
11/10/2013

1

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

11

Author: Arvind Bansal

© Chapman Hall / CRC Press

ISBN: 978-146-6565142

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 2Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Recursion vs. Iteration

Sequence

Data and Reference

Recursive data structures

Abstract concept in computation

Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 3Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A definition uses itself to define with different argument

At least one base case and at least one recursive definition

Progressively unfolds and moves towards the base case

Previous invocations are suspended until next recursive invocation

returns value

Number of invocations decided by the input value

Example: factorial function or fibonacci function

factorial(0) = 1. % base clause

factorial(n) = n * factorial(n – 1) % recursive definition

fibonacci(0) = 1.

fibonacci(1) = 1.

fibonacci(n) = fibonacci(n – 1) = fibonacci(n – 2).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 4Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Implementation of recursion
A stack is needed to hold the execution space needed by variables for
every procedure invocation

Stack has memory and execution overhead of calling and returning from

called recursive procedures.

Iteration Recursion

No overhead of calling and returning

from called procedure

starts from the base case, and

reuses the memory locations to

accumulate results

more efficient execution

Excessive overhead of calling and

returning from recursive invocation

Suspends recursive calls that needs

additional memory before hitting the

base case

Slow due to overheads

11/10/2013

2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 5Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Tail recursion

Recursive call is the last one in the definition.

Is equivalent to indefinite iteration.

Tail recursion can be transformed to equivalent indefinite iteration

Linear recursive programs

Has only one recursive call to

itself in the recursive definition

Can be transformed to indefinite

indefinite iteration

Algorithm iterative_factorial
Input: input value n;
Output: accumulator value;
{ acc = 1;

for (i = 1; i =< n; i++)
acc = i * acc;

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 6Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition: a bag to model ordered collection of entities

Representation: modeled within angular brackets

<a, b, c>

Operations

Finding an element by position

Insertion and deletion of elements by index

First, second, last elements of a sequence

Deletion and substitution of a subsequence by content

Joining two sequences

Finding out predecessor and successor of an entity in a sequence

Application

multiple data types can be modeled as sequence such as stacks,
queues, files, strings etc.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 7Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Memory locations hold two types of information

Data and reference to memory locations

Pointers are addresses of memory location stored in another memory

location or processor registers

Advantages of pointers

Minimal overhead of data movement

Supports recursive data structures (lists, trees) and dynamic objects

Delaying memory allocation of variables until runtime

Allocating physically separated chained memory blocks for logically

contiguous data structures

Sharing memory blocks among multiple data structures

Providing independence of the program from data movement

Disadvantages of pointers

Arithmetic operations on pointers causes segment hopping error.

Shared blocks can not be reused until all pointers are released.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 8Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition: A data structure that uses itself in the definition

One or more recursive definition and one or more base definition

Examples: linked list, tree, vector

Linked list

<linked-list> ::= <data-element> <linked-list> | null

Trees

<binary-tree> ::= <binary-tree> <data-element> <binary-tree> | void

Implementation

Uses pointers or references to implement.

Pointers are used so that memory allocation can be done at runtime as

needed.

11/10/2013

3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 9Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Program is a sequence of meaningful instructions (statement)

Each statement is terminated by a delimiter or linefeed

A program can have

Literals, l-values, r-values, identifiers, labels, definitions, declarations,

assignment statement, commands, expressions, procedures and

functions, strings, procedure invocations, parameters, and sequencers

Literal – an elementary expression that can not be further split.
Examples: number, character, atom

r-value – the evaluated value of an expression. Occurs on the right

hand side of an assignment. Actual value of a variable

l-value – location value of a variable. Occurs on the left hand side of an
assignment

Identifier – a symbolic name associated with an entity such as constant,

procedure, variable etc.

Definition – A symbol associated with a value. During compilation

symbol is substituted by the corresponding value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 10Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Variable
identifier � l-value � r-value

can be associated with a concrete value or type

associated with a type is called type variable

can be destructively updated or could be assign-once

Assignment statement
Right hand side expression is evaluated and written into the
memory location associated with the variable name.

Command is a statement with embedded assignment statement

Expression evaluation does not write into memory location

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 11Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

String is a sequence of characters

Operators could be

Dyadic – having two operands such as addition, subtraction,

multiplication, division, logical or, logical and

Monadic – having one operand such as not, - <operand>

Mutable vs. Assign-once variables

Mutable Assign-once

1. Reusable

2. Looses past information
3. Undesired program-behaviors

due to side-effects

1. Memory explosion

2. Use of past values to find
alternate solutions

3. Does not support iteration

4. Less side-effects

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 12Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Binding
An entity is associated with corresponding attributes

Example

Variable-name bound to a memory location

Memory location bound to an r-value

Identifier bound to a procedure-block

Scope Rule

Defines the visibility of declarations within a part of the programs

Can be static or dynamic

Static binding means visibility does not change with program execution

Dynamic binding means visibility changes with procedure invocation, and

unbound variables pick up the value from the declarations in the reverse

order of the invoked procedures.

11/10/2013

4

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Static scope rule

main ()

{ integer x, y, z;

x = 4; y = 10; z = 12;

{integer temp, z;

temp = x; x = y; y = temp; z = 5;}

print(x, y, z);

}

outer block: x, y, z

inner-block: temp, z-inner, x, y

Z-outer is shadowed in the
inner block

integer sum(integer x);

return (x + y);

main ()

{ {integer y, z; y = 4; z = 5; sum(y);}

{integer w, y, z;

w = 4, y = 5; z = 6; sum(z);}

}

first call to sum(y) returns 8; In

sum, x gets bound to value of y =

4, and y gets bound to 4.

Second call sum(z) returns 11. In

sum, x gets bound to z = 6, and y

gets bound to 5

Dynamic scope rule

Slide 13 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 14Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Variables are classified by visibility rules and lifetime

Global – visible everywhere, lifetime throughout the program

Nonlocal – visible in the nested procedures, lifetime is the procedure in

which it is declared

Local – visible within the procedure they are declared

Variables can be static or dynamic

Static variables are allocate memory location at compile time

Dynamic variables are allocated memory locations during runtime

Variables in object-oriented languages

Class variables – variables declared in class, accesses by all instance of

the class

Instance variable – only accessible in a specific object

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Environment

Environment is set of
mapping between identifier
and memory locations

Environment changes with a
new declaration

Creating new identifier ����

memory location mapping

Shadowing non local variable

Store is mapping of memory
location to r-value

Store changes with a new
assignment statement or
initialization or parameter
passing

Store

Global variables ���� l-value

Non-local variables ���� l-value
Reference parameters

Formal parameters ���� l-value

Local variables ���� l-value Environment

Slide 15
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Function

Function is a collection of
expressions

Function does not alter the
store as it has no destructive
updates

Functions has four
components

Name, body, parameters and

bounded variables

Procedure contains atleast
one command

Procedure alters the store
due to assignment
statements

Procedure

Slide 16

11/10/2013

5

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 17Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Program execution is modeled as a state transition

Each statement transforms program to a new state.

A state is a triple of the form (σE, σS, σD) where σE is the environment, σS

is the store, and σD is a stack of pairs of the form (σE, σS) of the
suspended calling procedures in LIFO order.

Computational state changes when environment changes, when store

changes, when a procedure is called, and when control returns from a

procedure

Program execution modeled as Boolean state transition

Each state is a Boolean conditions connected through logical operators:

logical-and, logical-or and negation

Boolean expression changes each time an assignment operation is

executed

Example: X = 5 + 3 makes X == 8 as true

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 18Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Abstract computation concepts are used to model the
program execution abstractly

There are many abstract entities such as literal, l-value, r-value,
variables, definitions, assignment, expression, command

Variable is identifier � l-value � r-value

Environment is a set of mapping of identifier � memory locations

Store is a set f mapping of memory locations � values

An assignment statement destructively updates a memory
location

A command contains at least one assignment statement

An expression does not have an assignment statement

Scope could be static or dynamic
Static scope rule is based upon program structure

Dynamic scope rule is based upon the LIFO pattern of the calling
procedures

