Biogeochemistry of Wetlands: Science and Applications

K. Ramesh Reddy, Ronald D. DeLaune

July 28, 2008 by CRC Press
Reference - 800 Pages - 540 B/W Illustrations
ISBN 9781566706780 - CAT# L1678


Add to Wish List
FREE Standard Shipping!


  • Discusses the role that sediment redox-pH conditions play on metal speciation, availability, and transformations
  • Examines the role of microbial processes in sulfate reduction, denitirification, and methane production
  • Examines the adaptation of wetland plants to varying anaerobic soil conditions
  • Presents results from research studies conducted on the Florida Everglades and Louisiana’s Mississippi River deltaic plain


Wetland ecosystems maintain a fragile balance of soil, water, plant, and atmospheric components in order to regulate water flow, flooding, and water quality. Marginally covered in traditional texts on biogeochemistry or on wetland soils, Biogeochemistry of Wetlands is the first to focus entirely on the biological, geological, physical, and chemical processes that affect these critical habitats.

This book offers an in-depth look at the chemical and biological cycling of nutrients, trace elements, and toxic organic compounds in wetland soil and water column as related to water quality, carbon sequestration, and greenhouse gases. It details the electrochemistry, biochemical processes, and transformation mechanisms for the elemental cycling of carbon, oxygen, nitrogen, phosphorus, and sulfur. Additional chapters examine the fate and chemistry of heavy metals and toxic organic compounds in wetland environments. The authors emphasize the role of redox-pH conditions, organic matter, microbial-mediated processes that drive transformation in wetlands, plant responses and adaptation to wetland soil conditions. They also analyze how excess water, sediment water, and atmospheric change relate to elemental biogeochemical cycling.

Delivering an in-depth scientific examination of the natural processes that occur in wetland ecosystems, Biogeochemistry of Wetlands comprises a key perspective on the environmental impact of pollutants and the role freshwater and coastal wetlands play in global climate change.

Share this Title