Fundamentals of Nonlinear Optics, Second Edition

Peter E. Powers, Joseph W. Haus

May 16, 2017 by CRC Press
Textbook - 480 Pages - 20 Color & 144 B/W Illustrations
ISBN 9781498736831 - CAT# K26507

was $119.95

USD$95.96

SAVE ~$23.99

Add to Wish List
SAVE 25%
When you buy 2 or more print books!
See final price in shopping cart.
FREE Standard Shipping!

Features

• Provides an update of the most concise, practical introduction to nonlinear optics available.

• Includes many new problems and examples showing modern applications.

• Extends discussion of third-order nonlinear processes, pulse propagation and nonlinear phenomena.

• Extends discussion of third-order nonlinear processes, pulse propagation and nonlinear phenomena.

• Solutions manual available to adopting instructors.

Summary

Praise for the 1st Edition:

"well written and up to date…. The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." ―Optics & Photonics News

"rigorous but simple description of a difficult field keeps the reader’s attention throughout…. serves perfectly for an introductory-level course." ―Physics Today

This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes:

  • A new chapter on quantum nonlinear optics.
  • Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices.
  • Treatment of numerical methods to solving sets of complex nonlinear equations.
  • Many problems in each chapter to challenge reader comprehension.
  • Extended treatment of four-wave mixing and solitons.
  • Coverage of ultrafast pulse propagation including walk-off effects.

Instructors

We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an 
e-inspection copy

Share this Title