HANDOUT

How to Fold an Equilateral Triangle

The goal of this activity is to fold an equilateral triangle from a square piece of
paper.

Question 1: First fold your square to produce a 30°-60°-90° triangle inside it. Hint:
You want your folds to make the hypothenuse twice as long as one of the sides.
Keep trying! Explain why your method works in the space below.

Question 2: Now use what you did in Question 1 to fold an equilateral triangle
inside a square.

Follow-up: If the side length of your original square is 1, what is the length of a
side of your equilateral triangle? Would it be possible to make the triangle’s side
length bigger?



HANDOUT

What's the Biggest Equilateral Triangle
In a Square?

If we are going to turn a square piece of paper into an equilateral triangle, we’d
like to make the biggest possible triangle. In this activity your task is to make a
mathematical model to find the equilateral triangle with the maximum area that
we can fit inside a square. Follow the steps below to help set up the model.

Question 1: If such a triangle is maximal, then can we assume that one of its
corners will coincide with a corner of the square? Why?

Question 2: Assuming Question 1, draw a picture of what your triangle-in-the-
square might look like, where the “common corner” of the triangle and square
is in the lower left. Now you'll need to create your model by introducing some
variables. What might they be? (Hint: One will be the angle between the bottom
of the square and the bottom of the triangle. Call this one 6.)

Question 3: One of your variables will be your parameter that you'll change un-
til you get the maximum area of the triangle. Pick one variable (and try to pick
wisely—a bad choice may make the problem harder) and then come up with a
formula for the area of the triangle in terms of your variable.



Question 4: With your formula in hand, use techniques you know to find the value
of your variable that gives you the maximum area for the equilateral triangle. Be
sure to pay attention to the proper range of your parameter.

Question 5: So, what is your answer? What triangle gives the biggest area? Find
a folding method that produces this triangle.

Follow-up: Your answer to Question 5 can also give a way to fold the largest
reqular hexagon inside a square piece of paper. Can you see how this would work?



HANDOUT

What's the Biggest Equilateral Triangle
In a Square?

In this activity your task is to find the biggest equilateral triangle that can fit inside
a square of side length 1. (Note: An equilateral triangle is the triangle with all sides
of equal length and all three angles measuring 60°.) The step-by-step procedure
will help you find a mathematical model for this problem, and then to solve the
optimization problem of finding the triangle’s position and maximum area.

Here are some random examples:

Question 1: If such a triangle is maximal, then can we assume that one of its
corners will coincide with a corner of the square? (Hint: The answer is yes. Explain
why.)

Question 2: Assuming Step 1 above, draw a picture of what your triangle-in-the-
square might look like, where the common corner of the two figures is in the lower
left. (Hint: See one of the four examples above.) Now you’ll need to create your
model by labeling your picture with some variables. (Hint: Let 6 be the angle
between the bottom of the square and the bottom of the triangle. Let x be the side
length of the triangle.)



Question 3: Come up with the formula for the area of the triangle in terms of
one variable, x. Then, find an equation that relates your two variables, x and 6.
Combine the two to get the formula for the area of the triangle in terms of only

one variable, . (Hint: Your last formula will be A = @ sec?0.)

Question 4: What is the range of your variable 6? Explain. (Hint: The range
should be 0° < 6 < 15°))



Question 5: Most important part: With your formula and the range for ¢ in hand,
use techniques of optimization to find the value of 6 that gives you the maximum
area for the equilateral triangle. Also, find the value of this maximum area. (Hint:
For simplicity, you may want to express all trigonometric functions in terms of sin
and cos).
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Proving the Double-Angle Formulas

Make a piece of paper shaped like a right triangle with smallest angle 6.

Fold the corner of the smallest angle to the other corner, as shown above. Then

fold along the edge of the flap that you just made. Unfold everything.

The result of your folding will be that your triangle is
divided into three smaller triangles, as shown to the
right. Label the points of this figure A through D

and O, as shown, and let AO = 1and OC = 1.
(You can think of O as the center of
a circle of radius 1.)

A

C

Whatis ZCOD in terms of 6?2 /COD =

Write the following lengths in terms of trigonometric functions of the angle 0:

CD = OD =

Question 1: Looking at the big triangle ACD, what is sin 6 equal to? Use this to

generate the double-angle formula for sin 26.

Question 2: Looking at triangle ACD again, what is cos8? Use this to find the

double-angle formula for cos 26.
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Trigonometry on Other Triangles

In high school you learn the side lengths of 45°-45°-90° triangles and 30°-60°-90°
triangles, and this allows you to know precisely what sine, cosine, and tangent are

for these angles. For example, you know that sin 60° = v/3/2 because of the 1, 2,

and /3 sides of a 30°-60°-90° triangle.
But what about other triangles? We can find exact side lengths for other trian-
gles too if we fold up triangles that we already know!

}x

Exercise 1: Take a 30°-60°-90° triangle and fold the 30° leg up to the hypothenuse
making a 15° angle. Then fold the rest of the triangle over this flap, as shown
above, and unfold.
What is the length labeled x in these figures? 2—/3
(Hint: Do you see any similar triangles?) ]

V3

15° []

Use your answer from above to find the best exact lengths for a 15°-75°-90°
triangle, where we scale the lengths to make the short side length 1. (Try to make
your lengths as simple as possible.)

15°

Fill in the blanks: sin 15° = ,cos15° = ,tan15° =

Exercise 2: Do the same thing with a 45°-45°-90° triangle to find exact lengths of a
22.5°-67.5°-90° triangle.
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How Do You Divide a Strip into Nths?

Oftentimes in origami we are asked to fold the side of a square piece of paper
into an equal number of pieces. If the instructions say to fold it in half or into
fourths, then it’s easy to do. But if they ask for equal fifths, it’s a lot harder. Here
you’ll learn a popular origami way of doing this, called Fujimoto’s approximation
method.

(1) Make a guess pinch where you think a 1/5 mark might be, say on the left
side of the paper.

(2) To the right of this guess pinch is ~ 4/5 of the paper. Pinch this side in half.

(3) Thatlast pinch is near the 3/5 mark. To the right of this is ~ 2 /5 of the paper.
Pinch this right side in half.

(4) Now we have a 1/5 mark on the right. To the left of this is ~ 4/5. Pinch this
side in half.

(5) This gives a pinch nearby the 2/5 mark. Pinch the left side of this in half.
(6) This last pinch will be very close to the actual 1/5 mark!
1/5+E
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Once you do this you can repeat the above steps starting with the last pinch
made, except this time make all your creases sharp and go all the way through
the paper. You should end up with very accurate 1/5ths divisions of your paper.

Question: Why does this work?

Tip: If the strip is one unit length, then your first “guess pinch” can be thought of
as being at 1/5 £ E on the x-axis, where E represents the error you have. In the
above picture, write in the x-position of the other pinch marks you made. What
would their coordinates be?

Explain: Seeing what you did in the tip, write, in a complete sentence or two, an
explanation of why Fujimoto’s approximation method works.
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Details of Fujimoto’s Approximation
Method

(1) Binary decimals?
Recall how our base 10 decimals work: We say that 1/8 = 0.125 because

11,2 .5
8 10 102 ' 103

If we were to write 1/8 as a base 2 decimal, we would use powers of 2 in the

1
denominators instead of powers of 10. So we'd get = = 0 + v + —. We write

8§ 2 22 23
this as 1/8 = (0.001)5.
Question 1: What is 1/5 written as a base 2 decimal?

Question 2: When we did Fujimoto’s approximation method to make 1/5ths,
what was the sequence of left and right folds that we made? What's the connection
between this and Question 1?

Question 3: Take a new strip of paper and use Fujimoto to divide it into equal
1/7ths. How is this different from the way 1/5ths worked? Find the base 2 decimal
for 1/7 and check your observations made in Question 2.



(2) A discrete dynamics approach... (courtesy of Jim Tanton)

We’ve been assuming that our strip of paper lies on the x-axis with the left end
being at 0 and the right end at 1. Let’s define two functions on this interval [0, 1]:

X x+1
To(x):zandTl(x): 7

Question 4: What do these two functions mean in terms of Fujimoto’s method?

Question 5: Let x € [0,1] be our initial guess in Fujimoto’s method for approxi-
mating 1/5ths. (So x will be something like 1/5 & E.) Write x as a binary decimal,
X = (0111213 .. .)2.

What will Tp(x) be? How about T; (x)? Proofs?

Question 6: As we perform Fujimoto’s method on our initial guess x, we can
think of it as performing Ty and T; over and over again to x. When approximating
1/5ths, what happens to the binary decimal of x as we do this? Use this to prove
the observation that you made in Question 2.



(3) A number theory question. .. (courtesy of Tamara Veenstra)

In Question 3 you were asked to use Fujimoto to approximate 1/7ths, and you
should have noticed that in doing so you do not make pinch marks at every mul-
tiple of 1/7, unlike when approximating 1/5ths. Indeed, only pinch marks at 1/7,
4/7,and 2/7 are made.

1/7IiE 4/7+E /2
e 2

4

2/7+E /4
1/7+E/8

We can keep track of what’s going on in a table, like the one 7ths | 7ths
to the right. The first line shows how many 1/7ths are on left | right
the left of the first pinch and how many are on the right. The
second line does the same for the second pinch, and so on.
As you can see, the right side starts at 6 and comes back to 6
after only 3 lines. So it doesn’t make all 1/7ths pinch marks. 1

N
N U1 WO O

Assignment: Make similar tables for 1/5ths, 1/9ths, 1/11ths, and 1/19ths:

11ths | 11ths 19ths | 19ths

Sths | 5ths 9ths | 9ths left | right 191& ﬂié;t
left | right left | right 1 10
1 4 1 8

Question 7: Think about what these tables are telling you in the number system
Z (the integers mod n) under multiplication, where # is the number of divisions.
Then answer the question: How can we tell whether or not Fujimoto will give us
pinch marks at every multiple of 1/n when approximating 1/nths?
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What'’s This Fold Doing?

Below are some origami instructions. Take a square and make creases by folding
it in half vertically and folding one diagonal, as shown. Then make a crease that
connects the midpoint of the top edge and the bottom right-hand corner.

Question 1: Find the coordinates of the point P, where the diagonal creases meet.
(Assume that the lower left corner is the origin and that the square has side length 1.)

Question 2: Why is this interesting? What could this be used for?

Question 3: How could you generalize this method, say, to make perfect 5ths or
nths (for n odd)?
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Folding Perfect Thirds

It is easy to fold the side of a square into halves, or fourths, or eighths, etc. But
folding odd divisions, like thirds, exactly is more difficult. The below procedure

is one was to fold thirds.

1) )

2 \

/

Question 1: Prove that this method actually works.

(3)

1/3
R

Question 2: How could you generalize this method, say, to make perfect Sths or

nths (for n odd)?
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Folding a Helix

This model pleats the paper so that it twists. When made from a long strip the

result is a helix.

m

(1) Fold and unfold in
half, from side to
side.

1 1
/ /

,

i i i

(4) Now fold all the creases at the
same time. The result will be a

c——la——
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(2) Fold the sides to (3) Now carefully fold
the center and un- diagonal creases in
fold. Turn over. each rectangle.

square that has been twisted.

If you let the model be 3D, it makes an
interesting shape!

Folding this model from
a strip of paper makes a
twisted helix shape, as
shown on the left. (You need
to make a lot more divisions
along the strip for this to
work.)



Question: If we made more divisions in steps (1)—(2) in the above instructions, we
would get more of a twist from our square. Below is a row of examples made with
only 3 divisions as in steps (1)—(2), with 6 divisions, with 8 divisions, and with 13
divisions. In each the angle « is slowly getting smaller!

%%

So the question is, what happens to this angle « as we make more and more
divisions?

Or, putting it another way, how much does the square twist as we make more
and more divisions? Will it keep twisting more and more, or does it approach a
limit?




HANDOUT

Exploring a Basic Origami Move

Origami books display many different folding moves that can be made with paper.
One common move, especially in geometric folding, is the following:

Given two points p; and p, and a line L, fold p; onto L so that the
resulting crease line passes through p».

Let’s explore this basic origami operation by seeing exactly what is happening
when we fold a point to a line.

Activity: Take a sheet of regular writing paper, and let one side of it be the line L.
Choose a point p somewhere on the paper, perhaps like below. Your task is to fold
p onto L over and over again.

It is easier, actually, to fold L to p, by bending the paper until L touches p
and then flattening the crease. Do this many times—as many as you can stand!—
choosing different points p’ where p lands on L.

Question 1: Describe, as clearly as you can, exactly what you see happening. What
are the crease lines forming? How does your choice of the point p and the line L
fit into this? Prove it.



Now we'll try to find the equation for the curve you discovered.

First, let’s define where things lie on the xy-plane. Let the point p = (0,1) and
let L be the line y = —1. Now suppose that we fold p to a point p’ = (¢, —1) on the
line L, where ¢ can be any number.

Question 2: What is the relationship between
the line segment pp’ and the crease line?
What is the slope of the crease line?

A
\
\
\
\
\
\
\
\

Y

Question 3: Find an equation for the crease line. (Write it in terms of x and y,
although it will have the t variable in it as well.)

Question 4: Your answer to Question 3 should give you a parameterized family
of lines. That is, for each value of ¢ that you plug in, you'll get a different crease
line. For a fixed value of ¢, find the point on the crease line that is tangent to your
curve from Question 1.

Question 5: Now find the equation for the curve from Question 1.
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Origami with Geometry Software

In this activity we’ll use geometry software, like Geogebra or Geometer’s Sketch-
pad, to explore a basic origami move:

Given two points p; and p, and a line L, fold p; onto L so that the
resulting crease line passes through p».

We'll explore this basic origami operation by modeling on the software what hap-
pens when we fold a point to a line. We’ll make use of a key observation:

When we fold a point p to a point p/, the crease line we make will be

the of the line segment
e 0o GeoGebra
o’ . [N ARG . . aet] Move )
‘I LIS /{, B A et O, ey '{L xf AECT —3: ‘%’7 Drag or select objects (Esc)
Algebra ~ =% Graphics =

= Free Objects
5 A = (-2.94, 0.02)
s B =(7.76, -1.14)
5P = (1.7, 3.6)
= Dependent Objects
5 C = (3.32,1.38)
7 L:1.16x + 10.7y = -3.2
3 P' = (4.95, -0.84)
sb=55
3 ¢ -3.25X + 4.44y = -4.67

Input: 1]

Instructions: Open a new worksheet in your software (above is shown Geogebra).
(1) Draw aline AB and label it L.
(2) Make a point not on L, call it p.
(3) Make a pointon L, call it p’.

Then, with the key observation above, use the software’s tools to draw the
crease line made when folding p to p’.

Once you’ve done this, select the crease line and turn on Trace of the line (in
Geogebra, CTRL-click or right-click on the line to do this). Then you can move p’
back and forth across L and make many different crease lines. In this way you can
make software do the “folding” for you! (Plus, it looks cool.)

Follow-up: What happens if we use a circle instead of the line L?
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What's This Doing?

Take a square piece of paper and fold a line from the lower-left corner going up at
some angle, 6. Then fold the paper in half from top to bottom and unfold. Then
fold the bottom 1/4 crease line. That should give you something like the left figure
below.

LZ
)
/ /s
N
\ L,
0 pl \

Then do the operation in the middle figure: Make a fold that places point p;
onto line L; and at the same time places point p, onto line L. You will have to
curl the paper over, line up the points, and then flatten.

Lastly, with the flap folded, extend the L; crease line shown in the right-most
figure. Call this crease line L3.

Question 1: Unfold everything. Prove that we if we extend L3 then it will hit the
lower-left corner, p;.

Question 2: What is crease line L3 in relation to the other lines in the paper? Can
you prove it, or is this just a coincidence?
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A More Complicated Fold

The origami angle trisection method is able to do what it does by using a rather
complex origami move:

Given two points p; and pp and two lines L; and Ly, we can make a
crease that simultaneously places p; onto L and p;, onto L,.

Question 1: Will this operation always be possible to do, no matter what the choice
of the points and lines are?

Question 2: Remember that when we fold a point p to a line L over and over
again, we can interpret the creases as being tangent to a parabola with focus p
and directrix L. What does this tell us about this more complex folding operation?
How can we interpret it geometrically? Draw a picture of this.



Activity: Let’s explore what this operation
is doing in a different way. Take a sheet
of paper and mark a point p; (somewhere
near the center is usually best) and let the
bottom edge be the line L;.

Pick a second point p; to be anywhere else
on the paper. Our objective is to see where
p2 goes as we fold p; onto L1 over and over
again.

So pick a spot on L; (call it p}) and fold it
up to p;. Using a marker or pen, draw a
point where the folded part of the paper
touches py. (If no other parts of the pa-
per touch py, try a different choice of p}.)
Then unfold. You should see a dot (which
we could call p}) that represents where p,
went as we make the fold.

Now choose a different pj and do this over
and over again. Make enough p), points so
that you can connect the dots and see what
kind of curve you get.

Question 3: What does this curve look like? Look at other people’s work in the
class. Do their curves look like yours? Do you know what kind of equation would

generate such a curve?

P1
()

L, o ~
P1
P1
2
mark here
P1
[}
P2
[ ]
Ly re
o~
P1
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Simulating This Curve with Software

We're still considering this unusual origami maneuver:

Given two points p; and pp and two lines L; and Ly, we can make a
crease that simultaneously places p; onto L and p, onto L,.

So that you don’t have to keep folding paper over and over again, let's model our
folding activity using geometry software, like Geogebra. This will allow us to look
at many examples of the curve this operation generates and do so very quickly.

[y U . . Move
SO, . DURER: "
MO0 4] [N] rec, Drag or select objects (Esc)

7% Graphics

5B = (858, -2.44)
5 P1 = (-0.24, 2.48)
5 P2 = (4.52,0.82)
= Dependent Objects
5L1: 0.28x + 11.58y = -25.8!
4 P1' = (3.16, -2.31)
9 P2' = (3.16,2.73)
b =587
5 € -3.4% + 4.79y = -4.56

Input [}

Here’s how to set it up:
(1) Make the line L; and the point p;.

(2) Make a point p} on L; and construct a line segment from p; to pj.

(3) Construct the perpendicular bisector of p;p}. This makes the crease line.
(4) Now make a new point, p;.

(5) Reflect the point p, about the crease line made in step (3). In Geogebra, this
is done using the Reflect Object about Line tool. The new point should be
labeled pj,.

Then when you move p) back and forth along L, the software will trace out
how p) changes. You can either draw this curve by turning on the Trace of p)
(CTRL-click or right-click on p} to turn this on in Geogebra) or use a Locus tool to
plot the locus of p} as p; changes.

Activity: Move p; to different places on the screen and see how the curve changes.
How many different basic shapes can this curve take on? Describe them in words.
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What Kind of Curve Is It?

To see what type of curve this operation is giving us, make a model of the fold.

Let p; = (0,1).

Let L; be the liney = —1.

We'll fold pq to pj = (t,—1) on L.
Let py = (a,b) be fixed.

Then, we want to find the
coordinates of p) = (x,y),

the image of pp under

the folding. This will give us
an equation in terms of x and
y that should describe

the curve that we got in

our folding activity.

po=1(a,b)
p=01) o
-7 e
< /\Q; > P2 = (¥,Y)
_ -7 p]’ = (tr_l)

Instructions: Find the equation of the crease line that we get when folding p;
onto p}. Use this and the geometry of the fold to get equations involving x and y.
Combine these to get a single equation in terms of x and y (with the constants a
and b in it as well, but no ¢ variables). What kind of equation is this?
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Lill's Method for Solving Cubics

In this activity you'll learn Lill’'s Method for using geometry to solve cubic equa-
tions. Lill’s Method is cool because we can do it via origami!
Imagine we want to solve (find a real root) of the following cubic:

ax® +bx’> +cx+d =0.

Setup: Start at the origin, point O,
and draw a line segment of length a
along the positive x-axis. Then rotate P3

90° counterclockwise and go up a

length of b. Repeat: Turn 90°
counterclockwise and go a length of c,
then turn once more and travel a distance
d, ending at a point T.

d

Note: If any of the coefficients
are negative, then go backwards.
If any are zero, then rotate but do .

not travel.

Then imagine that we stand at the
point O and try to “shoot” T with

a bullet that bounces off the coefficient
path at right angles, as shown.

Lill’s Method states that if we can successfully hit the point T with such a bullet
path, and 6 is the angle the path makes at O, then x = — tan § will be a root of our

cubic equation!

Your task: Prove that Lill’s Method for solving a cubic equation is correct. (Hint:
What do you notice about the triangles in the figure? And what is tan 6 equal to?)
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Lill's Method via Origami

We can use origami to solve any cubic equation by using Lill’'s Method. This idea

was discovered by the Italian mathematician Margherita Beloch in 1933.

N A
L, '~ X
\
d
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Here is how:

(1) Draw (or fold) the coefficient path from Lill’s Method on your paper.

(2) Then fold a line perpendicular to the x-axis at a distance of a from p1p; (on
the side opposite of O). Call this line L.

(3) Then fold a line perpendicular to the y-axis at a distance d from p,p3 (on the

side opposite of T). Call this line L,.

(4) Then fold O onto L; while at the same time folding T onto L;. This crease line
will form one side of the bullet path needed for Lill’'s Method (and contain

the angle 6 that we need).

Activity: Study the above instructions, and then try it yourself to find the roots of

the polynomial x> — 7x — 6 only using paper folding.

Doing this will require you to think of
the paper as the xy-plane, decide
where the origin should be, and fold
the coefficient path. Try setting this
up as shown to the right, and

then fold the point O onto

the line Ly while also

placing T onto L,.

—4

Ly

12

Ly
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Lill'sMethod Example: Step-by-Step Folds

This handout provides step-by-step folds for making the crease lines needed to
solve x3 — 7x — 6 = 0 using Lill’'s Method. Begin with a large square piece of paper,
and imagine that it goes from —4 < x < 12 and —8 < y < 8 in the xy-plane.

& S

)
)

12 —

4

12

'S
0

(1) Crease in half to

(2) Pinch in half at x =

(3) Fold the y-axis and

make the x-axis. 4. the x = 8 line.
T T
1 |
1 |
1 I J
1 I
—4 of 21 8 124 o 1|2 4 5 124 oRL[2 2 8 12
: : i
1 I
1 I z
1 |
(4) Fold the x = 2 line. (5) Fold the x =1 line. (6) Make these pinches.
Ly
Al .j ‘] :
a5t 124 : 12 Draw points O = (0,0)
2t oL i and T = (8,6) and
. lines L; : y = —6 and
T (B TS T — - L, : x = 2. The co-
? efficient path is drawn

(4) Fold the y = —6 line
and a pinch aty = 6.

(5) Ready for Lill’s
Method!

from O to T in bold.
Do you see why this is
the path?
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Knotting a Strip of Paper

Activity: Take a long strip of paper and tie it into a tight, flat knot. That may sound
weird, so the below picture might help.

Question 1: Prove that this pentagon is regular (all sides have the same length).

Tip: When bouncing a billiard
ball off a wall, the “angle of in-
cidence” equals the “angle of re-
flection.” Is anything like that
going on here?

angle of \ / angle of
incidence reflection

Question 2: Can you tie a strip of paper into any other knots? Hexagon, heptagon
(7 sides), or octagon? How about triangle or square? Explore this and make a
conjecture about what you think is going on.



Question 3: In the previous question, you should have been able to make some
other knots. For example, it is possible to make an octagon knot in a number of
different ways. Below is shown one way;, finished off in two different fashions.

Think of each side of the octagon as being a number, starting with 0 as the side
the strip entered. Then the strip weaves around and then either exits once the
polygon is finished or when you get back to 0.

In what order does the paper hit the sides? Does this remind you of anything
about the cyclic group Zg (the integers mod 8)? Use this concept to prove the
conjecture that you made in Question 2.

or

Question 4: What if we allowed ourselves to use more than one strip of paper?
It turns out that then we can make just about any knot. Below are shown ways a
hexagonal knot and a nonagonal (9 sides) knot can be made from 2 and 3 strips, re-
spectively. How can the group Z, be used to analyze what these knots are doing?
What do the individual strips represent?

\V4
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Folding TUPs

Take a square piece of paper and label the lower right-hand corner A. Pick a ran-
dom point on the paper and fold A to that point. This creates a flap of paper, called
the Turned-Up Part (or TUP for short).

a triangle

A

How many sides does your TUP have? Three? Four? Five?

Your task: Experiment with many TUPs to find an answer to the question, “How
can we tell how many sides a TUP will have?”

Follow-up: What if we allowed the point to be outside the square? Then what are
the possibilities?



HANDOUT

Haga’s Origamics: All Four Corners
to a Point

Take a square piece of paper and pick a point on it at random. Fold and unfold
each corner, in turn, to this point. The crease lines should make a polygon on the
square. (Some sides of the square may be sides of this polygon.)

e

a hexagon

How many sides does your polygon have? Five? Six? Could it have three,
four, or seven?

Your task: Do this “all four corners to a point” exercise on many squares of paper.
How can you tell how many sides your polygon will have?

Follow-up: What if we used a rectangle instead of a square? Then what are the
possibilities?



HANDOUT

Haga’s Origamics: Haga's Theorem

Take a square piece of paper and mark a point P at random along the top edge of
the paper. Then fold the lower right corner to this point.

P
L

Question 1: What nice relationship must be true about the triangles A, B, and C?
Proof? (This is known as Haga’s Theorem.)

Question 2: Suppose that you took the point P to be the midpoint of the top edge.
Use Haga’s Theorem to find out what the lengths x and y must be in the below
figure.




HANDOUT

Haga’s Origamics: Mother and
Baby Lines

Take a square piece of paper and make a random crease through it. (Like in figures
A and B below. This is called the mother line.) Then fold and unfold all the other
sides of the paper to this line. (Like in figures C-F below. These are called baby
lines.) You'll see a bunch of crease lines (figure G).

A D

Your task: Experiment with various mother lines on separate sheets of paper and
compare your results. What conjectures can you make about the intersections of
the baby lines? Prove it/them.



HANDOUT

Modular Star Ring

This unit makes a star-shaped ring. You will need about 12-20 squares of paper.

T
I
I
I
—_— - - - - -
I
I
I
I
|

7|~
4 N
/ N
7 N
A\ z
N /
N 7
N s

(1) Fold and unfold in (2) Fold all four corners (3) Fold the top edges
half in both direc- to the center. to the center vertical
tions. line.

pockets
flaps
YN\

(4) Turn over and fold the bottom (5) Fold in half away from you and
point up as shown. you're done! Make a bunch more.

Putting them together: Slide the flaps of one unit into the pockets of another. (The
pockets and flaps are indicated in step (5) above.)

Keep adding more units until it comes back to the first unit and forms a ring!

Question: You may have noticed that you can make this ring close up with 12,
13, 14, or even more units, but some of these feel pretty loose. What is the best
number of units you should use to make a tight, perfectly-fitting ring?



Additional hint: To make the units fit perfectly, you want each unit to slide in as
far as it can, with the top edge of each unit’s flaps “flush” against the top edge of
its neighbor’s pockets.

The below picture might also help you see what the proper angles should be if
the units are perfectly fitted together.

22.5°




HANDOUT

M a k| n g a B Utte rﬂy BO m b (invented by Kenneth Kawamura)

You'll need 12 pieces of stiff, square paper. Use 3 colors (4 sheets per color).

(1) Take a sheet and fold both diag- (2) Collapse all these creases at the

onals (with valley folds). Fold in same time to get the above fig-
half horizontally with a mountain ure. Press flat and score the creases
fold. firmly. Then open it up again.

Repeat with the other 11 squares.

Putting it together: The object is to make a cuboctahedron, which has 6 square
faces and 8 triangle faces.

First form a square base using four units as shown. The units should be layered
over-under-over-under to weave together.

AL

Then use a unit to make a triangle-shaped cavity to the side of the square base.
Again, the units should weave. It will be hard to make them stay together. Work-
ing in pairs (with more hands) will help. Do this on each side of the square base.

Keep adding units,
making square faces
and triangle cavities.
It won't stay together
until the last one is in
place.

Why is it a bomb? Toss

the finished model in
the air and smack it
underneath with an
open palm to see!




HANDOUT

The Classic Masu Box

This box is a classic Japanese model. It also can be a big help for making the
Butterfly Bomb. If making a Butterfly Bomb from 3 in to 3.5 in paper, then make

your Masu Box out of a 10 in square.

(1) Crease both diago-
nals and both hori-
zontals.

(2) Fold all four corners
to the center.

(r mountainsj)

A A

7 _mountains__Y

(5) Use the mountain
creases shown to
forma3Dbox. The A
regions should land
on top of the B re-
gions as shown. ..

(4) Unfold the left and
right sides.

(3) Fold each side to the
center,
unfold.

crease, and

(6) ...here. Then fold
the other sides in-
side, making them
line up with the
other tabs, to finish
the box!

How this can help with the Butterfly Bomb: Use the Masu Box as a holder for
the Butterfly Bomb units as you make it. The square sides of the Butterfly Bomb

should be flat against the Masu Box sides.

® w




HANDOUT

Making a Butterfly Bomb Dual

You'll need 6 pieces of square paper. Use 3 colors (2 sheets per color).

(1) Take a sheet and fold both diag- (2) Collapse all these creases at the

onals (with valley folds). Fold same time to get the above fig-
in half both ways with mountain ure. Press flat and score the creases
folds. firmly. Then open it up again.

Repeat with the other 5 squares.

Putting it together: The object is to arrange the units like the 6 faces of a cube.
They should weave together to form eight pyramids

t 39

The units will not want to stay together until the last one is in place. If you
have trouble, work with someone else to help. (The more hands the better!)

This model is also a “bomb.” Toss it in the air and smack it from underneath
with an open palm to make it explode!

Question: What does this shape remind you of? How would you describe it?



HANDOUT

Molly’s Hexahedron

This model, invented by Molly Kahn, requires 3 squares of paper. Fold each square
into a unit that kind of looks like a frog. Then we will put these units together to
make an interesting object!

(1) Fold a diagonal. (2) Fold in half. Unfold. (3) Fold the corners to
the bottom and you
are done! Make 2
more.

Putting them together:

Slide the “legs” of one
frog unit into the “mouth”

of another one. To make
this work, the frogs need
to be positioned prop-
erly, like in the left draw-
ing. Add a third frog to
complete a triangle, and
squeeze them all together!

Question 1: How would you describe this object? What is the shape of its faces
and how many are there?

Question 2: Suppose the side length of your original squares is 1. Then what is
the volume of the finished object? Hint: Use the fact that the volume of a pyramid
isV = %Bh, where B is the area of the base and # is the height.



HANDOUT

The Octahedron Skeleton

This is a classic modular origami model. It was invented by Bob Neale in the 1960s
and requires 6 sheets of square paper.

For each piece of paper, valley fold in half from left-to-right and from top-to-
bottom. Then turn the paper over and valley fold both diagonals. It is important
to turn the paper over in between doing the “horizontal-vertical” folds and the

diagonal folds.

Then collapse the paper into a star shape, as shown above. The shape that
results, which is called the waterbomb base by origamists, should have the four
original corners of the square becoming long, triangular flaps.

-9

Make 6 of these waterbomb bases, 2 each of 3 colors. Then the puzzle is to lock
them together to make an octahedron skeleton!

Hint: The triangle flaps will insert into the triangle flaps of other units in an over-
under-over-under pattern.



HANDOUT

Business Card Polyhedra

Business cards are a very popular medium in
modular origami, where pieces of paper are
folded into units and then combined, without | g tem
tape or glue, to make various shapes. Standard | ™ ™"
business cards are 2 inch x 3.5 inch rectangles, or

have dimensions 4 x 7.

My Business! 4

Below are instructions for making a very simple
unit from business cards that can make many dif- [g >
ferent polyhedra. Make the creases sharp! This
unit was originally invented by Jeannine Mosely
and Kenneth Kawamura.

Left-Handed Unit

R

Question 1: Notice that these simple folds on a business card give us, it seems,
equilateral triangles. Are they really equilateral? How can we tell?

Task 1: Make one left- and one right-handed unit and find a way to lock them
together to make a tetrahedron (shown below left). After you do that, use 4 units
to make an octahedron (shown below right). We're not telling you how many left
and right units you need—you figure it out!

4



Task 2: Now make 10 units (5 left and 5 right) and make an icosahedron with
them. An icosahedron has 20 triangle faces. (See the below figure.) Putting this
together is quite hard—an extra pair of hands (or temporary tape) might help.

A

Task 3: What other polyhedra can you make with this unit? Hint: There are lots
more. Try making something using only 6 units. How about 8 units? Try to de-
scribe the polyhedra that you discover in words.



HANDOUT

Johnson Solids with Triangle Faces

Try making these strange polyhedra using the business card unit. You'll have to
figure out how many units you'll need and whether they should be left- or right-
handed, or a combination of both!

OB

triangular dipyramid snub disphenoid pentagonal dipyramid
triaugmented triangular gyroelongated square

prism dipyramid



HANDOUT

Five Intersecting Tetrahedra

This origami model is a real puzzle! But first we’ll start with the one tetrahedron
made from Francis Ow’s 60° unit [?].

Francis Ow’s 60° unit 8=

This requires 1 x 3 paper. So fold a square sheet into
thirds and cut along the creases.

YWNIAWN

(1) Creaseinhalflength- (2) Fold the sides to the (3) At the top end, make

wise. center. a short crease along
the half-way line of
the right side.
—— ~

WA

(4) Fold the top left (5) ...like this. Fold (6) Undo the last two

corner to the pinch the top right side to steps.
mark just made and meet the flap you
at the same time just folded.

make sure the crease
hits the midpoint of
the top. ..
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(7) Now use the creases (8) ...like this. Tuck (9) Now rotate the unit

made in step (4) to the white flap under- 180° and repeat
reverse the top left neath the right side steps (3)-(8) on the
corner through to the paper. other end. Then
right.  This should fold the whole unit
make a white flap in half lengthwise
appear. .. (to strengthen the

spine of the unit) and
you're done!

Locking the units together: Three units make one corner. Make sure to have
the flap of one unit hook around the spine of the other!

The lock should be fairly strong.
Make 6 units and form them into a tetrahedron!



HANDOUT

Linking the Tetrahedra Together

The five tetrahedra must be woven together, one at a time. The second tetrahedron
must be woven into the first one as it’s constructed. That is, it’s not very practical
to make two completed tetrahedra and then try to get them to weave together.
Instead, make one corner of the second tetrahedron, weave this into the first one,
then lock the other three units into the second tetrahedron.

The first two tetrahedra make a sort-of 3D Star of
David, with a corner of one tetrahedron poking
through the side of the other, and a corner of the other
poking through a side of the one. In fact, when the
whole model is done every pair of tetrahedra should
form such a 3D Star of David form.

The third tetrahedron is the most difficult one to
weave into the model.

The figure to the right is drawn at a specific angle to
help you do this. Notice how in the center of the pic-
ture there are three struts weaving together in a tri-
angle pattern. If you look carefully, the same thing is
happening on the opposite side of the model. As you
insert your units for the third tetrahedron, try to form
these triangular weaves and use them as a guide. In
the finished model, there will be one of these triangu-
lar weave points under every tetrahedron corner.

These two types of symmetry—two tetrahedra making a 3D Star of David and
the triangular weave points—are the best visual tools to use when inserting the
units for the fourth and fifth tetrahedra. The pictures below also help.




HANDOUT

What Is the Optimal Strut Width?

The instructions for Francis Ow’s 60° unit have us start with 1 x 3 sized paper,
which gives us a unit thatis 1 x 1/12 in dimensions. In other words, if the side of
one of the tetrahedra is 1, then the width of the strut in the tetrahedral frame that
we make is 1/12.

Is this the optimal strut width, or should we be using a wider or thinner strut
for a more ideal fit? In this activity you'll use vector geometry and calculus to
approximate the ideal strut width. This calculation is hard to do by hand, so you're
better off using a computer algebra system to help.

The ideal strut width is given by the line segment L, shown below. It marks the
shortest distance between the tetrahedron edge 7374 and the point i which is the
midpoint of the 777; edge from another tetrahedron.

We can use nice coordinates for v; and v, so that i will be the point (0,0,1) on
the z-axis. Then, since the tetrahedra fit inside a dodecahedron, the coordinates of
v3 and v4 can be found to be as follows:

v =(-111)

v =(1,-1,1)

oo [0 -1+ V5 1+V5
3 = ’ 2 7 2
S (et e e B
4 — 2 7 2 7

Our goal is to find L = the minimum distance between the point 1 = (0,0,1)
and the line segment 737, (as shown above).

Question 1: Find a parameterization F(t) = {x(t),y(t),z(t)} for the line in R3 that
contains U304.



Question 2: Now find a formula for the distance between an arbitrary point F(t)
on the 7305 line and the point & = (0,0,1).

Question 3: Now minimize the distance function you found in Question 2 to find
the length L. Hints: It might be easier to minimize the square of the distance
function to get L2.

Question 4: So what is the ideal strut width L? How does it compare to our use of
struts that were 1/12 the side of a triangle?



HANDOUT

The PHiZZ Unit

This modular origami unit (created by Tom Hull in 1993) can make a large number
of different polyhedra. The name stands for Pentagon Hexagon Zig-Zag unit. It is
especially good for making large objects, since the locking mechanism is strong.

Making a unit: The first step is to fold the square into a 1/4 zig-zag.

________ < ¢

When making these units, it’s important to make all your units exactly the
same. It’s possible to do the second step backwards and thus make a unit that’s a
mirror image and won't fit into the others. Beware!

Locking them together: In these pictures, we're looking at the unit “from
above.” The first one has been “opened” a little so that the other unit can be slid
inside.

\7
LA
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Be sure to insert one unit in-between layers of paper of the other. Also, make
sure that the flap of the “inserted” unit hooks over a crease of the “opened” unit.
That forms the lock.

Assignment: Make 30 units and put
them together to form a dodecahedron
(shown to the right), which has all pen-
tagon faces. Also use only 3 colors (10
sheets of each color) and try to have no

two units of the same color touching.



HANDOUT

Planar Graphs and Coloring

Drawing the planar graph of the polyhedron can be a great way to plan a coloring
when using PHiZZ units. To make the planar graph of a polyhedron, imagine
putting it on a table, stretching the top, and pushing it down onto the tabletop
so that none of the edges cross. Below is shown the dodecahedron and its planar
graph.

Task 1: Draw the planar graph of a soccer ball. Make sure it has 12 pentagons and
20 hexagons.

Task 2: A Hamilton circuit is a path in a graph that starts at a vertex, visits every
other vertex, and comes back to where it started without visiting the same vertex
twice. Find a Hamilton circuit in the planar graph of the dodecahedron.



When making objects using PHiZZ units, it's always a puzzle to try to make it
using only 3 colors of paper with no two units of the same color touching. Each
unit corresponds to an edge of the planar graph, so this is equivalent to a proper
3-edge-coloring of the graph.

Question: How could we use our Hamilton circuit in the graph of the dodecahe-
dron to get a proper 3-edge-coloring of the dodecahedron?

Task 3: Find a Hamilton circuit in your planar graph of the soccer ball and use it
to plan a proper 3-edge-coloring of a PHiZZ unit soccer ball. (It requires 90 units.
Feel free to do this in teams!)



HANDOUT

Making PHiZZ Buckyballs

Buckyballs are polyhedra with the following two properties:
(a) each vertex has degree 3 (3 edges coming out of it), and
(b) they have only pentagon and hexagon faces.

The PHiZZ unit is great for making Buckyballs because you can make pen-
tagon and hexagon rings:

These represent the faces of the Buckyball. But when making these things, it
helps to know how many pentagons and hexagons we’ll need!

To the right are shown three Buckyballs: The dodecahe-
dron (12 pentagons, no hexagons), the soccer ball (12 pen-

tagons, 20 hexagons), and a different one. (Can you see
why?)

Question 1: How many vertices and edges does the do-
decahedron have? How about the soccer ball? Find a for-
mula relating the number of vertices V and the number
of edges E of a Buckyball.

Question 2: Let F5 = the number of pentagon faces in a
given Buckyball. Let Fg = the number of hexagon faces.
Find formulas relating

(a) Fs, Fs, and F (the total number of faces). (Easy!)

peseie!

(b) F5, s, and E. (Harder.)



Question 3: Now use Euler’s formula for polyhedra, V — E + F = 2, together
with your answers to Questions 1 and 2, to find a formula relating F5 and F;, the
number of pentagons and hexagons.

Question 4: What can you conclude about all Buckyballs?



HANDOUT

Bigger PHiZZ Unit Rings

This handout asks you to experiment with making larger “rings” using PHiZZ
units.

Activity: Make a heptagon or octagon ring out of PHiZZ units (it'll require 14 or
16 units, so feel free to do it in groups). This will be challenging: How can you
make the ring close up? Do not force any extra creases in the units! They should
go together just like normal.

Question: Compare what a pentagon ring, a hexagon ring, and a bigger ring (like
a heptagon or octagon ring) look like.

Specifically, imagine these rings lying on a surface. What kind of surface would
the pentagon ring be lying on?

How about a hexagon ring?

How about a heptagon or octagon ring?

So, if you were to make a torus (i.e., a doughnut) using PHiZZ units, where on
the torus might you place your pentagons, your hexagons, and your bigger-gons?



HANDOUT

Drawing Toroidal Graphs

When planning a PHiZZ unit torus model, it can be hard to visualize what you're
doing because you can’t just draw the planar graph of the structure like you can
with, say, Buckyballs.

But there is a way to flatten a torus so that we can draw graphs on the torus
using pen and paper. The idea is shown in the picture below. You imagine making
two perpendicular cuts on the torus surface and then “unroll” the torus into a
rectangle. This is called the fundamental domain of the torus.

cut

—» getsgluedto —
> <> :t * gets glued to *

The fundamental domain of the torus

Atorus
cut along the dotted lines

The idea in the fundamental domain is that any edge you draw that hits the
boundary must come back on the other side. Thus a graph drawn on the torus, like
the one shown above, can be represented on the fundamental domain by making
some edges “wrap around” from top to bottom and from left to right.

Activity: Draw the graph of the square torus (shown below right) on a fundamen-
tal domain.

|




You now have what you need to start designing your own PHiZZ unit torus.
Just start with the fundamental domain of a torus and try to draw a graph on it
that has

(1) all vertices of degree 3 and

(2) only pentagon, hexagon, or higher faces.

(Square and triangle faces don’t work very well with the PHiZZ unit.)

Unfortunately, making PHiZZ unit tori can take a lot of units. People have
made ones using hundreds of units. But, they can be made with a more reasonable
number. Below is a torus, designed by mathematician sarah-marie belcastro, that
requires 84 units. It's made from a small pattern (below left, in the dotted box)
that is repeated four times on the fundamental domain (below right). It uses only
pentagon, hexagon, and octagon faces.

<%

You can make the above torus or try designing your own. You might be able to
design a smaller one by using larger polygons, like 10-gons, instead of octagons.

Advice: When making such a torus, make the larger, negative curvature polygons
on the inside rim first. This may seem hard, but it’s a lot easier to do them at the
beginning than waiting until the end. Once you have the inner rim in place, it’s a
lot easier to then make the hexagons and pentagons.



HANDOUT

Euler's Formula on the Torus

Question 1: Below is shown a square torus. What does Euler’s Formula,
V — E + F, give for this polyhedron?

Question 2: How about for a 2-holed torus?

/1 /1

Question 3: We define the genus of a polyhedron to be the number of “holes” it
has. (So a torus has genus 1, a two-holed torus has genus 2, an icosahedron has
genus 0, etc.) Find a generalized Euler’s formula for a polyhedron with genus g.



Properties of Toroidal “Buckyballs”

Now that you know Euler’s Formula for the torus, we can learn some things that
will help you plan making tori using PHiZZ units.

Question 4: Suppose that we make a torus using PHiZZ units and only making
pentagon, hexagon, and heptagon (7-sided) faces. Find a formula relating F5 (the
number of pentagon faces) and F; (the number of heptagon faces).

Hint: Remember that we still have 3V = 2E. Use the same techniques that we
used to prove that all Buckyballs have only 12 pentagon faces.

Question 5: Suppose that we made a PHiZZ unit torus using only pentagon,
hexagon, and octagon faces. Find a formula relating the number of pentagon and
octagon faces.

Question 6: Can you generalize these results?



HANDOUT

Business Card Cubes and
the Menger Sponge

One of the easiest modular origami things to make from standard business cards
is a cube. It takes 6 cards. To make a unit, make a “plus” sign with two cards and
bend them around each other. Separate them, and you'll have just made two units!

| |
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Make six units and use them to form a cube. Each

unit is a face of the cube, and the folded flaps

have to grip the other units. When you're done,

you'll still see these folded flaps on the outside,

gripping it all together.

It’s possible to take 6 more units and use them to

“panel” the cube so that its faces are smooth. Do

you see how this would work? ‘—7/

Two (unpaneled) cubes can be locked together along a face by making the
folded flaps grip into each other. This allows you to build structures with these
cubes.

Activity: Working in groups, make a “Level 1” Menger Sponge. A Menger Sponge
is a fractal object made by starting with a cube (Level 0), then taking 20 cubes and
making a cube frame with them (Level 1), and then taking 20 of these frames and
making a bigger cube frame with them (Level 2), and so on. If we scale the model
down after each iteration (so it remains the same size throughout), in the infinite
case we'll get what is known as Menger’s Sponge.
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How many business cards will it take to make a Level 1 Sponge? With paneling?



Question 1: Let U, = the number of business cards needed to make an unpaneled
Level n Menger’s Sponge. So Uy = 6.
Compute values for Uj, Uy, and U;. Find a closed formula for U, in terms of n.

Question 2: Let P, = the number of business cards needed to make a paneled
Level n Menger’s Sponge. So Py = 12.

Find Py, P, and Ps. Can you find a formula (not necessarily closed) for P, in
general? How about a closed formula?



HANDOUT

Folding a Flapping Bird (Crane)

Begin with a square piece of paper.

¢ oD

(1) Crease both diago- (2) Fold in half both (3) Now bring all cor-
nals. Then turn over. ways. ners down to the
bottom, wusing the

creases just made,...

Y @

4) ...like this. This (5) Then fold the top (6) Undo the last two
is called the prelim- point down. steps.
inary base. Bisect
the two angles at the
open end.

Use this crease!

(7) Now do a petal fold: (8) ...like this. Bring the (9) ...like this.  Turn

lift one layer of pa- point all the way up. over.
per up, using the in- The sides will come
dicated crease as a to the center. Flat-

hinge,... ten...



i

(10) Now do the same (11) This is called the (12) Crease firmly. Then
petal fold on this bird base. Fold the unfold.
side. bottom two flaps up.

(These will become
the head and tail.)

My v

(13) Now refold the last (14) ...picture.) Lastly, (15) You're done with the

creases, but this time reverse fold the flapping bird!
make them reverse head.
fold through the lay-

ers. (See the next...

This is an example of a flat origami model, since the finished result can be
pressed in a book without crumpling.

Activity 1: Carefully unfold your bird and draw with a pen the crease pattern for
this model. Make sure to draw only those creases that are actually used in the
finished model, not auxiliary creases made along the way.

Activity 2: Then take your crease pattern and color the faces with as few colors as
possible. That is, color the regions in between crease lines following the rule that
no two regions that border the same crease line can get the same color (just like
when coloring countries on a map). What's the fewest number of colors that you
can use?

Activity 3: What will the coloring look like when you refold the model? Make a
conjecture before you fold it back up to see what happens. Will this happen for
every flat origami model? Proof?



HANDOUT

Exploring Flat Vertex Folds

Activity: Take a square piece of paper and make, at random, a single vertex crease
pattern that folds flat. Place the vertex near the center of the paper (not on the
paper’s boundary—that doesn’t count), make some crease lines coming out of it,
and then add more to make the whole thing fold flat. Some examples are shown
below. Make lots of your own.

- /ff'>'<~;/___ A;
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N I
The question is, “What’s going on here?” Are there any rules that such flat
vertex folds follow? Your task is to formulate as many conjectures as you can
about how such folds work.
If you come up with a conjecture, write it on the board to see if others in the
class agree or if anyone can find a counterexample. Or, better yet, see if anyone
can actually give proofs of your conjectures!

/




HANDOUT

Flat Vertex Folds in Geogebra

To simulate a flat vertex fold using Geogebra, do the following:

(1) Make a circle on the left side of your worksheet. Label the center O.
(2) Make four points on the circle, A, B, C, and D.

(3) Construct segments between these points and O. This circle and these lines
will be your unfolded piece of paper.

(4) On the right side of your worksheet make a point O’. Use the Vector between
Two Points tool to make a vector from O to O'.

(5) Now use the Translate Object by Vector tool to translate A to a new point
A’ in the direction of the vector from step (4). Do the same with points B, C,
and D to make points B, C’, and D'.

(6) Use the Polygon tool to make AQO’A’D’. This triangle will be the start of our
folded paper.

(7) We now will reflect (fold) the points B/, C’, and D’ about the crease line O’ A’.
Use the Reflect Object about Line tool to reflect each point, one at a time, to
get new points B, C”, and D”.

(8) Now use the Polygon tool to make AO’A’B”.

(9) Now reflect (fold!) the points C” and D" about the line OB” to do the third
fold. This will make new points C"”” and D"".

(10) Use the Polygon tool to make AO'B”C"".

(11) Now reflect D"’ about the crease line O'C"” to make a new point E. (Geoge-
bra will use a new letter because it doesn’t like D"'".)

(12) Use the Polygon tool to make the last triangle of the folded paper, AO'C"'E.

(13) Now use the Show / Hide Object tool to hide the points B/, C’, C”, D", and
D" because we no longer need them.

Exercise: Does the last point you made, E line up with point D'? If so, then the
crease lines you made on the left can fold flat. If they do not, then move the points
on the left circle until they do. Use Geogebra to measure the angles ZAOB, ZBOC,
ZCOD, and ZDOA. What can you conjecture about these angles when the creases
fold flat?



HANDOUT

Flat Vertex Folds on Geometer's
Sketchpad

To simulate a flat vertex fold on Geometer’s Sketchpad, do the following;:

(1) Make a circle on the left side of your worksheet. Label the center O.
(2) Make four points on the circle, A, B, C, and D.

(38) Construct segments between these points and O. Also construct segments
between A, B, C, and D in order to make a quadrilateral (as shown above).

(4) Select the quadrilateral, points A, B, C, D, and O, and the segments at O,
and select Translate from the Transform menu. Choose Rectangular coor-
dinates and make the horizontal and vertical distance be 12 cm and 0 cm,
respectively.

(5) Younow have a second copy of the quadrilateral “paper” with creases. Select
the text tool and click on all the points of this copy to see what they are (A’,
B, C',D', 0.

(6) We now will reflect parts of this copy about the creases to make it fold up.

Select segment O’ A" and choose Mark Mirror from the Transform menu.

(7) Now select segments A’B’, B'C’, C'D’, O'B’, O'C’, and O’D’ and points B/,
C’, and D’. With all this selected, choose Reflect from the Transform menu.

(8) You've just make AO’A'D’ fixed and reflected the rest of the paper about
crease O’ A’! Now we want to hide the parts that we had previously selected.
Under the Edit menu choose Select Parents and then unselect segments O’ A’
and O’'D’ and point D’. Then, under the Display menu choose Hide Objects.

(9) Use the text tool to click on the new points to see what they are (B”, C”, D”).
(10) Now select segment O'B” and do Mark Mirror.

(11) Select segments B”C”, C"D"”, O'C"”, and O'D" and points C"” and D”. Then
do Reflect.

(12) Again, do Select Parents, unselect segment O'B”, and then Hide Objects.



(13) Label the points again, select segment O’C"”’, and do Mark Mirror.
p g g
(14) Select C""D"" and O'D""" and Reflect. Then Hide C"’D""", O'D"’, and D"".

Exercise: Does the last point you made, D" line up with point D’? If so, then the
crease lines you made on the left can fold flat. If they do not, then move the points
on the left circle until they do. Use Geometer’s Sketchpad to measure the angles
ZAOB, ZBOC, ZCOD, and ZDOA. What can you conjecture about these angles
when the creases fold flat?



HANDOUT

Fold Me Up

Activity: Below are some origami crease patterns. Your task is to cut them out
and try to see what they can fold into. Note: You're only allowed to fold along
the indicated crease lines. Adding more creases is breaking the rules. You get to
decide, however, whether to make them mountains or valleys.

Gse| | 70°




HANDOUT

Folding a Square Twist

Activity: Below is shown a crease pattern. The creases are all on the 1/4 lines of
the square, but the center diamond needs to be “pinched” in place. Take a square
piece of paper and reproduce this crease pattern to see how it folds up.

To help you fold this, follow these instructions:

(1) Fold a 4 x 4 grid of creases on your square.
(2) Pinch the four crease segments that make the diamond in the middle.
(3) Draw the crease pattern below on your creases with a pen.

Then you can try to fold it up.

This origami maneuver is called a square twist and is one of the less obvious
ways in which paper can be folded flat.

Question: Look at your classmates’ square twists. Do they look the same as yours?
Are you sure? Work together to count how many different ways there are to fold
up this crease pattern (without making any new creases).



HANDOUT

Counting Flat Vertex Folds

Below are shown three different degree-4 origami vertices, v1, v, and v3.

l4 l
I Iy 4
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For each of these flat vertex folds, we want to compute
C(v) = the number of ways that v can fold flat.

For example, in the third one above, v3, we could have that I, I, and I3 are all
valley creases and I4 is a mountain. That would be one way that v3 could fold flat.

So fold these vertices using small squares of paper and experiment to compute
C(v) for each of them. Then try to answer the following questions.

Question 1: Are there any other values that you think C(v) can take for a degree-4
flat vertex fold than the values you found above?

Question 2: If you had a degree-2n flat vertex fold v, what is the largest value that
you think C(v) could be? (This would be an upper bound on C(v).)
How about the smallest (a lower bound) value for C(v) that you could get?



HANDOUT

The Self-Similar Wave

This wave model requires one square piece of paper. The diagrams assume that
the paper is white on one side and has a color on the other side.

(1) Looking at the color (2) Fold one layer up to (3) Unfold step (2).
side, fold a diagonal. the diagonal. Repeat
behind.

]

(4) Fold  perpendicu- (5) Now use the creases (6) ...like this. Crease
larly to the right side from (4) to reverse sharply and unfold
at the indicated spot. the point inside. .. step (5).

(7) Refold step (5), but (8) This should be the (9) Now repeat steps
this time add angle result. Crease firmly (4)—(8) to make the
bisectors with the di- and unfold. next “level.”
agonal to crimp the

paper.



(10) You could keep go- (11) Then use the creases (12) Do it again with the

ing, but for the first of the third level to second level creases.
time, stop after 3 swivel the paper in- The wave spiral will
levels by performing side. be forming inside.
steps (4)—(5) one last

time.

| '

(13) For the first level, all (14) This reveals the wave! Of course,
you need to do is refold the you can, and should, do more levels to
creases from step (2). make the wave curl more.

Question: Suppose we started with a square piece of paper with
side length 1 and folded this wave with an infinite number of levels.
If we put the finished model on a set of coordinate axes, with
the tip of the base at the origin, as shown below right, what
would the coordinates of the limit point P of the spiral be?

A

1

Y
A

A

Y



HANDOUT

Matrices and Flat Origami

Idea: When we fold a piece of paper flat, we're really reflecting one half of the
paper onto the other half. We can use this to model flat origami using matrices.

l3 I

45~
135°H I

Iy

Activity: Above is shown the creases of a flat vertex fold. Assume that the vertex
is located at the origin of the xy-plane.

Question 1: Find a 2 x 2 matrix R(/;) that reflects the plane about crease line ;.
Do the same thing for the other crease lines.

Question 2: What happens when you multiply these matrices together? Explain
what’s going on.



HANDOUT

Matrices and 3D Origami

Take a square piece of paper and make the below creases to form the 3D corner of
a cube fold.

/2
[
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I
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The angles at each crease are the folding angles, which is the amount each
crease needs to be folded by to make the model.

Question 1: Let x; be the 3D, 3 x 3 rotation matrix that rotates R3 about the crease
line [; by an angle equal to the folding angle at that crease. Find the five 3 x 3
matrices X1, ..., x5 for the above 3D fold. (Assume that the vertex is at the origin
and the paper lies in the xy-plane.)

Question 2: What happens when you multiply these matrices together?



Question 3: In the previous question you should have gotten that the product
X1X2Xx3Xaxs5 = 1, the identity matrix. Why is this the case?

Be careful with your answer. Remember that the x; matrices are rotations about
the crease line in the unfolded paper.

Question 4: Prove in general that if we are given a 3D single vertex fold with
folding matrices x1, x2, - - ., Xn, then the product of these matrices, in order, is the
identity. Hint: Think of a bug crawling in a circle around the vertex on the folded
paper. What rotations would the bug make when it crosses a crease line?



HANDOUT

Folding a Square Twist Tessellation

These instructions show how to tile the classic square twist in square piece of pa-
per. We first look at making a 4 x 4 tiling, and we begin by making a lot of pre-
creases!

(1) Valley crease the (2) Then valley crease it (3) Mountain crease

square into 8ths in into 8ths in the other 4 diamond-shaped
one direction. direction. squares carefully, as
shown.

(4) You now have all the creases
you need to fold the four square
twists. Use the creases shown to
the right, where the bold lines are
mountains and the dashed lines
valleys. Adjacent square twists
will rotate in opposite directions.
Be persistent!

%

If you succeeded in making a 4 x 4
square twist tessellation, try shoot-
ing for an 8 x 8 tessellation! You
would need to start by pre-creasing
your square into 16ths, and using
a larger sheet of paper is recom-
mended.




HANDOUT

The Flat-folding Homomorphism

Suppose you have a crease pattern that folds flat.
Let y be a closed, vertex-avoiding curve drawn on

the crease pattern that crosses crease lines Iy, ..., I, Iy I3
in order. Let R(/;) = the transformation that ‘
reflects the plane about the line ;. Since each fold A I
is reflecting part of the paper about the crease, and \L I
the paper cannot rip in origami, we have that ‘ ls L Y
7 8

R(L)R(I2)R(I3) - - - R(lo) = 1,
where [ is the identity transformation.

Now let ¢ and ¢’ be any two faces of the
crease pattern C. Define the transformation

[0,0'] = R(I)R(l2) - -~ R(Iy), OJ
where [y, ..., [ are the creases, in order, that o
i

a vertex-avoiding curve vy crosses going from by I3
octoo’ ‘ ‘

Question 1: Explain why the transformation [, 0’| is independent of the choice of
the curve 7.

Question 2: Explain why [, 0] = [o,0'][¢’,0"] for all faces ¢, ¢/, and ¢’ in the
crease pattern C.



Question 3: Explain why [g0, g0’] = g[o,0']g~! for all faces 0,0’ € C and for any
symmetry g of the crease pattern. (In the example shown to the right below, g is a
90° rotation about one of the square twists.)

O.II

g0

o

Now let Isom(IR?) denote the group of isometries of the plane. Let C be our
flat-foldable origami crease pattern, and let I' <Isom(IR?) be the symmetry group
of C. (That s, I is the subgroup of isometries that leave C invariant.)

For a fixed face o € C, define a mapping ¢, : I' — Isom(IR?) by

¢o(g) = [0, g0]g forallg € T.

Question 4: Prove that ¢, is a homomorphism. (That is, prove that ¢,(gh) =
9o(g)@o(h) forallg,h € T.)

Question 5: Since ¢, is a homomorphism, what simple fact can we conclude about
the image set ¢, (T')?



For a fixed face o of C, we can also define the folding map [¢] of C toward ¢ by

[0](x) = [o,¢'](x) forx € ¢’ € C.

Question 6: Prove that for any symmetry ¢ € T', we have that ¢, (g)[c] = [¢]g.

(That is, you want to show these products of transformations are equal, so
¢ (g)[o](x) = [o]g(x) for all points x in the crease pattern. Hint: Any point x € C
must lie in a face of the crease pattern, so call this face ¢”’.)

Question 7: Why does Question 6 imply that ¢,(g) = [o]g[c] ! forall g € T?

What Question 7 says is that the action of any ¢, (g) on a flat-folded origami
model is equivalent to unfolding it ([¢] ~!), doing an isometry that leaves the crease
pattern invariant (g), and then refolding the paper ([c]).

Question 8: Explain why this proves that ¢,(T) is the symmetry group of the
folded paper!



HANDOUT

Finding the Symmetry Group of Origami

Example 1: The classic flapping bird (crane) ;? i ,
A | —>

What is the symmetry group I' of the crease pattern
of the flapping bird? It might be helpful to view A
the crease pattern in a set of coordinate axes (right).

Y

You should get that the symmetry group I' of this crease pattern has only two
elements. For each of these two elements, call them 4 and b, determine what ¢y (a)
and ¢ (b) are, for a fixed face ¢ of the crease pattern.

Conclusion: What does this mean the group ¢, (T') is? Is this the symmetry group
of the folded crane model?

(Note: You need to think of the folded crane as being flattened into the plane
R?, not as a 3D model.)



Example 2: The headless crane

A
Find the symmetry group I
of this crease pattern.
< > —>
Y
To the right we have labeled a face . For each
element g € T, compute ¢,(g), and
thereby determine the group ¢, (T).
o
A

Conclusion: Does your calculation of the group ¢, (I') match the symmetry group
of the folded headless crane? Note that the exact orientation of your headless crane
in the plane under the folding map is determined by our choice of ¢.



Example 3: Origami tessellations
Let C be a flat origami crease pattern on the infinite plane R> whose symmetry
group I'is one of the wallpaper groups.

For example, the square twist tessellation has symmetry group I' = p4g.

[ ]
This is an infinite group, generated by ] T ]
e two centers of 90° rotation (circles),
e two lines of reflection (in grey), L N %; N
e one center of 180° rotation (diamond) at U

the intersection of the reflection lines, . TR X

e two translation vectors.

—

e Wallpaper groups have no finite normal sub-

groups. %

Problem: Prove that if C is a flat origami crease pattern whose symmetry group I
is a wallpaper group and if the image ¢, (T') is also a wallpaper group, then

Facts: <X>
e Every wallpaper group contains two linearly
independent translations.

¢o(T) =T.

That is, the symmetry group of the folded paper will be isomorphic to the symme-
try group of the crease pattern.

Follow-up: Can you think of an example of an origami model whose crease pat-
tern is a tessellation but where the folded model is not a wallpaper group? Why
does this not contradict the above problem?



HANDOUT

An Introduction to Gaussian Curvature

Definition: The Gaussian curvature at a point P on a surface is a real number
x that can be computed as follows: Draw a closed curve I' on the surface going
clockwise around P. Draw unit vectors on the points of I' that are normal to the
surface. Then translate these vectors to the center of a sphere of radius 1 and
consider the curve I that they trace on the sphere. (This mapping from I' to I is
called the Gauss map.) Then, letting I' shrink around P, we define the Gaussian
curvature at P to be

— 1. _—
B Area(T)

B\ e (A

This can be difficult to compute, but not always. ...

Question 1: What is the Gaussian curvature of a random point on a sphere of
radius 1? Radius 2? Radius 1/2?

Question 2: What is the Gaussian curvature of a flat plane?

Question 3: What would happen if you tried to find the Gaussian curvature of a
saddle point, i.e., the center of a Pringles™ potato chip?



HANDOUT

Gaussian Curvature and Origami

In the previous handout, you saw how a flat piece of paper will have zero Gaussian
curvature. This is because no matter what our choice of T is, the normal vectors
along the curve will all be pointing in the same direction, so Area(I") = 0.

N r
(CpEas

This means that we get zero in the numerator of our Gaussian curvature limit
equation no matter what I' is. Therefore, when determining curvature on a piece
of paper, we don’t need to worry about the limit part of the equation—one choice
for T should always give us Area(I") = 0. This will be very useful later on.

Question 1: Suppose that we take a sheet of paper and bend it. Should this change
the paper’s curvature or not? Explore this by determining the Gauss map of a
curve I' that straddles such a bend, as pictured below.

Ao

Question 2: Suppose that we make more than one fold, like in an origami model?
Draw what the Gauss map should be for the curve I' shown on the vertex fold
below. What should the curvature generated by I' be? Does this make sense?

7
7
’
’
7
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mountain

— — — — valley




Question 3: The claim that you should have made in Question 2 is this: The Gaus-
sian curvature is zero at every point on a folded piece of paper. Use the Gauss
map that you made in Question 2 to prove that this is true for any curve I' around
a 4-valent vertex. (You'll need to use the fact that the area of a triangle on the unit
sphere is (the sum of the angles) — 7r.)

Question 4: What is the connection between this Gaussian curvature stuff and
rigid origami (where we pretend that the regions of paper between creases are
made of metal and thus are rigid)?



Putting the rigidity criterion to the test

Question 5: Use your conclusions from Question 4 to prove that it is impossible to
have a 3-valent folded vertex in a rigid origami model. Draw the Gauss map for
such a vertex to back up your argument.

Question 6: Now prove that it is impossible to have a 4-valent vertex in a rigid
origami model where all of the creases are mountains.



HANDOUT

The Miura Map Fold

Japanese astrophysicist Koryo Miura wanted a way to unfold large solar panels in
outer space. His fold also makes a great way to fold maps.

(1) Take a rectangle of paper and
mountain-valley-mountain fold it
into 1/4ths lengthwise.

L~
\ ]

P A
parallel

(4) Fold the remainder of the strip be-
hind, making the crease parallel to
the previous crease.

e

(6) Repeat this process until the strip
is all used up. Then unfold every-
thing.

=

(2) Make 1/2 and 1/4 pinch marks on
the side (one layer only) as shown.

(3) Folding all layers, bring the lower

left corner to the 1/4 line, as in the
picture.

i

<& parallel

(5) Repeat, but this time use the fold
from step (3) as a guide.

—— mountain
-—--valley

(7) Now re-collapse the model, but
change some of the mountains
and valleys. Note how the zig-
zag creases alternate from all-
mountain to all-valley. Use these
as a guide as you collapse it...

...In the end the paper should
fold up neatly as shown to the
right. You can then pull apart
two opposite corners to easily
open and close the model.



HANDOUT

The Hyperbolic Paraboloid

This unusual fold has been rediscovered by numerous people over the years. It
resembles a 3D surface that you may recall from Multivariable Calculus.

(1) Take a square and (2) Fold the bottom to (3) Repeat step (2) on

crease both diago- the center, but only the other three sides.
nals. Turn over. crease in the middle. Turn over.

% 7?

) S RN\
(4) Bring the bottom to (5) Then bring the bot- (6) Repeat steps (4) and
the top crease line, tom to the nearest (5) on the other three
creasing only be- crease line. Again, sides. Turn over.
tween the diagonals. do not crease all the
way across.

- A

(7) Now make all the creases at once. (8) Once the creases are folded, the pa-
It may help to fold the creases on per will twist into this shape, and
the outer ring first and work your you're done!
way in.



(9) You can make a larger one by folding more divisions in the paper. The key
is to have the concentric squares alternate mountain-valley-mountain in the
end. You can do steps (1)—(3), do not turn the paper over, then do 1/4 divi-
sions in steps (4)—(6), then turn it over and make 1/8 divisions. Or you could
shoot for 1/16ths!

Question: Is the hyperbolic parabola a rigid origami model or not? (Could it be
made out of rigid sheet metal, with hinges at the creases?) Proof?



HANDOUT

Spherical Trigonometry and Rigid Flat
Origami 1

Consider a degree-4 flat vertex fold, as shown above with the angles on the crease
pattern aq,..., a4 and the dihedral angles between the regions of folded paper
41,...,04. This is easy to visualize if you imagine the vertex being at the center
of a sphere and look at the spherical polygon the paper cuts out on the sphere’s
surface.

If 44 is the lone mountain crease, let ¢ be an arc on the sphere connecting the
44 and the J, corners of this polygon, which divides it into two spherical triangles.
Then, we can use the spherical law of cosines:

cos ¢ = COs i1 COS & + sin g sin &y oS Iy, (1)
COs & = COS (3 COS iy + Sin a3 sin ay Cos J3. )

Question 1: Remember that since this vertex folds flat, Kawasaki’s Theorem says
that 3 = 7 — aq and oy = 7 — ap. What do you get when you plug these into
equation (2) and simplify?

Question 2: Subtract this new equation from equation (1). Use this to find an
equation relating the dihedral angles §; and é3. What about J; and 6,?



HANDOUT

Spherical Trigonometry and Rigid Flat
Origami 2

When studying this subject, origami master Robert Lang used spherical trigonom-
etry and the picture above to derive the following equation:
sin? &7 sin aq sin &y

1—cosé '
Question 3: What does this equation tell us about the relationship between the
dihedral angles 1 and 6,7

Ccosdy = cosdy —

Question 4: Remember that these results assume that the paper is rigid between
the creases (for otherwise our spherical polygons would not have straight sides).
So use your answers to Questions 2 and 3 to prove that the square twist, shown be-
low, cannot be folded rigidly. (Bold creases are mountains, non-bold are valleys.)

N
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