**Jr. Johnson, Greg A. Harris, D.C. Hankerson**

September 25, 2019

An effective blend of carefully explained theory and practical applications, this text imparts the fundamentals of both information theory and data compression. Although the two topics are related, this unique text allows either topic to be presented independently, and it was specifically designed...

**Mario Pitteri, G. Zanzotto**

June 27, 2002

Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material...

**O.A. Oleinik, V.N. Samokhin**

May 25, 1999

Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles....

**J. Necas, J. Malek, M. Rokyta, M. Ruzicka**

May 01, 1996

This book provides a concise treatment of the theory of nonlinear evolutionary partial differential equations. It provides a rigorous analysis of non-Newtonian fluids, and outlines its results for applications in physics, biology, and mechanical engineering...

**E.G. Virga**

May 15, 1995

Essentially there are two variational theories of liquid crystals explained in this book. The theory put forward by Zocher, Oseen and Frank is classical, while that proposed by Ericksen is newer in its mathematical formulation although it has been postulated in the physical literature for the past...

**A. Georgescu**

May 15, 1995

The main definitions and results of asymptotic analysis and the theory of regular and singular perturbations are summarized in this book. They are applied to the asymptotic study of several mathematical models from mechanics, fluid dynamics, statistical mechanics, meteorology and elasticity. Due...

**A. Sitenko, V. Malnev**

December 01, 1994

This book is an introduction to the field of modern plasma physics theory. The topics have been carefully chosen by the authors after many years teaching a graduate course in this subject. The book contains a comprehensive description of three widely used models in plasma physics: one-particle,...

**J.F. Besseling, E. Van Der Giessen**

May 15, 1994

Mathematical Modeling of Inelastic Deformation details the mathematical modeling of the inelastic behavior of engineering materials. The authors use a thermodynamic approach to the subject and focus on crystalline materials, but not to the exclusion of macro-moleular solids. Within a unified theory...

**Sergey I. Voropayev, Y.D. Afanasyev**

May 15, 1994

A fully systematic treatment of the dynamics of vortex structures and their interactions in a viscous density stratified fluid is provided by this book. The various compact vortex structures such as monopoles, dipoles, quadrupoles, as well as more complex ones are considered theoretically from a...

**P. Boulanger, M.A. Hayes**

August 01, 1993

Bivectors occur naturally in the description of elliptically polarized homogeneous and inhomogeneous plane waves. The description of a homogeneous plane wave generally involves a vector (the unit vector along the propagation direction) and a bivbector (the complex amplitude of the wave)....

**G.A. Maugin**

July 01, 1993

Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to...

**A. Iserles, S.P. Norsett**

June 01, 1991

This book familiarizes the mathematical community with an analytic tool that is capable of so many applications and presents a list of open problems which might be amenable to analysis with order stars....