FRP Deck and Steel Girder Bridge Systems

FRP Deck and Steel Girder Bridge Systems: Analysis and Design

Series:
Published:
Content:
Author(s):
Free Standard Shipping

Purchasing Options

Hardback
$149.95 $119.96
ISBN 9781439877616
Cat# K13604
Add to cart
SAVE 20%
eBook (VitalSource)
$149.95 $104.97
ISBN 9781439877623
Cat# KE13774
Add to cart
SAVE 30%
eBook Rentals
Other eBook Options:
 
 

Features

  • Focuses on fiber-reinforced polymer (FRP) bridge decks, supplying comprehensive analysis and design methods
  • Discusses the advantages of using FRPs, including reduced weight and maintenance costs and enhanced durability
  • Combines analytical and practical features to make the text useful for both design engineers and researchers
  • Proposes a complete set of design guidelines—the first time for the use of FRP bridge decks
  • Presents many new or improved theories including, skin effects, buckling behavior, and homogenization theory to predict stiffness
  • Provides design examples, illustrating the use of the proposed design guidelines

Summary

Fiber-reinforced polymer (FRP) decks have been increasingly used for new construction and rehabilitation projects worldwide. The benefits of using FRP bridge decks, such as durability, light weight, high strength, reduced maintenance costs, and rapid installation, outweigh their initial in-place material costs when implemented in highway bridge projects. FRP Deck and Steel Girder Bridge Systems: Analysis and Design compiles the necessary information to facilitate the development of the standards and guidelines needed to promote further adoption of composite sandwich panels in construction. It also, for the first time, proposes a complete set of design guidelines.

Providing both experimental investigations and theoretical analyses, this book covers three complementary parts: FRP decks, shear connectors between the deck and steel girders, and the behavior of bridge systems. The text presents stiffness and strength evaluations for FRP deck panels and FRP deck-girder bridge systems. While the FRP deck studies focus on honeycomb FPR sandwich panels over steel girder bridge systems, they can be adapted to other sandwich configurations. Similarly, the shear connection and bridge system studies can be applied to other types of FRP decks. Chapters discuss skin effect, core configuration, facesheet laminates, out-of-plane compression and sheer, mechanical shear connectors, and FRP deck–steel girder bridge systems.

Based on the findings described in the text, the authors propose design guidelines and present design examples to illustrate application of the guidelines. In the final chapter, they also provide a systematic analysis and design approach for single-span FRP deck-stringer bridges. This book presents new and improved theories and combines analytical models, numerical analyses, and experimental investigations to devise a practical analysis procedure, resulting in FRP deck design formulations.

Table of Contents

Introduction
Background
Implementation of HFRP Sandwich Deck Panels in Highway Bridges
Objectives
Organization
References

FRP Deck: Stiffness Evaluation
Stiffness of FRP Honeycomb Sandwich Panels with Sinusoidal Core
On the Transverse Shear Stiffness of Composite Honeycomb Core with General Configuration
Homogenized Elastic Properties of Honeycomb Sandwiches with Skin Effect
References

FRP Deck: Strength Evaluation
Overview
Literature Review
Out-of-Plane Compression
Out-of-Plane Shear
Facesheet Study
Appendix 3.A: Strength Data of Core Materials
Appendix 3.B: Derivation of Equilibrium Equation
Appendix 3.C: Shear Test for Facesheet Laminates
Appendix 3.D: Stiffness of Facesheet Laminates and Core Materials
References

Mechanical Shear Connector for FRP Decks
Introduction
Prototype Shear Connection
Push-Out Test
Conclusions
References

FRP Deck–Steel Girder Bridge System
Overview
Experimental and FE Study on Scaled Bridge Model
Evaluation of Effective Flange Width by Shear Lag Model
References

Design Guidelines for FRP Deck–Steel Girder Bridge Systems
Design Guidelines
Example
Conclusions
References

A Systematic Analysis and Design Approach for Single-Span FRP Deck-Stringer Bridges
Introduction
Panel and Beam Analysis
FRP Cellular Decks: Elastic Equivalence
Analysis of FRP Deck-Stringer Bridge System
Design Analysis Procedures and Illustrative Example
Conclusions
References

Author Bio(s)

Dr. Julio F. Davalos is a professor and chair of the Department of Civil Engineering at the City College of New York – CUNY. His expertise is in mechanics and structural engineering, and his research work includes theoretical and experimental studies on advanced materials and systems. His work is directed to civil infrastructure rehabilitation, protection, and sustainable construction, with particular emphasis on highway bridges, buildings, and mass transit tunnels. Dr. Davalos has been honored with over 60 academic/state/national awards for teaching, research, and innovative designs and concepts, and he holds several patent applications in materials and structures. His publications record, approximately 300 articles, includes several position papers and book chapters.

Dr. An Chen is an assistant professor of civil engineering at the University of Idaho. His research background is in sustainable structural engineering, covering advanced materials, interface bond and fracture mechanics, and applied mechanics. His research can be broadly categorized into two areas: (1) green buildings and (2) sustainable civil infrastructure. Dr. Chen has extensive industrial experience as a project manager in New York City, where he completed designs of numerous new and renovation projects for high-rise and middle-rise buildings. He has three pending patents and his publications record includes about 60 refereed journal and conference papers and project reports.

Dr. Pizhong Qiao is a professor of civil and environmental engineering at Washington State University, chair professor at Shanghai Jiao Tong University, and founder of Integrated Smart Structures, Inc. (Copley, Ohio). He has been working in development, research, and application of advanced and high-performance materials in civil and aerospace engineering. His extensive publications record includes about 300 technical articles (several book chapters, 132 international journal articles, and more than 160 conference proceedings papers/presentations). He is one of the most highly cited scientists (about the top 1%) in the field of engineering according to Essential Science Indicators (ESI).

 
Textbooks
Other CRC Press Sites
Featured Authors
STAY CONNECTED
Facebook Page for CRC Press Twitter Page for CRC Press You Tube Channel for CRC Press LinkedIn Page for CRC Press Google Plus Page for CRC Press Pinterest Page for CRC Press
Sign Up for Email Alerts
© 2014 Taylor & Francis Group, LLC. All Rights Reserved. Privacy Policy | Cookie Use | Shipping Policy | Contact Us