Introduction to Machine Learning with Applications in Information Security

Mark Stamp

September 7, 2017 by Chapman and Hall/CRC
Textbook - 346 Pages - 100 B/W Illustrations
ISBN 9781138626782 - CAT# K31893
Series: Chapman & Hall/CRC Machine Learning & Pattern Recognition


Add to Wish List
FREE Standard Shipping!


  • Provides a comprehensive introduction to fundamental machine learning concepts
  • Emphasizes depth over breadth
  • Explores information security applications
  • Presents malware detection, intrusion detection, and cryptography, as applied to machine learning
  • Authored by a recognized expert in the field


Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts.

The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis.

Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book.

Instructor resources, including PowerPoint slides, lecture videos, and other relevant material are provided on an accompanying website: For the reader’s benefit, the figures in the book are also available in electronic form, and in color.

About the Author

Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.


We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy

Share this Title