The Top Ten Algorithms in Data Mining

The Top Ten Algorithms in Data Mining

Series:
Published:
Content:
Editor(s):
Free Standard Shipping

Purchasing Options

Hardback
$96.95 $77.56
ISBN 9781420089646
Cat# C9641
Add to cart
SAVE 20%
eBook (VitalSource)
$96.95 $67.87
ISBN 9781420089653
Cat# CE9641
Add to cart
SAVE 30%
eBook Rentals
Other eBook Options:
 
 

Features

  • Presents the most influential algorithms indentified by a top-tier conference in the field, the 2006 IEEE International Conference on Data Mining (ICDM)
  • Provides algorithm descriptions, available software, illustrative examples and applications, advanced topics, and exercises in each chapter
  • Explores classification, clustering, statistical learning, association analysis, and link mining
  • Promotes data mining to wider real-world applications

Summary

Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.

The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.

By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.

Table of Contents

C4.5, Naren Ramakrishnan

K-Means, Joydeep Ghosh and Alexander Liu

SVM: Support Vector Machines, Hui Xue, Qiang Yang, and Songcan Chen

Apriori, Hiroshi Motoda and Kouzou Ohara

EM, Geoffrey J. McLachlan and Shu-Kay Ng

PageRank, Bing Liu and Philip S. Yu

AdaBoost, Zhi-Hua Zhou and Yang Yu

kNN: k-Nearest Neighbors, Michael Steinbach and Pang-Ning Tan

Naïve Bayes, David J. Hand

CART: Classification and Regression Trees, Dan Steinberg

Index

Editorial Reviews

… The text is easy to read as each chapter focuses on a particular algorithm and a consistent presentation style has been adopted throughout the book … Each chapter was reviewed by two independent reviewers and one of the book editors—resulting in a text that will be a useful reference source for years to come.
International Statistical Review, 2010

If you are a quality professional looking for data analysis techniques beyond multiple regression, and you are comfortable reading high level mathematics, then this book may be for you.
Journal of Quality Technology, Vol. 41, No. 4, October 2009

 
Textbooks
Other CRC Press Sites
Featured Authors
STAY CONNECTED
Facebook Page for CRC Press Twitter Page for CRC Press You Tube Channel for CRC Press LinkedIn Page for CRC Press Google Plus Page for CRC Press Pinterest Page for CRC Press
Sign Up for Email Alerts
© 2014 Taylor & Francis Group, LLC. All Rights Reserved. Privacy Policy | Cookie Use | Shipping Policy | Contact Us