Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition

2nd Edition

Alexei Kanel-Belov, Yakov Karasik, Louis Halle Rowen

Chapman and Hall/CRC
Published October 23, 2015
Reference - 418 Pages
ISBN 9781498720083 - CAT# K25525

For Instructors Request Inspection Copy

was $130.00


SAVE ~$26.00

Currently out of stock
Add to Wish List
FREE Standard Shipping!


Computational Aspects of Polynomial Identities: Volume l, Kemer’s Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer’s proof of Specht’s conjecture for affine PI-algebras in characteristic 0.

The book first discusses the theory needed for Kemer’s proof, including the featured role of Grassmann algebra and the translation to superalgebras. The authors develop Kemer polynomials for arbitrary varieties as tools for proving diverse theorems. They also lay the groundwork for analogous theorems that have recently been proved for Lie algebras and alternative algebras. They then describe counterexamples to Specht’s conjecture in characteristic p as well as the underlying theory. The book also covers Noetherian PI-algebras, Poincaré–Hilbert series, Gelfand–Kirillov dimension, the combinatoric theory of affine PI-algebras, and homogeneous identities in terms of the representation theory of the general linear group GL.

Through the theory of Kemer polynomials, this edition shows that the techniques of finite dimensional algebras are available for all affine PI-algebras. It also emphasizes the Grassmann algebra as a recurring theme, including in Rosset’s proof of the Amitsur–Levitzki theorem, a simple example of a finitely based T-ideal, the link between algebras and superalgebras, and a test algebra for counterexamples in characteristic p.


We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy

Share this Title