
 1

Growing Cell Structures – fitting nodes to a donut-shaped
data set

This provides a brief introduction to the Growing Cell Structures program.

 2

The initial network contains just three nodes. A random data point is
generated by first choosing an angle at random

theta=360.0*Math.random();

and then using this angle to calculate x- and y- coordinates, with the addition
of some noise:

rx=5.0+0.5*Math.random()+4.0*Math.sin(theta);
ry=5.0+0.5*Math.random()+4.0*Math.cos(theta);

The data point then provides the input into the GCS. The program compares
the values of rx and ry with the weights at each node in turn…

for (int i=0; i<nnodes; i++)
{
 diff=(weights[i][0]-rx)*(weights[i][0]-
rx)+(weights[i][1]-ry)*(weights[i][1]-ry);
 if (diff<mindiff) // found a better match than any
previous ones
 {
 mindiff=diff;
 bestnode=i; // record the position of the best
node so far
 }
}

… in order to find the node whose weights most closely match the values rx
and ry.

The goal of the GCS is to arrange its nodes so that they well represent the
data. Since each node is plotted at a position determined by its weights,
interpreted as x- and y-coordinates, as the map evolves the shape
represented by the data points should appear.

The node that was most recently added is highlighted in the display.

 3

BUTTONS

Buttons in the window created by the program have the following functions:

Button

Function

Play Restart the program if it has previously been paused.

Pause Temporarily halt execution.

Reset Restart the calculation from scratch; all parameters are

set to their default values.
Step Execute a single cycle of the program.

SLIDERS

The parameters that can be adjusted by the user are:

Slider

Default

Comment

Add a node 400 cycles Once the defined number of cycles has
passed, a new node is added.

Error decay 0.005 Every cycle the signal counter at each node
is multiplied by (1.0-error decay) so that, in
the absence of new wins, the counter
gradually diminishes.

Investigations & Exercises

1. Default parameters

 Run the program using the default parameters and note the gradual
emergence of a pattern resembling the input data. Nodes will cluster towards
the edge of the donut, but a few nodes will appear in the middle. This version
of the program does not include code whose role is to remove redundant
nodes, so nodes that lie in the middle, but do not reflect the data accurately,
will not be removed.

2. Add a node rate

 The behaviour and reliability of a GCS is noticeably dependent upon
the rate at which nodes are added. Restart the simulation and try adjusting
the Add a node rate to a small value. Note that the GCS still attempts to fit

 4

the input data, but that nodes may be added unevenly and the program does
a poorer job of representing the data than when nodes are added less
frequently.

3. Error decay

 Restart the simulation and investigate the effect of increasing the error
decay. This parameter determines how quickly the value of the signal counter
at each node decays; a value of one leads to no data being retained about the
past success of any node. Note the difference between running the simulation
with a very high value of the decay and a more “normal” value of 0.01 or less.

4. Node removal

 If you are familiar with programming in Java, modify the program, or
write one of your own, so that the removal of redundant nodes (those whose
signal counters become very small) can be included.

