Structure Property Correlations for Nanoporous Materials

Free Standard Shipping

Purchasing Options

ISBN 9781420082746
Cat# 82744



SAVE 20%

eBook (VitalSource)
ISBN 9781420082753
Cat# E82744



SAVE 30%

eBook Rentals

Other eBook Options:


  • Offers essential information and methods for researchers in the field of nanoporous materials
  • Highlights procedures needed to interpret experimental observations
  • Provides methods to simulate synthesis, characterization, surface structure, and catalytic activity in conjunction with experiments
  • Explores developments of catalytic materials for the petroleum refining, petrochemicals, and fine chemicals industries
  • Encourages useful applications in biology concerning ion exchange, adsorption, sensor, host-guest synthesis, and molecular isolation


Nanoporous materials are critical to various fields of research, including ion exchange, separation, catalysis, sensor applications, biological molecular isolation, and purification. In addition, they offer new opportunities in such areas as inclusion chemistry, guest-host synthesis, and molecular manipulations and reactions at the nanoscale. In Structure Property Correlations for Nanoporous Materials, pioneering researcher Abhijit Chatterjee guides experimentalists in their design of nanoporous material using computer simulation methodologies.

The book begins with a comprehensive overview of nanoporous materials. It describes their function, examines their fundamental properties, including catalytic effects and adsorption, demonstrates their importance, explores their applications based on theoretical and experimental studies, and highlights the challenges they pose as well as their future prospects.

Explores simulation methodologies

Next, the book moves on to molecular modeling, placing a heavy focus on Monte Carlo simulation. It examines density functional theory (DFT) and local reactivity descriptors. It also discusses the synthesis of nanoporous materials, the structural characterization of materials in terms of chemical composition, spectroscopic analysis, mechanical stability, and porosity; and the design of new nanoporous materials. Dr. Chatterjee explores projected applications and concludes with a discussion of the catalytic activity of nanoporous materials and reaction mechanisms.

The text is supplemented with experiments and simulation instructions to clarify the theoretical analysis. Conveying the significance of the combination of traditional experimental work and molecular simulation, the book enables experimentalists to achieve better results with less effort.

Table of Contents

Basic Aspects of Nanoporous Materials
Key Material of Interest
Major Applications
The Challenges
The Future

Molecular Modeling
General Introduction
Monte Carlo Simulation
Molecular Mechanics
Molecular Dynamics

Density Functional Theory
Basic Wave Mechanics
Density Matrix
Chemical Potential
Modeling of Chemical Bonds

Local Reactivity Descriptors
Electronic Fukui Function
Nuclear Fukui Function
Local Softness and Local Hardness

Synthesis of Nanoporous Material
Nucleation and Growth
Screening Raw Material
Optimizing the Bulk Structure with Varied Composition
Stability Test with High Temperature and Pressure
Microscopic Understanding

Characterization of Nanoporous Materials
Chemical Composition
Spectroscopic Analysis
Mechanical Stability
Bulk Porosity-Comparison with Adsorption Isotherm

Surface Activity Measurement
Surface Area
Surface Chemistry
Surface Confinement
Surface Activity
Chemisorption / Physisorption
Surface Characterization: A Comparison with Experimental Tools

Application of Nanoporous Material
Photonic Crystals

Catalytic Reaction
Shape Selectivity
Chemical Adsorption
Cracking Reaction
Transition State Theory


Author Bio(s)

Abhijit Chatterjee received his Ph. D. from Burdwan University in West Bengal, India. He has travelled around the world and collaborated with many groups in catalysis before settling in Japan as a researcher in the field of computational chemistry. His research interest is focused on density functional theory and its application on different materials especially related to catalysis (zeolite, clay, and oxides).

Downloads / Updates

Resource OS Platform Updated Description Instructions Cross Platform March 10, 2014