1st Edition

Single-Atom Nanoelectronics

Edited By Enrico Prati, Takahiro Shinada Copyright 2013
    364 Pages 33 Color & 108 B/W Illustrations
    by Jenny Stanford Publishing

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology.

    Although there are numerous publications on nanoelectronics, no book highlights the effect of a single atom on device performance, which can be beneficial for making extensive use of CMOS technologies. This book is the first to deal with topics related to single-atom control, which is the final frontier for nanoelectronics.

    Preface
    Introduction Asen Asenov
    Quantum Information in Silicon Devices Based on Individual Dopants Enrico Prati and Andrea Morello
    Physics of Impurities in Silicon
    Topology of Individual Donors Embedded in Silicon Devices
    Quantum Information with Donors in Silicon
    Electron Spin Qubits with Donors
    Coherent Passage of Information
    Decoherence
    Quantum Nondemolition Measurements of Single-Donor Nuclear and Electron Spins
    Theory and Simulations of Controlled Electronic States Bound to a Single Dopant in Silicon Rajib Rahman, Lloyd C. L. Hollenberg, and Gerhard Klimeck
    Tight-Binding Method and NEMO-3D
    Electronic Structure of a Group V Donor in Bulk Silicon
    Donor Qubits in Silicon
    Orbital Stark Effect of Donors in Nanostructures
    Hyperfine Stark Effect
    Using Scanning Tunneling Microscopy to Realize Atomic-Scale Silicon Devices Martin Fuechsle and Michelle Y. Simmons
    Outline of the Fabrication Strategy
    All-Epitaxial Dopant-Based Quantum Dots
    Downscaling of Dopant-Based Devices
    Toward Deterministic Single-Atom Devices
    Toward a Planar Qubit Architecture
    Deterministic Single-Ion Implantation Method for Extending CMOS Technologies Takahiro Shinada
    The Importance of Deterministic Doping
    Single-Ion Implantation Method
    Ordered Dopant Arrays
    Asymmetric Ordered Dopant Effects on Transistor Performances
    Quantum Transport in Deterministically Implanted Single Donors
    Future Issues
    Single-Ion Implantation for Quantum Computing David N. Jamieson
    Quantum Computation
    Single-Ion Implantation
    Future Prospects
    Future Perspectives
    Single Atom Imaging—Dopant Atoms in Silicon-Based Semiconductor Devices—by Atom Probe Tomography Koji Inoue and Yasuyoshi Nagai
    Introduction to the Single Atom Imaging
    Atom Probe Tomography
    Dopant Distribution in a MOSFET
    Dopant Distribution in FinFETs
    Future Prospects for APT
    Low-Noise Current Measurements on Quantum Devices Operating at Cryogenic Temperature Filippo Guagliardo and Giorgio Ferrari
    Fundamentals of Current Measurements
    Design Rules for Low-Noise Transimpedance Amplifiers
    Wide-Band Transimpedance Amplifiers
    Cryogenic CMOS Amplifiers: Challenges and Opportunities
    General Considerations
    Orbital Structure and Transport Characteristics of Single Donors Jan Verduijn, Giuseppe C. Tettamanzi, and Sven Rogge
    Literature Review
    Structure of the Device
    Eigenstates of a Single Donor
    Future Perspectives
    Single-Donor Transport Spectroscopy in Ultimate Silicon Transistors Marc Sanquer and Xavier Jehl
    Variability in Ultimate Silicon Transistors
    CMOS Processes for Single-Atom Transistors
    Low-Temperature Spectroscopy and Correlation with 300 K Behavior
    Advantages of the Size Reduction in Single-Atom Transistors
    What can we Learn from Low-Temperature Transport Spectroscopy in a Single, Shallow Dopant?
    A Spin Quantum Bit Architecture with Coupled Donors and Quantum Dots in Silicon Thomas Schenkel, Cheuk Chi Lo, Christoph D. Weis, Jeffrey Bokor, Alexei M. Tyryshkin, and Stephen A. Lyon
    General Considerations
    Coupled Donor–Quantum Dot Spin Qubits
    Coherence of Donor Spins in 28Silicon
    Elements of Device Fabrication for Donor–Dot Spin Qubits
    Placement of Single Donors
    Single-Ion Implantation
    Single Spins in Diamond: Novel Quantum Devices and Atomic Sensors Fedor Jelezko
    Defects in Diamond
    Optical Properties of NV Defects
    Spin Properties and Spin Readout
    Diamond Quantum Registers
    Applications of Single-Color Centers for Novel Imaging Techniques
    Magnetometry with Single Diamond Spins
    Future Perspectives
    Silicon-Based Single-Dopant Devices and Integration with Photons Michiharu Tabe, Daniel Moraru, and Arief Udhiarto
    Introduction—Integration of Single-Dopant Electronics and Single-Photon Detection
    Single-Dopant Transistors in Dopant-Rich Environments—Dopant-Based Functionalities
    Effects of Photon Illumination on Doped-Nanowire SOI Transistors
    Future Directions
    Circuits with Single-Atom Devices Jan A. Mol and Sven Rogge
    Single-Atom Devices for Circuits
     Hybrid Circuits
    Full Addition Using a Single-Atom Transistor
    Index

    Biography

    Enrico Prati received a bachelor’s in theoretical physics in 1998 from the University of Pisa and a PhD in physics in 2002. From 2003 to 2008, he worked at Istituto Nazionale di Fisica della Materia (INFM) and from 2009 he is permanent researcher of Istituto per la Microelettronica e Microsistemi (IMM) of Consiglio Nazionale delle Ricerche (CNR) in Agrate Brianza. In February 2004 he received the Young Scientist Award from the URSI for his work on negative refractive index propagation and metamaterials. From 2011, he has contributed to the International Technology Roadmap for Semiconductors (ITRS) Emerging Research Materials (ERM) Committee on deterministic doping. His present research fields are both theoretical and experimental aspects of low-dimensional electron systems, quantum transport, deterministic doping for More than Moore applications, and quantum information in solid state.  At present Dr. Prati is secretary of the Associazione Italiana per la Ricerca (www.associazionericerca.it) . 

    Takahiro Shinada received a PhD in engineering in 2000 and an MBA in technology management in 2007 from Waseda University. From 2000 to 2012 he worked at Waseda University, where he was promoted to associate professor in 2006. Since 2012 he has been with the National Institute of Advanced Industrial Science and Technology (AIST), serving as the senior officer for advanced nanodevice research. He is a member of the International Technology Roadmap for Semiconductors (ITRS) Emerging Research Devices (ERD) and Emerging Research Materials (ERM) Chapters. His research concerns are deterministic doping in nanoelectronics for extended CMOS applications and its application in biological systems for environment, safety, and health (ESH) issues.

    "This collection of papers on single-atom nanoelectronics represents a unique view on current research in this exciting new area. From nanotechnology issues via devices and single transistors to circuits, it covers the whole field of single-atom electronics. I recommend the book to researchers and students in nanoscience and nanoelectronics."
    —Dr. Jaap Hoekstra, Delft University of Technology