Spectral Methods in Soliton Equations

1st Edition

I D Iliev, Eugeni Khristov, Kiril Petrov Kirchev

Chapman and Hall/CRC
Published November 21, 1994
Reference - 400 Pages
ISBN 9780582239630 - CAT# LM3963
Series: Monographs and Surveys in Pure and Applied Mathematics

For Instructors Request Inspection Copy


Currently out of stock
Add to Wish List
FREE Standard Shipping!


Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.


We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy

Share this Title