295 Pages 224 B/W Illustrations
    by CRC Press

    Encouraging creative uses of reinforced concrete, Principles of Reinforced Concrete Design draws a clear distinction between fundamentals and professional consensus. This text presents a mixture of fundamentals along with practical methods. It provides the fundamental concepts required for designing reinforced concrete (RC) structures, emphasizing principles based on mechanics, experience, and experimentation, while encouraging practitioners to consult their local building codes.

    The book presents design choices that fall in line with the boundaries defined by professional consensus (building codes), and provides reference material outlining the design criteria contained in building codes. It includes applications for both building and bridge structural design, and it is applicable worldwide, as it is not dependent upon any particular codes.

    • Contains concise coverage that can be taught in one semester
    • Underscores the fundamental principles of behavior
    • Provides students with an understanding of the principles upon which codes are based
    • Assists in navigating the labyrinth of ever-changing codes
    • Fosters an inherent understanding of design

    The text also provides a brief history of reinforced concrete. While the initial attraction for using reinforced concrete in building construction has been attributed to its fire resistance, its increase in popularity was also due to the creativity of engineers who kept extending its limits of application. Along with height achievement, reinforced concrete gained momentum by providing convenience, plasticity, and low-cost economic appeal.

    Principles of Reinforced Concrete Design provides undergraduate students with the fundamentals of mechanics and direct observation, as well as the concepts required to design reinforced concrete (RC) structures, and applies to both building and bridge structural design.

    A Brief History of Reinforced Concrete

    Structural Framing in Reinforced Concrete

    Exercises

    The Design Process

    Definition of the Use of the Structure and Selection of Design

    Loads

    Selection of Framing and Initial Dimensions

    Analysis

    Selection of Reinforcement and Final Dimensions

    Detailing

    Exercises

    Properties of Steel Reinforcement

    Exercises

    Concrete

    Compressive Strength

    Stiffness

    Tensile Strength

    A Formulation for the Stress–Strain

    Relationship of Concrete

    Exercises

    Time-Dependent

    Volume Changes of Concrete: Shrinkage and Creep

    Shrinkage

    Creep

    Shrinkage and Creep vs Time

    Exercises

    Tied Columns

    Design Strength of Axially Loaded Short Columns

    Exercises

    Axial Strength of Laterally Confined Concrete

    Exercises

    Spiral Columns

    Strength Components of a Spiral Column in Axial Compression

    Exercises

    Measures of Flexural Response

    Exercises

    A General Description of Flexural Response

    The Relationship between Curvature and Bending Moment

    Stages of Response

    Exercises

    Moment-Curvature

    Relationship before Flexural Cracking

    Exercise

    Linear Response of Cracked Sections

    Exercises

    Limiting Moment and Unit Curvature

    A Simple Procedure for Determining the Limit to the Moment-Curvature

    Relationship

    A Detailed Procedure for Determining the Limit to the

    Moment-Curvature

    Relationship

    Exercises

    Development of a Quantitative Relationship between Moment and Unit Curvature

    Exercise

    Maximum and Minimum Amounts of Longitudinal

    Reinforcement for Beams

    Exercises

    Beams with Compression Reinforcement

    Exercise

    Beams with Flanges

    A T-Section

    Subjected to Positive Moment

    Exercise

    Deflection under Short-Time

    Loading

    Deflection of a Beam Subjected to Bending Moment

    Deflection of an Uncracked Reinforced Concrete Beam with

    Concentrated Loads

    Deflection of a Cracked Reinforced Concrete Beam with

    Concentrated Loads

    Exercise

    Effects of Time-Dependent Variables on Deflection

    Effect of Shrinkage

    Effect of Creep

    Exercise

    Continuous Beam

    Exercise

    Limiting Load

    Exercises

    Combinations of Limiting Axial Force and Bending Moment for a Reinforced Concrete Section

    Exercises

    Bond Properties of Plain Bars in Concrete

    Exercises

    Bond between Deformed Bars and Concrete

    Exercises

    Factors That Affect Bond

    Effect of Cover

    Effect of Transverse Reinforcement

    Depth of Concrete Cast below Reinforcing Bar

    Epoxy Coating

    Exercise

    Design Examples for Bond

    Flexural Bond Stress

    Exercise

    Control of Flexural Cracks

    Exercises

    Combined Bending and Shear

    Exercise

    Transverse Reinforcement

    Exercise

    Index

    Biography

    Mete A. Sozen, S.E. (IL), a graduate of Bogazici University (Istanbul) and the University of Illinois at Urbana–Champaign, is the Kettelhut Professor in the Department of Civil Engineering at Purdue University, West Lafayette, Indiana. He teaches courses on reinforced concrete and earthquake-resistant design. He is a member of the U.S. National Academy of Engineering and the Royal Swedish Academy of Engineering Sciences. He is an honorary member of the Turkish Society for Engineers and Scientists, the American Society of Civil Engineers, the American Concrete Institute, the Architectural Institute of Japan, and the International Association for Earthquake Engineering. Dr. Sozen has been granted honorary degrees by Bogazici University (Turkey), Janus Pannonius University (Hungary), and the Tbilisi Technical University (Georgia). He was included in the Applied Technology Council and the Engineering News-Record lists of the top ten seismic engineers of the 20th century. Dr. Sozen has worked as a consultant with the Veterans Administration, the Department of State, Bechtel, Brookhaven National Laboratory, Consumers Power Co., Electric Power Research Institute, ERICO, Lawrence Livermore Laboratories, Los Alamos National Laboratory, Nuclear Regulatory Commission, SANDIA National Laboratories, U.S. Army Engineering R & D Center in Vicksburg, WJE Engineers, and Westinghouse Savannah River Site. He has worked on design and evaluation of concrete dams with the U.S. Bureau of Reclamation, Pacific Gas and Electric Co., and Southern California Edison.Toshikatsu Ichinose completed his undergraduate education in architectural engineering at Nagoya Institute of Technology and earned graduate degrees at the University of Tokyo. In 1982, he returned to Nagoya Institute of Technology, where he now teaches structural mechanics and reinforced concrete. Dr. Ichinose has been chairing the committee in charge of RC building code of the Architectural Institute of Japan since 2004. He is proud to be a coauthor of Understanding Structures (CRC Press, 2008).
    Santiago Pujol is from Medellín, Colombia, where he was first exposed to the reinforced concrete industry by his father, an architect who designed and directed the construction of a number of residential and commercial buildings in the city. He completed his undergraduate education in civil engineering at the School of Mines at the National University of Colombia in 1996. At the time, the School of Mines had a five-year undergraduate program designed after European academic models. Damage caused by earthquakes in Colombia motivated him to earn an MS and PhD from Purdue University, West Lafayette, Indiana. Dr. Pujol worked with a forensic firm in San Francisco, California, from 2002 to 2005. During that time, he traveled to Japan and started lasting collaborations with Japanese engineers whose wisdom and attention to proportions and aesthetics have a strong influence on his views. In 2005, he returned to Purdue University, where he currently teaches reinforced concrete and experimental methods and conducts research dealing with the effects of blasts and earthquakes on buildings, and basic questions on the mechanics of concrete structures.

    "The material is presented in a basic and intuitive manner. The book emphasizes basic concepts and gets those concepts across in a manner a novice structural engineer can grasp. The book does not lose sight of big-picture design decisions and does not get bogged down with prescriptive code clauses."
    —Wassim Ghannoum, University of Texas at Austin, USA

    "…presents a terrific overview of fundamental techniques in reinforced concrete design. Unique to this textbook is the author’s detailed introduction of the history and evolution of reinforced concrete. By showing students how the technical challenges of the day called for particular improvements in reinforced concrete design techniques, the authors will surely motivate students to pursue the research necessary to create their own innovations in the field."
    ––Dr. Mohammed E. Haque, PE, Texas A&M University, College Station

    "The book provides perspective to an undergraduate student that is trying to understand how concrete structures stand up. It does not throw the novice student into the intricacies of the Code, but instead builds on first principles that the student learned in earlier classes and provides a guide for how design of concrete structures fit with that theory."
    —JoAnn Browning, University of Kansas

    "The book material is prepared in a way that lends itself perfectly for the first undergraduate class in reinforced concrete design. The division of material into small sections that can be read easily and discussed in class sessions provides a fresh look to the traditional way textbooks related to reinforced concrete design are written. The chapter on history of reinforced concrete (Chapter 1), in particular, contains a wealth of information on specific developments that have led to the current practice of reinforced concrete construction and design. Almost each sentence in this chapter mentions a major development that the reader may be interested in studying in more detail."
    —Sergio F. Breña, University of Massachusetts Amherst