Solutions manual and figure slides available upon qualifying course adoption
Volume 1 of this revised and updated edition provides an accessible and practical introduction to the first gauge theory included in the Standard Model of particle physics: quantum electrodynamics (QED).
The book includes self-contained presentations of electromagnetism as a gauge theory as well as relativistic quantum mechanics. It provides a unique elementary introduction to quantum field theory, establishing the essentials of the formal and conceptual framework upon which the subsequent development of the three gauge theories is based. The text also describes tree-level calculations of physical processes in QED and introduces ideas of renormalization in the context of one-loop radiative corrections for QED.
New to the Fourth Edition
The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
INTRODUCTORY SURVEY, ELECTROMAGNETISM AS A GAUGE THEORY, AND RELATIVISTIC QUANTUM MECHANICS
The Particles and Forces of in the Standard Model
Electromagnetism as a Gauge Theory
Relativistic Quantum Mechanics
Lorentz Transformations and Discrete Symmetries
INTRODUCTION TO QUANTUM FIELD THEORY
Quantum Field Theory I: The Free Scalar Field
Quantum Field Theory II: Interacting Scalar Fields
Quantum Field Theory III: Complex Scalar Fields, Dirac and Maxwell Fields; Introduction of Electromagnetic Interactions
TREE-LEVEL APPLICATIONS IN QED
Elementary Processes in Scalar and Spinor Electrodynamics
Deep Inelastic Electron-Nucleon Scattering and the Parton Model
LOOPS AND RENORMALIZATION
Loops and Renormalization I: The ABC Theory
Loops and Renormalization II: QED
APPENDIX A: Non-Relativistic Quantum Mechanics
APPENDIX B: Natural Units
APPENDIX C: Maxwell's Equations: Choice of Units
APPENDIX D: Special Relativity: Invariance and Covariance
APPENDIX E: Dirac Delta-Function
APPENDIX F: Contour Integration
APPENDIX G: Green Functions
APPENDIX H: Elements of Non-Relativistic Scattering Theory
APPENDIX I: The Schrödinger and Heisenberg Pictures
APPENDIX J: Dirac Algebra and Trace Identities
APPENDIX K: Example of a Cross Section Calculation
APPENDIX L: Feynman Rules for Tree Graphs in QED
References
Index
Problems appear at the end of each chapter.
"Aitchison and Hey was the ‘bible’ for me as a young post-doc in the 1980s … The book has been revised regularly as the field progressed and I am delighted to see a new edition which brings it up to date to the discovery of a Higgs-like boson at the LHC in July 2012. As an experimentalist, this book helped me understand the theoretical underpinnings of my work. Its strength has always been the combination of the theory with discussion of experimental results. The new edition continues this tradition by including background on discrete symmetries … This will become a new classic."
—Amanda Cooper-Sarkar, Oxford University, UK
"This is an indispensable textbook for all particle physicists, experimentalists and theorists alike, providing an accessible exposé of the Standard Model, covering the mathematics used to describe it and some of the most important experimental results which vindicate it. As a lecturer in an advanced course on the Standard Model for experimentalists, I use the books for the more theoretical aspects and as a constant source for clear explanations of the underlying physics. I also know it to be the recommended text on numerous theoretical modules in particle physics. … these textbooks will remain on the top of a high energy physicist’s reading list for years to come."
—Matthew Wing, University College London, UK