−tdt = σ.
√

2/π.

(b) As σ =
√

π
2 .E(|X|) =

√
π
2 .
∫∞
−∞ |x|dF (x), it follows that:

σ̂n =

√
π

2
.(

1

n
.
n∑
i=1

|xi|). (n ≥ 1)

Next, by Theorem 3.8, for X∗i = |Xi|, (1 ≤ i ≤ n), µ∗ = σ.
√

2
π and σ∗2 = (1 − 2

π ).σ2, (Exercise !) we

have:
√
n(|X|n−σ.

√
2/π)√

1− 2
π
.σ

→d N(0, 1), or equivalently:

√
n(σ̂n − σ)→d N(0,

π − 2

2
.σ2). (∗)

(c)By Theorem 3.8 for X∗i = X2
i , (1 ≤ i ≤ n), µ∗ = σ2 and σ∗2 = 2.σ4 (Exercise!) we have

√
n(X2

n −
σ2)→d N(0, 2σ4). Then, by Theorem 3.4. for g(x) =

√
x, and g′(x) = 1

2
√
x
, it follows that:

√
n(σ̃n − σ)→d

1

2σ2
.N(0, 2.σ4) =d N(0,

σ2

2
). (∗∗)

Finally, by (∗) and (∗∗) we have:

AREσ(σ̃n, σ̂n) =
π−2

2 .σ2

σ2

2

= π − 2 > 1.

Thus, σ̃n is more efficient than σ̂n.
�
Problem 4.17. Let U1, · · · , Un be i.i.d. Uniform random variables on [0, θ]. suppose that only the
smallest r values are actually observed, that is the order statistics U(1) < U(2) < · · · < U(r).
(a) Find the joint density of U(1), U(2), · · · , U(r) and find a one-dimensional sufficient statistics for θ.
(b) Find a unbiased estimator of θ based on the sufficient statistics found in (a).

Solution. (a) Let X1, · · · , Xn be i.i.d. continuous random variables with p.d.f f(x) and survival
function S(x). Then, for the smallest r values X(1) < · · · < X(r) we have (David, 1981):

fX(1),··· ,X(r)
(x(1), · · · , x(r)) = r!.C(n, r).[

r∏
i=1

f(x(i))].[S(x(r))]
n−r.1x(1)<···<x(r) . (∗)
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Consequently, for f(x) = 1
θ .1[0,θ](x) and S(x) = (1− x

θ ).1[0,θ](x) it follows from (∗) that:

fU(1),··· ,U(r)
(u(1), · · · , u(r)) = r!.C(n, r).[

r∏
i=1

1

θ
.1[0,θ](u(i))][(1−

u(r)

θ
).1[0,θ](u(r))]

n−r.1u(1)<···<u(r)

= [
r!.C(n, r).1[0,θ](u(r)).(θ − u(r))

n−r

θn
] ∗ [1u(1)<···<u(r) ]

= g∗(u(r); θ) ∗ h∗(u(1), · · · , u(r)),

thus, by Theorem 4.2. T (U(1), · · · , U(r)) = U(r) is sufficient statistics for θ.

(b) Using Problem 2.25(b), we have fX(r)
(x) = r.C(n, r).F (x)r−1.S(x)n−r.f(x), and therefore:

E(U(r)) =

∫ θ

0
u.r.C(n, r).(

u

θ
)r−1.(1− u

θ
)n−r.

1

θ
du =

∫ θ

0
θ.r.C(n, r).(

u

θ
)r.(1− u

θ
)n−rd(

u

θ
)

=

∫ 1

0
θ.r.C(n, r).xr.(1− x)n−rdx = θ.r.C(n, r).

∫ 1

0
xr+1−1.(1− x)n−r+1−1dx

= θ.r.C(n, r).B(r + 1, n− r + 1). (∗∗)

Accordingly, by (∗∗), θ̂ =
U(r)

r.C(n,r).B(r+1,n−r+1) is a unbiased estimator of θ.
�

Problem 4.19. Suppose that X1, · · · , Xn are i.i.d. random variables with a continuous distribution
function F. It can be shown that g(t) = E(|Xi− t|) (or g(t) = E(|Xi− t| − |Xi|)) is minimized at t = θ
where F (θ) = 1

2 (see Problem 1.25). This suggests that the median θ can be estimated by choosing θ̂n
to minimize

gn(t) =
n∑
i=1

|Xi − t|.

(a) Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistics. Show that if n is even then gn(t) is minimized
for Xn/2 ≤ t ≤ X1+n/2 while if n is odd then gn(t) is minimized at t = X(n+1)/2.

(b) Let F̂n(x) be the empirical distribution function. Show that F̂−1
n = X(n/2) if n is even and

F̂−1
n = X((n+1)/2) if n is odd.

Solution. (a) As

gn(t) =

n∑
i=1

|X(i) − t| =
n∑
i=1

[(2i− n).t−
i∑

j=1

X(j) +

n∑
j=i+1

X(j)].1[X(i),X(i+1)](t), (∗)

it follows that gn is a piecewise linear function of t that each linear piece is decreasing for i < n/2 and
increasing for i ≥ n/2. Let n be even, then g

′
n(t) = 2i − n = 0 if and only if i = n/2 with condition

Xn/2 ≤ t ≤ X1+n/2, giving Xn/2 ≤ t ≤ X1+n/2 as the minimizing points for gn. Next, let n be odd,
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then using (∗):

gn(X(n+1)/2) = −X(n+1)/2 −
(n−1)/2∑
j=1

X(j) +
n∑

j=(n+1)/2

X(j)

< −X(n−1)/2 −
(n−1)/2∑
j=1

X(j) +
n∑

j=(n+1)/2

X(j)

= gn(X(n−1)/2),

implying that t = X(n+1)/2 is the minimizing point of gn.

(b) Referring to page 204, we have F̂−1
n = X(i) if i−1

n ≤ t ≤
i
n . Hence:

n = 2m :
i− 1

n
<

1

2
≤ i

n
⇔ m ≤ i < m+ 1⇔ i = m =

n

2
⇒ F̂−1

n = Xn/2

n = 2m+ 1 :
i− 1

n
<

1

2
≤ i

n
⇔ 2m+ 1

2
≤ i < 2m+ 3

2
⇔ i =

2m+ 2

2
=
n+ 1

2
⇒ F̂−1

n = X(n+1)/2.

�

Problem 4.21. Suppose that X1, · · · , Xn are i.i.d. random variables with distribution function. the
substitution principle can be extended to estimating functional parameters of the form

θ(F ) = E[h(X1, · · · , Xk)]

where h is some special function. (We assume that this expected value is finite.) If n ≥ k, a substitution
principle estimator of θ(F ) is

θ̂ =

∑
i1<···<ik h(Xi1 , · · · , Xik)

C(n, k)

where the summation extends over all combinations of k integers drawn from the integer 1 through n.
The estimator θ̂ is called a U-statistics.
(a) Show that θ̂ is a unbiased estimator of θ(F ).
(b) Suppose V ar(Xi) <∞. Show that

V ar(Xi) = [E((X1 −X2)2)]/2.

How does the ”U-statistics” substitution principle estimator differ from the substitution principle esti-
mator in Example 4.23?

Solution. (a) As x′is are i.i.d. it follows that fro any permutation (i1, · · · , ik) of (1, · · · , k) and any h,
we have E(h(Xi1 , · · · , Xik)) = E(h(X1, · · · , Xk)) = θ(F ). Thus:

E(θ̂) =

∑
i1<···<ik E(h(Xi1 , · · · , Xik))

C(n, k)
=

∑
i1<···<ik θ(F )

C(n, k)
=
C(n, k).θ(F )

C(n, k)
= θ(F ).

(b) First, let µ = E(Xi) (i = 1, 2), then:

E((X1 −X2)2) = E(((X1 − µ)− (X2 − µ))2) = E((X1 − µ)2 − 2(X1 − µ)(X2 − µ) + (X2 − µ)2)

= V ar(X1)− 2(E(X1)− µ).(E(X2)− µ) + V ar(X2) = 2.V ar(Xi),
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implying:

V ar(Xi) = E(h(X1, X2)) : h(X1, X2) =
(X1 −X2)2

2
. (∗)

Second, by (∗) we have:

θ̂(F )U-Statistics =

∑
i1<i2

(Xi1−Xi2 )2

2

C(n, 2)
. (∗∗)

Comparing (∗∗) with

θ̂(F ) =
n− 1

n
S2 (∗ ∗ ∗)

given in Example 4.17 and Example 4.23 we observe that the one given by (∗∗) is a unbiased estimator
of θ = σ2, while the other given by (∗ ∗ ∗) is a biased estimator of it.
�

Problem 4.23. Suppose that X1, · · · , Xn are i.i.d. random variables and define an estimator θ̂ by

n∑
i=1

ψ(Xi − θ̂) = 0

where ψ is an odd function (ψ(x) = −ψ(−x)) with derivative ψ
′
.

(a) Let θ̂−j be the estimator computed from all the X ′is except Xj . Show that:

n∑
i=1

ψ(Xi − θ̂−j) = ψ(Xj − θ̂−j).

(b) Use approximation ψ(Xi − θ̂−j) ≈ ψ(Xi − θ̂) + (θ̂ − θ̂−j).ψ
′
(Xi − θ̂) to show that

θ̂−j ≈ θ̂ −
ψ(Xj − θ̂)∑n
i=1 ψ

′(Xi − θ̂)
.

(c) Show that the jackknife estimator of V ar(θ̂) can be approximated by:

n− 1

n

∑n
i=1 ψ

2(Xi − θ̂)
(
∑n

i=1 ψ
′(Xi − θ̂))2

.

Solution. (a) By definition, ∑
i 6=j

ψ(Xi − θ̂−j) = 0. (∗)

Adding ψ(Xj − θ̂−j) to both sides of (∗) yields the assertion.

(b)As ψ(Xi − θ̂−j) ≈ ψ(Xi − θ̂) + (θ̂ − θ̂−j).ψ
′
(Xi − θ̂) (1 ≤ i ≤ n), it follows that:

n∑
i=1

ψ(Xi − θ̂−j) ≈
n∑
i=1

ψ(Xi − θ̂) + (θ̂ − θ̂−j).
n∑
i=1

ψ
′
(Xi − θ̂), (∗∗)

and, by part(a) and assumption it follows from (∗∗) that:

ψ(Xj − θ̂−j) ≈ 0 + (θ̂ − θ̂−j).
n∑
i=1

ψ
′
(Xi − θ̂),
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implying

(θ̂ − θ̂−j) ≈
ψ(Xj − θ̂−j)∑n
i=1 ψ

′(Xi − θ̂)
≈ ψ(Xj − θ̂)∑n

i=1 ψ
′(Xi − θ̂)

,

or equivalently the assertion.

(c)By definition on page 222 and result part (b) and given assumption in the problem it follows that:

θ• = 1
n

∑n
i=1 θ̂−i ' θ−

∑n
i=1 ψ(Xi−θ̂)∑n
i=1 ψ

′ (Xi−θ̂)
= θ, and; by another application of the result in part (b) we have:

V̂ ar(θ̂) =
n− 1

n

n∑
j=1

(θ̂−j − θ̂•)2 ' n− 1

n

n∑
j=1

(θ̂−j − θ̂)2

' n− 1

n

n∑
j=1

(
ψ(Xj − θ̂)∑n

j=1 ψ
′(Xj − θ̂))

)2 =
n− 1

n

∑n
j=1 ψ

2(Xj − θ̂)
(
∑n

j=1 ψ
′(Xj − θ̂))2

.

�
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Chapter 5

Likelihood-Based Estimation

Problem 5.1. Suppose that X1, · · · , Xn are i.i.d. random variables with density

f(x; θ1, θ2) = a(θ1, θ2).h(x) for θ1 ≤ x ≤ θ2, 0, otherwise

where h(x) > 0 is a known continuous function defined on the real line.
(a) Show that the MLEs of θ1 and θ2 are X(1) and X(n) respectively.

(b) Let θ̂1n and θ̂2n be the MLEs of θ1 and θ2 and suppose that h(θ1) = λ1 > 0 and h(θ2) = λ2 > 0.
Show that

n.

(
θ̂1n − θ1

θ2 − θ̂2n

)
→d

(
Z1

Z2

)
where Z1 and Z2 are independent Exponential random variables with parameters λ1.a(θ1, θ2) and
λ2.a(θ1, θ2) respectively.

Solution. (a) As
∫ θ2
θ1
a(θ1, θ2)h(x)dx = 1, it follows that: a(θ1, θ2) = 1/(

∫ θ2
θ1
h(x)dx). Consequently,

substituting it in the following likelihood equation it follows that:

L(θ1, θ2|x) =
n∏
i=1

f(xi; (θ1, θ2))

=
n∏
i=1

(a(θ1, θ2) ∗ h(xi) ∗ 1(−∞,xi](θ1) ∗ 1[xi,+∞)(θ2))

= a(θ1, θ2)n ∗ (
n∏
i=1

h(xi)) ∗ 1(−∞,x(1)](θ1) ∗ 1[x(n),+∞(θ2)

= (
1∫ θ2

θ1
h(x)dx

)n ∗ (

n∏
i=1

h(xi))) ∗ 1(−∞,x(1)](θ1) ∗ 1[x(n),+∞)(θ2). (∗)

Accordingly, by (∗) we have:

θ2 fixed : (θ1 ↑∝ a(θ1, θ2) ↑∝ L(θ1, θ2) ↑)⇒MLE(θ1) = X(1),

θ1 fixed : (θ2 ↓∝ a(θ1, θ2) ↑∝ L(θ1, θ2) ↑)⇒MLE(θ2) = X(n).

(b)Let u(n) = un(x, θ) be a differentiable function of n such that limn→∞ un = 0. Then(Exercise !),

lim
n→∞

(1 + un)n = exp( lim
n→∞

d
dnu(n)
−1
n2

). (∗)
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Accordingly, three times usage of (∗) yields:

lim
n→∞

(SX(θ1 +
x

n
))n = lim

n→∞
(1−

∫ θ1+ x
n

θ1

f(t; θ1, θ2)dt)n

= exp( lim
n→∞

−a(θ1, θ2)(−x
n2 )h(θ1 + x

n)
−1
n2

)

= exp(−a(θ1, θ2).h(θ1).x)

lim
n→∞

(FX(θ2 −
y

n
))n = lim

n→∞
(1 +

∫ θ2− yn

θ1

f(t; θ1, θ2)dt− 1)n

= exp( lim
n→∞

a(θ1, θ2)( y
n2 )h(θ2 − y

n)/(
∫ θ2−y/n
θ1

a(θ1, θ2)h(t)dt)
−1
n2

)

= exp(−a(θ1, θ2).h(θ2).y)

lim
n→∞

(FX(θ2 −
y

n
)− FX(θ1 +

x

n
))n = exp(−a(θ1, θ2).h(θ1).x− a(θ1, θ2).h(θ2).y), (Exercise!). (∗∗)

Next, considering P (Ac ∩Bc) = 1− (P (A) + P (B)− P (A ∩B)), from (∗∗) it follows that:

lim
n→∞

F
n(θ̂1n−θ1),n(θ2−θ̂n2)

(x, y) =

lim
n→∞

P (n(θ̂1n − θ1) ≤ x, n(θ2 − θ̂n2) ≤ y) =

lim
n→∞

P (θ̂1n ≤ θ1 +
x

n
, θ2 −

y

n
≤ θ̂n2) =

lim
n→∞

1− [P (θ̂1n ≥ θ1 +
x

n
) + P (θ2 −

y

n
≥ θ̂n2)− P (θ̂1n ≥ θ1 +

x

n
, θ2 −

y

n
≥ θ̂n2] =

lim
n→∞

1− [
n∏
i=1

P (Xi ≥ θ1 +
x

n
) +

n∏
i=1

P (Xi ≤ θ2 −
y

n
)−

n∏
i=1

P (θ1 +
x

n
≥ Xi ≥ θ2 −

y

n
)] =

lim
n→∞

1− [(SX(θ1 +
x

n
))n) + (FX(θ2 −

y

n
))n)− (FX(θ2 −

y

n
)− FX(θ1 +

x

n
))n] =

1− [exp(−a(θ1, θ2).h(θ1).x) + exp(−a(θ1, θ2).h(θ2).y)− exp(−a(θ1, θ2).h(θ1).x− a(θ1, θ2).h(θ2).y)] =

(1− exp(−a(θ1, θ2).h(θ1).x)) ∗ (1− exp(−a(θ1, θ2).h(θ2).y)) =

FZ1(x) ∗ FZ2(y), for all x, y.

�

Problem 5.3. Suppose that X1, · · · , Xn, Y1, · · · , Yn are independent Exponential random variables
where the density of Xi is fi(x) = λiθ.exp(−λi.θx) for x ≥ 0 and the density of Yi is gi(x) =
λi.exp(−λix) for x ≥ 0 where λ1, · · · , λn and θ are unknown parameters.
(a) Show that the MLE of θ (based on X1, · · · , Xn, Y1, · · · , Yn) satisfies the equation

n

θ̂
− 2

n∑
i=1

Ri

1 + θ̂Ri
= 0

where Ri = Xi/Yi.
(b) Show that the density of Ri is

fR(x; θ) = θ(1 + θ.x)−2 for x ≥ 0,

and show that the MLE for θ based on R1, · · · , Rn is the same as that given in part (a).
(c) Let θ̂n be the MLE in part (a). Find the limiting distribution of

√
n(θ̂n − θ).
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(d) Use the data for (Xi, Yi), i = 1, · · · , 20 given in Table 5.7 to compute the maximum likelihood
estimate of θ using either the Newton-Raphson or Fisher scoring algorithm. Find an approximate
starting value for the iterations and justify your choice.

Table 5.7 Data for Problem 5.3.

x y x y x y x y

0.7 3.8 20.2 2.8 1.1 2.8 15.2 8.8
11.3 4.6 0.3 1.9 1.9 3.2 0.2 7.6
2.1 2.1 0.9 1.4 0.5 8.5 0.7 1.3
30.7 5.6 0.7 0.4 0.8 14.5 0.4 2.2
4.6 10.3 2.3 0.9 1.2 14.4 2.3 4.0

(e) Give an estimate of the standard error for the maximum likelihood estimate computed in part (c).

Solution. (a) As

L(θ, λ1, · · · , λn) = f(x,y; θ, λ1, · · · , λn) = (
n∏
i=1

fXi(xi; θ)) ∗ (
n∏
i=1

fYi(yi; θ))

= (
n∏
i=1

(λi.θ.e
−λi.θ.xi)) ∗ (

n∏
i=1

(λi.e
−λi.yi)) = (

n∏
i=1

λi)
2.θn.e−

∑n
i=1 λi.xi.θ−

∑n
i=1 λi.yi ,

it follows that:

log(L(θ, λ1, · · · , λn)) = 2.

n∑
i=1

log(λi) + n. log(θ)− (

n∑
i=1

λi.xi).θ −
n∑
i=1

λi.yi. (∗)

Consequently, by (∗) it follows that d log(L(θ,λ1,··· ,λn))
dλi

= 2
λi
−xi.θ− yi = 0, (1 ≤ i ≤ n), or equivalently,

λ̂i =
2

xi.θ + yi
, (1 ≤ i ≤ n). (∗∗)

Finally, another usage of (∗) and substituting (∗∗) in the equation yields:

0 =
d log(L(θ, λ1, · · · , λn))

dθ
=
n

θ
−

n∑
i=1

λ̂i.xi

=
n

θ
−

n∑
i=1

2.xi
xi.θ + yi

=
n

θ
−

n∑
i=1

2.(xi/yi)

θ.(xi/yi) + 1

=
n

θ̂
−

n∑
i=1

2.Ri

θ̂.Ri + 1
.

(b) First:

fR(r; θ) =
d

dr
FR(r; θ) =

d

dr
(P (X ≤ r.Y )) =

d

dr
(

∫ ∞
0

∫ ry

0
λ.θ.e−λ.θ.x.λ.e−λ.xdxdy)

=
d

dr
(

∫ ∞
0

λ.e−λ.y(1− e−λ.θ.r.y)dy =
d

dr
(1− λ

λ+ λ.θ.r
) = θ.(1 + θ.r)−2 for r ≥ 0. (∗ ∗ ∗)



60 © 2018 by Chapman & Hall/CRC

Second, using (∗ ∗ ∗) it follows that:

L(θ; r) =
n∏
i=1

(fR(ri; θ)) =
n∏
i=1

(θ.(1 + θ.ri)
−2) = θn.[

n∏
i=1

(1 + θ.ri)]
−2. (†)

Accordingly, it follows from (†) that:

0 =
d

dθ
log(L(θ; r)) =

d

dθ
[n. log(θ)− 2

n∑
i=1

log(1 + θ.ri)]

=
n

θ̂
− 2

n∑
i=1

(
ri

1 + θ̂.ri
).

(c) All conditions A1-A6 page 245 are satisfied (Exercise !). Next, by Theorem 5.3 we have:

√
n(θ̂n − θ)→d N(0,

I(θ)

J2(θ)
) : I(θ) = V arθ(l

′
(x; θ)), J(θ) = −Eθ(l”(x; θ)),

in which

l(x; θ) = log(fR(x; θ)) = log(θ)− 2. log(1 + θ.x)

l
′
(x; θ) =

1

θ
− 2x

1 + θ.x
: Eθ(l

′
(x; θ)) = 0,

l”(x; θ) =
−1

θ2
+

2x2

(1 + θ.x)2
,

I(θ) = Eθ((l
′
(x; θ))2) =

∫ ∞
0

(
1− θ.x

θ.(1 + θ.x)
)2.

θ

(1 + θ.x)2
dx =

1

θ2

∫ ∞
0

(1− y)2

(1 + y)4
dy =

1

3θ2
,

J(θ) = −
∫ ∞

0
(
2(θ.x)2 − (1 + θ.x)2

(1 + θ.x)2.θ2
)(

θ

(1 + θ.x)2
)dx =

−1

θ2
.

∫ ∞
0

(
2y2 − (1 + y)2

(1 + y)4
)dy =

−1

θ2
(
−1

3
) =

1

3.θ2
.

Accordingly:
√
n(θ̂n − θ)→d N(0, 3θ2).

(d) Using data in Table 5.7 we may calculate Ri = Xi/Yi (1 ≤ i ≤ 20), in which:

Calculated Data for Problem 5.3.

x y r x y r x y r x y r

0.7 3.8 0.184 20.2 2.8 7.214 1.1 2.8 0.393 15.2 8.8 1.727
11.3 4.6 2.457 0.3 1.9 0.158 1.9 3.2 0.594 0.2 7.6 0.026
2.1 2.1 1.000 0.9 1.4 0.643 0.5 8.5 0.059 0.7 1.3 0.538
30.7 5.6 5.482 0.7 0.4 1.750 0.8 14.5 0.055 0.4 2.2 0.182
4.6 10.3 0.447 2.3 0.9 2.556 1.2 14.4 0.083 2.3 4.0 0.575

.

Next, plotting S(θ) =
∑20

i=1( 1−θ.ri
θ+ri.θ2

), in which {ri}20
i=1 are given by above table we have:
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Figure 5.1 Plot of function S(θ) =
∑20

i=1( 1−θ.ri
θ+ri.θ2

)

This suggests to take starting value θ0 > 0. On the other hand, H(θ) = −d
dθ S(θ) =

∑20
i=1

−r2i .θ2+2.ri.θ+1

(θ+ri.θ2)2
.

Thus, the Newton-Raphson algorithm (page 270) takes the following form:

θ̂(k+1) = θ̂(k) +
S(θ̂(k))

H(θ̂(k))
= θ̂(k) +

∑20
i=1( 1−θ̂(k).ri

θ̂(k)+ri.(θ̂(k))2
)∑20

i=1(−ri.(θ̂
(k))2+2.ri.θ̂(k)+1

θ̂(k)+ri.(θ̂(k))2)2
)

(k ≥ 0). (††)

Finally, using R software and θ0 = 2.9000 in (††) we have:

θ1 = 1.2298, θ2 = 1.6431, θ3 = 2.0184, θ4 = 2.0246, θ5 = 2.0246.

(e)As:

ŝ.e.(θ̂n) =
1√

n.I(θ̂n)
=

1√
n.( 1

3.θ̂n
2 )

=

√
3

n
.|θ̂n|, (n ≥ 1)

it follows that ŝ.e.(θ̂5) =
√

3/5 ∗ 2.0246 = 1.5683.
�

Problem 5.5. Suppose that X1, · · · , Xn are i.i.d. discrete random variables with frequency function

f(x; θ) = θ, for x = −1, (1− θ)2.θx for x = 0, 1, 2, · · ·

where 0 < θ < 1.
(a) Show that the MLE of θ based on X1, · · · , Xn is

θ̂n =
2
∑n

i=1 I(Xi = −1) +
∑n

i=1Xi

2n+
∑n

i=1Xi

and show that {θ̂n} is consistent for θ.
(b) Show that

√
n(θ̂n − θ)→d N(0, σ2(θ)) and find the value of σ2(θ).
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Solution. (a)
0 =
d
dθ log(L(θ;x)) =
d
dθ log(

∏n
i=1 log(f(xi; θ))) =∑n

i=1( ddθ log(f(xi; θ))) =∑n
i=1( ddθ log(θ.1xi=−1 + (1− θ)2.θxi .1xi≥0)) =∑n
i=1(1

θ .1xi=−1 + ( 2
θ−1 + xi

θ )1xi=−1) =

(1
θ ).(
∑n

i=1 1xi=−1) + ( 2
θ−1).(

∑n
i=1 1xi≥0)) + (1

θ ).(
∑n

i=1(xi.1xi≥0)) =

(1
θ ).(
∑n

i=1 1xi=−1) + ( 2
θ−1).(

∑n
i=1(1− 1xi=−1)) + 1

θ

∑n
i=1(xi.(1− 1xi=−1)) =

1
θ [
∑n

i=1 1xi=−1 + (2 + 2
θ−1)

∑n
i=1(1− 1xi=−1) +

∑n
i=1 xi(1− 1xi=−1)]

⇒
2 +

2

θ̂ − 1
= −

∑n
i=1 1xi=−1 +

∑n
i=1 xi.(1− 1xi=−1)∑n

i=1(1− 1xi=−1)

or,

θ̂ − 1

2
=

∑n
i=1(1− 1Xi=−1)

−
∑n

i=1 1xi=−1 −
∑n

i=1 xi.(1− 1xi=−1)− 2
∑n

i=1(1− 1xi=−1)

or,

θ̂ =
2
∑n

i=1 1xi=−1 −
∑n

i=1 xi∑n
i=1 xi + 2n

.

Next, as E(1X=−1) = P (X = −1) = θ, θ̂n =
2
∑n
i=1(

1Xi=−1

n
)+

∑n
i=1Xi
n

2+

∑n
i=1

Xi
n

,
∑n

i=1
1Xi=−1

n →p θ,
∑n

i=1
Xi
n →p 0,

( by Theorem 3.6), for X∗n = (Un, Vn) = (
∑n

i=1
1Xi=−1

n ,
∑n

i=1
Xi
n ) and g(X∗) = g(U, V ) = 2U+V

2+V an
application of Theorem 3.2 it follows that:

θ̂n = g(Un, Vn)→p g(θ, 0) = θ.

(b) One may easily check that the conditions A1-A6 hold (Exercise !). Thus, by Theorem 5.3, it follows

that
√
n(θ̂n − θ)→d N(0, I(θ)

J2(θ)
).

Next, let f(x; θ) satisfies

d

dθ
(Eθ(

d

dθ
log(f(x; θ))) =

∑
x

d

dθ
[(
d

dθ
log(f(x; θ))).f(x; θ)],

then (Exercise!):

Eθ((
d

dθ
log(f(x; θ)))2) = −Eθ(

d2

dθ2
log(f(x; θ))). (∗)

Consequently, as Eθ(l
′
(θ)) = 0, and the required condition for (∗) holds (0 in both sides), an application

of (∗) yields:
I(θ) = V arθ(l

′
(θ)) = Eθ((l

′
(θ))2) =∗ −Eθ(l”(θ)) = J(θ). (∗∗)

But,

J(θ) = −Eθ(l”(θ))

= −Eθ((
−2

θ2
+

2

(1− θ)2
).1X=−1 −

2

(1− θ)2
− 1

θ2
.X)

= −[(
−2

θ2
+

2

(1− θ)2
).θ − 2

(1− θ)2
− 1

θ2
.0]

=
2

θ.(1− θ)
. (∗ ∗ ∗)
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Finally, by (∗∗) and (∗ ∗ ∗) it follows that σ2(θ) = θ.(1−θ)
2 , and:

√
n(θ̂n − θ)→d N(0,

θ.(1− θ)
2

).

�
Problem 5.7. Suppose that X = (X1, · · · , Xn) has a k− parameter exponential family distribution
with joint density or frequency function:

f(x; θ) = exp[

k∑
i=1

ci(θ)Ti(x)− d(θ) + S(x)]

where the parameter space Θ is an open subset of Rk and the function c = (c1, · · · , ck) is one-to-one
on Θ.
(a) Suppose that Eθ[Ti(X)] = bi(θ) (i = 1, · · · , k). Show that the MLE θ̂ satisfies the equations

Ti(X) = bi(θ̂) (i = 1, · · · , k).

(b) Suppose that the X ′is are also i.i.d. so that Ti(X) can be taken to be an average of i.i.d. random

variables. If θ̂n is the MLE, use the Delta Method to show that
√
n(θ̂n−θ) has the limiting distribution

given in Theorem 5.4.

Solution. (a) Note that c : Θ→ Rk for θ = (θ1, · · · , θk) has the form

c(θ1, · · · , θk) = (c1(θ1, · · · , θk), · · · , ck(θ1, · · · , θk))

and the matrix ( dcidθj
)ni,j=1 is invertible. First, given (l

′
(X; θ̂n))1×k = 01×k in which (l

′
(X; θ̂n))1×k =

(dl(X;θ̂n)
dθ1

, · · · , dl(X;θ̂n)
dθk

), we have:

dl(X; θ̂n)

dθj
= 0. (1 ≤ j ≤ k) (∗)

But,

dl(X; θ̂n)

dθj
=

k∑
i=1

dci(θ)

dθj
.Ti(X)− dd(θ)

dθj
. (1 ≤ j ≤ k) (∗∗)

Thus, by (∗) and (∗∗) it follows:

k∑
i=1

dci(θ)

dθj
.Ti(X) =

dd(θ)

dθj
. (1 ≤ j ≤ k) (∗ ∗ ∗)

Second, taking expectation from both sides of (∗ ∗ ∗) and using the given assumption Eθ[Ti(X)] =
bi(θ) (i = 1, · · · , k), we have:

k∑
i=1

dci(θ)

dθj
.bi(θ̂) =

dd(θ̂)

dθj
. (1 ≤ j ≤ k) (∗ ∗ ∗∗)

Third, a side by side subtraction from equations (∗ ∗ ∗) and (∗ ∗ ∗∗) implies:

k∑
i=1

dci(θ̂)

dθj
.(Ti(X)− bi(θ̂)) = 0, (1 ≤ j ≤ k)
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or equivalently:

(
dci(θ̂)

dθj
)ki,j=1 × (Ti(X)− bi(θ̂))t1×k = 0k×1. (†)

Finally, as the matrix (dci(θ̂)dθj
)ki,j=1 is invertible the only solution for (†) is (Ti(X) − bi(θ̂))t1×k = 0t1×k,

proving the assertion.

�

Problem 5.9. Let X1, · · · , Xn be i.i.d. Exponential random variables with parameter λ. Suppose
that the X ′is are not observed exactly but rather we observe random variables Y1, · · · , Yn where Yi =
k.δ if kδ ≤ Xi < (k + 1)δ for k = 0, 1, 2, · · · where δ > 0 is known.
(a) Give the joint frequency function of Y = (Y1, · · · , Yn) and show that

∑n
i=1 Yi is sufficient for λ.

(b) Find the MLE of λ based on Y1, · · · , Yn.
(c) Let λ̂n be the MLE of λ in part (b). Show that

√
n(λ̂n − λ)→d N(0, σ2(λ, δ))

where σ2(λ, δ)→ λ2 as δ → 0.

Solution. (a)

PY1,··· ,Yn(y1, · · · , yn) = PX1,··· ,Xn(y1 ≤ X1 < y1 + δ, · · · , yn ≤ Xn < yn + δ)

=
n∏
i=1

(PXi(yi ≤ Xi < yi + δ))

=
n∏
i=1

(

∫ yi+δ

yi

λ.e−λ.tdt) =
n∏
i=1

(e−λ.yi(1− e−λ.δ))

= (e−λ.
∑n
i=1 Yi(1− e−λ.δ)n) ∗ (1) = g∗(T (y);λ) ∗ h∗(y).

Thus, by Theorem 4.2, T (y) =
∑n

i=1 Yi is sufficient statistics for λ.

(b) As ln(λ) = log(L(λ; y1, · · · , yn)) = −λ.
∑n

i=1 Yi + n. log(1− e−λ.δ), it follows that:

0 = −
n∑
i=1

Yi + n.
δ.e−λ.δ

1− e−λ.δ
⇒ λ̂n =

1

δ
. log(1 +

δ

Yn
).

(c) By Theorem 5.3,
√
n(λ̂n − λ)→d N(0, I(λ)

J2(λ)
). Next, using equalities

∞∑
n=0

xn =
1

1− x
,

∞∑
n=0

n.xn =
x

(1− x)2
,

∞∑
n=0

n2.xn =
x

(1− x)2
+

2x2

(1− x)3
, |x| < 1,



© 2018 by Chapman & Hall/CRC 65

we have:

l(λ) = log(P (Y = k.δ;λ)) = log(e−λ.δ.k.(1− e−λ.δ)) = −λ.δ.k + log(1− e−λ.δ) (k ≥ 0),

l
′
(λ) = −δ.k +

δ.e−λ.δ

1− e−λ.δ
,

l
′′
(λ) =

−δ2.e−λ.δ

(1− e−λ.δ)2
,

Eλ(l
′
(λ)) = 0,

I(λ) = V arλ(l
′
(λ)) = Eλ((l

′
(λ))2) =

δ2.eλ.δ

(eλ.δ − 1)2
,

J(λ) = −Eλ(l
′′
(λ)) =

δ2.e−λ.δ

(1− e−λ.δ)2
=

δ2.eλ.δ

(eλ.δ − 1)2
,

implying: σ2(λ, δ) = I(λ)
J2(λ)

= 1
I(λ) = (eλ.δ−1)2

δ2.eλ.δ
. Finally:

lim
δ→0

σ2(λ, δ) = lim
δ→0

[λ2.(
eλ.δ − 1

λ.δ
)2.

1

eλ.δ
] = λ2.(

d

dx
ex|x=0)2.1 = λ2.

�
Problem 5.11. The key condition in Theorem 5.3. is (A6) as this allows us to approximate he
likelihood equation by a linear equation in

√
n(θ̂n − θ). However, condition (A6) can be replaced by

other similar conditions, some of which may be weaker than (A6).
Assume that θ̂n →p θ and that conditions (A1)-(A5) hold. Suppose that for some δ > 0, there exists a
function Kδ(x) and a constant α > 0 such that:

|l(3)(x; t)− l(3)(x; θ)| ≤ Kδ(x)|t− θ|α

for |t− θ| ≤ δ where Eθ[Kδ(Xi)] <∞. Show that the conclusion of Theorem 5.3. holds.

Solution. The given condition implies that |l(3)(x; t)| ≤ |l(3)(x; θ)|+Kδ(x).|t− θ|α, for all |t− θ| < δ.
Next, returning to the proof of Theorem 5.3.(page 253) for any 0 < δ∗ < δ, θ < θ∗n < θ̂n, and |θ̂n− θ| <
δ∗ < δ we have:

|Rn| = |(θ̂n − θ).
1

2n
.
n∑
i=1

l(3)(Xi; θ
∗
n)|

≤ δ∗

2n
.
n∑
i=1

|l(3)(Xi; θ
∗
n)|

≤ δ∗

2n
.
n∑
i=1

[|l(3)(x; θ)|+Kδ(x).|t− θ|α]

≤ δ∗

2n
.[n.|l(3)(x; θ)|+

n∑
i=1

|Kδ(x)|.(δ∗)α]

=
δ∗

2
.|l(3)(x; θ)|+ (δ∗)α+1

2
.

∑n
i=1 |Kδ(Xi)|

n
. (∗)

Next, by Theorem 3.6. ∑n
i=1 |Kδ(Xi)|

n
→p Eθ(|Kδ(X)|) <∞. (∗∗)
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Now, for given ε > 0, by (∗) and (∗∗) there is sufficiently small δ∗ > 0 and N1 ≥ 1 such that:

P (|Rn| > ε, |θ̂n − θ| < δ∗)
ε

2
. (n ≥ N1) (∗ ∗ ∗)

In addition, there is N2 ≥ 1 such that:

P (|Rn| > ε, |θ̂n − θ| > δ∗) ≤ P (|θ̂n − θ| > δ∗)) ≤ ε

2
. (n ≥ N2) (∗ ∗ ∗∗)

Take N = max(N1, N2), then by (∗ ∗ ∗) and (∗ ∗ ∗∗):

P (|Rn| > ε) = P (|Rn| > ε, |θ̂n − θ| < δ∗) + P (|Rn| > ε, |θ̂n − θ| > δ∗) <
ε

2
+
ε

2
= ε. (n ≥ N)

Accordingly: Rn →p 0.
�

Problem 5.13. The same approach used in Problem 5.12 can be used to determine the limiting
distribution of the sample median under more general conditions. Again, let X1, · · · , Xn be i.i.d. with
distribution function F and median µ where now

lim
n→∞

√
n[F (µ+ s/an)− F (µ)] = ψ(s)

for some increasing function ψ and sequence of constants an → ∞. The asymptotic distribution of
an(µ̂n − µ) will be determined by considering the objective function

Zn(u) =
an√
n

n∑
i=1

[|Xi − µ/an| − |Xi − µ|].

(a) Show that Un = an(µ̂n − µ) minimizes Zn.
(b) Repeat the steps used in Problem 5.12 to show that

(Zn(u1), · · · , Zn(uk))→d (Z(u1), · · · , Z(uk))

where Z(u) = −uW + 2
∫ u

0 ψ(s)ds and W N(0, 1).
(c) Show that an(µ̂n − µ)→d ψ

−1(W/2).

Solution. (a) Referring to Problem 4.19, we have:

Zn(u) =
an√
n

(

n∑
i=1

(|Xi − µ−
u

an
| − |Xi − µ|)) =

1√
n

(

n∑
i=1

(|an(Xi − µ)− u| − |an(Xi − µ)|))

=
1√
n

(

n∑
i=1

|an(Xi − µ)− u| −
n∑
i=1

|an(Xi − µ)|) =
1√
n
.(g∗n(u)− c) : X∗n =def an.(Xi − µ). (∗)

By (∗), arg(min(Zn)) = arg(min(g∗n)) and by Problem 4.19, arg(min(g∗n)) = µ̂∗n. But, µ̂∗n = an.(µ̂n−µ).
Hence, arg(min(Zn)) = an.(µ̂n − µ).

(b) By Theorem 3.8, for X∗i = sgn(Xi − µ), µ∗ = 0, and σ∗ = 1, and by Theorem 3.6 for X∗∗i =
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IXi≤µ+ s
an
− IXi≤µ it follows that:

lim
n→∞

Zn(u) = lim
n→∞

an√
n

(
n∑
i=1

(|Xi − µ−
u

an
| − |Xi − µ|))

= lim
n→∞

an√
n

(
n∑
i=1

(
−u
an

.sgn(Xi − µ) + 2

∫ u
an

0
I(Xi − µ ≤ s)− I(Xi − µ ≤ 0)ds))

= lim
n→∞

an√
n

(
n∑
i=1

(
−u
an

.sgn(Xi − µ) +
2

an

∫ u

0
I(Xi − µ ≤

s

an
)− I(Xi − µ ≤ 0)ds))

= lim
n→∞

−u√
n

(
n∑
i=1

(sgn(Xi − µ)) +
2√
n

n∑
i=1

∫ u

0
I(Xi − µ ≤

s

an
)− I(Xi − µ ≤ 0)ds))

= lim
n→∞

−u.
∑n

i=1X
∗
i√

n
+

2√
n

n∑
i=1

∫ u

0
X∗∗i ds

= −u.W + 2

∫ u

0
lim
n→∞

√
n(

∑n
i=1X

∗∗
i

n
)ds

= −u.W + 2

∫ u

0
lim
n→∞

√
n(F (µ+

s√
n

)− F (µ))ds

= −u.W + 2.

∫ u

0
ψ(s)ds.

(c) By Theorem 3.2 for X∗n = Zn and g∗(X∗) = arg(min(X∗)) and part (b) in which Zn(u) →d Z(u)
it follows that:

an.(µ̂n − µ) = arg( min
−∞<u<∞

Zn(u))→d arg( min
−∞<u<∞

Z(u)) = ψ−1(
W

2
).

�

Problem 5.15. In Theorems 5.3. and 5.4, we assume that the parameter space Θ is an open subset
of Rp. However, in many situations, this assumption is not valid; for example, the model may impose
constrains on the parameter θ which effectively makes Θ a closed set. If Θ is not an open set then the
MLE of θ need not satisfy the likelihood equations as the MLE θ̂n may lie on the boundary of Θ. In
determining the asymptotic distribution of θ̂n the main concern is whether or not the true value of the
parameter lies on the boundary of the parameter space. If θ lies in the interior of Θ then eventually
(for sufficiently large n) θ̂n will satisfy the likelihood equations and so Theorems 5.3 and 5.4 will still
hold; however, the situation becomes more complicated if θ lies on the boundary of Θ.
Suppose that X1, · · · , Xn are i.i.d. random variables with density or frequency function f(x; θ) (Sat-
isfying conditions (B2)-(B6)) where θ lies on the boundary of Θ. Define (as in Problem 5.14) the
function

Zn(u) =
n∑
i=1

ln[f(Xi; θ + u/
√
n)/f(Xi; θ)]

and the set
Cn = {u : θ + u/

√
n ∈ Θ}.

The limiting distribution of the MLE can be determined by the limiting behaviour of Zn and Cn.
(a) Show that

√
n(θ̂n − θ) maximizes Zn(u) subject to the constraint u ∈ Cn.

(b) Suppose that {Cn} is a decreasing sequence of sets whose limit is C. Show that C is non-empty.
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(c) Parts (a) and (b) (together with Problem 5.14) suggest that
√
n(θ̂n − θ) converges in distribution

to the maximizer of

Z(u) = uT .W − 1

2
uTJ(θ)u

(where W ∼ Np(0, I(θ))) subject to u ∈ C. Suppose that X1, · · · , Xn are i.i.d. Gamma random
variables with shape parameter α and scale parameter λ where the parameter space is restricted so
that α ≥ λ > 0 (that is, E(Xi) ≥ 1.) If α = λ, describe the limiting distribution of the MLEs.

Solution. (a) As:

dZn(u)

du
=

n∑
i=1

d

du
[ln(f(Xi; θ +

u√
n

))− ln(f(Xi; θ))] =

n∑
i=1

1√
n
.l
′
(Xi; θ +

u√
n

) = 0,

it follows that θ̂n = θ + u√
n
, or u =

√
n(θ̂n − θ).

(b) Since C1 ⊇ · · · ⊇ Cn ⊇ · · · , it follows that C = limn→∞Cn = ∩∞n=1Cn. Next, since Θ is closed and
θ lies on its boundary,θ ∈ Θ, and hence, 0 ∈ Cn (n ≥ 1). Accordingly, by former result, 0 ∈ C and
C 6= ∅.

(c) By Problem 5.14(b); and considering the fact that Xi is a two-parameter exponential family we
have:

√
n.(θ̂n − θ)→d J

−1(θ).N2(0, I(θ)) = N2(0, J−1(θ).I(θ).J−1(θ)) = N2(0, I(θ)) : θ = (α, λ).

Hence, by Example 5.15 for α = λ = c, we have:

√
n(α̂n − α)→d N(0,

c

c.ψ′(c)− 1
)

√
n(λ̂n − λ)→d N(0,

c2

c.ψ′(c)− 1
) : ψ

′
(c) =

d2

dc2
log(Γ(c)).

�
Problem 5.17. Let X1, · · · , Xn be i.i.d. random variables with density or frequency function f(x; θ)
where θ is a real-valued parameter. Suppose that MLE of θ, θ̂, satisfies the likelihood equation

n∑
i=1

l
′
(Xi; θ̂) = 0

where l
′
(x; θ) is the derivative with respect to θ of ln f(x; θ).

(a) Let θ̂−j be MLE of θ based on all the Xi’s except Xj . Show that

θ̂−j ≈ θ̂ +
l
′
(Xj ; θ̂)∑n

i=1 l
”(Xi; θ̂)

(if n is reasonably large).
(b) Show that the jackknife estimator of θ̂ satisfies

V̂ ar(θ̂) ≈ n− 1

n

∑n
j=1[l

′
(Xj ; θ̂)]

2

(
∑n

j=1 l
”(Xj ; θ̂))2

.
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(c) The result of part (b) suggests that the jackknife estimator of V ar(θ̂) is essentially the ”sandwich”
estimator; the later estimator is valid when the model is misspecified. Explain the apparent equivalences
between these two estimators of V ar(θ̂).

Solution. (a) By given conditions:

0 =
∑

1≤j 6=i≤n
l
′
(Xi, θ̂−j) ≈

∑
1≤j 6=i≤n

l
′
(Xi, θ) + (θ̂−j − θ).

∑
1≤j 6=i≤n

l
′′
(Xi, θ) (∗)

0 =
∑

1≤j 6=i≤n
l
′
(Xi, θ̂). (∗∗)

Take θ = θ̂ in (∗), and add l
′
(Xj ; θ̂) to both sides of it and then use (∗∗) to get:

l
′
(Xj ; θ̂) ≈ (θ̂−j − θ̂).

∑
1≤j 6=i≤n

l
′′
(Xi, θ̂). (∗ ∗ ∗)

But as n ↑ ∞, we have
∑

1≤j 6=i≤n l
′′
(Xi, θ̂) ≈

∑
1≤i≤n l

′′
(Xi, θ̂). Consequently, using the later result in

(∗ ∗ ∗) it follows that:

l
′
(Xj ; θ̂) ≈ (θ̂−j − θ̂).

∑
1≤i≤n

l
′′
(Xi, θ̂). (∗ ∗ ∗∗)

And (∗ ∗ ∗∗) is equivalent to
l
′
(Xj ;θ̂)∑

1≤i≤n l
′′ (Xi,θ̂)

≈ θ̂−j − θ̂, and the assertion follows.

(b) First, an application of Part (a) and the given condition in the problem yield:

θ̂• =
1

n
.
n∑
j=1

θ̂−j ≈ θ̂ +
1
n .
∑n

j=1 l
′
(Xj ; θ̂)∑n

j=1 l
′′(Xj ; θ̂)

= θ. (†)

Second, using (†) and another application of Part (a) it follows that:

V̂ ar(θ̂) =
n− 1

n
.

n∑
j=1

(θ̂−j − θ•)2 ≈ n− 1

n
.

n∑
j=1

(θ̂−j − θ)2

≈ n− 1

n
.
n∑
j=1

(
l
′
(Xj ; θ̂)∑

1≤j≤n l
′′(Xj , θ̂)

)2 =
n− 1

n

∑n
j=1[l

′
(Xj ; θ̂)]

2

(
∑n

j=1 l
”(Xj ; θ̂))2

.

(c) As θ̂ is the solution for the equation
∑n

i=1 l
′
(Xi; θ) = 0, it follows that θ̂ is the substitution principle

estimator of the functional parameter θ(F ) defined by:∫ ∞
−∞

l
′
(x; θ(F ))dF (x) = 0 : F̂ (x) =

1

n

n∑
i=1

IXi≤x,

in which the influence curve of θ(F ) is:

φ(x;F ) =
l
′
(x; θ(F ))∫∞

−∞ l
′′(x; θ(F ))dF (x)

.

Consequently:

σ2 =

∫ ∞
−∞

φ2(x;F )dF (x) =

∫∞
−∞[l

′
(x; θ(F ))]2dF (x)

[
∫∞
−∞ l

′′(x; θ(F ))dF (x)]2
,
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and therefore:

σ̂2
spe(θ̂) =

∑n
i=1[l

′
(Xi, θ̂)]

2

[
∑n

i=1 l
′′(Xi, θ̂)]2

. (††)

Next, by (††) and Part (b):

lim
n→∞

(
σ̂2
jke(θ̂)

σ̂2
spe(θ̂)

) = 1. († † †)

Finally, the results in († † †) shows that the the jackknife estimator and the substitution principle

estimator of V̂ ar(θ) are asymptotically equal.
�
Problem 5.19. Suppose that X = (X1, · · · , Xn) has a joint density or frequency function f(x; θ)
where θ has prior density π(θ). If T = T (X) is sufficient for θ, show that the posterior density of θ
given X=x is the same as the posterior density of θ given T = T (x).

Solution. By Sufficiency of T = T (X) it follows that fX|θ,T (x|θ, t) = fX|T (x|t) for all x, t = T (x).
Thus:

πθ|X(θ|x) =
fX|θ(x|θ)∫

Θ fX|θ(x|θ)π(θ)dθ
=

fX|θ,T (x|θ, t).fT |θ(t|θ)∫
Θ fX|θ,T (x|θ, t).fT |θ(t|θ)π(θ)dθ

=
fX|T (x|t).fT |θ(t|θ)∫

Θ fX|T (x|t).fT |θ(t|θ)π(θ)dθ
=

fT |θ(t|θ)∫
Θ fT |θ(t|θ)π(θ)dθ

= πθ|T (X)(θ|T (x)), for all θ.

�
Problem 5.21. The Zeta distribution is sometimes used in insurance as a model for the number of
policies held by a single person in an insurance portfolio. the frequency function for this distribution is

f(x;α) =
x−(α+1)

ζ(α+ 1)

for x = 1, 2, 3, · · · where α > 0 and

ζ(p) =
∞∑
k=1

k−p.

(The function ζ(p) is called the Riemann zeta function.)
(a) Suppose that X1, · · · , Xn are i.i.d. Zeta random variables. Show that the MLE of α satisfies the
equation

1

n

n∑
i=1

ln(Xi) = −ζ
′
(α̂n + 1)

ζ(α̂n + 1)

and find the limiting distribution of
√
n(α̂n − α).

(b) Assume the following density for α :

π(α) =
1

2
α2exp(−α) for α > 0

A sample of 85 observations is collected; its frequency distribution is given in Table 5.8.
Table 5.8 Data for Problem 5.21.

Observation 1 2 3 4 5

Frequency 63 14 5 1 2
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Find the posterior distribution of α. What is the mode (approximately) of this posterior distribution ?
(c) Repeat part (b) using the improper prior density

π(α) =
1

α
for α > 0.

Compare the posterior densities in part (b) and (c).

Solution. (a) First,

l(α) = log(f(x;α)) = log(

n∏
i=1

1

ζ(α+ 1)
.x
−(α+1)
i )

=

n∑
i=1

[− log(ζ(α+ 1))− (α+ 1). log(xi)] = −n. log(ζ(α+ 1))− (α+ 1).

n∑
i=1

log(xi)

implying:

dl(α)

dα
= −n.ζ

′
(α+ 1)

ζ(α+ 1)
−

n∑
i=1

log(xi) = 0⇒ log(X)n = −ζ
′
(α̂n + 1)

ζ(α̂n + 1)
.

Second, as f(x) = 1
ζ(α+1) .x

−(α+1) = exp[−(α + 1). log(x) − log(ζ(α + 1))], it follows that X has an

exponential family density with c(α) = −(α + 1), T (x) = log(x), d(α) = log(ζ(α + 1)), and S(x) = 0.
Hence, by Example 5.6, and theorem 5.3 it follows that

√
n.(α̂n − α)→d N(0, 1

I(α)) in which

I(α) = d
′′
(α)− c′′(α).

d
′
(α)

c′(α)

=
ζ
′′
(α+ 1)ζ(α+ 1)− (ζ

′
(α+ 1))2

(ζ(α+ 1))2
− 0.

ζ
′
(α+1)

ζ(α+1)

−1

=
ζ
′′
(α+ 1)ζ(α+ 1)− (ζ

′
(α+ 1))2

(ζ(α+ 1))2
.

Thus:
√
n.(α̂n − α)→d N(0,

(ζ(α+ 1))2

ζ ′′(α+ 1)ζ(α+ 1)− (ζ ′(α+ 1))2
).

(b) First, assuming A = (1
2)14.(1

3)5.(1
4).(1

5)2, we have:

π(α|x) =
f(x|α)π(α)∫∞

0 (f(x|α)π(α))dα
=

∏n
i=1 f(xi|α)π(α)∫∞

0 (
∏n
i=1 f(xi|α)π(α))dα

=
Aα+1. π(α)

(ζ(α+1))85∫∞
0 (Aα+1. π(α)

(ζ(α+1))85
)dα

.

And,

π1(α|x) =
Aα+1.(ζ(α+ 1))−85.α2.e−α/2∫∞

0 (Aα+1.(ζ(α+ 1))−85.α2.e−α/2)dα

=
exp((α+ 1)(log(A)− 1) + 2 log(α)− 85. log(ζ(α+ 1)))∫∞

0 (exp((α+ 1)(log(A)− 1) + 2 log(α)− 85. log(ζ(α+ 1))))dα
.
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Second, d
dαπ1(α|x) = 0 yields (log(A)− 1) + 2

α − 85 ζ
′
(α+1)

ζ(α+1) = 0, or equivalently:

(log(A)− 1).α̂.ζ(α̂+ 1) + 2.ζ(α̂+ 1)− 85.α̂.ζ
′
(α̂+ 1) = 0.

(c) First,

π2(α|x) =
Aα+1.(ζ(α+ 1))−85. 1

α∫∞
0 (Aα+1.(ζ(α+ 1))−85. 1

αdα

=
exp((α+ 1) log(A)− 85 log(ζ(α+ 1))− log(α))∫∞

0 (exp((α+ 1) log(A)− 85 log(ζ(α+ 1))− log(α)))dα
.

Thus, d
dαπ2(α|x) = 0 implies log(A)− 85 ζ

′
(α+1)

ζ(α+1) −
1
α = 0, or equivalently:

log(A).α̂.ζ(α̂+ 1)− 85.ζ
′
(α̂+ 1).α̂− ζ(α̂+ 1) = 0.

Second, to compare posterior densities in parts (b) and (c) define a function H via:

H(α) =
π1(α|x)

π2(α|x)
= (

c1

c2
).
α3

eα
:

c1 =

∫ ∞
0

(exp((α+ 1) log(A)− 85 log(ζ(α+ 1))− log(α)))dα

c2 =

∫ ∞
0

(exp((α+ 1)(log(A)− 1) + 2 log(α)− 85. log(ζ(α+ 1))))dα.

It is clear that limα→0H(α) = 0 = limα→∞H(α). Furthermore, H attains its maximum at α = 3
(Exercise !). Consequently:

π1(α|x) ≤ (
27

e3

c1

c2
)π2(α|x).

�
Problem 5.23. The concept of Jeffreys priors can be extended to derive ”non-informative” priors for
multiple parameters. Suppose that X has joint density or frequency function f(x; θ) and define the
matrix

I(θ) = Eθ[S(X; θ)ST (X;T )]

where S(x; θ) is the gradient (vector of partial derivatives) of ln f(x; θ) with respect to θ. The Jeffreys
prior for θ is proportional to det(I(θ))1/2.
(a) Show that the Jeffreys prior can be derived using the same considerations made in the single
parameter space. That is, if φ = g(θ) for some one-to-one function g such that I(φ) is constant then
the Jeffreys prior for θ corresponds to a uniform prior for φ.
(b) Suppose that X1, · · · , Xn are i.i.d. Normal random variables with mean µ and variance σ2. Find
the Jeffreys prior for (µ, σ).

Solution. (a) By assumption, πJeffrey(θ) = c1.
√

det(I(θ)) (c1 > 0). Also:

I(θ) = (Eθ(
d log(L)

dθi

d log(L)

dθj
))pi,j=1

I(φ) = (Eφ(
d log(L)

dφi

d log(L)

dφj
))pi,j=1.
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Now, by Theorem 2.3 for φ = g(θ), it follows that:

πJeffrey(φ) = πJeffrey(θ).| det(
dθi
dφj

)pi,j=1|

= c1.
√

det(I(θ)).|det(
dθi
dφj

)pi,j=1|

= c1.

√
det(I(θ)).|det(

dθi
dφj

)pi,j=1|2

= c1.

√
det((

dθk
dφi

)pi,k=1). det((Eθ(
d log(L)

dθk

d log(L)

dθl
))pk,l=1). det((

dθl
dφj

)pl,j=1)

= c1.

√√√√det((Eφ(
∑
k,l

dθk
dφi

d log(L)

dθk

d log(L)

dθl

dθl
dφj

))pi,j=1)

= c1.

√
det((Eφ(

d log(L)

dφi

d log(L)

dφj
))pi,j=1)

= c1.
√

det(I(φ)). (∗)

But, I(φ) = constant, and hence:√
det(I(φ)) = c2, (c2 > 0). (∗∗)

Consequently, by (∗) and (∗∗) it follows that:

πJeffrey(φ) = c1.c2,

that is, the Jeffrey prior for θ corresponds to a uniform prior for φ.

(b)As log(f(x|(µ, σ2))) = constant− n
2 log(σ2)− (n−1).s2x+n.(x−µ)2

2.σ2 , using E(X) = µ,E(n(X−µ)2) = σ2,
and E((n− 1).s2

x) = (n− 1).σ2 it follows that:

I((µ, σ2)) = −

(
d2

dµ2
log(L) d2

dµdσ2 log(L)
d2

dσ2dµ
log(L) d2

d(σ2)2
log(L)

)

=

(
−E(−n

σ2 ) −E(−n(X−µ)
σ4 )

−E(−n(X−µ)
σ4 ) −E( n

2σ4 − (n−1)s2x+n(X−µ)2

σ6 )

)

=

(
n
σ2 0
0 n

2.σ4

)
.

Consequently:

πJeffrey((µ, σ2)|x) = c.
√

det(I(µ, σ2)) = c.

√
n2

2.σ6
=
c.( n√

2
)

(σ2)
3
2

. (∗ ∗ ∗)

Now, for g(x, y) = (x,
√
y), it follows from (∗ ∗ ∗) that:

πJeffrey((µ, σ)|x) = πJeffrey((µ, σ2)|x).|det(d(µ, σ2)

d(µ, σ)
)|

=
c. n√

2

σ3
∗ 2σ =

c.
√

2.n

σ2
=
c∗

σ2
. (†)
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Note that a direct calculation yields:

πJeffrey((µ, σ)|x) = c
′
.
√

det(I(µ, σ)) =
c
′
.
√
n(2n− 4)

σ2
=
c∗

σ2
. (††)

And, finally, both (†) and (††) show that πJeffrey((µ, σ)|x) is proportional only to 1/σ2.
�



Chapter 6

Optimality in Estimation

Problem 6.1. Suppose that X = (X1, · · · , Xn) have joint density or frequency function f(x; θ) where
θ is a real-valued parameter with a proper prior density function π(θ). For squared error loss, define
the Bayes risk of an estimator θ̂ = S(X) :

RB(θ̂, θ) =

∫
Θ
Eθ[(θ̂ − θ)2]π(θ)dθ.

The Bayes estimator minimizes the Bayes risk.
(a) Show that the Bayes estimator is the mean of the posterior distribution of θ.
(b) Suppose that the Bayes estimator in (a) is also an unbiased estimator. Show that the Bayes risk
of this estimator must be 0. (This result implies that Bayes estimators and unbiased estimators agree
only in pathological examples.)

Solution. (a) By f(x|θ).π(θ) = π(θ|x).f(x), we have:

RB(θ̂, θ) =

∫
Θ
Eθ((θ̂ − θ)2)π(θ)dθ =

∫
Θ

(

∫
χ
(θ̂(x)− θ)2f(x|θ)dx)π(θ)dθ =

∫
Θ

∫
χ
(θ̂(x)− θ)2f(x|θ)π(θ)dxdθ

=

∫
Θ

∫
χ
(θ̂(x)− θ)2π(θ|x).f(x)dxdθ =

∫
χ
(

∫
Θ

(θ̂(x)− θ)2π(θ|x)dθ)f(x)dx. (∗)

Now, by (∗) the Bayes risk is minimized when the posterior expected loss
∫

Θ(θ̂(x) − θ)2π(θ|x)dθ is

minimized and it is minimized at θ̂(x) = E(θ|x).

(b) First, given Eθ(θ̂|θ) = θ, it follows:

Eθ((θ̂ − θ)2) = Eθ((θ̂)
2 − 2.θ.θ̂ + (θ)2) = Eθ((θ̂)

2)− 2.Eθ(θ.θ̂) + Eθ((θ)
2)

= Eθ((θ̂)
2)− 2.Eθ(Eθ(θ.θ̂|θ)) + Eθ((θ)

2) = Eθ((θ̂)
2)− 2.Eθ(θ.Eθ(θ̂|θ)) + Eθ((θ)

2)

= Eθ((θ̂)
2)− 2.Eθ((θ)

2) + Eθ((θ)
2) = Eθ((θ̂)

2)− Eθ((θ)2). (∗∗)

Second, given Eθ(θ|θ̂) = θ̂, it follows:

Eθ((θ̂ − θ)2) = Eθ((θ̂)
2 − 2.θ̂.θ + (θ)2) = Eθ((θ̂)

2)− 2.Eθ(θ̂.θ) + Eθ((θ)
2)

= Eθ((θ̂)
2)− 2.Eθ(Eθ(θ̂.θ|θ̂)) + Eθ((θ)

2) = Eθ((θ̂)
2)− 2.Eθ(θ̂.Eθ(θ|θ̂)) + Eθ((θ)

2)

= Eθ((θ̂)
2)− 2.Eθ((θ̂)

2) + Eθ((θ)
2) = −Eθ((θ̂)2) + Eθ((θ)

2). (∗ ∗ ∗)
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Now, comparing (∗∗) and (∗ ∗ ∗) it follows that Eθ((θ̂ − θ)2) = 0, and hence:

RB(θ̂, θ) =

∫
Θ

0 π(θ)dθ = 0.

�
Problem 6.3. Suppose that X1, · · · , Xn are i.i.d. Poisson random variables with mean θ where θ has
a Gamma (α, β) prior distribution.
(a) Show that

θ̂ =
α+

∑n
i=1Xi

β + n

is the Bayes estimator of θ under squared error loss.
(b) Use the result of (a) to show that any estimator of the form aX + b for 0 < a < 1 and b > 0 is an
admissible estimator of θ under squared error loss.

Solution. (a) By Problem 6.1,
θ̂ = E(θ|x). (∗)

Also:

π(θ|x̂) =
f(x|θ)π(θ)∫

Θ f(x|t)π(t)dt
=

∏n
i=1( e

−θ.θxi
xi!

)β
α.θα−1

Γ(α) exp(−β.θ)∫∞
0

∏n
i=1( e

−t.txi
xi!

)β
α.tα−1

Γ(α) exp(−β.t)dt

=
θ
∑n
i=1 xi+α−1.e−(n+β)θ∫∞

0 t
∑n
i=1 xi+α−1.e−(n+β)tdt

=
(n+ β)

∑n
i=1 xi+α

Γ(
∑n

i=1 xi + α)
.θ

∑n
i=1 xi+α−1.e−(n+β)θ. (∗∗)

Consequently, by (∗∗) it follows that θ|x ∼ Gamma(
∑n

i=1 xi + α, n+ β) implying:

E(θ|x) =

∑n
i=1 xi + α

n+ β
. (∗ ∗ ∗)

Finally, a comparison of (∗) and (∗ ∗ ∗) proves the assertion.

(b) As θ̂ = n.X+α
n+β = n

n+β .X + α
n+β , fix n > 0 and write n/(n + β) = a and α/(n + β) = b. Then,

α = n(b/a), and β = n((1− a)/a). Accordingly, taking

θ0 = Gamma(n(b/a), n((1− a)/a))

implies E(θ0|x) = a.X + b.
�
Problem 6.5. Given a loss function L, we want to find a minimax estimator of a parameter θ.
(a) Suppose that θ̂ is a Bayes estimator of θ for some prior distribution π(θ) with

RB(θ̂) = sup
θ∈Θ

Rθ(θ̂).

Show that θ̂ is a minimax estimator. (The prior distribution π is called a least favourable distribution.)
(b) Let {πn(θ)} be a sequence of prior density functions on Θ and suppose that θ̂n are the corresponding
Bayes estimators. If θ̂0 is an estimator with

sup
θ∈Θ

Rθ(θ̂0) = lim
n→∞

∫
Θ
Rθ(θ̂n)πn(θ)dθ
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show that θ̂0 is a minimax estimator.
(c) Suppose that X ∼ Bin(n, θ). Assuming squared error loss, find a minimax estimator of θ.

Solution. (a) Given arbitrary estimator θ̃ of θ. Then:

sup
θ∈Θ

Rθ(θ̂) = RB(θ̂) =

∫
Θ
Rθ(θ̂)π(θ)dθ

≤
∫

Θ
Rθ(θ̃)π(θ)dθ ≤

∫
Θ

sup
θ∈Θ

(Rθ(θ̃))π(θ)dθ

= (sup
θ∈Θ

(Rθ(θ̃))).

∫
Θ
π(θ)dθ = sup

θ∈Θ
(Rθ(θ̃)).

Accordingly, θ̂ is a minimax estimator of θ.

(b) Let θ̃ be an arbitrary estimator of θ. Then by:∫
Θ
Rθ(θ̂n)πn(θ)dθ ≤

∫
Θ
Rθ(θ̃)πn(θ)dθ (n ≥ 1),

we have:

sup
θ∈Θ

Rθ(θ̂0) = lim
n→∞

∫
Θ
Rθ(θ̂n)πn(θ)dθ ≤ sup

n∈N
(

∫
Θ
Rθ(θ̂n)πn(θ)dθ)

≤ sup
n∈N

(

∫
Θ
Rθ(θ̃)πn(θ)dθ) ≤ sup

n∈N
(

∫
Θ

(sup
θ∈Θ

(Rθ(θ̃)))πn(θ)dθ)

= sup
n∈N

[(

∫
Θ
πn(θ)dθ).(sup

θ∈Θ
(Rθ(θ̃)))] = sup

θ∈Θ
(Rθ(θ̃)).

Thus, θ̂0 is a minimax estimator of θ.

(c) Take θ ∼ Beta(α, β). Then, by Problem 6.2. θ̂α,β(X) = α+X
α+β+n and

Rθ(θ̂α,β(X)) = V ar(θ̂α,β(X)) +Bias2(θ̂α,β(X)) =
n.θ.(1− θ)

(α+ β + n)2
+

(α− θ(α+ β))2

(α+ β + n)2

=
((α+ β)2 − n).θ2 + (n− 2α(α+ β)).θ + c(α, β, n)

(α+ β + n)2
= d(α, β, n)

if and only if α = β =
√
n

2 . Consequently, for:

θ̂√n
2
,
√
n
2

(X) =
X +

√
n

2

n+
√
n

we have:

RB(θ̂√n
2
,
√
n
2

(X)) =

∫
Θ
Rθ(θ̂√n

2
,
√
n
2

(X))π(θ)dθ =

∫
Θ
d(α, β, n)π(θ)dθ = d(α, β, n) = sup

θ∈Θ
(Rθ(θ̂√n

2
,
√
n
2

(X))),

and by Part (a) , θ̂√n
2
,
√
n
2

(X) is a minimax estimator of θ.

�
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Problem 6.7. Suppose that X = (X1, · · · , Xn) are random variables with joint density or frequency
function f(x; θ) and suppose that T = T (X) for θ.
Suppose that there exists no function φ(t) such that φ(T ) is an unbiased estimator of g(θ). Show that
no unbiased estimator of g(θ) (based on X) exists.

Solution. Let for some S = S(X), to have Eθ(S) = g(θ). Then, for φ(T ) = Eθ(S|T ) we have:

Eθ(φ(T )) = Eθ(Eθ(S|T )) = Eθ(S) = g(θ),

a contradiction to the assumption for g(θ).
�
Problem 6.9. Suppose that X = (X1, · · · , Xn) have a joint distribution depending on a parameter θ
where T = T (X) is sufficient for θ.
(a) Prove Basu’s Theorem: If S = S(X) is an ancillary statistic and the sufficient statistic T is complete
then T and S are independent.
(b) Suppose that X and Y are independent Exponential random variables with parameter λ. Use Basu’s
theorem to show that X + Y and X/(X + Y ) are independent.
(c) Suppose that X1, · · · , Xn are i.i.d. Normal random variables with mean µ and variance σ2. Let
T = T (X1, · · · , Xn) be a statistic such that

T (X1 + a, · · · , Xn + a) = T (X1, · · · , Xn) + a

and E(T ) = µ. Show that
V ar(T ) = V ar(X) + E[(T −X)2].

Solution. (a) Fix given −∞ < s <∞ and define:

g(t) = P (S(X) = s|T (X) = t)− P (S(X) = s) −∞ < t <∞.

Then in the right hand side of above equality, considering sufficient T (X) (for the first component) and
ancillary S(X) (for the second component), it follows that g does not dependent to θ. Furthermore,
another usage of ancillary assumption on S(X) yields:

Eθ(g(T )) =

∫ ∞
−∞

g(t)dPθ(t)

=

∫ ∞
−∞

P (S(X) = s|T (X) = t)dPθ(T (X) = t)− P (S(X) = s)

=

∫ ∞
−∞

Pθ(S(X) = s|T (X) = t)dPθ(T (X) = t)− P (S(X) = s)

= Pθ(S(X) = s)− P (S(X) = s)

= P (S(X) = s)− P (S(X) = s) = 0, for all θ. (∗)

Next, by completeness of T it follows from (∗) that:

g(t) = 0, −∞ < t <∞ (∗∗)

and (∗∗) is equivalent to :

P (S(X) = s|T (X) = t) = P (S(X) = s), −∞ < s, t <∞

or equivalently S, T are independent. This proves the Basu’s Theorem for continuous random variables.
For the discrete random variables one may simply substitute the integrals in above proof with sums.
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(b) As λ.X, λ.Y ∼ exp(1) , X
X+Y = λ.X

λ.X+λ.Y and Z ∼ exp(1) does not depend to λ, it follows that

S = X
X+Y is an ancillary statistics. Next, using likelihood and an application of Theorem 4.2 show

that X + Y is sufficient statistics for λ. On the other hand, T = X + Y ∼ Gamma(2, 1
λ) with density

(Exercise !):

fX+Y (t) = λ2.t.e−λ.t. (t > 0)

Now, let Eλ(g(T )) = 0 for all λ. Then,
∫∞

0 t.g(t).e−λ.tdt = 0 for all λ > 0. A change of variable e−t = x
yields: ∫ 1

0
[
1

x
log(

1

x
)g(log(

1

x
))]xλdx = 0 for all λ > 0. (∗ ∗ ∗)

Now an application of Stone-Weierstrass Theorem for the case of polynomials on (∗∗∗) yields 1
x log( 1

x)g(log( 1
x))

= 0 (0 < x < 1) implying g(log( 1
x)) = 0 (0 < x < 1) or equivalently: g ≡ 0. Consequently, T is

complete. Finally, by Basu’s Theorem in Part (a) it follows that S and T are independent.

(c) As a special case of Example 6.9, X is a complete sufficient statistics for µ with σ2 known. Next, we
show that T−X is ancillary statistics for µ with σ2 known. To see this, as Xi−µ ∼ N(0, σ2) (1 ≤ i ≤ n)
is ancillary for µ with σ2 known, it follows that:

T (X1, · · · , Xn)− 1

n
.
n∑
i=1

Xi = (T (X1, · · · , Xn)−µ)−(
1

n
.
n∑
i=1

Xi−µ) = T (X1−µ, · · · , Xn−µ)− 1

n
.
n∑
i=1

(Xi−µ),

is ancillary statistics for µ with σ2 known. Now, by Basu’s Theorem X and T −X are independent.
Accordingly, by E(T −X) = µ− µ = 0, we have:

V ar(T ) = V ar(T −X) + V ar(X) = E((T −X)2) + V ar(X).

�
Problem 6.11. Suppose that X1, · · · , Xn are i.i.d. Poisson random variables with mean λ.
(a)Use the fact that

∞∑
k=0

ck.x
k = 0 for all a < x < b

if, and only if, c0 = c1 = · · · = 0 to show that T =
∑n

i=1Xi is complete for λ.
(b) Find the unique UMVU estimator of λ2.
(c) Find the unique UMVU estimator of λr for any integer r > 2.

Solution. (a) Suppose Eλ(g(T )) = 0 for all λ > 0 where T =
∑n

i=1Xi =d Poisson(nλ). Then, by
assumption:

∞∑
k=0

g(k)e−nλ
(nλ)k

k!
= e−nλ[

∞∑
k=0

g(k)
(nλ)k

k!
] = 0, for all λ > 0.

Now, take x = nλ in the given assumption, then by above equation:

∞∑
k=0

g(k)

k!
xk = 0, for all x > 0.

Hence, g(k)
k! = 0, 0 ≤ k ≤ ∞, implying g ≡ 0. Accordingly, T is complete statistics.
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(b),(c) As

f(x, λ) =

n∏
i=1

(e−λ
λxi

xi!
) = (e−nλλ

∑n
i=1 xi).(

1∏n
i=1 xi!

) = g∗(T (x);λ).h∗(x)

by Theorem 4.2, it follows that T =
∑n

i=1Xi is sufficient for λ as well. Next, by Theorem 6.1. and

Theorem 6.4 it is sufficient to find a function g such that E(g(T )) = λr, or
∑∞

k=0 g(k). e
−nλ(n.λ)k

k! = λr

or equivalently:
∞∑
k=0

(
g(k)

k!
nk)λk = enλ.λr =

∞∑
k=0

(nλ)k

k!
.λr =

∞∑
k=r

(
nk−r

(k − r)!
)λk,

implying:

g(k)

k!
nk = 0 : k = 0, · · · , r − 1

g(k)

k!
nk =

nk−r

(k − r)!
: k = r, · · · ,

and hence:

g(k) =
r!.C(k, r)

nr
∗ 1[r,∞)(k) : k = 0, 1, 2, · · · .

�

Problem 6.13. Suppose that X = (X1, · · · , Xn) has a joint distribution that depends on an unknown
parameter θ and define

U = {U : Eθ(U) = 0, Eθ(U
2) <∞}

to be the space of all statistics U = U(X) that are unbiased estimators of 0 with finite variance.
(a) Suppose that T = T (X) is an unbiased estimator of g(θ) with V arθ(T ) < ∞. Show that any
unbiased estimator S of g(θ) with V arθ(S) <∞ can be written as

S = T + U

for some U ∈ U .
(b) Let T be an unbiased estimator of g(θ) with V arθ(T ) < ∞. Suppose that covθ(T,U) = 0 for all
U ∈ U (an all θ). Show that T is a UMVU estimator of g(θ).
(c) Suppose that T is a UMVU estimator of g(θ). Show that Covθ(T,U) = 0 for all U ∈ U .

Solution. (a) Let U = S − T. Then:

Eθ(U) = Eθ(S)− Eθ(T ) = g(θ)− g(θ) = 0,

Eθ(U
2) = V arθ(U) = V arθ(S − T ) = V arθ(S)− 2.Covθ(S, T ) + V arθ(T )

= V arθ(S)− 2.Corrθ(S, T ).
√
V arθ(S).V arθ(T ) + V arθ(T )

< ∞.

Accordingly: U ∈ U .

(b) Let S be another estimator satisfying Eθ(S) = g(θ) = Eθ(T ). Then, by Part (a), S − T ∈ U and ;
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furthermore:

V arθ(S) = V arθ(T + (S − T ))

= V arθ(T ) + 2.Covθ(T, (S − T )) + V arθ(S − T )

= V arθ(T ) + V arθ(S − T )

≥ V arθ(T ).

Thus, UMVU(g(θ)) = T.

(c) Let for some U ∈ U , Covθ(T,U) 6= 0, say Covθ(T,U) < 0, (for the case Covθ(T,U) > 0, the proof
is the similar by replacing −U instead of U .). Define Sλ = T + λ.U. then:

Eθ(Sλ) = Eθ(T ) + λ.E(U) = g(θ) + λ.0 = g(θ),

V arθ(Sλ) = V arθ(T ) + 2.λ.Covθ(T,U) + λ2.V arθ(U).

Now, for λ ∈ (0, −2Covθ(U,V )
V arθ(U) ) we have:

V arθ(Sλ) < V arθ(T ),

implying UMVU(g(θ)) = Sλ, a contradiction.
�

Problem 6.15. Suppose that X1, · · · , Xn are i.i.d. Normal random variables with mean θ and variance
θ2 where θ > 0. Define:

θ̂n = Xn(1 +

∑n
i=1(Xi −Xn)2 − nXn

2

3
∑n

i=1(Xi −Xn)2
)

where Xn is the sample mean of X1, · · · , Xn.
(a) Show that θ̂n →p θ as n→∞.
(b) Find the asymptotic distribution of

√
n(θ̂n − θ). Is θ̂n asymptotically efficient?

(c) Find the Cramer-Rao lower bound for unbiased estimators of θ. (Assume all regularity conditions
are satisfied.)
(d) Does there exist an unbiased estimator of θ that achieves the lower bound in (a)? Why or why
not?

Solution. (a) We have

θ̂n = Xn.[1 +
S2
n − n

n−1Xn
2

3.S2
n

], (n ≥ 1). (∗)

Next, by Example 4.19, S2
n →p θ

2, by Theorem 3.6., Xn →p θ, and by Theorem n
n−1 .Xn

2 →p θ
2.

Accordingly, applying these results in (∗) it follows that θ̂n →p θ.
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(b) First, by Xn →p θ, S
2
n →p θ

2:

√
n(θ̂n − θ) =

√
n(Xn.[1 +

S2
n − n

n−1Xn
2

3.S2
n

]− θ)

=
√
n.(Xn − θ)

−
√
n.(Xn

2 − θ2)(
1

3θ
)(

n
n−1Xn

2 − θ2

Xn
2 − θ2

)(

Xn
3.S2

n

1
3θ

)

+
√
n(S2

n − θ2)).(
1

3θ
)(

Xn
3.S2

n

1
3θ

)

=d
√
n.((Xn −

1

3θ
Xn

2
)− (θ − θ2

3θ
))

+
√
n(

1

3θ
S2
n −

1

3θ
θ2)) (n→∞). (∗∗)

Next, using Example 5.14 for µ = θ and σ2 = θ2 we have:

√
n(Xn − θ)→d N(0, θ2),

√
n(Sn − θ)→d N(0,

θ2

2
),

(with independent limits) and an application of Theorem 3.4, for g1(x) = x− 1
3θx

2 and g2(x) = 1
θx

2 on
the last result yields:

√
n.((Xn −

1

3θ
Xn

2
)− (θ − θ2

3θ
))→d N(0,

θ2

9
),
√
n(

1

3θ
S2
n −

1

3θ
θ2)→d N(0,

2.θ2

9
), (∗ ∗ ∗)

(with independent limits). Accordingly, by (∗∗), (∗ ∗ ∗), and an application of Theorem 3.3 it follows
that:

√
n(θ̂n − θ) →d N(0,

θ2

9
) +N(0,

2.θ2

9
)

=d N(0,
1

3
θ2). (†)

Finally, considering (†) with σ2(θ) = 1
3θ

2 ,and I(θ) = V ar(l
′
(x; θ)) = V arθ(−θ−1 + θ−3.X2− θ−2.X) =

11
θ2

(Exercise!) we have:

σ2(θ) =
θ2

3
>
θ2

11
=

1

I(θ)
.

Consequently, this sequence of estimators is not asymptotically efficient.

(c) First, let X ∼ N(θ, θ2) then, E(X) = θ,E(X2) = 2θ2, E(X3) = 4.θ3, E(X4) = 10.θ4. Second,
referring to Pages 324-325 let X1, · · · , Xn be i.i.d. random variables with pdf f(x; θ) from exponential
family. Then, for Eθ(T ) = g(θ):

CRLBθ(T (X)) =
(g′(θ))2

Eθ(
d
dθ log(f(x; θ))2)

=
(g′(θ))2

n.V arθ(
d
dθ log(f(x; θ)))

(††)

In particular, for g(θ) = θ, T with Eθ(T ) = θ, log(f(x; θ)) = −1
2(log(2π)+1)− log(θ)− 1

2 .θ
−2x2 +θ−1.x



© 2018 by Chapman & Hall/CRC 83

and d
dθ log(f(x; θ)) = −θ−1 + θ−3.x2 − θ−2.x it follows from (††) that:

CRLBθ(T (X)) =
1

n.V ar(−θ−1 + θ−3.X2 − θ−2.X)

=
1/n

θ−4V ar(θ−1.X2 +X)
(Exercise!)

=
θ4

n

11θ2

=
θ2

11n
.

(d) Here, by Example 4.6.:

log(f(x; θ)) =
−1

2θ2

n∑
i=1

x2
i +

1

θ
.

n∑
i=1

xi −
n

2
(1 + 2. log(θ) + log(2π))

is a two parameter exponential family. Hence, as the one parameter exponential family representation
in page 324 does not exist; and, it follows that there is no unbiased estimator T achieving the Cramer-
Rao lower bound.
�
Problem 6.17. Suppose that X1, · · · , Xn are i.i.d. random variables with frequency function

f(x; θ) = θ, for x = −1, (1− θ)2.θx for x = 0, 1, 2, · · ·

where 0 < θ < 1.
(a) Find the Cramer-Rao lower bound for unbiased estimators of θ based on X1, · · · , Xn.
(b) Show that the maximum likelihood estimator of θ based on X1, · · · , Xn is

θ̂n =
2
∑n

i=1 I(Xi = −1) +
∑n

i=1Xi

2n+
∑n

i=1Xi

and show that {θ̂n} is consistent for θ.
(c) Show that

√
n(θ̂n− θ)→d N(0, σ2(θ)) and find the value of σ2(θ)). Compare σ2(θ)) to the Cramer-

Rao lower bound found in part (a).

Solution. (a) By Page 327 for g(θ) = θ and T with Eθ(T ) = θ we have:

CRLBθ(T ) =
(g
′
(θ))2

n.V arθ(
d log(f(x;θ))

dθ )
=

1

n.V arθ(
d log(f(x;θ))

dθ )
. (∗)
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Next, we have:

log(f(x; θ)) = log(θ).1X=−1 + [2. log(1− θ) + x. log(θ)].1X≥0,

d log(f(x; θ))

dθ
= (

1

θ
).1X=−1 + (

2

θ − 1
+
x

θ
).1X≥0,

Eθ((
d log(f(x; θ))

dθ
)2) = (

2

θ − 1
)2 +

4

(θ − 1)θ
Eθ(X) +

1

θ2
.Eθ(X

2) + (
1

θ2
− (

2

θ − 1
− 1

θ
)).θ

= (
2

θ − 1
)2 +

4

(θ − 1)θ
.0 +

1

θ2
.

2θ

1− θ
+

−4

(θ − 1)2

=
2

θ.(1− θ)
,

E2
θ (
d log(f(x; θ))

dθ
) = 0,

V arθ(
d log(f(x; θ))

dθ
) = Eθ((

d log(f(x; θ))

dθ
)2)− E2

θ (
d log(f(x; θ))

dθ
) =

2

θ.(1− θ)
. (∗∗)

Thus, by (∗) and (∗∗) it follows that CRLBθ(T ) = θ.(1−θ)
2n .

(b) Refer to the solution of Problem 5.5(a).

(c) Refer to the solution of Problem 5.5(b). Also:

σ2(θ) =
θ.(1− θ)

2
≥ θ.(1− θ)

2n
= CRLB(T ) (n ≥ 1).

�
Problem 6.19. Suppose that X1, · · · , Xn be i.i.d. Bernoulli random variables with parameter θ.
(a) Indicate why S = X1 + · · ·+Xn is a sufficient and complete statistics for θ.
(b) Find the UMVU estimator of θ.(1− θ).

Solution. (a) As f(x; θ) = exp(log(θ/(1− θ)).x− log(1/(1− θ))), (0 < θ < 1) it follows that:

f(x; θ) = exp(log(θ/(1− θ)).
n∑
i=1

xi − log(1/(1− θ))), (0 < θ < 1)

and the assertion follows from Theorem 6.3. for k = 1, c1(θ) = log(θ/(1 − θ)), T1(X) =
∑n

i=1Xi,
d(θ) = n. log(1/(1− θ)), and C = (0, 1).

(b) Let S ∼ Bin(n, θ), then by Theorem 6.1 and Theorem 6.4. it is sufficient to find h such that
Eθ(h(S)) = θ.(1− θ), (0 < θ < 1). Next, let n = 2 in the equation

n∑
k=0

h(k).C(n, k).θk.(1− θ)n−k = θ.(1− θ), (0 < θ < 1.

Then, after re-arranging powers of θ it follows that h(0) = 0, h(1) = 1/2, h(2) = 0. Hence, for this

special case: h(S) = S.(2−S)
2 . Now, let n > 2 and set S∗ = I(X1 = 0, X2 = 1) implying:

Eθ(S) = P (X1 = 0).P (X1 = 1) = (1− θ).θ.
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Accordingly, by Theorem 6.4., S∗∗ = E(S∗|Sn) : Sn = S is the unique UMVU estimator of (1− θ).θ.
To calculate S∗∗ we have:

S∗∗(s) = Eθ(S
∗|Sn = s) = Pθ(X1 = 0, X2 = 1|Sn = s)

=
Pθ(X1 = 0, X2 = 1, X3 + · · ·+Xn = s− 1)

Pθ(Sn = s)

= 0 if s = 0,

=
Pθ(X1 = 0).Pθ(X2 = 1).P (sn−2 = s− 1)

Pθ(Sn = s)

=
(1− θ).θ.C(n− 2, s− 1).θs−1.(1− θ)n−2−(s−1)

C(n, s).θs.(1− θ)n−s

=
s.(n− s)
n.(n− 1)

,

yielding:

S∗∗ =
S.(n− S)

n.(n− 1)
.

�
Problem 6.21. Suppose that X1, · · · , Xn are i.i.d. random variables with density or frequency
function f(x; θ) satisfying the condition of Theorem 6.6. Let θ̂n be the MLE of θ and θ̃n be another
(regular)estimator of θ such that

√
n

(
θ̂n − θ
θ̃n − θ

)
→d N2(0, C(θ)).

Show that C(θ) must have the form

C(θ) =

(
I−1(θ) I−1(θ)
I−1(θ) σ2(θ)

)
.

Solution. By two times application of Theorem 6.6 for sequences of estimators (θ̂n)∞n=1 and (θ̃n)∞n=1

we have:

√
n(θ̂n − θ)→d Z1(θ) : Z1(θ) = N(0,

1

I(θ)
)

√
n(θ̃n − θ)→d Z1(θ) + Z2(θ) : Z2(θ) independent Z1(θ).

Consequently, by assumption:

c11(θ) = V ar(Z1(θ)) =
1

I(θ)
,

c22(θ) = V ar(Z1(θ) + Z2(θ)) = σ2(θ),

c12(θ) = Cov(Z1(θ), Z1(θ) + Z2(θ)) = V ar(Z1(θ)) =
1

I(θ)
,

c21(θ) = c12(θ) =
1

I(θ)
.

�
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Chapter 7

Interval Estimation and Hypothesis
Testing

Problem 7.1. Suppose that X1, · · · , Xn are i.i.d. Normal random variables with unknown mean µ
and variance σ2.
(a) Using pivot (n− 1)S2/σ2 where

S2 =
1

n− 1

n∑
i=1

(Xi −X)2,

we can obtain a 95% confidence interval [k1.S
2, k2.S

2] for some constants k1 and k2. Find expressions
for k1 and k2 if this confidence interval has minimum length. Evaluate k1 and k2 when n = 10.
(b) When n is sufficiently large, we can approximate the distribution of the pivot by a normal distri-
bution (Why ?). Find approximations for k1 and k2 that are valid for large n.

Solution. (a) Let X ∼ χ2
n−1 with p.d.f fX,n−1 and the condition

P (a ≤ X ≤ b) = 1− α (a < b). (∗)

Then the interval I(a,b) = [a, b] with smallest length satisfying (∗) has the following constraint on its
bounds (Tate & Klett, 1959):

fX,n+3(a) = fX,n+3(b).

Now, by Example 7.4. (n−1).S2

σ2 ∼ χ2
n−1 and for k1 = n−1

b , k2 = n−1
a we have:

P (k1.S
2 ≤ σ2 ≤ k2.S

2) = P (a ≤ (n− 1).S2

σ2
≤ b) = P (a ≤ χ2

n−1 ≤ b) = 0.95. (∗∗)

By (∗), the required a, b have the constraint a
n+1
2 .e−

a
2 = b

n+1
2 .e−

b
2 . Next, taking n = 10 we will have

the following system of equations:

P (a ≤ χ2
9 ≤ b) = 0.95

a
11
2 .e−

a
2 = b

11
2 .e−

b
2 ,

with solution a = 3.284, and b = 26.077. Thus, k1 = 9
26.077 = 0.345 and k2 = 9

3.284 = 2.741.
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(b) By Example 5.14, for σ̃2
n = n−1

n S2 we have
√
n.(σ̃n → σ) →d N(0, σ

2

2 ). Define g(x) = x2, then, by

Theorem 3.4.
√
n.(σ̃2

n → σ2)→d N(0, 2.σ4). Thus,

(n− 1).S2

σ2
=
n.σ̃2

n

σ2
∼ n

σ2
.N(σ2,

2.σ4

n
) =d N(n,2n). (n ↑ ∞) (∗ ∗ ∗)

But, (n−1).S2

σ2 ∼ χ2
n−1, and by (∗ ∗ ∗) it follows that as n→∞:

P (a ≤ χ2
n−1 ≤ b) = P (a ≤ N(n,2n) ≤ b) = P (

a− n√
2n
≤ N(0,1) ≤

b− n√
2n

) = 0.95. (∗ ∗ ∗∗)

On the other hand, |I(a,b)| = b − a =
√

2n ∗ (( b−n√
2n

) − (a−n√
2n

)) implying that the length of the desired

interval is minimized when a−n√
2n

= −1.96 and b−n√
2n

= 1.96 or, equivalently, a = −1.96.
√

2n + n and

b = 1.96.
√

2n+ n. Accordingly:

k1 =
n− 1

b
=

n− 1

1.96.
√

2n+ n
, k2 =

n− 1

a
=

n− 1

−1.96.
√

2n+ n
.

�

Problem 7.3. Suppose that X1, · · · , Xn are i.i.d. continuous random variables with median θ.
(a) What is the distribution of

∑n
i=1 I(Xi ≤ θ)?

(b) Let X(1) < · · · < X(n) be the order statistics of X1, · · · , Xn. Show that the interval [X(l), X(u)] is a
100.p% confidence interval for θ and find an expression for p in terms of l and u.
(c) Suppose that for large n, we set

l = bn
2
− 0.98 ∗

√
nc and u = dn

2
+ 0.98 ∗

√
ne.

Show that the confidence interval [X(l), X(u)] has coverage approximately 95%.

Solution. (a) As P (IXi≤θ = 1) = P (Xi ≤ θ) = 1
2 , it follows that IXi≤θ ∼ Binomial(1, 1

2) (1 ≤ i ≤ n),
and by independence of IXi≤θ (1eqi ≤ n) it follows that,

∑n
i=1 IXi≤θ ∼ Binomial(n,

1
2).

(b) By an application of Problem 2.25 with FX(θ) = 1− FX(θ) = 1
2 , we have:

p = p(l, u) = P (X(l) ≤ θ ≤ X(u)) = P (X(l) ≤ θ)− P (X(u) < θ)

=

n∑
k=l

C(n, k).FX(θ)k.(1− FX(θ))n−k −
n∑
k=u

C(n, k).FX(θ)k.(1− FX(θ))n−k

=
u−1∑
k=l

C(n, k).FX(θ)k.(1− FX(θ))n−k =

∑u−1
k=l C(n, k)

2n
, (l < u).

(c) Let Y =
∑n

i=1 I(Xi ≤ θ) ∼ Binomial(n, 1
2), then by part (a) and Theorem 3.8,

Y−n
2√
n
4

∼ N(0, 1) as

n→∞. Consequently:

Pθ(X(l) ≤ θ ≤ X(u)) = Pθ(X(l) ≤ θ)− Pθ(X(u) ≤ θ)
= Pθ(l ≤ Y )− Pθ(u ≤ Y ) = (1− Pθ(Y < l))− (1− Pθ(Y < u)) = Pθ(l ≤ Y < u)

= Pθ(
l − n

2√
n
4

≤ Y <
u− n

2√
n
4

)

' P (−1.96 ≤ Z ≤ +1.96) = 0.95,
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implying
l − n

2√
n
4

' −1.96,
u− n

2√
n
4

' +1.96,

or equivalently the assertion.
�

Problem 7.5. Suppose thatX1, · · · , Xn are i.i.d. Uniform random variables on [0, θ] andX(1), · · · , X(n)

be the order statistics.
(a) Show that for any r, X(r)/θ is a pivot for θ.
(b) Use part (a) to derive a 95% confidence interval for θ based on X(r). Give the exact upper and
lower confidence limits where n = 10 and r = 5.

Solution. (a) By Problem 2.25 (b) the p.d.f of X(r)/θ is calculated as follows:

fX(r)/θ(t) = θ.fX(r)
(θ.t) = θ.r.C(n, r).(FX(θ.t))r−1.(1− FX(θ.t))n−r.fX(θ.t)

=
Γ(n+ 1)

Γ(r).Γ(n− r + 1)
.tr−1.(1− t)n−r+1−1, (0 ≤ t ≤ 1),

yielding, X(r)/θ ∼ Beta(r, n− r + 1).

(b) By part (a), X ∼ Beta(r, n− r + 1) and FX(x) = Ix(r, n− r + 1) we have:

0.95 = Pθ(
X(r)

b
≤ θ ≤

X(r)

a
) = Pθ(a.θ ≤ X(r) ≤ b.θ) = Pθ(a ≤

X(r)

θ
≤ b) = Ib(r, n−r+1)−Ia(r, n−r+1).

In particular, for n = 10, and r = 5 we have: 0.95 = Ib(5, 6)− Ia(5, 6), and one choice for (a, b) can be

(a, b) = (0.20, 0.76), giving a 95% confidence interval for θ as [
X(5)

0.76 ,
X(5)

0.20 ].
�

Problem 7.7. Suppose that X1, X2, · · · are i.i.d. Normal random variables with mean µ and variance
σ2, both unknown. With a fixed sample size, it is not possible to find a fixed length 100p.% confidence
interval for µ. However, it is possible to construct a fixed length confidence interval by allowing a
random sample size. Suppose that 2d is the desired length of the confidence interval. Let n0 be a fixed
integer with n0 ≥ 2 and define

X0 =
1

n0

n0∑
i=1

Xi, and S2
0 =

1

n0 − 1

n0∑
i=1

(Xi −X0)2.

Now, given S2
0 , define a random integer N to be the smallest integer greater or equal than n0 and

greater than or equal to [S0.tα/d]2 where α = (1− p)/2 and tα is the 1− α quantile of a t-distribution
with n0−1 degrees of freedom. Sample N−n0 additional random variables and let X = N−1.

∑N
i=1Xi.

(a) Show that
√
N(X − µ)/S0 has t− distribution with n0 − 1 degrees of freedom.

(b) Use the result of part (a) to construct a 100p% confidence interval for µ and show that this interval
has length at most 2d.
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Solution. (a) Similar to Example 2.17, we have:
√
N(XN − µ)

S0
=

(
√
N(XN − µ))/(σ/

√
N)√

S2
0/σ

2

(
√
N(XN − µ))/(σ/

√
N) ∼ N(0, 1)

(n0 − 1)S2
0/σ

2 ∼ χ2
n0−1

in which the later two distributions are independent. Hence, by definition of T distribution,
√
N(X −

µ)/S0 ∼ Tn0−1.

(b) First, by Part (a):

p = Pµ(−t(1−p)/2,n0−1 ≤
√
N(X − µ)

S0
≤ t(1−p)/2,n0−1)

= Pµ(X −
t(1−p)/2,n0−1√

N
.S0 ≤ µ ≤ X +

t(1−p)/2,n0−1√
N

.S0),

and take IL,U = [L(X), U(X)] = [X − t(1−p)/2,n0−1√
N

.S0, X +
t(1−p)/2,n0−1√

N
.S0].

Second, for N = max(n0, [S0.t(1−p)/2,n0−1/d]2), it follows that:

|IL,U | = 2 ∗
t(1−p)/2,n0−1√

N
.S0 ≤ 2 ∗

t(1−p)/2,n0−1

S0.t(1−p)/2,n0−1/d
.S0 = 2d.

�

Problem 7.9. Suppose that X1, · · · , Xn are i.i.d. random variables with density function

f(x;µ) = λ. exp[−λ.(x− µ)] for x ≥ µ.

Let X(1) = min(X1, · · · , Xn).
(a) Show that

S(λ) = 2λ.

n∑
i=1

(Xi −X(1)) ∼ χ2(2(n− 1))

and hence is a pivot for λ.
(b) Describe how to use the pivot in (a) to give an exact 95% confidence interval for λ.
(c) Give an approximate 95% confidence interval for λ based on S(λ) for large n.

Solution. (a) As X∗i = 2λ(Xi−µ) ∼ exp(1
2) (1 ≤ i ≤ n) are i.i.d., and X∗(i) =d 2λ(X(i)−µ) (1 ≤ i ≤

n), a re-arrangement of equations in Problem 2.26 yields:

X∗(1) =
1

n
.Y ∗(1)

X∗(2) =
1

n
.Y ∗(1) +

1

n− 1
.Y ∗(2)

· · · · · · · · ·
X∗(n−1) =

1

n
.Y ∗(1) +

1

n− 1
.Y ∗(2) + · · ·+ 1

2
.Y ∗(n−1)

X∗(n) =
1

n
.Y ∗(1) +

1

n− 1
.Y ∗(2) + · · ·+ 1

2
.Y ∗(n−1) + Y ∗(n) (∗),
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in which Y ∗(i) ∼ χ
2
(2) (1 ≤ i ≤ n). Consequently, by (∗) it follows that:

S(λ) =
n∑
i=1

((2λ(Xi − µ))− (2λ.(X(1) − µ)))

=
n∑
i=1

(X∗(i) −X
∗
(1)) =

n∑
i=1

X∗(i) − n.X
∗
(1) =

n∑
i=1

Y ∗(i) − Y
∗

(1)

=
n∑
i=2

Y ∗(i) ∼ χ
2(2(n− 1)).

(b) As

0.95 = Pλ(a ≤ S(λ) ≤ b) = Pλ(a ≤ 2λ.
n∑
i=1

(Xi −X(1)) ≤ b)

= Pλ(
a

2.
∑n

i=1(Xi −X(1))
≤ λ ≤ b

2.
∑n

i=1(Xi −X(1))
),

for a = χ2
2(n−1),0.975 and b = χ2

2(n−1),0.025 it follows that:

[U(X), V (X)] = [
χ2

2(n−1),0.975

2.
∑n

i=1(Xi −X(1))
,

χ2
2(n−1),0.025

2.
∑n

i=1(Xi −X(1))
].

(c) An application of Theorem 3.8 for i.i.d. random variables X∗i ∼ χ2
(1) (i = 1, 2, · · · ) with µ∗ = 1

and (σ∗)2 = 2, yields
χ2
(m)
−m

√
2m

→d N(0, 1). Thus as n→∞:

0.95 = Pλ(a ≤ S(λ) ≤ b) = Pλ(
a− 2(n− 1)√

2.2.(n− 1)
≤ S(λ)− 2(n− 1)√

2.2.(n− 1)
≤ b− 2(n− 1)√

2.2.(n− 1)
)

' P (
a− 2(n− 1)√

2.2.(n− 1)
≤ N(0, 1) ≤ b− 2(n− 1)√

2.2.(n− 1)
).

Next, one choice will be a−2(n−1)√
2.2.(n−1)

= −1.96 and b−2(n−1)√
2.2.(n−1)

= +1.96, or:

a = 2.
√
n− 1.(

√
n− 1− 1.96), b = 2.

√
n− 1.(

√
n− 1 + 1.96).

Accordingly,

[U(X), V (X)] = [

√
n− 1.(

√
n− 1− 1.96)∑n

i=1(Xi −X(1))
,

√
n− 1.(

√
n− 1 + 1.96)∑n

i=1(Xi −X(1))
].

�

Problem 7.11. Consider a random sample of n individuals who are classified into one of three
groups with probabilities θ2, 2θ.(1− θ), and (1− θ)2. If Y1, Y2, Y3 are the numbers in each group then
Y = (Y1, Y2, Y3) has a Multinomial distribution:

f(y; θ) =
n!

y1!y2!y3!
θ2y1 [2θ(1− θ)]y2 .(1− θ)2y3

for y1, y2, y2 ≥ 0; y1 + y2 + y3 = n where 0 < θ < 1. (This model is the Hardy-Weinberg equilibrium
model from genetics.)
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(a) Find the maximum likelihood estimator of θ and give the asymptotic distribution of
√
n(θ̂n− θ) as

n→∞.
(b) Consider testing H0 : θ = θ0 versus H1 : θ > θ0. Suppose that for some k:

Pθ0 [2Y1 + Y2 ≥ k] = α.

Then the test that rejects H0 when 2Y1 + Y2 ≥ k is a UMP level α test of H0 versus H1.
(c) Suppose that n is large and α = 0.05. Find an approximate value for k in the UMP test in part
(b).
(d) Suppose that θ0 = 1/2 in part (b). How large must n so that a 0.05 level test has power at least
0.80 when θ = 0.6?

Solution. (a) Let θ∗ = 1− θ, then θ̂∗ = 1− θ̂. In addition:

f(y; θ∗) =
n!

y1!y2!y3!
(1− θ∗)2y1 .(2.θ∗.(1− θ∗))y2 .(θ∗)2y3 : y1, y2, y3 ≥ 0, y1 + y2 + y3 = n,

l
′
(θ∗) = −2.Y1 + Y2

1− θ∗
+
Y2 + 2.Y3

θ∗
= 0→ θ̂∗ =

Y2 + 2.Y3

2n
→ θ̂ =

2.Y1 + Y2

2n
,

l
′′
(θ∗) = −2.Y1 + Y2

(1− θ∗)2
− Y2 + 2.Y3

(θ∗)2
: E(Y1) = n.(1− θ∗)2, E(Y2) = 2n.θ∗.(1− θ∗), E(Y3) = n.(θ∗)2,

E(l
′
(θ∗)) = 0,

E(l
′′
(θ∗)) =

−2n

θ∗.(1− θ∗)
.

Now, by comments on page 254, I(θ∗) = −Eθ(l
′′
(θ∗))|n=1 = 2

θ∗.(1−θ∗) = 2
θ.(1−θ) , and hence I(θ) =

2
θ.(1−θ) . Now, by theorem 5.3:

√
n.(θ̂n − θ̂)→d N(0,

1

I(θ)
) = N(0,

θ.(1− θ)
2

).

(b) Using equation Y2 + Y3 = −(2.Y1 + Y2) + 2n, we have:

f(y; θ) = exp[(2.y1 + y2). log(θ) + (y2 + 2.y3). log(1− θ) + (y2. log(2) + log(
n!

y1!y2!y3!
))]

= exp[(2.y1 + y2). log(θ) + (−(2y1 + y2) + 2n). log(1− θ) + (y2. log(2) + log(
n!

y1!y2!y3!
))]

= exp[(2.y1 + y2). log(
θ

1− θ
) + 2n. log(1− θ) + (y2. log(2) + log(

n!

y1!y2!y3!
))].

By Example 7.15 for c(θ) = log( θ
1−θ ), T (y) = 2.y1 + y2, b(θ) = −2n. log(1− θ) and S(y) = y2. log(2) +

log( n!
y1!y2!y3!) the assertion follows.

(c) By Part (a),
√
n.(θ̂n − θ) ∼ N(0, θ.(1−θ)2 ) where θ̂n = 2.y1+y2

2n , as n→∞. Consequently:

0.05 = Pθ0(2.Y1 + Y2 ≥ k) = Pθ0(θ̂n ≥
k

n
)

= Pθ0(

√
n(θ̂n − θ0)√
θ.(1− θ)/2

≥
√
n( kn − θ0)√
θ0.(1− θ0)/2

) ' P (Z ≥
√
n( kn − θ0)√
θ0.(1− θ0)/2

),
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or equivalently P (Z ≤
√
n( k
n
−θ0)√

θ0.(1−θ0)/2
) ' 0.95. Hence,

√
n( k
n
−θ0)√

θ0.(1−θ0)/2
' 1.645, implying:

k(θ0, n) ' n.(
1.645 ∗

√
θ0.(1− θ0)/2√
n

+ θ0).

(d) First, with θ0 = 1
2 we have,

k(θ0, n) =
n

2
∗ (

1.645√
2n

+ 1). (∗)

Second, given power level, for θ1 = 0.60 we have:

0.80 ≤ Pθ1(2.Y1 + Y2 ≥ k(θ0, n)) ' Pθ1(Z ≥
√
n(k(θ0,n)

n − θ1)√
θ1.(1− θ1)/2

) →

Pθ1(Z ≤
√
n(k(θ0,n)

n − θ1)√
θ1.(1− θ1)/2

) ≤ 0.20→
√
n(k(θ0,n)

n − θ1)√
θ1.(1− θ1)/2

≤ −0.84. (∗∗)

Accordingly, plugging in (∗) in (∗∗) we get n ≥ 77.
�

Problem 7.13. Suppose that X ∼ Bin(m, θ) and Y ∼ Bin(n, φ) are independent random variables
and consdier testing:

H0 : θ ≥ φ versus H1 : θ < φ.

(a) Show that the joint frequency function of X and Y can be written in the form

f(x, y; θ, φ) = (
θ.(1− φ)

φ.(1− θ)
)x.(

φ

1− φ
)x+y. exp[d(θ, φ) + S(x, y)]

and that H0 is equivalent to

H0 : ln(
θ.(1− φ)

φ.(1− θ)
) ≥ 0.

(b) The UMPU test of H0 versus H1 rejects H1 at level α if X ≥ k where k is determined from
conditional distribution of X given X + Y = z (assuming that θ = φ). show that this conditional
distribution is Hypergeometric . (This conditional test is called Fisher’s exact test.)
(c) Show that the conditional frequency function of X given X + Y = z is given by

P (X = x|X + Y = z) =
C(m,x).C(n, z − x)ψx∑
sC(m, s)C(n, z − s)ψs

where the summation extends over s from max(0, z − n) to min(m, z) and ψ = θ(1−φ)
φ(1−θ) . (This is called

a non-central Hypergeometric distribution.)

Solution. (a) First,

f(x, y; θ, φ) = f(x; θ).f(y;φ) = C(m,x).θx.(1− θ)m−x ∗ C(n, y).φy.(1− φ)n−y

= (
θ

1− θ
)x ∗ (

φ

1− φ
)y ∗ [C(m,x).(1− θ)m.C(n, y).(1− φ)n]

= (
θ.(1− φ)

(1− θ).φ
)x.(

φ

1− φ
)x+y. exp[m. log(1− θ) + n. log(1− φ) + log(C(m,x).C(n, y))].
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Take d(θ, φ) = m. log(1− θ) + n. log(1− φ) and S(x, y) = log(C(m,x).C(n, y)).

Second, as θ ≥ φ, it follows that θ
φ ≥ 1 and 1−φ

1−θ ≥ 1, implying ( θφ).(1−φ
1−θ ) ≥ 1, or equivalently

ln(( θφ).(1−φ
1−θ )) ≥ 0.

(b) Under null hypothesis θ = φ = p, and hence:

P (X = x|X + Y = z) =
P (X = x,X + Y = z)

P (X + Y = z)
=
P (X = x, Y = z − x)

P (X + Y = z)
=
P (X = x).P (Y = z − x)

P (X + Y = z)

=
C(m,x).px.(1− p)m−x.C(n, z − x).pz−x.(1− p)n−z+x

C(m+ n, z).pz.(1− p)n+m−z =
C(m,x).C(n, z − x)

C(m+ n, z)
.

(c) Using Part (a) representation we have:

P (X = x|X + Y = z) =
P (X = x, Y = z − x)

P (X + Y = z)
=

P (X = x, Y = z − x)∑
s P (X = s, Y = z − s)

=
ψx.( φ

1−φ)z. exp[m. log(1− θ) + n. log(1− φ) + log(C(m,x).C(n, z − x))]∑
s ψ

s.( φ
1−φ)z. exp[m. log(1− θ) + n. log(1− φ) + log(C(m, s).C(n, z − s))]

=
ψx.C(m,x).C(n, z − x)∑
s[ψ

s.C(m, s).C(n, z − s)]
.

�

Problem 7.15. Suppose that X1, · · · , X10 are i.i.d. Uniform random variables on [0, θ] and consider
testing

H0 : θ = 1 versus H1 : θ 6= 1

at the 5% level. Consider a test that rejects H0 if X(10) < a or X(10) > b where a < b ≤ 1.
(a) Show that a and b must satisfy the equation

b10 − a10 = 0.95.

(b) Does an unbiased test of H0 versus H1 of this form exist ? If so, find a and b to make the test
unbiased.

Solution. (a) By Example 7.2. for n = 10 and Y =
X(10)

θ we have, FY (y) = y10 (0 ≤ y ≤ 1). Hence,

0.05 = P (X(10) < a ∪X(10) > b|θ = 1) = 1− P (a ≤ X(10) ≤ b|θ = 1)

or P (aθ ≤ Y ≤
b
θ |θ = 1) = P (a ≤ Y ≤ b) = 0.95 or b10 − a10 = 0.95.

(b) There is such an unbiased test if and only if inf16=θ>0 π(θ) ≥ π(1). But,

π(θ) = Pθ(X(10) < a ∪X(10) > b) = 1− Pθ(a ≤ X(10) ≤ b)

= 1− Pθ(a/θ ≤ X(10)/θ ≤ b/θ) = 1− (
b10 − a10

θ10
)

= 1− 0.95

θ10
, (θ > 0).
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Thus,

π(0.95
1
10 ) = 0 < 0.05 = π(1),

and consequently, such unbiased test does not exist. However, if one replace the alternative hypothesis
with H1 : θ ≥ 1, such an unbiased test will exist.
�

Problem 7.17. Suppose that X = (X1, · · · , Xn) are continuous random variables with joint density
f(x) where f = f0 or f = f1 are the two possibilities for f. Based on X, we want to decide between
f0 and f1 using a Non-Neyman-Pearson approach. Let φ(X) be an arbitrary test function where f0 is
chosen if φ = 0 and f1 is chosen if φ = 1. Let E0(T ) and E1(T ) be expectations of a statistics T = T (X)
assuming the true joint densities are f0 and f1 respectively.
(a) Show that the test function φ that minimizes α.E0[φ(X)] + (1− α)E1[1− φ(X)] (where 0 < α < 1
is a known constant) has the form

φ(X) = 1 if
f1(X)

f0(X)
≥ k

and 0 otherwise. Specify the value of k.
(b) Suppose that X1, · · · , Xn are i.i.d. continuous random variables with common density f where
f = f0 or f = f1(f0 6= f1). Let φn(X) be the optimal test function (for some α) based on X1, · · · , Xn

as described in part (a). Show that

. lim
n→∞

(α.E0[φn(X)] + (1− α)E1[1− φn(X)]) = 0.

Solution. (a) Take k = α
1−α and consider another test function ψ(X). By conditions φ(x) =

1f1(x)−k.f0(x)≥0 and 0 ≤ ψ(x) ≤ 1 it follows that:

(φ(x)− ψ(x)).(f1(x)− k.f0(x)) ≥ 0 for all x.

Then, by integration we have: ∫
(φ(x)− ψ(x)).(f1(x)− (

α

1− α
).f0(x))dx ≥ 0 ⇔∫

(φ(x)− ψ(x)).((1− α).f1(x)− (α).f0(x))dx ≥ 0 ⇔

(1− α).

∫
(φ(x)− ψ(x)).f1(x)dx− (α).

∫
(φ(x)− ψ(x)).f0(x)dx ≥ 0 ⇔∫

(α).(φ(x)− ψ(x)).f0(x)dx+

∫
(1− α).(ψ(x)− φ(x)).f1(x)dx ≤ 0 ⇔

E0((α).(φ(X)− ψ(X))) + E1((1− α).(ψ(X)− φ(X))) ≤ 0 ⇔
((α).E0(φ(X)) + (1− α).E1(1− φ(X)))− ((α).E0(ψ(X)) + (1− α).E1(1− ψ(X))) ≤ 0 ⇔

G(φ)−G(ψ) ≤ 0 ⇔
G(φ) ≤ G(ψ).

(b) First, let the sequence of random variables X∗n (i = 1, 2, · · · ) and sequence of real numbers
an (n = 1, 2, · · · ) satisfy the conditions limn→∞X

∗
n =d X∗, and limn→∞ an = a, respectively. Then,

given corresponding C.D.F’s FX∗n , and FX∗ , it follows that (Exercise !):

lim
n→∞

FX∗n(an) = FX∗(a). (∗)
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Second, by definition

E0(log(
f1

f0
)) < 0, and E1(log(

f1

f0
)) > 0. (∗∗)

Third, for φ = 1 we have:

1

n
.
n∑
i=1

log(
f1(xi)

f0(xi)
) =

1

n
. log(

n∏
i=1

f1(xi)

f0(xi)
) =

1

n
. log(

f1(x)

f0(x)
) ≥ log(k)

n
,

and similarly for φ = 0 we have:

1

n
.

n∑
i=1

log(
f1(xi)

f0(xi)
) ≤ log(k)

n
.

Now, by Theorem 3.6 and two times application of (∗) we have:

lim
n→∞

(α.E0[φn(X)] + (1− α)E1[1− φn(X)]) = lim
n→∞

(α.E0[1f1/f0≥k|f = f0]

+ (1− α)E1[1f1/f0<k|f = f1])

= lim
n→∞

α.P (
1

n
.
n∑
i=1

log(
f1(xi)

f0(xi)
) ≥ log(k)

n
|f = f0)

+ (1− α).P (
1

n
.
n∑
i=1

log(
f1(xi)

f0(xi)
) ≤ log(k)

n
|f = f1)

= α.P (E0(log(
f1

f0
)) ≥ 0)

+ (1− α).P (E1(log(
f1

f0
)) ≤ 0). (∗ ∗ ∗)

Finally, a comparison of (∗∗) and (∗ ∗ ∗) yields the desired result.
�

Problem 7.19. Consider a simple classification problem. An individual belongs to exactly one of k
populations. Each population has a known density fi(x)(i = 1, · · · , k) and it is known that a proportion
pi belong to population i(p1 + · · ·+pk = 1). Given disjoint sets R1, · · · , Rk, a general classification rule
is

classify as population i if x ∈ Ri(i = 1, · · · , k).

The total probability of correct classification is

C(R1, · · · , Rk) =
k∑
i=1

pi

∫
Ri

fi(x)dx.

We would like to find the classification rule (that is, the sets R1, · · · , Rk) that maximizes the total
probability of correct classification.
(a) Suppose that k = 2. Show that the optional classification rule has

R1 = {x :
f1(x)

f2(x)
≥ p2

p1
} R2 = {x :

f1(x)

f2(x)
<
p2

p1
}.

(b) Suppose that f1 and f2 are Normal densities with different means but equal variances. find the
optional classification rule using the result of part (a) (that is, find the regions R1 and R2.).
(c) Find the form of the optimal classification rule for general k.
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Solution. (a) First, by p1 + p2 = 1 and 1R1 + 1R2 = 1, it follows that:

C(R1, R2) =

∫
(p1.f1(x).1R1(x))dx+

∫
(p2.f2(x).1R2(x))dx

=

∫
((p1.f1(x)− p2.f2(x)).1R1(x) + p2.f2(x))dx. (∗)

Second, let R∗1, R
∗
2 be two other disjoint sets with union R. Then, for k = p2

p1
, we have(Exercise !):

(1R1(x)− 1R∗1(x)).(f1(x)− k.f2(x)) ≥ 0 for all x.

Consequently: ∫
(1R1(x)− 1R∗1(x)).(f1(x)− (

p2

p1
).f2(x))dx ≥ 0 ⇔∫

(1R1(x)− 1R∗1(x)).(p1.f1(x)− p2.f2(x))dx ≥ 0 ⇔∫
(1R1(x)).(p1.f1(x)− p2.f2(x))dx ≥

∫
(1R∗1(x)).(p1.f1(x)− p2.f2(x))dx ⇔∫

((p1.f1(x)− p2.f2(x)).1R1(x) + p2.f2(x))dx ≥
∫

((p1.f1(x)− p2.f2(x)).1R∗1(x) + p2.f2(x))dx. (∗∗)

Accordingly, by (∗) and (∗∗) it follows that:

C(R1, R2) ≥ C(R∗1, R
∗
2).

(b)As fi(x) = 1√
2.πσ

. exp(−(x−µi)2
2.σ2 ), (µ1 6= µ2), and (x−µ1)2−(x−µ2)2 = (2x−(µ1 +µ2)).(−µ1 +µ2),

it follows that:

R1 = {x|f1(x)

f2(x)
≥ p2

p1
}

= {x| exp(
−1

2.σ2
((x− µ1)2 − (x− µ2)2)) ≥ p2

p1
}

= {x|2.(µ1 − µ2).x ≥ (µ2
1 − µ2

2) + 2.σ2. log(
p2

p1
)}

= {x|x ≥
(µ2

1 − µ2
2) + 2.σ2. log(p2p1 )

2.(µ1 − µ2)
}, if µ1 > µ2,

= {x|x ≤
(µ2

1 − µ2
2) + 2.σ2. log(p2p1 )

2.(µ1 − µ2)
}, if µ1 < µ2,

and take R2 = R−R1.

(c) As for k = 2 we have, R1 = {x|p1.f1(x) − p2.f2(x) ≥ 0}, taking L0(x) = 0, L1(x) = p1.f1(x) −
p2.f2(x) it follows that:

R1 = {x|L1(x) ≥ L0(x)}.
Consequently, for case k > 2 we may set (Floudas & Pardalos, 2009):

Ri = {x|Li(x) ≥ Lj(x) (0 ≤ j ≤ i)} i = 1, 2, · · · , k

in which for some (qij)
k
j=1 we have:

L0(x) = 0,

Li(x) = pi.fi(x)−
∑

1≤j 6=i≤k
qij .fj(x), i = 1, 2, · · · , k.
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�

Problem 7.21. A heuristic (but almost rigorous) proof of Theorem 7.5. can be given by using the fact
that the log-likelihood function is approximately quadratic in a neighbourhood of the true parameter
value. Suppose that we have i.i.d. random variables X1, · · · , Xn with density or frequency function
f(x; θ) where θ = (θ1, · · · , θp), define

Zn(u) = ln(Ln(θ + u/
√
n)/Ln(θ)) = uT .Vn −

1

2
uT I(θ)u+Rn(u)

where Rn(u)→p 0 for each u and Vn →d Np(0, I(θ)).
(a) Suppose that we want to test the null hypothesis H0 : θ1 = θ10, · · · , θr = θr0. Show that, if H0 is

true, the LR statistic is 2 ln(Λn) = 2[Zn(Ûn)−Zn(Ûn0)] where Ûn maximizes Zn(u) and Ûn0 maximizes
Zn(u) subject to the constraint that u1 = · · · = u1 = 0.
(b) Suppose that Zn(u) is exactly quadratic (that is Rn(u) = 0). show that

Ûn = I−1(θ)Vn Ûn0 =

(
0

I−1
22 (θ)Vn2

)
where Vn and I(θ) are expressed as

Vn =

(
Vn1

Vn2

)
I(θ) =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
.

(c) Assuming that nothing is lost asymptotically in using the quadratic approximation, deduce Theorem
7.5. from parts (a) and (b).

Solution. (a) By definition and θ̂n = θ + Ûn√
n

for some Ûn and θ̂n0 = θ + Ûn0√
n

for some Ûn0 it follows

that:

2. log(Λn) = 2. log(
Ln(θ̂n)

Ln(θ̂n0)
) = 2. log(

Ln(θ + Ûn√
n

)

Ln(θ + Ûn0√
n

)
) = 2. log(

Ln(θ + Ûn√
n

)/Ln(θ)

Ln(θ + Ûn0√
n

)/Ln(θ)
)

= 2. log(
Ln(θ + Ûn√

n
)

Ln(θ)
)− 2. log(

Ln(θ + Ûn0√
n

)

Ln(θ)
) = 2[Zn(Ûn)− Zn(Ûn0)].

(b) Let Zn(u) = UT .Vn − 1
2 .U

T .I(θ).U. Then:

dZn(U)

dU
= V T

n −
1

2
∗ (2.UT .I(θ)) = V T

n − UT .I(θ) = 0⇒ UT .I(θ) = V T
n , or UT = V T

n .I(θ)−1.

As I(θ) and I−1(θ) are both symmetric we have:

Ûn = (V T
n .I(θ)−1)T = (I(θ)−1)T .Vn = I(θ)−1.Vn.

The second assertion follows similarly by consideration a projection P .

(c) Let X ∼ Np(µp×1, Cp×p). Then, a necessary and sufficient condition for the random variable (X −
µ)T .D.(X − µ) to have a chi-square distribution with r degrees of freedom (in which r = rank(DC))
is that (Rao, 1973): CDCDC = CDC.
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Now, using Vn →d Np(0, I(θ)) as n→∞ and the fact that:

2. log(Λn) = 2[Zn(Ûn)− Zn(Ûn0)]

= 2[(Ûn
T
.Vn −

1

2
.Ûn

T
.I(θ).Ûn)− (Ûn0

T
.Vn −

1

2
.Ûn0

T
.I(θ).Ûn0)]

= 2[(V T
n .I(θ)−1.Vn −

1

2
.V T
n .I(θ)−1.I(θ).I(θ)−1.Vn)− (V T

n .P (θ).Vn −
1

2
.V T
n .P (θ).I(θ).P (θ)T .Vn)]

= V T
n .[I(θ)−1 + P (θ).(I(θ).P (θ)− 2.I)].Vn,

and taking D = I(θ)−1 + P (θ).(I(θ).P (θ) − 2.I) and C = I(θ) in above mentioned Statement the
assertion follows.
�
Problem 7.23. Suppose thatX1, · · · , Xn are independent Exponential random variables with E(Xi) =
β.ti where t1, · · · , tn are known positive constants and β is unknown parameter.
(a) Show that the MLE of β is β̂n = 1

n

∑n
i=1Xi/ti.

(b) Show that
√
n(β̂ − β)→d N(0, β2).

(c) Suppose we want to test H0 : β = 1 versus H1 : β 6= 1. show that the LR test of H0 versus H1

rejects H0 for large values of
Tn = n(β̂n − ln(β̂n)− 1)

where β̂n is defined as in part (a).
(d) Show that when H0 is true, 2Tn →d χ

2(1).

Solution. (a) As: l(β;x) =
∑n

i=1(log( 1
β.ti

.e
− xi
β.ti )) =

∑n
i=1[− log(β.ti)− xi

β.ti
], it follows that:

d

dβ
l(β;x) =

1

β
.[−n+

1

β
.
n∑
i=1

xi
ti

] = 0⇒ β̂n =

∑n
i=1

xi
ti

n
.

(b) Define X∗i = Xi
ti
, i = 1, 2, · · · , then X∗i ’s are i.i.d. random variables with E(X∗i ) = β, and

V ar(X∗i ) = β2. Hence, by Theorem 3.8 and Part (a):

β̂n − β
β/
√
n
→d N(0, 1), (n→∞)

and the assertion follows.

(c) By Part (a) and:

Λn =

n∏
i=1

(
f(Xi; β̂n)

f(Xi; 1)
) =

n∏
i=1

e−xi/ti(1/β̂n−1)

β̂n
=
e−

∑n
i=1(xi/ti).(1/β̂n−1)

β̂n
n = (β̂n)−n.e−n+n.β̂n ,

it follows that:
Tn = log(Λn) = −n. log(β̂n)− n+ n.β̂n = n.(β̂n − log(β̂n)− 1).

(d) This is a direct consequence of Theorem 7.4. in which:

l(β;x) = − log(β.t)− x

β.t
, l

′
(β;x) = − 1

β
+

x

β2.t
, l

′′
(β;x) =

1

β2
− 2.x

β3.t

Eβ(l
′
(β;x)) = 0, Eβ(l

′′
(β;x)) =

−1

β2
, V arβ(l

′
(β;x)) = V arβ(− 1

β
+

x

β2.t
) =

1

β2
,

and I(β) = V arβ(l
′
(β;x)) = 1

β2 = −Eβ(l
′′
(β;x)) = J(β).

�
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Chapter 8

Linear and Generalized Linear Models

Problem 8.1. Suppose that Y = Xβ + ε where ε ∼ Nn(0, σ2.I) and X is n × (p + 1). Let β̂ be the
least squares estimator of β.

(a) Show that S2 = ‖Y−X.β̂‖2
n−p−1 is an unbiased estimator of σ2.

(b) Suppose that the random variable in ε are uncorrelated with common variance σ2. show that S2 is
an unbiased estimator of σ2.
(c) Suppose that (XT .X)−1 can be written as

(XT .X)−1 =


c00 · · · c0p

c11 · · · c1p

· · · · · · · · ·
cp0 · · · cpp

 .

Show that
β̂j−βj
S.
√
cjj
∼ T (n− p− 1) for j = 0, 1, · · · , p.

Solution. (a) First, let θ = X.β with rank(X) = p + 1. Then, for H = X.(XT .X)−1XT , we have
Y − θ̂ = (In −H).Y. Thus:

(n− (p+ 1)).S2 = Y T .(In −H)T .(In −H).Y = Y T .(In −H)2.Y = Y T .(In −H).Y. (∗)

Second, by Hθ = θ, it follows that rank(In −H) = tr(I −H) = n− (p+ 1), and:

E(Y T .(In −H).Y ) = tr((In −H).V ar(Y )) + E(Y )T (In −H).E(Y )

= σ2.tr(In −H) + θT .(In −H).θ = σ2.(n− (p+ 1)). (∗∗)

Thus, by (∗) and (∗∗) we have:

E(S2) =
1

n− (p+ 1)
(n− (p+ 1)).E(S2) =

1

n− (p+ 1)
E((n− (p+ 1).S2)

=
1

n− (p+ 1)
E(Y T .(In −H).Y ) =

1

n− (p+ 1)
.σ2.(n− (p+ 1)) = σ2.

(b) By Proposition 8.1(b) we have n.σ̂2/σ2 ∼ χ2(n − (p + 1)), and hence E(n.σ̂2/σ2) = n − (p + 1),

implying: E(S2) = E( n
n−(p+1) σ̂

2) = σ2.



102 © 2018 by Chapman & Hall/CRC

(c) By definition, for independent random variables Z, V with Z ∼ N(0, 1) and V ∼ χ2(m), we have

T = T√
V/m

∼ T (m). Now, by Proposition 8.1. take independent random variables
β̂j−βj√
σ2.cjj

∼ N(0, 1)

and n.σ̂2

σ2 = (n−(p+1))S2

σ2 ∼ χ2(n− (p+ 1)) and m = n− (p+ 1), it follows that:

β̂j − βj√
S2.cjj

=

β̂j−βj√
σ2.cjj√

[
(n−(p+1))S2

σ2
]

n−(p+1)

∼ T (n− (p+ 1)).

�

Problem 8.3. Consider the linear model Yi = β0 + β1.xi1 + · · ·+ βp.xip + εi (i = 1, · · · , n) where for
j = 1, · · · , p we have

∑n
i=1 xij = 0.

(a) Show that the least squares estimator of β0 is β̂0 = Y .
(b) Suppose that, in addition, we have

∑n
i=1 xij .xik = 0 for 1 ≤ j 6= k ≤ p. Show that the least squares

estimator of βj is β̂j =
∑n
i=1 xij .Yi∑n
i=1 x

2
ij
.

Solution. (a) As β̂ = (XT .X)−1.XT .Y in which

β̂ =


β0

β1

· · ·
βp

 , X =


1 x11 · · · x1p

1 x21 · · · x2p

· · · · · · · · ·
1 xn1 · · · xnp

 , Y =


y1

y2

· · ·
yn

 ,

we may conclude that:


β0

β1

· · ·
βp

 = (



1 1 · · · 1
x11 x21 · · · xn1

· · · · · · · · · · · ·
x1j x2j · · · xnj
· · · · · · · · · · · ·
x1p x2p · · · xnp

×


1 x11 · · · x1k · · ·x1p

1 x21 · · · x2k · · ·x2p

· · · · · · · · · · · · · · ·
1 xn1 · · · xnk · · ·xnp

)−1

∗



1 1 · · · 1
x11 x21 · · · xn1

· · · · · · · · · · · ·
x1j x2j · · · xnj
· · · · · · · · · · · ·
x1p x2p · · · xnp

×

y1

y2

· · ·
yn



= (


n 0 · · · 0
0 · · · · · · · · ·
· · · · · · · · · · · ·
0 · · · · · · · · ·

)−1 ∗


∑n

i=1 yi∑n
i=1 xi1.yi
· · ·∑n

i=1 xip.yi



= (


1
n 0 · · · 0
0 · · · · · · · · ·
· · · · · · · · · · · ·
0 · · · · · · · · ·

)×


n.y∑n

i=1 xi1.yi
· · ·∑n

i=1 xip.yi

 ,

implying β̂0 = 1
n ∗ n.y = y.
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(b) In this case, we have:

β0

β1

· · ·
βj
· · ·
βp

 = (



n 0 0 · · · · · · 0
0

∑n
i=1 x

2
i1 0 · · · · · · 0

· · · · · · · · · · · ·
0 0 · · ·

∑n
i=1 x

2
ij · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

∑n
i=1 x

2
ip

)−1 ∗



∑n
i=1 yi∑n

i=1 xi1.yi
· · ·∑n

i=1 xij .yi
· · ·∑n

i=1 xip.yi



=



1
n 0 0 · · · · · · 0
0 1∑n

i=1 x
2
i1

0 · · · · · · 0

· · · · · · · · · · · ·
0 0 · · · 1∑n

i=1 x
2
ij
· · · 0

· · · · · · · · · · · ·
0 0 · · · 0 1∑n

i=1 x
2
ip


) ∗



∑n
i=1 yi∑n

i=1 xi1.yi
· · ·∑n

i=1 xij .yi
· · ·∑n

i=1 xip.yi



=



∑n
i=1 yi
n∑n

i=1 xi1.yi∑n
i=1 x

2
i1

· · ·∑n
i=1 xij .yi∑n
i=1 x

2
ij

· · ·∑n
i=1 xip.yi∑n
i=1 x

2
ip


,

yielding, β̂j =
∑n
i=1 xij .yi∑n
i=1 x

2
ij
.

�

Problem 8.5. Suppose that Y = θ+ ε where θ satisfies Aθ = 0 for some known q×n matrix A having
rank q. Define θ̂ to minimize ‖Y − θ‖2 subject to Aθ = 0. Show that θ̂ = (I −AT (A.AT )−1.A)Y.

Solution. First, as A.AT is positive-definite and non-singular it is invertible, too. Second, using the
method of Lagrange Multipliers, define r(θ) = ‖Y − θ‖2 + θT .AT .λ. Then:

d

dθ
r(θ) = 2.

d

dθ
(Y − θ).(Y − θ) +AT .λ = 0⇒ θ̂H = Y − 1

2
.AT .λ. (∗)

Next, estimating both sides of (∗) under A it follows that 0 = Aθ̂H = A(Y − 1
2 .A

T .λ.) = AY − 1
2A.A

T .λ

or A.Y = A.AT .(λ2 ). Hence, by invertibility of A.AT :

(A.AT )−1.A.Y =
λ

2
. (∗∗)

Accordingly, by (∗) and (∗∗) it follows that:

θ̂H = Y −AT .(A.AT )−1.A.Y = [I −AT .(A.AT )−1.A.] ∗ Y.

�

Problem 8.7. (a) Suppose that U ∼ χ2(1, θ2
1) and V ∼ χ2(1, θ2

2) where θ2
1 > θ2

2. Show that U is
stochastically greater than V.
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(b) Suppose that Un ∼ χ2(n, θ2
1) and Vn ∼ χ2(n, θ2

2) where θ2
1 > θ2

2. Show that Un is stochastically
greater than Vn.

Solution. (a) For standard normal distribution Z, in which X − |θi| ∼ Z (i = 1, 2), we have:

P (U > x) ≥ P (V > x) ⇔ P (X2 > x|θ2
1) ≥ P (X2 > x|θ2

2)

⇔ P (|X| >
√
x||θ1|) ≥ P (|X| >

√
x||θ2|)

⇔ P (|X| ≤
√
x||θ1|) ≤ P (|X| ≤

√
x||θ2|)

⇔ P (|Z + θ1| ≤
√
x) ≤ P (|Z + θ2| ≤

√
x)

for all x > 0.

Hence, considering standard normal C.D.F, Φ and p.d.f, f , it is enough to prove the function

g(θ;x) = P (|Z + θ| ≤
√
x) = Φ(−θ +

√
x)− Φ(−θ −

√
x), θ > 0

is decreasing. The proof is complete by considering the fact that

d

dθ
g(θ;x) = −f(−θ+

√
x)+f(−θ−

√
x) ≤ 0⇔ f(−(θ+

√
x)) = f(θ+

√
x) ≤ f(

√
x−θ) :

√
x−θ ≤

√
x+θ.

(b) Let X1, · · · , Xn and Y1, · · · , Yn be two sets of independent random variables in which Yi is stochas-
tically smaller than Xi, with notation Yi ≤st Xi (1 ≤ i ≤ n). Then (Belzunce, Martineze & Mulero,
2016),

n∑
i=1

Yi ≤st
n∑
i=1

Xi.

Now, by Part (a) and an application of above statement with X∗i = X2
i ∼ χ2(1, θ2

1) and Y ∗i = Y 2
i ∼

χ2(1, θ2
2) (1 ≤ i ≤ n) it follows that:

Vn =
n∑
i=1

Y ∗i ≤st
n∑
i=1

X∗i = Un.

�

Problem 8.9. Suppose that Y = Xβ + ε where ε ∼ Nn(0, σ2.I) and define the ridge estimator (Hoerl

and Kennard, 1970) β̂λ to minimize ‖Y −X.β‖2 + λ.‖β‖2 for some λ > 0. (Typically in practice, the
columns of X are centred and scaled, and Y is centred.)
(a) Show that

β̂λ = (XT .X + λ.I)−1XT .Y = (I + λ.(XT .X)−1)−1β̂

where β̂ is the least squares estimator of β. Conclude that β̂λ is a biased estimator of β.
(b) Consider estimating θ = aT .β for some known a 6= 0. Show that MSEθ(a

T .β̂λ) ≤MSEθ(a
T .β̂) for

some λ > 0.

Solution. (a) Let G(β) ∈ Rn, then: d
dβ (‖G(β)‖2) = 2( d

dβG(β)).G(β). Hence, by two times application
of this rule it follows that:

d

dβ
(‖Y −X.β‖2 + λ.‖β‖2) = 2.(

d

dβ
(Y −X.β)).(Y −X.β) + λ.2.(

d

dβ
β).β

= 2.(−X)T .(Y −X.β) + 2.λ.I.β

= 2 ∗ [−XT .Y + (XT .X + λ.I)β] = 0,
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and by comments on Page 407 it is implying :

β̂λ = (XT .X + λ.I)−1.XT .Y

= (XT .X + λ.I)−1.(XT .X.β̂)

= ((XT .X)−1.(XT .X + λ.I))−1.(β̂)

= (I + λ.(XT .X)−1)−1.(β̂).

(b)Take U = (aT .β̂λ − aT .β).(XT .X)−1.(aT .β̂λ) and V = (XT .X)−1.(aT .β̂λ). Then, for λ ≥ −2.Eθ(U)
Eθ(V ) it

follows that:
0 ≤ 2.λ.Eθ(U) + λ2.Eθ(V ). (∗)

Accordingly, by (∗) and considering the fact that β̂λ = (I + λ.(XT .X)−1)−1.(β̂) implies β̂ = (I +

λ.(XT .X)−1).(β̂λ), it follows that:

MSEθ(a
T .β̂λ) = Eθ((a

T .β̂λ − aT .β)2)

≤ Eθ((a
T .β̂λ − aT .β)2) + 2.λ.Eθ((a

T .β̂λ − aT .β).(XT .X)−1.(aT .β̂λ))

+ λ2.Eθ((X
T .X)−1.(aT .β̂λ))

= Eθ((a
T .β̂λ − aT .β)2) + 2.Eθ((a

T .β̂λ − aT .β).(λ.(XT .X)−1.aT .β̂λ))

+ Eθ(λ
2.((XT .X)−1.aT .β̂λ)2)

= Eθ(((a
T .β̂λ − aT .β) + (λ.(XT .X)−1.aT .β̂λ))2)

= Eθ((a
T .(I + λ.(XT .X)−1).(β̂λ)− aT .β)2)

= MSEθ(a
T .(I + λ.(XT .X)−1).(β̂λ))

= MSEθ(a
T .β̂).

�

Problem 8.11. Suppose that Yi = xTi β + εi(i = 1, · · · , n) where εi’s are i.i.d. with mean 0 and
finite variance. Consider the F statistic (call it Fn) for testing H0 : βr+1 = · · · = βp = 0 where
β = (β0, · · · , βp)T .
(a) Under H0 and assuming the conditions of Theorem 8.5. on the xi’s, show that

(p− r).Fn →d χ
2(p− r).

(b) If H0 is not true, what happens to (p− r).Fn as n→∞. ?

Solution. As RSS
σ2 ∼ χ2(n−p−1) =d

∑n−p−1
i=1 X∗i : X∗i ∼i.i.d. χ2(1), and E(X∗i ) = 1 (1 ≤ i ≤ n−p−1),

an application of Theorem 3.6, implies that (RSS
σ2 )/(n−(p+1))→p 1. Then, an application of Theorem

3.2 with g(x) = 1
x yields

1/[(
RSS

σ2
)/(n− (p+ 1))]→p 1. (∗)

(a) Referring to Page 409:

(p− r).Fn =
RSSr−RSS

σ2

RSS
(n−p−1)σ2

:
RSSr −RSS

σ2
∼ χ2(p− r). (∗∗)
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Now, by (∗) and (∗∗) and an application of Theorem 3.3.(b) yields:

(p− r).Fn =
RSSr −RSS

σ2
∗ 1

RSS
(n−p−1)σ2

→d χ
2(p− r).

(b) Referring to Pages 413-414:

(p− r).Fn =
RSSr−RSS

σ2

RSS
(n−p−1)σ2

:
RSSr −RSS

σ2
∼ χ2(p− r; θ2), θ2 =

‖X.β‖2 − ‖Hr.X.β‖2

σ2
. (∗ ∗ ∗)

Accordingly, by (∗) and (∗ ∗ ∗) and another application of Theorem 3.3.(b) it follows that:

(p− r).Fn =
RSSr −RSS

σ2
∗ 1

RSS
(n−p−1)σ2

→d χ
2(p− r; θ2).

�

Problem 8.13. Consider the linear regression model Yi = xTi β+ εi (i = 1, · · · , n) where ε1, · · · , εn are
i.i.d. Exponential random variables with unknown parameter λ.
(a) Show that the density function of Yi’s is fi(y) = λ. exp[−λ.(y − xTi β)] for y ≥ xTi β.
(b) Show that the MLE of β for this model maximizes the function g(u) =

∑n
i=1 x

T
i u subject to the

constraints Yi ≥ xTi u for i = 1, · · · , n.
(c) Suppose that Yi = β.xi + εi(i = 1, · · · , n) where ε1, · · · , εn i.i.d. Exponential random variables

with parameter λ and xi > 0 for all i. If β̂n is the MLE of β, show that β̂n − β has an exponential
distribution with parameter λ.

∑n
i=1 xi.

Solution. (a) Let y = h(ε) = xT .β + ε with fε(y) = λ.e−λ.ε ε > 0. By Theorem 2.3, for ε = h−1(y) =
y − xT .β and |Jh−1(y)| = 1 we have:

fY (y) = fX(h−1(y)).|Jh−1(y)| = λ.e−λ.(y−x
T .β) : y − xT .β ≥ 0.

(b) As:

l(β;y) =
n∑
i=1

log(fY (yi;β)) =
n∑
i=1

(log(λ)−λ.(yi−xTi .β)) = (n. log(λ)−λ.
n∑
i=1

yi)+λ.(
n∑
i=1

xTi .β) : λ > 0,

it follows that:

arg(max(l(β;y))) = arg(max(

n∑
i=1

xTi .β)) : yi − xTi .β ≥ 0 (1 ≤ i ≤ n).

(c) By yi − β.xi ≥ 0 (1 ≤ i ≤ n) we have, yi
xi
≥ β (1 ≤ i ≤ n), and by Part (b):

β̂n = arg(max(l(β;y))) = arg(max(

n∑
i=1

xTi .β)) = min
1≤i≤n

yi
xi
.

Accordingly:

F
β̂n−β(x) = P (β̂n − β ≤ x) = P ( min

1≤i≤n

Yi
xi
≤ β + x) = 1− P ( min

1≤i≤n

Yi
xi
≥ β + x)

= 1−
n∏
i=1

P (
Yi
xi
> β + x) = 1−

n∏
i=1

P (εi > x.xi) = 1− e−λ.
∑n
i=1 xi.x,
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and hence, β̂n − β ∼ exp(λ.
∑n

i=1 xi).
�

Problem 8.15. Suppose that Y has a density or frequency function of the form

f(y; θ, φ) = exp[θ.y − b(θ)

φ
+ c(y, φ)]

for y ∈ A, which is independent of the parameters θ and φ. This is an alternative to general family of
distributions considered in Problem 8.14. and is particularly appropriate for discrete distributions.
(a) Show that the Negative Binomial distribution of Example 8.12 has this form.
(b) Show that Eθ(Y ) = φ−1b

′
(θ) and V arθ(Y ) = φ−1b

′′
(θ).

Solution. For y = 0, 1, · · · , we can write:

f(y;µ) =
Γ(y + 1

α)

y!.Γ( 1
α)
∗ (α.µ)y

(1 + α.µ)y+ 1
α

= C(y +
1

α
− 1, y) ∗ (

1

1 + α.µ
)

1
α ∗ (

α.µ

1 + α.µ
)y = C(y +

1

α
− 1, y) ∗ (1− α.µ

1 + α.µ
)

1
α ∗ (

α.µ

1 + α.µ
)y

= exp[log(C(y +
1

α
− 1, y)) +

1

α
. log(1− α.µ

1 + α.µ
) + y. log(

α.µ

1 + α.µ
)],

and by taking

θ = log(
α.µ

1 + α.µ
), φ = α, c(y, α) = log(C(y+

1

α
− 1, y)), b(θ) = − log(1− α.µ

1 + α.µ
) = − log(1− eθ).

the assertion follows.

(b) First:

0 =
d

dθ
(1) =

d

dθ

∫
A
f(y; θ, φ)dy =

d

dθ

∫
A

[exp(θ.y − b(θ)

φ
+ c(y, φ))]dy

=

∫
A

d

dθ
[exp(θ.y − b(θ)

φ
+ c(y, φ))]dy =

∫
A

(y − b
′
(θ)

φ
).f(y; θ, φ)dy

= Eθ(Y )− b
′
(θ)

φ
,

so, Eθ(Y ) = b
′
(θ)
φ .

Second, using first part it follows that:

b
′′
(θ)

φ
=

d

dθ
(
b
′
(θ)

φ
) =

d

dθ
(Eθ(Y )) =

d

dθ

∫
A
y.[exp(θ.y − b(θ)

φ
+ c(y, φ))]dy

=

∫
A
y.
d

dθ
[exp(θ.y − b(θ)

φ
+ c(y, φ))]dy =

∫
A
y.(y − b

′
(θ)

φ
).f(y; θ, φ)dy

= Eθ(Y
2)− b

′
(θ)

φ
.Eθ(Y ) = Eθ(Y

2)− (Eθ(Y ))2 = V arθ(Y ).
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�

Problem 8.17. Lambert (1992) describes an approach to regression modelling of count data using a
zero-inflated Poisson distribution. that is, the response variables {Yi} are nonnegative integer valued
random variables with the frequency function of Yi given by

P (Yi = y) = θi + (1− θi) exp(−λi) for y = 0, (1− θi) exp(−λi)λyi /y! for y = 1, 2, · · ·

where θi and λi depend on some covariates; in particular, it is assumed that

ln(
θi

1− θi
) = xTi .β, ln(λi) = xTi .φ,

where xi(i = 1, · · · , n) are covariates and β, φ are vectors of unknown parameters.
(a) the zero-inflated Poisson model can viewed as a mixture of a Poisson distribution and a distribution
concentrated at 0. That is, let Zi be a Bernoulli random variable with P (Zi = 0) = θi such that
P (Yi = 0|Zi = 0) = 1 and given Zi = 1, Yi is Poisson distributed with mean λi. Show that

P (Zi = 0|Yi = y) = θi/[θi + (1− θi). exp(−λi)] for y = 0, 0 for y ≥ 1.

(b) Suppose that we could observe (Y1, Z1), · · · , (Yn, Zn) where the Zi’s are defined in part (a). Show
that the MLE of β depends only on the Zi’s.
(c) Use the ”Complete data” likelihood in part (b) to describe an EM algorithm for computing maximum
likelihood estimates of β and φ.
(d) In the spirit of the zero-inflated Poisson model, consider the following simple zero-inflated Binomial
model: for i = 1, · · · , n, Y1, · · · , Yn are independent random variables with

P (Yi = 0) = λi + (1− λi).(1− θi)m, P (Yi = y) = (1− λi).C(m, y)θyi (1− θi)m−y 1 ≤ y ≤ m

where 0 < φ < 1 and ln( θi
1−θi ) = β0 + β1.xi, ln( λi

1−λi ) = φ0 + φ1.xi for some covariates x1, · · · , xn.
Derive an EM algorithm for estimating φ and β and use it to estimate the parameters for the data in
Table 8.1.; for each observation, m = 6. with m = 6 :

Table 8.1. Data for Problem 8.17; for each observation m=6.

x y x y x y x y

0.3 0 0.6 0 1.0 0 1.1 0
2.2 1 2.2 0 2.4 0 2.5 0
3.0 4 3.2 0 3.4 4 5.8 5
6.2 0 6.5 5 7.1 4 7.6 6
7.7 4 8.2 4 8.6 4 9.8 0

.

(e) Carry out a likelihood ratio test for H0 : β1 = 0 versus H1 : β1 6= 0. (Assume that the standard χ2

approximation can be applied.)
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Solution. (a)

P (Zi = 0|Yi = 0) =
P (Yi = y|Zi = 0).P (Zi = 0)

P (Yi = y)

=
P (Yi = y|Zi = 0).P (Zi = 0)

[P (Yi = y|Zi = 0).P (Zi = 0) + P (Yi = y|Zi = 1).P (Zi = 1)]

=
θ

θ + e−λ.(1− θ)
if y = 0,

=
P (Yi = y|Zi = 0).P (Zi = 1)

P (Yi = y)

≤ (1− P (Yi = 0|Zi = 0)).P (Zi = 1)

P (Yi = y)
≤ 0.P (Zi = 1)

P (Yi = y)
= 0 if y > 0.

(b) As f(y, z;β, φ) = f(y; z, β, φ) ∗ f(z;β, φ) = f(y; z, φ) ∗ f(z;β), the log-likelihood of the joint distri-
bution can be written as:

l(β, φ; y, z) =
n∑
i=1

log(f(zi;β)) +
n∑
i=1

log(f(yi; zi, φ))

= [
n∑
i=1

(zi.x
T
i .β − log(1 + exp(xTi .β)))]

+ [
n∑
i=1

(1− zi).(yi.xTi .φ− exp(xTi .φ))−
n∑
i=1

(1− zi). log(yi!)]

= Lc(β;Y,Z) + Lc(φ;Y,Z),

in which the first term Lc(β;Y, Z) is only dependent to z and so is MLE(β).

(c) The (k + 1)th iteration of the EM algorithm requires three steps:

(i) E-Step: Estimate zi via:

Z
(k)
i = P (zi = 0|yi, β(k), φ(k))

=
P (yi|zi = 0).P (zi = 0)

[P (yi|zi = 0).P (zi = 0) + P (yi|zi = 1).P (zi = 1)]

=
1

1 + exp(−xTi .β(k) − exp(xTi .φ
(k)))

.1yi=0.

(ii) M-Step for φ: We find φ(k+1) by maximizing Lc(φ;Y,Z(k)).

(iii) M-Step for β: We find β(k+1) by maximizing Lc(β;Y,Z(k)) as a function of β given below:

Lc(β;Y, Z(k)) =
∑
yi=0

z
(k)
i .xTi .β −

∑
yi=0

z
(k)
i log(1 + exp(xTi .β))−

n∑
i=1

(1− z(k)
i ). log(1 + exp(xTi .β)).

(d) First, the log-likelihood is given by (Hall, 2000):

l(φ, β;y) =
n∑
i=1

[1yi=0 ∗ log(ex
T
i .φ + (1 + ex

T
i .β)−mi)− log(1 + ex

T
i .φ)

+ 1yi>0 ∗ (yi.x
T
i .β −mi. log(1 + ex

T
i .β) + log(C(mi, yi)))].
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Second, define

Zi = 1 if Yi is generated from zero state, 0, if Yi is generated from binomial state.

Then, given Z = (z1, · · · , zn) the complete data {(yi, zi)}ni=1 log-likelihood is of the form:

lc(φ, β; y, z) = log(

n∏
i=1

P (Yi = yi, Zi = zi))

=

n∑
i=1

[zi.x
T
i .φ− log(1 + ex

T
i .φ)]

+

n∑
i=1

[(1− zi) ∗ (yi.x
T
i .β −mi. log(1 + ex

T
i .β) + log(C(mi, yi)))]

= lc(φ; y, z) + lc(β; y, z).

Finally, the EM algorithm by starting values (φ(0), β(0)) for the iteration (k+1) has the following steps
(Hall, 2000):

(i) E-Step: Estimate Zi via:

Z
(k)
i = E(Zi|yi, φ(k), β(k)) =

P (Zi = 1|yi, φ(k), β(k)).P (Zi = 1)∑1
t=0 P (Zi = t|yi, φ(k), β(k)).P (Zi = t)

=
1yi=0

1 + exp(−xTi .φ(k))(1 + ex
T
i .β

(k)
)−mi

.

(ii) M-Step for φ : We find φ(k+1) by maximizing lc(φ; y, z(k)).

(iii) M-Step for β : We find β(k+1) by maximizing lc(β; y, z(k)).

(e) With the assumption φ1 = 0, the following SAS 9.4. Proc FMM output shows that with p −
value(β1) = 0.0803 > 0.0500, we cannot reject the null hypothesis H0 : β1 = 0 at 5% level.

Figure 8.1. SAS 9.4. output for Table 8.1. data
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�

Problem 8.19. Consider finding a quasi-likelihood function based on the variance function V (µ) = µr

for some specified r > 0.
(a) Find the function ψ(µ; y) for V (µ).
(b) Show that

d

dµ
ψ(µ; y) =

d

dµ
ln f(y;µ)

for some density or frequency function f(y;µ) when r = 1, 2, 3.

Solution. (a) Using d
dµψ(µ, y) = y−µ

V (µ) , it follows that:

ψ(µ, y) =

∫
(
y − µ
V (µ)

)dµ =

∫
(
y − µ
µr

)dµ =

= [
y

1− r
.µ1−r.1r 6=1 + y. ln(µ).1r=1]− [

y

2− r
.µ2−r.1r 6=2 + ln(µ).1r=2] + c(y).

In particular:

r = 1 : ψ(µ, y) = y. log(µ)− µ Poisson

r = 2 : ψ(µ, y) =
−y
µ
− log(µ) Gamma

r = 3 : ψ(µ, y) =
−y
2.µ2

+
1

µ
InverseGaussian

r = k : ψ(µ, y) = µ−k ∗ (
µ.y

1− k
− µ2

2− k
) k 6= 0, 1, 2.

(b) Suppose that for some measure P on R to have:

dPY (y) = exp(y.θ − g(θ)).dP (y) : θ =

∫
dµ

V (µ)
.

Then, 1 =
∫
dPY =

∫
exp(y.θ − g(θ))dP (y) = e−g(θ).

∫
eyθdP (y) or

∫
eyθdP (y) = eg(θ). Consequently:

mY (t) = E(etY ) =

∫
ety.eyθ−g(θ)dP (y) =

∫
ey(t+θ)dP (y).e−g(θ)

= eg(t+θ).e−g(θ) = eg(t+θ)−g(θ).

Hence, m
′
Y (0) = g

′
(θ) = µ, g

′′
(θ) = V (µ), dµ

dθ = g
′′
(θ) = V (µ), implying:

d ln(f(y;µ))

dµ
=
d ln(f(y;µ))

dθ

dθ

dµ
= (y − g′(θ)). 1

V (µ)
=
y − µ
V (µ)

=
dψ(µ, y)

dµ
.

Finally, checking ψ(µ, y) for V (µ) = µr (r = 1, 2, 3) in Part (a) we observe that:

d ln(f(y;µ))

dµ
=
dψ(µ, y)

dµ
r = 1, 2, 3.

�
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Chapter 9

Goodness-of-Fit

Problem 9.1. The distribution of personal incomes is sometimes modelled by a distribution whose
density function is

f(x;α, θ) =
α

θ
(1 +

x

θ
)−(α+1) for x ≥ 0

for some unknown parameters α > 0 and θ > 0. The data given in Table 9.2 are a random sample of
incomes (in 1000s of dollars) as declared on income tax forms. Thinking of these data as outcomes of
i.i.d. random variables X1, · · · , X40, define

Y1 =

40∑
i=1

I(Xi≤25), Y2 =

40∑
i=1

I(25<Xi≤40), Y3 =

40∑
i=1

I(40<Xi≤90), Y4 =

40∑
i=1

I(Xi>90).

Table 9.2. Data for Problem 9.1.

3.5 7.9 8.5 9.2 11.4 17.4 20.8 21.2
21.4 22.5 25.3 25.7 25.9 26.2 26.6 27.8
28.7 30.1 30.2 30.9 35.0 36.0 39.0 39.0
39.6 43.2 44.8 47.7 57.5 62.5 72.8 83.1
96.6 106.6 115.3 118.1 152.5 169.2 202.2 831.0

.

(a) What is the likelihood function for the parameters α and θ based on (Y1, · · · , Y4)?
(b) Find the maximum likelihood estimates of α and θ based on the observed values of (Y1, · · · , Y4) in
the sample.
(c) Test the null hypothesis that the density of the data is f(x;α, θ) for some α and θ using both the
LR statistics and Pearson χ2 statistics. Compute approximate p-values for both test statistics.

Solution. (a)Take S = [0,∞) and define A1 = [0, 25], A2 = (25, 40], A3 = (40, 90], A4 = (90,∞). Then,
S = ∪4

j=1Aj , and furthermore:

p(a, b;α, θ) =

∫ b

a
f(x;α, θ)dx =

∫ b

a

α

θ
(1 +

x

θ
)−(α+1)dx

=

∫ b/θ

a/θ
α.(1 + x)−(α+1)dx = (1 +

a

θ
)−α − (1 +

b

θ
)−α, (a < b).
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So:

L(α, θ; y1, y2, y3, y4) =
40!

y1!y2!y3!y4!

∗ [1− (1 +
25

θ
)−α]y1 ∗ [(1 +

25

θ
)−α − (1 +

40

θ
)−α]y2

∗ [(1 +
40

θ
)−α − (1 +

90

θ
)−α]y3 ∗ [(1 +

90

θ
)−α]y4 .

(b) By data given in Table 9.2 y1 = 10, y2 = 15, y3 = 7, y4 = 8 and Part (a) the log-likelihood function
is given by:

l(α, θ) = log(L(α, θ; 10, 15, 7, 8))

= log(
40!

10!15!7!8!
) + 10 ∗ log(1− (1 +

25

θ
)−α) + 15 ∗ log((1 +

25

θ
)−α − (1 +

40

θ
)−α)

+ 7 ∗ log((1 +
40

θ
)−α − (1 +

90

θ
)−α) + 8 ∗ log((1 +

90

θ
)−α).

Next, define g(α, θ) = −l(α, θ). Then, by Powell’s Method for finding minimum values of g (Powell,
1964), it follows that: α̂ = 0.0527 and θ̂ = 0.0917.

Figure 9.1 Plot of function l(α, θ)

(c) First, define:

p1(α, θ) = 1− (1 +
25

θ
)−α, p2(α, θ) = (1 +

25

θ
)−α − (1 +

40

θ
)−α,

p3(α, θ) = (1 +
40

θ
)−α − (1 +

90

θ
)−α, p4(α, θ) = (1 +

90

θ
)−α,

and evaluating at MLE values in Part (b) we get:

p1(α̂, θ̂) = 0.0256, p2(α̂, θ̂) = 0.0181, p3(α̂, θ̂) = 0.0303, p4(α̂, θ̂) = 0.6955.
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Second, by Theorem 9.1. and Theorem 9.2. for k = 4, n = 40 and p = 2 we have:

2. ln(Λ40) ∼ χ2(1), K2
40 ∼ χ2(1).

To test the null hypothesis H0 : φj = pj(α, θ) (j = 1, 2, 3, 4) we have:

2. ln(Λ40) = 2.
4∑
j=1

yj . ln(
yj

40.pj(α̂, θ̂)
) = 141.118 >> 3.841⇒ Reject the null hypothesis at 5% level

K2
40 =

4∑
j=1

(yj − 40.pj(α̂, θ̂))
2

40.pj(α̂, θ̂)
= 401.939 >> 3.841⇒ Reject the null hypothesis at 5% level.

The corresponding p-values for the above LR test statistics and Pearson χ2 test statistics are both
smaller than 0.00001.
�
Problem 9.3. Consider theorem 9.2. where now we assume that θ̃n is some estimator (not necessarily
the MLE from the Multinomial model) with

√
n(θ̃n − θ)→d Np(0, C(θ).)

(a) Show that K∗n
2 − 2 ln(Λ∗n)→p 0 (under the null hypothesis).

(b) What can be said about the limiting distribution of 2 ln(Λ∗n) under this more general assumption
on θ̃n ?

Solution. (a) First, by null hypothesis H0 : pj(θ) = φj (1 ≤ j ≤ k), φ̂j =
Ynj
n (1 ≤ j ≤ k), and

Example 3.12 for X∗i = 1Xi∈Aj ∼ Bernoulli(pj(θ)) (1 ≤ i ≤ n) and X∗n =
∑n
i=1X

∗
i

n =
Ynj
n it follows

that:
√
n(
Ynj
n
− pj(θ))→d N(0, pj(θ) ∗ (1− pj(θ))) (1 ≤ j ≤ k). (∗)

Second, it follows from assumption that:

√
n.(pj(θ̃n)− pj(θ))→d N(0, pj(θ)

T .C(θ).pj(θ)) (1 ≤ j ≤ k). (∗∗)

Third, it follows from (∗) and (∗∗) that:

Ynj
n
− pj(θ̃n) = (

Ynj
n
− pj(θ)) + (pj(θ)− pj(θ̃)) 'd N(0,

pj(θ).(1− pj(θ))
n

) +N(0,
pj(θ)

T .C(θ).pj(θ)

n
),

and , consequently, for |rn| ≤ 1:

E((
Ynj
n
− pj(θ̃n))2) = V ar(

Ynj
n
− pj(θ̃n))

' pj(θ).(1− pj(θ))
n

+
pj(θ)

T .C(θ).pj(θ)

n

+ 2.rn.

√
pj(θ).(1− pj(θ)).

√
pj(θ)T .C(θ).pj(θ)

n

=define kj(θ, rn)

n
, (1 ≤ j ≤ k), (n ≥ 1). (∗ ∗ ∗)
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Now, for r1, r2, ε > 0 by (∗ ∗ ∗) and an application of Theorem 3.7 it follows that:

P (nr1 .|Ynj
n
− pj(θ̃n)|r2 > ε) = P (|Ynj

n
− pj(θ̃n)| > (

ε

nr1
)

1
r2 )

≤
E((

Ynj
n − pj(θ̃n))2)

( ε
nr1 )

1
r2

=
kj(θ, rn)

ε
1
r2

∗ 1

n
1− r1

r2

, (1 ≤ j ≤ k), (n ≥ 1). (†)

Accordingly, it follows from (†) that:

nr1 .|Ynj
n
− pj(θ̃n)|r2 →p 0, (r2 > r1 > 0). (††)

Fourth, using
∑k

j=1
Ynj
n = 1 =

∑k
j=1 pj(θ̃n) it follows that:

k∑
j=1

[
Ynj
n
− pj(θ̃n)] = 0. († † †)

Fifth, given (
Ynj
n − pj(θ̃n))→p 0, († † †) and using Taylor expansion of f(x) = ln(x) around a = pj(θ̃n)

we have:

2. ln(Λ∗n) = 2n.
n∑
j=1

Ynj
n
∗ ln(

Ynj

n.pj(θ̃n)
)

= 2n.
k∑
j=1

[((
Ynj
n
− pj(θ̃n)) + pj(θ̃n)) ∗ (ln(

Ynj
n

)− ln(pj(θ̃n)))]

= 2n.

k∑
j=1

[(
Ynj
n
− pj(θ̃n)) ∗ (ln(

Ynj
n

)− ln(pj(θ̃n)))]

+ 2n.

k∑
j=1

[(pj(θ̃n) ∗ (ln(
Ynj
n

)− ln(pj(θ̃n)))]

= 2n.

k∑
j=1

[(
Ynj
n
− pj(θ̃n)) ∗ (

1

pj(θ̃n)
.(
Ynj
n
− pj(θ̃n)) +Op(

Ynj
n
− pj(θ̃n))2)]

+ 2n.

k∑
j=1

[(pj(θ̃n)) ∗ (
1

pj(θ̃n)
.(
Ynj
n
− pj(θ̃n))− 1

2.(pj(θ̃n))2
.(
Ynj
n
− pj(θ̃n))2 +Op(

Ynj
n
− pj(θ̃n))3]

= 2n.

k∑
j=1

[(
1

pj(θ̃n)
.(
Ynj
n
− pj(θ̃n))2] + 2n.

k∑
j=1

Op(
Ynj
n
− pj(θ̃n))3]

+ 2n.

k∑
j=1

[(
Ynj
n
− pj(θ̃n)]− n.

k∑
j=1

[(
1

pj(θ̃n)
.(
Ynj
n
− pj(θ̃n))2] + 2n.

k∑
j=1

Op(
Ynj
n
− pj(θ̃n))3]

= (K∗n)2 + 4n.

k∑
j=1

Op(
Ynj
n
− pj(θ̃n))3. (‡)
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Now, by (†) for r1 = 1, r2 ≥ 3 and (‡) it follows that:

2. ln(Λ∗n)− (K∗n)2 = 4n.
k∑
j=1

Op(
Ynj
n
− pj(θ̃n))3 →p 0.

(b) Let (Kn)2, 2. ln(Λn) and (K∗n)2, 2. ln(Λ∗n) be corresponding statistics to pj(θ̂n) and pj(θ̃n), respec-
tively. Then, if (K∗n)2 − (Kn)2 →p 0, then by Part (a) and using

2. ln(Λ∗n) = (2. ln(Λ∗n)− (K∗n)2) + ((K∗n)2 − (Kn)2) + (Kn)2

it follows that 2. ln(Λ∗n) has an asymptotic χ2 distribution.
�

Problem 9.5. Suppose that X1, · · · , Xn are i.i.d. continuous random variables whose range is the
interval (0, 1). To test the null hypothesis that the Xi’s are uniformly distributed, we can use the
statistics:

Vn = (
1√
n

n∑
i=1

sin(2π.Xi))
2 + (

1√
n

n∑
i=1

cos(2π.Xi))
2.

(a) Suppose that X ′is are Uniform random variables on [0, 1]. Show that as n→∞,

(
1√
n

n∑
i=1

sin(2π.Xi),
1√
n

n∑
i=1

cos(2π.Xi))→d (Z1, Z2)

where Z1 and Z2 are independent N(0, σ2) random variables. Find the values of σ2.
(b) Find the asymptotic distribution of Vn when the Xi’s are uniformly distributed.
(c) Suppose that either E[sin(2π.Xi)] or E[cos(2π.Xi)] (or both) are non-zero. Show that Vn →p ∞ in
the sense that P (Vn ≤M)→ 0 for any M > 0.
(d) Suppose that {vn,α} is such that P (Vn > vn,α) ≥ α when the Xi’s are uniformly distributed. If the
Xi’s satisfy the condition given in part (c), show that

lim
n→∞

P (Vn > vn,α) = 1

for any α > 0.

Solution. (a) We apply Example 3.11 with

√
n.(

(
X∗n
Y ∗n

)
−
(
µX∗

µY ∗

)
)→d N2(0, C) : C =

(
σ2
X∗ σX∗.Y ∗

σX∗.Y ∗ σ2
Y ∗

)
in which X∗i = sin(2.π.Xi) and Y ∗i = cos(2.π.Xi), (1 ≤ i ≤ n). To calculate the entries of the matrix
C we first calculate the C.D.F. and p.d.f of X∗i in which:

FX∗i (x) = P (sin(2.π.Xi) ≤ x) = P ((0 ≤ 2.π.Xi ≤ arcsin(x)) ∪ (2.π ≥ 2.π.Xi ≥ π − arcsin(x)))

= P ((0 ≤ Xi ≤
arcsin(x)

2.π
) ∪ (1 ≥ Xi ≥

π − arcsin(x)

2.π
)) =

π + 2. arcsin(x)

2.π
.1[−1,1](x),

fX∗i (x) =
d

dx
(FX∗i (x)) =

1

π.
√

1− x2
.1[−1,1](x).
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Consequently:

µX∗ =

∫ 1

−1
(

x

π.
√

1− x2
)dx = 0,

σ2
X∗ =

∫ 1

−1
(

x2

π.
√

1− x2
)dx = (

2

π
).(

arcsin(x)− x.(1− x2)
1
2

2
|10) =

1

2
,

σX∗.Y ∗ = E[X∗.Y ∗] =

∫ 1

0
sin(2.π.x). cos(2.π.x)dx =

1

2

∫ 4π

0
sin(x)

dx

4.π
= 0,

µY ∗ =

∫ 1

0
cos(2.π.x)dx =

∫ 2.π

0
cos(x)

dx

2.π
= 0,

σ2
Y ∗ = E((Y ∗)2) = E(1− (X∗)2) = 1− E((X∗)2) = 1− 1

2
=

1

2
.

(b) Let Y ∼ χ2(p) and c > 0. Then (Exercise !), c.Y ∼ Gamma(α = p
2 , λ = 1

2c). Now, consider the
function g defined by g(U1, U2) = U2

1 + U2
2 . Hence by Part (a) and Theorem 3.2.(b) for independent

Z1, Z2 ∼ N(0, 1
2) and the mentioned note for p = 2, c = 1/2 and Y = ( Z1√

1/2
)2 + ( Z2√

1/2
)2 we have:

Vn = g(
√
nX∗n,

√
nY ∗n )→d g(Z1, Z2) = Z2

1 + Z2
2

=
1

2
((

Z1√
1/2

)2 + (
Z2√
1/2

)2) =d 1

2
χ2(2) =d Gamma(1, 1) =d exp(1).

(c) Let X∗i = sin(2.π.Xi) (1 ≤ i ≤ n) with E(X∗i ) = µ∗ 6= 0, (the solution for other cases is
analogous). Then by Theorem 3.6., X∗n →p µ

∗. Hence, by Theorem 3.2(a) for g(x) = x2 it follows that
(X∗n)2 →p (µ∗)2, implying:

n.(X∗n)2 →p ∞. (∗)

On the other hand, Vn ≥ n.(X∗n)2, (n ≥ 1) and for M > 0 given (Vn ≤ M) ⊆ (n.(X∗n)2 ≤ M), we
have:

P (Vn ≤M) ≤ P ((X∗n)2 ≤M), (n ≥ 1). (∗∗)

Accordingly, by (∗) and (∗∗) the assertion follows.

(d) Let vn,α = O(nr), (0 < r < 1), so that supn∈N |
vn,α
nr | ≤M

∗
r <∞. Then, by (n1−r.((X∗n)2 +(Y ∗n )2) ≥

M∗r ) ⊆ ((n1−r.((X∗n)2 + (Y ∗n )2) ≥ vn,α
nr ), (n ≥ 1) we have:

1 ≥ P (Vn ≥ vn,α) = P ((n1−r.((X∗n)2+(Y ∗n )2) ≥ vn,α
nr

)) ≥ P (n1−r.((X∗n)2+(Y ∗n )2) ≥M∗r ) (n ≥ 1). (∗∗∗)

But, by a small modification of proof in Part(c):

lim
n→∞

P (n1−r.((X∗n)2 + (Y ∗n )2) ≥M∗r ) = 1, (∗ ∗ ∗∗)

and; finally, by considering (∗ ∗ ∗∗) in (∗ ∗ ∗), the assertion follows.
�

Problem 9.7. A Brownian Bridge process can be represented by the infinite series

B(x) =

√
2

π

n∑
k=1

sin(π.kx)

k
Zk
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where Z1, Z2, · · · are i.i.d. Normal random variables with mean 0 and variance 1.
(a) Assuming that the expected values can be taken inside infinite summations, show that

E[B(x)B(y)] = min(x, y)− xy

for 0 ≤ x, y ≤ 1.
(b) Define

W 2 =

∫ 1

0
B2(x)dx

using the the infinite series representation of B(x). Show that the distribution of W 2 is simply the
limiting distributions of the Cramer-von Mises statistics.

Solution. (a) Let K be a symmetric positive definite kernel on a σ−finite measure space ([0, 1],M, µ)
with an orthonormal set {φk}∞k=1 of L2

µ([0, 1]) such that its correspondent sequence of eigenvectors

{λk}∞k=1 with condition λk.φk(t) =
∫ 1

0 K(t, s)φk(s)ds (k ≥ 1) is non-negative. Then, K has the
representation

K(x, y) =
∞∑
k=1

λk.φk(x).φk(y)

with convergence in L2 norm, (Mercer, 1909).

Now, for the Mercer series representation of the kernel function K(x, y) = min(x, y) − x.y with λk =
1

k2.π2 and φk(t) =
√

2. sin(k.π.t) we have:

E(B(x).E(y)) = E((

√
2

π

∞∑
k1=1

sin(π.k1.x)

k1
Zk1).(

√
2

π

∞∑
k2=1

sin(π.k2x)

k2
Zk2))

=
2

π2
[
∞∑

k1,k2=1

(
sin(π.k1.x)

k1
.
sin(π.k2.x)

k2
.E(Zk1 .Zk2))]

=
2

π2
[

∞∑
k1=k2=k=1

(
sin(π.k1.x)

k1
.
sin(π.k2.x)

k2
.E(Zk1 .Zk2))]

+
2

π2
[

∞∑
k1 6=k2=1

(
sin(π.k1.x)

k1
.
sin(π.k2.x)

k2
.E(Zk1).E(Zk2))]

=

∞∑
k=1

(
1

k2.π2
).(
√

2. sin(π.k.x).
√

2. sin(π.k.y))

= min(x, y)− x.y.

(b) Let Uk = F (Xk) ∼ Unif [0, 1] (1 ≤ k ≤ n) be independent with order statistics U1,n ≤ U2,n ≤
· · · ≤ Un,n. Then,(Csorgo & Faraway, 1996):

1

12.n
≤W 2

n =
1

12.n
+

n∑
k=1

(Uk,n −
2k − 1

2n
)2 ≤ n

3
, (n ≥ 1) (∗),

where W 2
n = n

3 if Un,n = 0 or U1,n = 1. Define Vn(x) = FW 2
n
(x), (−∞ < x < ∞). Then, Vn(x) =
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0, (x ≤ 1
12.n) and 1, (x ≥ n

3 ). Now, by (∗) for the corresponding characteristics functions we have:

lim
n→∞

φW 2
n
(t) = lim

n→∞
E(ei.t.W

2
n) = lim

n→∞

∫ n
3

1
12.n

ei.t.xdVn(x)

= (
(−2.i.t)

1
2

sinh((−2.i.t)
1
2 )

) =

∫ ∞
0

eitxdV (x) = φV (t), (−∞ < t <∞). (∗∗)

Accordingly, by (∗∗) and comments on Page 126, it follows that W 2
n →d W

2.
�

Problem 9.9. Suppose that X1, · · · , Xn are i.i.d. Exponential random variables with parameter λ.
Let X(1) < · · · < X(n) be the order statistics and define the so-called normalized spacing (Pyke,1965)

D1 = n.X(1)

Dk = (n− k + 1).(X(k) −X(k−1)) (k = 2, · · · , n).

According to Problem 2.26, D1, · · · , Dn are also i.i.d. Exponential random variables with parameter
λ.
(a) Let Xn be the sample mean of X1, · · · , Xn and define

Tn =
1

n.(Xn)2

n∑
i=1

D2
i .

Show that
√
n(Tn − 2)→d N(0, 20).

(b) Why might Tn be a useful test statistic for testing the null hypothesis that the Xi’s are Exponential?

Solution. (a) With the notation on Page 29, if X ∼ exp(λ), then (Exercise !) Y = X
1
β ∼Weibull(λ, β)

with E(Y ) = ( 1
λ)

( 1
β

)
.Γ(1+ 1

β ) and V ar(Y ) = ( 1
λ)

( 2
β

)
.[Γ(1+ 2

β )−Γ2(1+ 1
β )]. Consequently, for β = 1

2 , we

have D2
i ∼i.i.d Weibull(λ, 1

2) with E(D2
i ) = 2

λ2
and V ar(D2

i ) = 20
λ4

(1 ≤ i ≤ n). Also, λ.Xi ∼ exp(1)
with E(λ.Xi) = 1, (1 ≤ i ≤ n).Given these conclusions we have:

First, by Theorem 3.8 for X∗i = D2
i , µ
∗
i = 2

λ2
and (σ∗)2 = 20

λ4
, it follows that

√
n.(

∑n
i=1D

2
i

n − 2
λ2

) →d

N(0, 20
λ4

), and, by Theorem 3.4. for g(x) = λ2.x :

λ2.
√
n.(

∑n
i=1D

2
i

n
− 2

λ2
)→d N(0, 20). (∗)

Second, by theorem 3.6. for X∗∗i = λ.Xi, λ.Xn →p 1, and by Theorem 3.2(a) for g(x) = 1
x2

:

1

(λ.Xn)2
→p 1. (∗∗)

Third, given definition of Tn one may write:

√
n(Tn − 2) = λ2.

√
n.(

1

(λ.Xn)2
.

∑n
i=1D

2
i

n
− 2

λ2
). (∗ ∗ ∗)

Finally, an application of Theorem 3.3.(b) for (∗), (∗∗), and (∗ ∗ ∗) proves the assertion.
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(b) We apply Lagrange Multipliers Method for the function f(a1, · · · , an) = a2
1+· · ·+a2

n with constraint
function g(a1, · · · , an) = a1 + · · ·+ an − k. Consider:

l(a1, · · · , an;λ) = f(a1, · · · , an)− λ.g(a1, · · · , an),

and, then, the system of equations

dl

da1
= 2.a1 − λ = 0,

· · ·
dl

dan
= 2.an − λ = 0,

dl

λ
= −(a1 + · · ·+ sn − k) = 0,

has the solution a1 = · · · = an = λ
2 by its first n equations and λ

2 = k
n by its last equation. Conse-

quently, by the last two results, we have ai = k
n , (1 ≤ i ≤ n).

Finally, under the null hypothesis Di ∼ exp(λ), (1 ≤ i ≤ n) and considering D1+· · ·+Dn = n.Xn = k,
we notice the values of Tn and hence

√
n(Tn − 2) are minimized allowing one not to potentially reject

the null hypothesis.
�
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