
 1

Self-organizing Map – Two-dimensional Arrow Set

 This self-organizing map program follows on from the SOM that displayed
the 1d-arrows set.

 2

In that example the input data were single values in the range 0 to 360. Here the
same data set is used.

/* Generate a random angle by generating random values
to be compared with the elements [2] and [3] in the
arrows array */

double two, three;

two=scaleit*(0.5-Math.random());
three=scaleit*(0.5-Math.random());

(Actually, strictly speaking it is not the same set, because in both programs we
merely pick data points at random from within the range 0-360, rather than using
some predefined stored data.)

 In this instance, the SOM nodes are spread across two dimensions, so the
appearance of the map is rather different. However, just as when the nodes
were arranged along a line, the set of node weights quickly becomes correlated,
as shown by the arrows in the image above.

BUTTONS

Buttons in the window created by the program have the following functions:

Button

Function

Pause Temporarily halt execution.

Play Restart the program if it has previously been paused.

Reset Restart the calculation from scratch; the update size will be

returned to its default value.
Step Execute a single cycle of the program

 3

SLIDERS

The parameter that can be adjusted by the user is:

Slider

Default

Comment

Size of update 0.05 Determines the magnitude of the change to the
node weights made per cycle.

Investigations and Exercises

1. Default parameters

 Run the simulation several times. Each run generates its own fresh set of
random numbers in the range 0-360 as input data, but qualitatively each data set
is the same. Satisfy yourself that the appearance of the map that is produced
each time is unpredictable – sometimes the pattern is a swirl, at other times the
map divides into segments – but that on each occasion the weights of nodes that
are close together are strongly correlated.

2 Size of update

 Restart the simulation and check the effect of changing the size of the
update. If the update is large and the dataset complicated, a large update size
can lead to the map forgetting what has been learnt, but the data set in this
example is so simple that even large updates do not usually destroy the
correlation among the nodes.
 However, very large updates are counterproductive. Try going to the View
page in Ejs and change the amount by which the update can be altered. Right-
click on the slider in the left hand panel and choose Properties. You can type a
new value into the Maximum box, then click on the X in the top right corner of
the Properties for slider box to store the new value. Rerun the simulation. Move
the update to a high value and use the Step function to follow how the network
weights change each cycle. You will understand why, though the update value
must be greater than zero, a very large value does not lead to rapid convergence
to a meaningful map.

 4

3 Colorful arrows

 If you are familiar with Java, try modifying the program, or writing one of
your own, in which the input data consist of a random value between 0 and 360,
together with three values to be interpreted as RGB (red/green/blue) values
between 0 and 255. In displaying the arrows, draw them in a color defined by the
rgb values. You will find that a map of at least 30 x 30 is required to give good
separation.

