
 1

Genetic Algorithm Linear Dipoles Program

The simple Genetic Algorithm (GA) sin curve fitter can be run using Ejs (see the
Ejs ReadMe file if you have not yet installed Ejs).

The aim of this GA is to find the minimum energy for a set of small identical
dipoles arranged in a straight line. The dipoles are pinned at their midpoint an
equal distance apart, but can rotate around this point. In the optimum
arrangement, all dipoles are at an angle of 90o to the vertical.

To aid display, the GA runs with a relatively small population of just ten strings.
These strings, their energy and associated fitness are displayed in the top left of
the window. The variation with generation number of the fitness of the best string
in the current population is displayed to the lower left and the fitness of the
average string in the population is shown to the lower right.

 2

BUTTONS

Button

Function

Step Run the program one cycle at a time

Reset Reset all parameters to their initial values and start the
program from the beginning.

Initialize Carry out a Reset, but do not clear the charts showing
progress of the previous calculation. This allows one to
compare the results of two runs using identical
parameters.

Pause Temporarily halt execution

Play Restart execution

SLIDERS

Slider

Function

Crossover rate Variable between 0 and 1.0

Mutation rate Variable between 0 and 1.0

TICK BOXES

Tick box

Function

Show strings Toggles the display of the strings
Elitism Toggles use of elitism by the GA

 3

Investigations & Exercises

1. Default parameters

 Run the algorithm using the default parameters. Note the fairly organized
rise in the fitness of the best string and the noisier appearance of the plot of
average fitness.

2. The influence of random numbers

 Run the algorithm for a few hundred cycles using the default parameter
settings. Press the Initialize button, which will restart the calculation from
scratch, but will leave the fitness traces from the previous run displayed. Note
that the behavior of the algorithm is the same in general terms in each new run
but that, because the algorithm relies upon random numbers, successive runs
are never identical.

3. Crossover

 Reset the simulation and allow it to run for several hundred generations.
Press the Initialize button and immediately reduce the crossover rate to 0. You
should find that the performance is somewhat worse, but that the algorithm still
makes some progress towards the optimum solution. Because the population is
small the cycles pass quickly. In each cycle, the mutation rate is quite high so the
strings continue to adjust, though progress is usually at a slower rate than when
crossover operates.

4. Mutation

 Press the Reset button, then reduce the mutation rate to zero. Evolution
ceases almost immediately as the population of strings becomes full of identical
strings. (You may notice that the fitness of the average string shows occasional
small blips. This is because the slider linked to mutation reduces the mutation
rate not to zero, but to a very small value. You can demonstrate this by going into
the View panel of Ejs and changing the lower limit of the mutation slider from 0
to, say -1.0 and rerunning the [program, moving the mutation rate to a value of
less than zero.)

 4

5. A dynamic look at mutation

 Reset the calculation and then move the mutation slider, watching the
effect that different mutation rates have on both the fitness of the best string and
of the average string. Note that while a very low mutation rate can lead to
progress towards an optimum solution almost coming to a halt, a very high
mutation rate is destructive and may prevent the algorithm converging.

6. Elitism

 Perform runs with elitism selected through the appropriate tick box. Note
the effect on the fitness of the best string, which now never falls. You will also
see that the first string in the list shown at the top left changes only rarely, as the
best string (string 0) changes only when it is displaced by one of higher quality.

