High Performance Computing for Big Data: Methodologies and Applications

Chao Wang

October 10, 2017 by Chapman and Hall/CRC
Reference - 268 Pages - 118 B/W Illustrations
ISBN 9781498783996 - CAT# K30118
Series: Chapman & Hall/CRC Big Data Series

was $119.95

USD$95.96

SAVE ~$23.99

Add to Wish List
SAVE 25%
When you buy 2 or more products!
See final price in shopping cart.
FREE Standard Shipping!

Features

  • Covers a wide range of Big Data Architectures, including distributed systems like Hadoop/Spark
  • Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs
  • Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles
  • Describes advanced algorithms for different big data application domains
  • Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies

Summary

High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering.

The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering.

Features

  • Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark
  • Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs
  • Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles
  • Describes advanced algorithms for different big data application domains
  • Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies

Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications.

About the Editor

Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.

 

Instructors

We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy

Share this Title