
 1

Genetic Algorithm Sin Curve Fitter

The simple Genetic Algorithm (GA) sin curve fitter can be run using Ejs (see the
Ejs ReadMe file if you have not yet installed Ejs).

The program first generates a curve by selecting at random values for the
parameters defining several sin waves:

for (icoeff=0; icoeff<nsincurves; icoeff++)
{
 xcoeff[icoeff]=15.0*Math.random();
 offset[icoeff]=15.0*Math.random();
}

 2

then summing the resulting sin waves to give the target pattern, the yellow line in
the figure above.

for (ipoints=0; ipoints<npoints; ipoints++)
{
 z[ipoints]=50.0;
 {
 for (j=0; j<nsincurves; j++)
z[ipoints]=z[ipoints]+xcoeff[j]*Math.sin(offset[j]+j*x[ipoi
nts]/10.0);
 }
}

The role of the GA is to find the set of coefficients and offsets which gives a
matching curve, shown in green. The GA strings therefore consist of the values
for these parameters, which it attempts to optimize. The best fitness of any string
found in the current run is displayed, as is the number of cycles executed.

BUTTONS

The buttons in the window created by the program have the following functions:

Button Function

Play Restart the program if it has previously been paused.

Pause Temporarily halt execution; execution is restarted
using the Play button. (Note: it is easy to forget that
the Pause button has been pressed. For example, if
you Pause the run in order to change some
parameters, then press the Use updated params
button to start a calculation with the new values, the
Pause will still be in effect; press Play to restart.)

Restart from scratch Reset all parameters to their initial values and start the
program from the beginning. (Since the program uses
random numbers at several places in the calculation,
repeated resetting will not lead to identical runs.)

Step Run the program one cycle at a time.

Use updated params Start the program from scratch, but use the latest
values for parameters such as mutation rate and
number of strings, as set using the sliders.

 3

SLIDERS

The parameters that can be set by the user include:

Parameter Default Comment

No of GA
strings

80 Variable between ywo and 96

No of sin curves 5 The curve which the GA is attempting to fit is the
sum of between one and 12 sin curves.

Mutation rate 0.2 This is the GA mutation rate, which can be varied
between 0 (no string is mutated) and 1 (every
string is mutated once per cycle).

Crossover rate 1.0 This is the GA crossover rate, which can be varied
between 0 - no string undergoes crossover - and 1
- the number of crossovers is half the number of
strings each cycle, so on average each string
undergoes crossover once per cycle. Note that in
the latter case it is probable that some strings will
undergo crossover more than once in a given
cycle, while other strings may not be crossed.

Investigations & Exercises

1. Default parameters

Run the algorithm with the default settings. It should quickly settle on a good fit,
but is unlikely to find a perfect fit. The fitness of a string is calculated by the
following line in the program

 fitness[istring]=10.0/(1.0+lssum);

in which lssum is the sum of the squared deviations of the calculated points from
the target points. It follows that the maximum theoretical fitness is 10.0. No run of
the program is likely to generate a string of this fitness, since this would require
that the program find the exact floating point values which have been chosen at
random to define the target curve.

 4

2. No mutation

Now try running the algorithm with a mutation rate of zero (use the mutation
slider to set the mutation rate to zero, then click on Use updated params). The
fit should quickly improve from its starting point, but will soon settle down and all
further improvement will cease, as can be shown by clicking the Show a random
string tick box. This is because in the absence of mutation crossover will ensure
that every GA string eventually becomes identical, so evolution comes to a halt.

3. No crossover

Set the crossover rate to zero and the mutation rate to one, then click on Use
updated params. The best string may improve indefinitely, but only sporadically,
since most mutations will be ineffective and once again the population will quickly
become filled with almost identical strings. In this run however, mutation
continues to operate, so new strings are repeatedly generated and will
occasionally result in an improved string. Note that exercises 2 and 3 show that
both the mutation and the crossover operators are generally required for a GA to
function effectively.

4. Population size

Also investigate how changing the number of strings from a small value to a large
one affects (a) the speed with which a good string is found, and (b) the quality of
the best string found after, say, 100 generations.

5. Effect of mutation

Try displaying a random string as well as with the best one each generation. The
best and the target curves will soon be very similar if you have chosen
reasonable values for the number of strings, mutation and crossover rates.
Notice that, as the calculation converges, a string chosen at random is usually
similar to the best string each generation, but that occasionally, as a result of an
unfavorable mutation, the random string is very different from the best string.

