Advanced Nanoelectronics

Advanced Nanoelectronics

Series:
Published:
Content:
Editor(s):
Free Standard Shipping

Purchasing Options

Hardback
ISBN 9781439856802
Cat# K12671

$146.95

$117.56

SAVE 20%


eBook (VitalSource)
ISBN 9781439856819
Cat# KE12641

$146.95

$102.87

SAVE 30%


eBook Rentals

Other eBook Options:
 

Features

  • Examines how advanced nanoelectronics concepts are applied to the modeling and simulation of emerging nanodevices
  • Highlights carbon-based materials concepts for application to nanotransistors
  • Models the carbon nanotube field effect transistor (CNTFET) and its circuit performance
  • Offers a comprehensive study of graphene nanoribbon field effect transistor (GNRFET) modeling
  • Discusses silicon nanowire (SiNW) field effect transistor modeling and advanced fabrication methods
  • Presents new approaches based on quantum mechanics to accurately model nanometer scale strain silicon transistors
  • Includes more than 200 black-and-white illustrations and a 16-page color insert

Summary

While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices.

The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET).

Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed.

The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Table of Contents

Fundamentals of Quantum Nanoelectronics
Jeffrey Frank Webb and Mohammad Taghi Ahmadi

Carbon-Based Materials Concepts and Basic Physics
Mohammad Taghi Ahmadi, Jeffrey Frank Webb, Razali Ismail, and Moones Rahmandoust

Carbon Nanotube Field Effect Transistor Model
Mohammad Taghi Ahmadi and Razali Ismail

Carbon Nanotube Circuit Analysis and Simulation
Desmond C.Y. Chek and Razali Ismail

Graphene Nanoribbon Field Effect Transistors
Noraliah Aziziah Md. Amin, Mohammad Taghi Ahmadi, and Razali Ismail

Carrier Transport, Current–Voltage Characteristics of BGN
Seyed Mahdi Mousavi, Meisam Rahmani, Hatef Sadeghi, Mohammad Taghi Ahmadi, and Razali Ismail

Bilayer Graphene Nanoribbon Transport Model
Hatef Sadeghi, Seyed Mahdi Mousavi, Meisam Rahmani, Mohammad Taghi Ahmadi, and Razali Ismail

Trilayer Graphene Nanoribbon Field Effect Transistor Modeling
Meisam Rahmani, Hatef Sadeghi, Seyed Mahdi Mousavi, Mohammad Taghi Ahmadi, and Razali Ismail

Graphene Nanoribbon Transistor Model: Additional Concepts
Mahdiar Ghadiry, Mahdieh Nadi, and Asrulnizam Abd Manaf

Silicon Nanowire Field Effect Transistor Modeling
Amir Hossein Fallahpour and Mohammad Taghi Ahmadi

Silicon Nanowires/Nanoneedles: Advanced Fabrication Methods
Habib Hamidinezhad and Yussof Wahab

Top-down Fabrication of ZnO Nanowire FET
Suhana Mohamed Sultan, Peter Ashburn, and Harold Chong

Quantum Mechanical Effects in Nanometer Scale Strained Si/Si1−x Gex MOSFETs
Kang Eng Siew and Razali Ismail

Nanoelectronics Research and Commercialization in the United States
Sohail Anwar

Appendix

Glossary

Index

Author Bio(s)

Editorial Reviews

"This book provides research information pertaining to nanoelectronic concepts, focusing on modeling and simulation of various nanodevices while developing and applying numerical algorithms to investigate devices. The book begins by clearly explaining key quantum-mechanical concepts. Some very useful background [is] covered. … The remainder of the book covers various aspects of theory and modeling of carbon and graphene nanotube transistors, silicon nanowires, ZnO transistors, and strained silicon transistors. … An interesting comparison is made between a SPICE circuit model and a quantum theory model used to illustrate the different results and to show why traditional circuit analysis will not yield the correct model. … There are MATLAB programs in the appendix for all the different models discussed in the book. The book ends with discussion on the technical and economic challenges that face commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers to success. This is an essential resource for the researchers and scientists working on advanced nanoelectronics. It provides state-of-the-art technical and scientific information on key areas of the most promising nanoelectronic devices being developed today."
IEEE Electrical Insulation Magazine, March/April 2014
Reviewer: John J. Shea, Eaton Corporation, Moon Township, Pennsylvania, USA