1st Edition

Sustainable Energy Solutions in Agriculture

Edited By Jochen Bundschuh, Guangnan Chen Copyright 2014
    496 Pages
    by CRC Press

    496 Pages
    by CRC Press

    Sustainability in agriculture and associated primary industries, which are both energy-intensive, is crucial for the development of any country. Increasing scarcity and resulting high fossil fuel prices combined with the need to significantly reduce greenhouse gas emissions, make the improvement of energy efficient farming and increased use of renewable energy essential.

    This book provides a technological and scientific endeavor to assist society and farming communities in different regions and scales to improve their productivity and sustainability. To fulfill future needs of a modern sustainable agriculture, this book addresses highly actual topics providing innovative, effective and more sustainable solutions for agriculture by using sustainable, environmentally friendly, renewable energy sources and modern energy efficient, cost-improved technologies. The book highlights new areas of research, and further R&D needs. It helps to improve food security for the rapidly growing world population and to reduce carbon dioxide emissions from fossil fuel use in agriculture, which presently contributes 22% of the global carbon dioxide emissions. This book provides a source of information, stimuli and incentives for what and how new and energy efficient technologies can be applied as effective tools and solutions in agricultural production to satisfy the continually increasing demand for food and fibre in an economically sustainable way, while contributing to global climate change mitigation. It will be useful and inspiring to decision makers working in different authorities, professionals, agricultural engineers, researchers, and students concerned with agriculture and related primay industries, sustainable energy development and climate change mitigation projects.

    Section 1: Introduction

    1. Towards a sustainable energy technologies based agriculture
    Jochen Bundschuh, Guangnan Chen & Shahbaz Mushtaq
    1.1 Introduction
    1.1.1 Challenges
    1.2 Sustainable energy options in agriculture
    1.2.1 Energy efficiency and energy conservation
    1.2.1.1 Enhancing irrigation and energy efficiency of the irrigated systems
    1.2.1.2 Cooling and heating
    1.2.2 Use of biomass and biomass waste for carbon-neutral production of biofuel, electricity and bio-coal fertilizers
    1.2.3 Decentralized renewable energy systems (solar, wind, geothermal)
    1.2.4 Economic benefit of green food
    1.3 Conclusions


    Section 2: Energy efficiency and management

    2. Global energy resources, supply and demand, energy security and on-farm energy efficiency
    Ralph E.H. Sims
    2.1 Introduction
    2.1.1 Energy access
    2.1.2 Environmental impacts
    2.1.3 Food price and energy nexus
    2.2 Global energy trends
    2.2.1 Bridging the emissions gap
    2.3 Other major related issues
    2.3.1 Economic viability
    2.3.2 Competing land uses
    2.3.3 Dangerous climate change
    2.3.4 Existing efforts are inadequate
    2.4 Global energy supply for agriculture
    2.5 Energy efficiency in agriculture
    2.5.1 Tractors and machinery
    2.5.2 Irrigation
    2.5.3 Fertilizers
    2.5.4 Dairy farms
    2.5.5 Sheep and beef farms
    2.5.6 Intensive livestock production and fishing
    2.5.7 Greenhouse production
    2.5.8 Fruit production
    2.5.9 Cropping
    2.6 Conclusions

    3. Energy in crop production systems
    Jeff N. Tullberg
    3.1 Introduction
    3.2 Energy distribution in farming systems
    3.3 Input energy efficiency
    3.3.1 Farm machinery operations
    3.3.2 Tractive power transmission
    3.3.3 Efficiency of tractor-powered tillage
    3.4 Land preparation by tillage
    3.4.1 Tillage equipment
    3.4.2 Tillage objectives and functions
    3.5 Embodied energy
    3.5.1 Machinery
    3.5.2 Fertilizer
    3.5.3 Agricultural chemicals
    3.6 More energy-efficient cropping systems
    3.6.1 General considerations
    3.6.2 No-till and conservation agriculture
    3.6.3 Controlled traffic farming
    3.6.4 Precision and high-technology
    3.6.4.1 Precision agriculture
    3.6.4.2 Precision guidance
    3.6.4.3 Robotics
    3.6.5 Cropping system energy comparisons
    3.7 Conclusion

    4. The fossil energy use and CO2 emissions budget for Canadian agriculture
    James Arthur Dyer, Raymond Louis Desjardins & Brian Glenn McConkey
    4.1 Introduction
    4.1.1 Energy use issues
    4.1.1.1 GHG emissions
    4.1.1.2 Energy supply
    4.1.1.3 Food security
    4.1.1.4 Biofuel crops
    4.1.1.5 CC adaptation
    4.1.2 Defining the farm energy budget
    4.1.2.1 Group 1
    4.1.2.2 Group 2
    4.1.2.3 Group 3
    4.1.2.4 Excluded energy terms
    4.2 Methodology
    4.2.1 Modeling farm energy consumption
    4.2.2 Computations for field operations
    4.2.3 Response to tillage systems
    4.2.4 Converting energy use to fossil CO2 emissions
    4.2.5 Interfacing farm energy use with other GHG emission models
    4.3 Farm energy use calculations
    4.3.1 Land use areas
    4.3.1.1 Land use
    4.3.1.2 Farm field operations
    4.3.1.3 Farm energy use budget
    4.3.1.4 Fossil energy use for livestock production
    4.4 Results
    4.5 Discussion and conclusions

    5. Energy efficiency technologies for sustainable agriculture and food processing
    LijunWang
    5.1 Introduction
    5.2 Energy consumption in the agricultural production and food processing
    5.2.1 Energy consumption in the agricultural production
    5.2.2 Energy consumption in the food industry
    5.2.2.1 Overview of energy consumption in the food industry
    5.2.2.2 Energy use in different food manufacturing sectors
    5.2.2.3 Energy use for production of different food products
    5.2.3 Energy sources in the agricultural and food industry
    5.2.3.1 Energy sources for agricultural production
    5.2.3.2 Energy sources for food processing
    5.2.4 Energy efficiency in agricultural production and food processing
    5.3 Energy conservation and management in agricultural production and food processing
    5.3.1 Energy conservation in agricultural production
    5.3.2 Energy conservation in the utilities in food processing facilities
    5.3.2.1 Energy savings in steam supply
    5.3.2.2 Energy savings in compressed air supply
    5.3.2.3 Energy savings in power supply
    5.3.2.4 Energy savings in heat exchanger
    5.3.2.5 Energy savings by recovering waste heat
    5.3.3 Energy conservation in energy-intensive unit operations of food processes
    5.3.3.1 Energy savings in thermal food processing
    5.3.3.2 Energy savings in concentration, dehydration and drying
    5.3.3.3 Energy savings in refrigeration and freezing
    5.4 Utilizations of energy efficiency technologies in agricultural production and food processing
    5.4.1 Application of novel thermodynamic cycles
    5.4.1.1 Heat pump
    5.4.1.2 Novel refrigeration cycles
    5.4.1.3 Heat pipes
    5.4.2 Application of non-thermal food processes
    5.4.2.1 Food irradiation
    5.4.2.2 Pulsed electric fields
    5.4.2.3 High-pressure processing
    5.4.2.4 Membrane processing
    5.4.2.5 Supercritical fluid processing
    5.4.3 Application of novel heating methods
    5.4.3.1 Microwave and radio frequency heating
    5.4.3.2 Ohmic heating
    5.4.3.3 Infrared radiation heating
    5.5 Summary

    6. Energy-smart food – technologies, practices and policies
    Ralph E.H. Sims & Alessandro Flammini
    6.1 Introduction
    6.1.1 The key challenges
    6.1.2 Scales of agricultural production
    6.1.2.1 Subsistence
    6.1.2.2 Small family farms
    6.1.2.3 Small businesses
    6.1.2.4 Large farms
    6.2 Energy inputs and GHG emissions
    6.2.1 Energy inputs for primary production
    6.2.1.1 Tractors and machinery
    6.2.1.2 Irrigation
    6.2.1.3 Fertilizers
    6.2.1.4 Livestock
    6.2.1.5 Protected cropping in greenhouses
    6.2.1.6 Fishing and aquaculture
    6.2.1.7 Forestry
    6.2.2 Energy inputs for secondary production
    6.2.2.1 Drying, cooling and storage
    6.2.2.2 Transport and distribution
    6.2.3 Food processing
    6.2.3.1 Preparation and cooking
    6.3 The human dimension
    6.3.1 Food losses and wastage
    6.3.2 Changing diets
    6.3.3 Modern energy services
    6.4 Renewable energy supplies from agriculture
    6.4.1 Renewable energy resources
    6.4.2 Renewable energy systems
    6.4.2.1 Biomass and bioenergy
    6.4.2.2 Non-biomass renewable energy
    6.4.3 The potential for energy-smart agriculture
    6.4.3.1 A landscape approach to farming systems
    6.4.3.2 Institutional arrangements and innovative business models
    6.5 Policy options
    6.5.1 Present related policies
    6.5.2 Future policy requirements
    6.5.2.1 Agriculture
    6.5.2.2 Energy access
    6.5.2.3 Climate change
    6.5.2.4 Efficient energy use
    6.5.2.5 Renewable energy deployment
    6.5.2.6 Human behavior
    6.6 Achieving energy-smart food

    7. Energy, water and food: exploring links in irrigated cropping systems
    Tamara Jackson & Munir A. Hanjra
    7.1 Introduction
    7.1.1 Energy in agriculture
    7.2 The energy-water nexus in crop production
    7.2.1 Energy for irrigation
    7.2.1.1 Factors affecting irrigation energy use
    7.2.2 Energy and fertilizer
    7.2.3 Energy and agrochemicals
    7.2.4 Energy for machinery and equipment
    7.2.4.1 Factors affecting input energy use for crop production
    7.3 Patterns of energy consumption in irrigated agriculture
    7.3.1 Study sites
    7.3.2 Data requirements
    7.3.3 Analyzing water application and energy consumption
    7.3.3.1 Crop water requirements
    7.3.3.2 Energy accounting
    7.3.4 Results and discussion
    7.3.4.1 Water application and energy consumption: baseline conditions
    7.3.4.2 Potential energy and water savings using pressurized irrigation systems
    7.3.5 Summary
    7.4 Options for sustainable energy and water management in irrigated cropping systems
    7.4.1 Technical interventions
    7.4.2 Policy strategies
    7.5 Conclusions

    8. Energy use and sustainability of intensive livestock production
    Jukka Ahokas, Mari Rajaniemi, Hannu Mikkola, Jüri Frorip, Eugen Kokin, Jaan Praks, Väino Poikalainen, Imbi Veermäe &Winfried Schäfer
    8.1 Energy and livestock production
    8.1.1 What is energy
    8.1.2 Energy consumption and emissions
    8.1.3 Direct and indirect energy
    8.1.4 Efficiency
    8.1.5 Energy analysis
    8.1.5.1 Methodology of energy analysis
    8.1.5.2 Energy ratio
    8.1.5.3 Specific energy consumption
    8.1.5.4 Types of energy analysis
    8.2 Livestock production sustainability
    8.2.1 Sustainability
    8.2.2 CO2 – equivalents
    8.2.3 Livestock GHG emissions
    8.3 Energy consumption in livestock production
    8.3.1 Feed material production
    8.3.1.1 Crop production
    8.3.1.2 Grass and hay production
    8.3.1.3 Concentrate production
    8.3.2 Ventilation
    8.3.3 Illumination
    8.3.4 Heating of animal houses
    8.3.4.1 Heat conduction
    8.3.4.2 Heat losses by ventilation
    8.3.5 Energy use follow-up
    8.4 Energy use and saving in livestock production
    8.4.1 Energy consumption in livestock production
    8.4.2 Energy consumption in milk production
    8.4.2.1 Milk production system
    8.4.2.2 Energy used in milk production
    8.4.2.3 Feed production and feed material
    8.4.2.4 Use of direct energy
    8.4.2.5 Milking and milk cooling
    8.4.2.6 Lighting
    8.4.2.7 Ventilation
    8.4.2.8 Water pumping and hot water
    8.4.2.9 Bringing up young cattle
    8.4.3 Energy consumption in pork production
    8.4.3.1 Pork production
    8.4.3.2 Pork production energy consumption
    8.4.3.3 Feed production and feed material
    8.4.4 Energy consumption in broiler production
    8.4.4.1 Broiler production
    8.4.4.2 Energy consumption in broiler production
    8.4.4.3 Lighting
    8.4.4.4 Ventilation
    8.4.4.5 Heating
    8.4.4.6 Feed and feeding
    8.5 Conclusions

    9. Diesel engine as prime power for agriculture: emissions reduction for sustainable mechanization
    Xinqun Gui
    9.1 Diesel engine as prime power for agriculture
    9.2 Global non-road emissions regulations
    9.3 Building blocks of diesel engines
    9.3.1 Combustion system
    9.3.2 Electronic engine control system
    9.3.3 Fuel injection system
    9.3.4 Turbocharching
    9.3.5 Exhaust gas recirculation
    9.4 After treatment technologies
    9.4.1 Particulate matter and NOx
    9.4.2 Exhaust filtration
    9.4.3 Regeneration types
    9.4.4 Active regeneration technologies
    9.4.5 Diesel oxidation catalyst (DOC)
    9.4.6 Diesel particulate filter (DPF)
    9.4.7 Catalyst canning
    9.4.8 Exhaust fuel dosing system
    9.4.9 After treatment system integration and controls
    9.4.9.1 DOC outlet temperature control
    9.4.9.2 Soot loading prediction
    9.4.9.3 Active regeneration control
    9.4.10 Diesel engine NOx aftertreatment technologies
    9.4.10.1 Selective catalytic reduction (SCR)
    9.5 Meeting diesel emissions through tiers
    9.5.1 Tier 3 and earlier engines
    9.5.2 Meeting US EPA Tier 4
    9.6 Biofuel for modern diesel engines
    9.7 Summary and perspectives


    Section 3: Biofuels

    10. Biofuels from microalgae
    Malcolm R. Brown & Susan I. Blackburn
    10.1 Introduction
    10.1.1 Introduction to biofuels
    10.1.2 History of investigation of biofuels from microalgae
    10.1.3 Potential advantages of microalgae as biofuel feedstock
    10.1.4 Overview of the production of biofuel from microalgae
    10.1.5 Current status of commercial microalgal biofuel production and future prospects
    10.2 General properties of microalgae
    10.2.1 Taxonomy and general characteristics
    10.2.2 Sourcing and maintaining microalgae species or strains
    10.2.3 Chemical profiles of microalgae
    10.2.3.1 Proximate composition
    10.2.3.2 Qualitative aspects of proximate composition – amino acids and sugars
    10.2.3.3 Lipid class and fatty acids
    10.2.3.4 Other chemical components within microalgae of commercial interest 
    10.3 Selection of strains as candidates for biofuel feedstock
    10.3.1 Growth rates and environmental tolerances from small-scale cultures
    10.3.2 Screening for total lipid, and fatty acid quality
    10.3.3 Other strain selection criteria
    10.4 Scaling up production of microalgae biomass
    10.4.1 General considerations
    10.4.1.1 Light and temperature
    10.4.1.2 Inorganic nutrients
    10.4.1.3 CO2
    10.4.1.4 Land and water
    10.4.2 Pond systems
    10.4.3 Photobioreactors (PBRs)
    10.4.4 Fermentation systems
    10.4.5 Hybrid growth systems
    10.4.6 Productivities of microalgae growth systems
    10.4.7 Improving productivity through technical and biological approaches
    10.4.7.1 Culture system design
    10.4.7.2 Ecological approaches
    10.4.7.3 Breeding and genetic engineering
    10.5 Harvesting of microalgal biomass
    10.5.1 Flocculation
    10.5.2 Gravity sedimentation
    10.5.3 Flotation
    10.5.4 Centrifugation
    10.5.5 Filtration
    10.5.6 Other separation techniques
    10.6 Conversion of biomass to biofuels
    10.6.1 Drying of microalgae biomass
    10.6.2 Extraction of oil
    10.6.3 Processes and biofuel products from microalgae
    10.6.3.1 Biodiesel production
    10.6.3.2 Bio-oil production by hydrothermal liquefaction
    10.6.3.3 Gasification for syngas
    10.6.3.4 Pyrolysis for bio-oil, biochar and syngas
    10.6.3.5 Direct combustion
    10.6.3.6 Fermentation processes to produce ethanol
    10.6.3.7 Hydrogen through fermentation or biophotolysis
    10.6.3.8 Anaerobic digestion for methane production
    10.7 Towards commercial production
    10.7.1 Current industry state
    10.7.2 Economics of biofuel production
    10.7.3 The concept of an integrated biorefinery
    10.7.4 Environmental sustainability and life cycle analysis (LCA)
    10.7.5 Political and social factors
    10.8 Conclusion

    11. Biodiesel emissions and performance
    Syed Ameer Basha
    11.1 Introduction
    11.1.1 Need of biodiesel
    11.1.2 Biofuel
    11.1.3 Production of biodiesel
    11.2 Biodiesel emissions
    11.2.1 NOx
    11.2.2 COx
    11.2.3 HC emissions of biodiesel
    11.2.4 Particulate matter (PM) emissions
    11.3 Biodiesel performance
    11.3.1 Brake specific fuel consumption
    11.3.2 Efficiency
    11.4 Effect of a catalyst or additive
    11.4.1 Effect of a catalyst on biodiesel emissions
    11.4.2 Effect of catalysts and additives on biodiesel performance
    11.4.2.1 Brake specific fuel consumption
    11.4.2.2 Efficiency
    11.5 Conclusions

    12. Biogas
    Paul Harris & Hans Oechsner
    12.1 Introduction
    12.2 What is biogas?
    12.3 Brief history
    12.4 Anaerobic digestion
    12.5 Uses of biogas
    12.6 Uses for liquid/sludge
    12.7 Modeling digester performance
    12.8 Digester performance
    12.9 Types of digesters
    12.10 Gas storage
    12.11 Safety
    12.11.1 Fire/explosion
    12.11.2 Disease
    12.11.3 Asphyxiation
    12.11.4 Summary
    12.12 Advanced digestion
    12.12.1 High rate digesters
    12.12.2 Two stage digesters
    12.12.3 Anaerobic filters
    12.12.4 Upflow anaerobic sludge blanket (UASB) digesters
    12.12.5 Suspended growth digesters
    12.12.6 Salt water digesters
    12.12.7 Solid digestion
    12.13 Packaged units
    12.14 Startup
    12.15 Monitoring digester operation
    12.15.1 Indication of CO2 percentage
    12.15.2 Measuring gas pressure
    12.16 Burners
    12.17 Fault finding
    12.18 Construction tips
    12.19 Conclusions

    13. Thermal gasification of waste biomass from agriculture production for energy purposes
    Janusz Piechocki, Dariusz Wisniewski & Andrzej Białowiec
    13.1 Introduction
    13.2 Biomass waste
    13.2.1 Properties of biomass
    13.2.2 Biomass for energy production
    13.3 Thermal gasification
    13.3.1 Pyrolysis as the basic process of biomass gasification
    13.3.2 Biomass torrefaction
    13.3.3 Gasification – basic reactions
    13.3.4 Biomass gasification methods
    13.3.5 Byproducts of biomass gasification and elimination methods
    13.3.6 Design parameters of gasification reactors
    13.4 Summary

    14. An innovative perspective: Transition towards a bio-based economy
    Nicole van Beeck, Albert Moerkerken, Kees Kwant & Bert Stuij
    14.1 Introduction: Why we need a bio-based economy
    14.1.1 Towards a sustainable future
    14.1.2 Relationship between agriculture and energy
    14.1.3 What are the challenges?
    14.1.4 The smart approach: a bio-based economy
    14.2 Agriculture: The foundation of a bio-based economy
    14.2.1 Agriculture and food
    14.2.2 Soil fertility
    14.2.3 Land use
    14.2.4 Wastes in the food chain
    14.2.5 Agrification policy at the origin of non-food industrial applications of biomass
    14.3 Biomass at the basis of sustainable energy supply
    14.3.1 Current energy demand
    14.3.2 Food for thought: energy demand versus food demand
    14.3.3 The carbon balance: the theoretical potential for a bio-based economy
    14.3.4 Sustainability of biomass 396
    14.4 A cascading approach for sustainable deployment of biomass and the Trias Biologica
    14.5 Case studies of cascading in The Netherlands
    14.5.1 Facts and figures of The Netherlands
    14.5.2 The Trias Biologica: the sugar case
    14.5.2.1 De-carbonization
    14.5.2.2 Substitution of fossil carbon with bio-based carbon
    14.5.2.3 Cascading
    14.5.2.4 De-carbonization
    14.5.2.5 Substitution
    14.5.2.6 Cascading
    14.5.3 Bio-refinery: the grass cascading case
    14.5.4 Making circular chains: the manure case
    14.6 Discussion and conclusions on impact and prospects


    Section 4: Access to energy

    15. Increasing energy access in rural areas of developing countries
    Xavier Lemaire
    15.1 Introduction
    15.1.1 The current situation of energy access in developing countries and the opportunity offered by the RETs
    15.1.1.1 Contrasting situation across continents
    15.1.1.2 The rationale for decentralized generation with RETs
    15.1.1.3 How to deliver energy services to remote places, and what services to deliver?
    15.2 Policy and institutions for energy access
    15.2.1 The role of energy regulators and rural electrification agencies
    15.2.1.1 Light-handed regulation
    15.2.1.2 Standards and codes of practices
    15.2.1.3 Planning
    15.2.1.4 Who should be regulating off-grid electricity services, and why?
    15.2.2 Funding and the question of subsidies
    15.2.2.1 Targeted subsidies
    15.2.2.2 Subsidies for mini-grid technologies
    15.2.2.3 Subsidies for decentralized stand-alone systems
    15.2.3 The role of rural energy service companies (RESCOs)
    15.2.3.1 Different business models for increasing energy access in rural areas with small decentralized RET systems
    15.2.3.2 Cash purchase and micro-credit models
    15.2.3.3 Fee-for-service models
    15.2.3.4 Fee-for-service versus micro-credit models
    15.2.3.5 Increasing energy access by using by-product of agriculture
    15.3 Conclusion

    Subject index
    Book series page

    Biography

    Jochen Bundschuh, Guangnan Chen