View All Book Series

BOOK SERIES


Chapman & Hall/CRC Data Science Series


About the Series

Reflecting the interdisciplinary nature of the field, this new book series brings together researchers, practitioners, and instructors from statistics, computer science, machine learning, and analytics. The series will publish cutting-edge research, industry applications, and textbooks in data science.

 

Features:

·       Presents the latest research and applications in the field, including new statistical and computational techniques

·       Covers a broad range of interdisciplinary topics

·       Provides guidance on the use of software for data science, including R, Python, and Julia

·       Includes both introductory and advanced material for students and professionals

·       Presents concepts while assuming minimal theoretical background

 

The scope of the series is broad, including titles in machine learning, pattern recognition, predictive analytics, business analytics, visualization, programming, software, learning analytics, data collection and wrangling, interactive graphics, reproducible research, and more. The inclusion of examples, applications, and code implementation is essential.

 

Please contact us if you have an idea for a book for the series.

4 Series Titles

Per Page
Sort

Display
Cybersecurity Analytics

Cybersecurity Analytics

1st Edition

Forthcoming

Rakesh M. Verma, David J. Marchette
November 15, 2019

Cybersecurity Analytics is for the cybersecurity student and professional who wants to learn data science techniques critical for tackling cybersecurity challenges, and for the data science student and professional who wants to learn about cybersecurity adaptations. Trying to build a malware...

Introduction to Data Science: Data Analysis and Prediction Algorithms with R

Introduction to Data Science: Data Analysis and Prediction Algorithms with R

1st Edition

Forthcoming

Rafael A. Irizarry
October 22, 2019

Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop...

Feature Engineering and Selection: A Practical Approach for Predictive Models

Feature Engineering and Selection: A Practical Approach for Predictive Models

1st Edition

Max Kuhn, Kjell Johnson
August 02, 2019

The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset...

Probability and Statistics for Data Science: Math + R + Data

Probability and Statistics for Data Science: Math + R + Data

1st Edition

Norman Matloff
June 20, 2019

Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes...

AJAX loader