Self-Organization During Friction

Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design

Series:
Published:
Content:
Editor(s):
Free Standard Shipping

Purchasing Options

Hardback
$199.95
ISBN 9781574447194
Cat# DK4306
Add to cart
eBook (VitalSource)
$199.95 $139.97
ISBN 9781420017861
Cat# DKE4306
Add to cart
SAVE 30%
eBook Rentals
Other eBook Options:
 
 

Features

  • Demonstrates the unique nature of nanomaterials through irreversible thermodynamics and self-organization concepts
  • Outlines new approaches for developing novel surface-engineered nanostructured materials for extreme applications
  • Introduces novel ideas related to the nonequilibrium states of nanostructured materials in relation to their tribological and service properties
  • Builds an understanding of new trends in materials science and surface engineering of nano-scaled materials
  • Explores adaptive surface-engineered materials able to form stable protective or low-friction nano-scaled tribofilms
  • Summary

    In our present era of nanoscience and nanotechnology, new materials are poised to take center stage in dramatically improving friction and wear behavior under extreme conditions. Compiled by two eminent experts, Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design details the latest advances and developments in self-organization phenomena, physical and chemical aspects of friction, and new methods of friction control using advanced materials and coatings.

    Approaching nanomaterials from the perspective of irreversible thermodynamics and self-organization, this work presents a new approach to developing an emerging generation of surface-engineered self-adaptive nanostructured materials. The book demonstrates how nanoscale structure, synergistic alloying, and the non-equilibrium state of surface-engineered layers affects the capacity of these next-generation materials to resist wear in heavily loaded tribosystems. These links become clear through discussions on non-equilibrium thermodynamics, tribological compatibility, and self-organization phenomena during friction. International experts also supply cutting-edge information on nanocrystalline and nanolaminated coatings while tracing new trends in materials science and surface engineering at the nanoscale.

    By combining detailed discussions on the underlying theory with practical examples of extreme tribological applications, Self-Organization During Friction outlines a forward-looking strategy for developing and implementing new surface-engineered materials that promise previously unattainable levels of tribological performance.

    Table of Contents

    SELF-ORGANIZATION DURING FRICTION AND PRINCIPLES OF FRICTION CONTROL
    Principles of Friction Control for Surface-Engineered Materials; German S. Fox-Rabinovich
    Elements of Thermodynamics and Self-Organization during Friction; Iosif S. Gershman and Nicolay A. Bushe

    TRIBOLOGICAL COMPATIBILITY AND NANOTRIBOLOGICAL CHARACTERISTICS TO EVALUATE SURFACE PROPERTIES DURING FRICTION
    Compatibility of Tribosystems; Nicolay A. Bushe and Iosif S. Gershman
    Surface Analysis Techniques for Investigations of Modified Surfaces, Nanocomposites, Chemical, and Structure Transformations; Anatoliy I. Kovalev and Dmitry L. Wainstein
    Physical and Mechanical Properties to Characterize Tribological Compatibility of Heavily Loaded Tribosystems (HLTS); German S. Fox-Rabinovich, Lev S. Shuster, Ben D. Beake, and Stephen C. Veldhuis

    SELF-ORGANIZATION AND STRUCTURAL ADAPTATION OF HEAVILY LOADED TRIBOSYSTEMS
    Self-Organization and Structural Adaptation during Cutting and Stamping Operations; German S. Fox-Rabinovich and Anatoliy I. Kovalev
    Tooling Materials and Some Features of Their Self-Organization: Adaptive Tooling Materials; German S. Fox-Rabinovich, Anatoliy I. Kovalev, Ben D. Beake, and Michael M. Bruhis
    Formation of Secondary Structures and the Self-Organization Process of Tribosystems during Friction with the Collection of Electric Current; Iosif S. Gershman

    ADAPTIVE SURFACE-ENGINEERED MATERIALS AND SYSTEMS
    Surface-Engineered Tool Materials for High-Performance Machining; German S. Fox-Rabinovich, Anatoliy I. Kovalev, Jose L. Endrino, Stephen C. Veldhuis, Lev S. Shuster, and Iosif S. Gershman
    Synergistic Alloying of Self-Adaptive Wear-Resistant Coatings; German S. Fox-Rabinovich, Kenji Yamamoto, and Anatoliy I. Kovalev
    Development of the Ternary and Higher-Ordered Protective or Wear-Resistant Materials and Coatings for High-Temperature Applications and Thermodynamics-Based Principles of their Synergistic Alloying; German S. Fox-Rabinovich, Iosif S. Gershman, Anatoliy I. Kovalev, and Kenji Yamamoto
    Coolants and Lubricants to Enhance Tribological Compatibility of the "Tool-Workpiece" Tribosystem; Stephen C. Veldhuis, German S. Fox-Rabinovich, and Lev S. Shuster
    Geometrical Adaptation of Cutting Tools; Stephen C. Veldhuis, Michael M. Bruhis, Lev S. Shuster, and German S. Fox-Rabinovich
    INDEX

     
    Textbooks
    Other CRC Press Sites
    Featured Authors
    STAY CONNECTED
    Facebook Page for CRC Press Twitter Page for CRC Press You Tube Channel for CRC Press LinkedIn Page for CRC Press Google Plus Page for CRC Press Pinterest Page for CRC Press
    Sign Up for Email Alerts
    © 2014 Taylor & Francis Group, LLC. All Rights Reserved. Privacy Policy | Cookie Use | Shipping Policy | Contact Us