Localization and Perturbation of Zeros of Entire Functions

1st Edition

Michael Gil'

Chapman and Hall/CRC
Published June 7, 2017
Reference - 312 Pages
ISBN 9781138116788 - CAT# K35528
Series: Lecture Notes in Pure and Applied Mathematics

For Instructors Request Inspection Copy

was $82.95


SAVE ~$16.59

Add to Wish List
FREE Standard Shipping!


One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators.

After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions.

This work is one of the first to systematically take the operator approach to the theory of analytic functions.


We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy

Share this Title