1st Edition

Nanotechnology for Cancer Therapy

Edited By Mansoor M. Amiji Copyright 2006
    850 Pages
    by CRC Press

    850 Pages
    by CRC Press

    While simultaneous breakthroughs occurring in molecular biology and nanoscience/technology will ultimately revolutionize all of medicine, it is with our efforts to prevent, diagnose, and treat cancer that many of the most dramatic advances will occur. In support of this potential, the U.S. National Cancer Institute (NCI) established the Alliance for Nanotechnology in Cancer in 2004 and pledged $144.3 million in funding over the next five years.

    Edited by one of the most dynamic pioneers in the field, Nanotechnology for Cancer Therapy focuses on those nanoscientific and nanotechnological strategies that are evolving as the most promising for the imaging and treatment of cancer. Among the various approaches considered, nanotechnology offers great possibilities for the targeted delivery of drugs and genes to tumor sites and the ultimate replacement of those chemotherapeutic agents so compromised by side effects.

    Within this volume, the expertise of world-renowned academic and industrial researchers is brought together to provide a comprehensive treatise. Composed of 38 chapters, the book is divided into 7 sections that cover -

  • Fundamentals of targeting strategies, nanotechnology characterization for cancer therapy, and USFDA guidelines on approval of nanotechnology products
  • Polymeric conjugates used for tumor-targeted imaging and delivery, including imaging to evaluate therapeutic efficacy
  • Polymeric nanoparticle systems that emphasize biodegradable, long-circulating nanoparticles for passive and active targeting
  • Polymeric micellar assemblies, where sophisticated chemistry is leading to novel nanosystems that can provide efficient delivery to tumors
  • Dendritic nanostructures used for cancer imaging and therapy
  • Liposome-based delivery systems -- the oldest nanotechnology method employed in cancer therapy
  • Other lipid nanosystems used for targeted delivery, including those tha

  • Nanotechnology and Cancer. Polymer Conjugates. Polymeric Nanoparticles. Polymeric Micelles. Dendrimer Nanocarriers. Liposomes. Other Lipidic Nanostructures.

    Biography

    Dr. Mansoor M. Amiji received his undergraduate degree in pharmacy from Northeastern University in 1988 and his PhD in pharmaceutics from Purdue University in 1992. His areas of specialization include polymeric biomaterials, advanced drug delivery systems, and nanomedical technologies. Dr. Amiji’s research interests include the synthesis of novel polymeric materials for medical and pharmaceutical applications; surface modification of cationic polymers by the complexationinterpenetration method to develop biocompatible materials; the preparation and characterization of polymeric membranes and microcapsules with controlled permeability properties for medical and pharmaceutical applications; target-specific drug and vaccine delivery systems for gastrointestinal tract infections; localized delivery of cytotoxic and anti-angiogenic drugs for solid tumors in novel biodegradable polymeric nanoparticles; intracellular delivery systems for drugs and genes using target-specific, long-circulating, biodegradable polymeric nanoparticles; and gold and iron-gold core-shell nanoparticles for biosensing, imaging, and delivery applications. His research has received sustained funding from the National Institutes of Health (NIH), the National Science Foundation (NSF), foundations, and local industries. Dr. Amiji is Professor and Associate Chair of the Pharmaceutical Sciences Department and Co- Director of the Northeastern University Nanomedicine Education and Research Consortium (NERC). The NERC oversees a doctoral training grant in nanomedicine science and technology that was co-funded by the NIH and NSF. He has two published books, Applied Physical Pharmacy and Polymeric Gene Delivery: Principles and Applications, along with numerous manuscript publications. He has also received a number of awards, including the 2003 Eurand Award for Innovative Oral Drug Delivery Research, Third Prize. Dr. Amiji has supervised the research efforts of over 50 postdoctoral associates, doctoral and mas