
Author: Arvind Bansal
Kent State University

Kent, OH 44242

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

11

von-Neuman machine
Discrete structure concepts
D t t t tData structure concepts
Abstract concept in computation
Operating system conceptsOperating system concepts
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 2Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

von-Neuman machine
Memory locations, central processing unit, registers, program counters
and data bus
I t ti d d t t d iInstructions and data are stored in memory
Program counter moves to next instruction
Four stage cycle: fetch instruction  decode  compute  store

I t ti h d d dInstructions have opcode and operands
Number of operands are called address mechanisms
add R1, R2, R3 % 3 – address mechanism

Categories of instructions
load, store, move, arithmetic, comparison, logical, conditional and
unconditional jumps, storing the computation status

Memory (instruction + data)
(main storage) Controller + ALU + registers

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 3Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Memory holds instruction and data
first part of an instruction is called opcode; remaining part is data
data can be stored in processor register or memory
depending on decoding more memory locations may be fetched

Machine can be
zero-address machine: uses a stack and stack based operations
one–address machine: uses a default register called accumulator
two address machine: result is stored in the second address
three address machine: src1 + src2  destination

Schematic of different instructions:
zero-address machine: push; pop; load; store etc.
one address machine: load memory % Acc  memory
two address machine: add R1, R2 % R1 + R2  R2
Three address machine: add R1, R2, R3 % R1 + R2  R3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 4Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Instruction Type Type of operations
Three-address instruction
<opcode> <src1>, <src2>, <dst>

An instruction in 3-address machine.
Instruction could be any arithmetic or logicalp 1 , 2 , y g
dyadic operation

Two-address instruction
<opcode> <src1>, <src2>

An instruction in 2-address machine.
Instruction could be any arithmetic or logicalopcode s c1 , s c2 s uc o cou d be a y a e c o og ca
dyadic operation. The destination is same as
the second argument.

One-address instruction Instruction could be any arithmetic or logicalOne address instruction
<opcode> <src>

Instruction could be any arithmetic or logical
dyadic operation. One of the registers by
default is accumulator that acts as destination

Zero-address instruction
<instr-name>

Load, add, subtract, multiply, load, store etc.

Uses a stack based evaluation. Argument for
ti i k d f t f th t k

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 5Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

operations are picked up from top of the stack

A address machine instructions can be converted to one or more
lower level machine instruction
Instructions in 3-addr < 2-addr< 1-addr < 0-addr for the same task
time taken to execute same task is more in low level instructions
Example of Conversion

load A, R0 % R0  content-of(A)
integer add B R0 % R0 R0 +

load_literal 3 % load the address of X
load literal 1 % load the address of A

Two address machine Zero Address Machine

integer_add B, R0 % R0  R0 +
% content-of(B)

store R0, X % store R0 into X

load_literal 1 % load the address of A
load % load the value of A on top
load_literal 2 % load the address of B
load % load the value of B on top
integer_add % pop and add 2 numbers
store % store the top

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 6Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Set = {a, b, c}; bag = {a, b, a, c, b};
Set operations are used in

Type theory to form structured types like array, struct, tree etc.
Set based programming

Set and bag
A set has unique entities; a bag may have more than one element having q ; g y g
the same value

Unordered set vs. ordered set
Shuffling the elements in a set does not change the unordered setg g
Shuffling the elements changes an ordered set because elements are
associated with positions

Similar difference between ordered and unordered bagg

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 7Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Sets: X = {a, b, c}; Y = {1, 2, 3}; Z = {m, b, x}
Union: X U Z = {a, m, b, c, x}
Intersection: X ∩ Z = {b}Intersection: X ∩ Z {b}
Difference: X – Z = {a, c}
Power set

set of all subsets of the original setset of all subsets of the original set
Example: powerset(X) has 8 elements: {{ }, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c}}
Two possibilities for each element: absent or presentTwo possibilities for each element: absent or present
Total possibilities = 2 |N| where |N| = number of elements in the original
set

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 8Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Sets: A = {a, b, c}; B = {1, 2, 3};
Cartesian product

An exhaustive set of n-tuples where n is the number of sets involved inAn exhaustive set of n tuples where n is the number of sets involved in
Cartesian product
Ith element of n-tuple comes from the Ith set
Examplep
 A X B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}

Disjoint UnionDisjoint Union
Union of two disjoint sets
elements of the same sets are colored (distinct tags)
Examplep
 A ⨄ B = {(true, a), (true, b), (true, c), (false, 1), (false, 2), (false, 3)}

where true and false are two colors
: A ⨄ B = {true} X A  {false} X B

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 9Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Mapping
mapping one or more elementsmapping one or more elements
of a set to an element of 2nd
set
one-to-one onto, one-to-one

+ 3

3

9

into, many-to-one onto, many-
to-one into
finite domain  finite mapping

- 3

+ 4
16

Lifted Domain
uses bottom symbol

d fi d i 

- 4

+ 5

25

undefined mappings map an
element to bottom symbol

 + 5

A


Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

There are basic axioms that can be true or false
New axioms can be derived from basic axioms and logical
operatorsoperators
Logical operators can be negation, logical-and (˄) , logical-
or (˅), implication () etc.

A B ¬(A) A ˄ B A ˅ B A B

true false false false true false

false false true false false true

true true false true true true

false true true false true true

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 11Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

false true true false true true

Operations Equivalence
Negation ¬ (¬ P1)  P1g (1) 1

Associativity
P1 ˄ (P2 ˄ P3)  (P1 ˄ P2) ˄ P3

P1 ˅ (P2 ˅ P3)  (P1 ˅ P2) ˅ P3

Commutativity P1 ˄ P2  P2 ˄ P1
P1 ˅ P2  P2 ˅ P1
P1 ˄ (P2 ˅ P3)  (P1 ˄ P2) ˅ (P1 ˄

Distributivity

P1 (P2 P3) (P1 P2) (P1
P3)

P1 ˅ (P2 ˄ P3)  (P1 ˅ P2) ˄ (P1 ˅
P)P3)

De Morgan’s rule
¬(P1 ˄ P2)  (¬ P1) ˅ (¬ P2)
¬ (P1 ˅ P2)  (¬ P1) ˄ (¬ P2)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 12Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Propositional calculus + quantification
Two types of quantification

Universal quantification () associates a property with all the elements
of a set.
Existential quantification (∃) finds an element satisfying a property.

Example
X (man(X)  likes_to_live_longer(X)).
X Y (sibling(X, Y)  ∃Z (parent(X, Z), parent(Y, Z), not (X == Y)

Operations Equivalences
Commutativity x y P(x, y)  y x P(x, y)

x y P(x, y)  y x P(x, y)
Duality x P(x)  -x (¬ P(x))

x P(x)  ¬x (¬ P(x))

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 13Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Relation
R  A X B such that (x  A, y  B)  R
Relationship can also be denoted as xRy or R(x, y).
Relation can be reflexive: xRx; transitive: xRy and yRz  xRz or
symmetric: xRy  yRx
Inverse of symmetric is antisymmetric; xRy is not same as yRx

Function
A single valued mapping from an element in a domain to another element
i h d iin the codomain
The set of images of the domain elements is called range
Identity function maps the element to itself
Onto f nction e er element in codomain is an imageOnto function: every element in codomain is an image
One-to-one: there is a unique image for every domain element
Bijective function; one-to-one and onto

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 14Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A definition uses itself to define with different argument
At least one base case and at least one recursive definition
Progressively unfolds and moves towards the base case
Previous invocations are suspended until next recursive invocation
returns value
Number of invocations decided by the input value

Example: factorial function or fibonacci function
factorial(0) = 1. % base clause
factorial(n) = n * factorial(n – 1) % recursive definition

fibonacci(0) = 1.
fib i(1) 1fibonacci(1) = 1.
fibonacci(n) = fibonacci(n – 1) = fibonacci(n – 2).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 15Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Implementation of recursion
A stack is needed to hold the execution space needed by variables for
every procedure invocation
Stack has memory and execution overhead of calling and returning from
called recursive procedures.

Iteration Recursion
No overhead of calling and returning
from called procedure

Excessive overhead of calling and
returning from recursive invocationfrom called procedure

starts from the base case, and
reuses the memory locations to

returning from recursive invocation

Suspends recursive calls that needs
additional memory before hitting the

accumulate results

more efficient execution

base case

Slow due to overheads

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 16Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Tail recursion
Recursive call is the last one in the definition.
Is equivalent to indefinite iteration.
Tail recursion can be transformed to equivalent indefinite iteration

Linear recursive programs
Has only one recursive call to
it lf i th i d fi iti

Algorithm iterative_factorial
Input: input value n;itself in the recursive definition

Can be transformed to indefinite
indefinite iteration

Input: input value n;
Output: accumulator value;
{ acc = 1;

for (i = 1; i =< n; i++)(; ;)
acc = i * acc;

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 17Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Ab t t hi t d l l ld hAbstract machine to model real world phenomenon
Different situations modeled as states
Transitions modeled by edges
Initial state – where the machine starts
Final state – where the transitions finally terminate
Used in accepting specific sequence patterns during compilationp g p q p g p

Room Room Room
hot cold

heatcool

Optimum
temperature

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 18Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Variable: alphabet followed by sequence of alphabet or numbers
FSA

Initial state S0; final state S1; error state: S2
Transition: S0  S1 upon the first alphabet
Transition S1  S1 upon alphabet / number
Transition S0  S2 if any character other than alphabet
Transition S1  S2 if any character other than alphabet / number

S0
(initial)

an
alphabet

S1
(final) any digit or alphabet or ‘_’

th th

S (fail)

other than
alphabet other than digit, alphabet or ‘_’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 19Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

S2 (fail)

Definition: a bag to model ordered collection of entities
Representation: modeled within angular brackets

<a, b, c>
Operations

Finding an element by position
Insertion and deletion of elements by index y
First, second, last elements of a sequence
Deletion and substitution of a subsequence by content
Joining two sequences
Finding out predecessor and successor of an entity in a sequence

Application
multiple data types can be modeled as sequence such as stacks, p yp q
queues, files, strings etc.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 20Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Operation Output ExplanationOperation Output Explanation
first(<x1…xn>) x1 the first element of a sequence
last(<x1…xn>) xn the last element of a sequence

t(< >) < > th t f threst(<x1…xn>) <x2,…,xn> the rest of the sequence
butlast(<x1…xn>) <x1,…,xn-1> the subsequence except the last

element
Nth(i (<x x >) X ith element of a sequenceNth(i, (<x1…xn>) Xi ith element of a sequence
cons(a, <x1…xn>) <a, x1,…,xn> constructs sequence by adding a in

the beginning of the old sequence
insert(i a <x x >) <x x a x x > ‘a’ is inserted as the ith elementinsert(i, a, <x1…xn>) <x1,…xi-1,,a,xi+1, … xn> a is inserted as the ith element

append(<x1…xn>,
<y1…ym>)

(<x1…xn, y1…ym> Concatenate sequences in order
y1 ym)

subseq(<x1…xn>,i, m) <xi,…,xi+m> A subsequence starting from start
location I of length m

is_subseq(<x1…xn>, Boolean Returns true if <x1…xn> is included

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 21Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

(1 n
<y1…ym>)

1 n
in <y1,…ym> otherwise returns false

Definition: a sequence where data can be inserted and deleted
from one end; other end is sealed.

also called LIFO – Last In First Out
Abstract operations: push, pop, top, is_empty

push takes an element and puts on the top of the stack
pop removes the top element of the stack
top just reads the top element of the stack
Is_empty returns true if the stack is empty else returns false

B

(c) After pop operation

A

(b) after Pushing A then B

A

(a) empty stack

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 22Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition: a sequence where data can be inserted from the front
end and removed from the rear end.

Also called FIFO – First In First Out
Abstract operations: insert, remove, first, is_empty

The operation ‘insert’ inserts an element at the rear pointer.
The operation ‘remove’ removes the first element pointed by the front
pointer.
The operation ‘first’ reads the first element pointed by the front pointer.
The operation ‘is_empty’ returns true if the queue is empty else returns
falsefalse

Rear

B

Rear

B
Rear

Front
Empty queue After inserting A then B

Front
A

After remove

Front

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 23Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

p y q

Memory locations hold two types of information
Data and reference to memory locations
Pointers are addresses of memory location stored in another memory
l ti i tlocation or processor registers

Advantages of pointers
Minimal overhead of data movement
Supports recursive data structures (lists, trees) and dynamic objects
Delaying memory allocation of variables until runtime
Allocating physically separated chained memory blocks for logically
contiguous data structurescontiguous data structures
Sharing memory blocks among multiple data structures
Providing independence of the program from data movement

Disadvantages of pointersDisadvantages of pointers
Arithmetic operations on pointers causes segment hopping error.
Shared blocks can not be reused until all pointers are released.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 24Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition: A data structure that uses itself in the definition
One or more recursive definition and one or more base definition

Examples: linked list, tree, vector

Linked list
<linked-list> ::= <data-element> <linked-list> | null<linked list> :: <data element> <linked list> | null
Trees
<binary-tree> ::= <binary-tree> <data-element> <binary-tree> | void

Implementation
Uses pointers or references to implement.
Pointers are used so that memory allocation can be done at runtime as
needed.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 25Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Tree is a recursive data structure
A node connected to multiple subtrees
Node hold information along with pointers to the subtrees
H t d (t l l d) l f d d l f dHas a root node (top level node), nonleaf nodes and leaf nodes
Pointers connect parent node to children nodes

Some types of trees
Binary tree: at most two branches
Tertiary tree: at most three branches
Quad-tree: four branches

t t t N b h

N0

Root node

n-ary tree: at most N branches
AND-OR tree

Binary tree
C

N1 N2
Non-leaf
nodes

Complete binary tree
Almost complete binary tree

N3 N4 N5

Leaf nodes

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 26Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition: a set of vertices and connecting edges
Trees vs. Graphs

Trees have only one incoming edge from parent. Graphs may have
many incoming edges
Graphs may have cycle that means using a non-repeating sets of edges
one can come back to the vertex. Trees have no cycles
T i l f h ith lTrees are special case of graphs with no cycles

Types of graphs
Weighted graphs

Seattle, WA Kent, OH New York, NY429
Directed graphs
Cyclic graphs
Acyclic graphs
Di t d li

Washington, D.C.

227

1326
1440

1135

2429
342

Directed acyclic
graphs (DAG)

Dallas, TX
Los Angeles, CA

1440

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 27Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Computation can be modeled as state-space search
multiple states and transition from one state to another state
one of the states can be a solution state

Search space can be modeled as Trees / DAGs
Two major classes of searches: exhaustive search and
heuristic search
Exhaustive search potentially examines every state until a
solution state is found

Depth-first search traverses left most subtree followed by right, and uses p y g ,
a stack to traverse to right subtree
Breadth-first searches level by level left to right, and uses queue

Heuristic search uses mathematical equation to prune the q p
search space for a focused efficient search

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 28Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

P0

PP

P0

P2

P6P5

P1

P4P3 Stack

P2

P6P5

P1

P4P3 Stack
P0

Stack

P0

P2

PP

P1

PP
P0

P1

P0

P2P1
P6P5P4P3 Stack

P6P5P4P3 Stack
P0

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

P0
P0

P2

P6P5

P1

P4P3 Stack

P0

P2P1

P0 StackP6P5P4P3 Stack
0

P00

P2P1

P0

P2P1
P6P5P4P3 Stack P6P5P4P3 Stack

P2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 30Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

P P0P0

P2P1

P0

P2P1

P6P5P4P3 Stack
P6P5P4P3 Stack

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

31

P0 P0
P1 P2P1 P2

P1 P2P2 P3 P4

P2

P6P5

P1

P4P3

Queue
P2

PP

P1

PP

Queue

6543 P6P5P4P3

P0

P1 P2P3 P4 P5 P6
P1 P2P4 P5 P6QueueP0

P2P1

P0

P2P1

P4 P5 P6Queue
Queue

P6P5P4P3
P6P5P4P3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

P0 P0
P1 P2P5 P6

P1P6

P2

P6P5

P1

P4P3

Queue
P2

PP

P1

PP

Queue

6543 P6P5P4P3

P0 QueueP0

P2P1

Queue

P6P5P4P3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

Memory is linear
Complex data structures such as structs and multidimensional
arrays are mapped to one dimensional array
Two ways to access data-fields

Computational method to compute the offset
Reference or pointer based method to access fieldsp

Mapping N-dimensional array
Recursively take slices of N-1 dimension, and place them one after
another
Two dimensional matrix is chain of
single dimensional rows/ columns

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 34Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Efficient mapping and
retrieval of data
Uses hash function on data-

0
1Uses hash function on data

content to find the index of
stored data

Hash function is simple (p1-i, int, L3) ⋀(p1-s, Bool, L2) ⋀2
3
4p

Uses prime size table to avoid
collision

Collision is handled using (p0 x int L1) ⋀
(p , t, 3) ⋀4

5
6
7

(p1-j, int, L4) ⋀
linked lists
Near constant time
complexity

(p2-a, int, L5)
(p0-x, int, L1) ⋀7

8
9
10

p y
(p2-i, int, L6)10 ⋀

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

Program is a sequence of meaningful instructions (statements)
Each statement is terminated by a delimiter or linefeed
A program can haveA program can have

Literals, l-values, r-values, identifiers, labels, definitions, declarations,
assignment statement, commands, expressions, procedures and
functions, strings, procedure invocations, parameters, and sequencers
Literal – an elementary expression that can not be further split.
Examples: number, character, atom
r-value – the evaluated value of an expression. Occurs on the right
hand side of an assignment Actual value of a variablehand side of an assignment. Actual value of a variable
l-value – location value of a variable. Occurs on the left hand side of an
assignment
Identifier – a symbolic name associated with an entity such as constant,Identifier a symbolic name associated with an entity such as constant,
procedure, variable etc.
Definition – A symbol associated with a value. During compilation
symbol is substituted by the corresponding value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 36Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

VariableVariable
identifier  l-value  r-value
Can be associated with a concrete value or type
When associated with a type is called type variableWhen associated with a type is called type variable
Can be destructively updated or could be assign-once

Assignment statement
Ri ht h d id i i l t d d itt i t thRight hand side expression is evaluated and written into the memory
location associated with the variable name.

Command is a statement with embedded assignment statement
E i l i d i i l iExpression evaluation does not write into memory location
String is a sequence of characters
Operators could be p

Dyadic – having two operands such as addition, subtraction,
multiplication, division, logical or, logical and
Monadic – having one operand such as not, - <operand>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 37Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Mutable vs. Assign-once variables
Mutated variables can be destructively updated multiple times
Assign-once variables are assigned the value only once

Mutable Assign-once
1. Reusable 1. Memory explosion1. Reusable
2. Looses past information
3. Undesired program-behaviors

due to side-effects

1. Memory explosion
2. Use of past values to find

alternate solutions
3. Does not support iteration
4 L id ff t4. Less side-effects

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 38Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Binding
An entity is associated with corresponding attributes

Example
Variable-name bound to a memory location
Memory location bound to an r-valueMemory location bound to an r value
Identifier bound to a procedure-block

Scope RuleScope Rule
Defines the visibility of declarations within a part of the programs
Can be static or dynamic
Static binding means visibility does not change with program executionStatic binding means visibility does not change with program execution
Dynamic binding means visibility changes with procedure invocation, and
unbound variables pick up the value from the declarations in the reverse
order of the invoked procedures.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 39Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Static scope rule
main ()
{ integer x y z;

integer sum(integer x);
return (x + y);

Dynamic scope rule

{ integer x, y, z;
x = 4; y = 10; z = 12;
{integer temp, z;

return (x + y);
main ()
{ {integer y, z; y = 4; z = 5; sum(y);}

temp = x; x = y; y = temp; z = 5;}
print(x, y, z);

}

{integer w, y, z;
w = 4, y = 5; z = 6; sum(z);}

}
outer block: x, y, z
inner-block: temp, z-inner, x, y
Z-outer is shadowed in the

first call to sum(y) returns 8; In
sum, x gets bound to value of y =
4, and y gets bound to 4.

Z-outer is shadowed in the
inner block

Second call sum(z) returns 11. In
sum, x gets bound to z = 6, and y
gets bound to 5

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 40

Variables are classified by visibility rules and lifetime
Global – visible everywhere, lifetime throughout the program
Nonlocal – visible in the nested procedures, lifetime is the procedure in

hi h it i d l dwhich it is declared
Local – visible within the procedure they are declared

V i bl b t ti d iVariables can be static or dynamic
Static variables are allocate memory location at compile time
Dynamic variables are allocated memory locations during runtime

Variables in object-oriented languages
Class variables – variables declared in class, accesses by all instance of
th lthe class
Instance variable – only accessible in a specific object

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 41Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Environment StoreEnvironment

Environment is set of
i b t id tifi

Store is mapping of memory

Store

mapping between identifier
and memory locations
Environment changes with a

d l ti

location to r-value
Store changes with a new
assignment statement or

new declaration
Creating new identifier 
memory location mapping
Shadowing non local variable

g
initialization or parameter
passing

Shadowing non local variable

Global variables  l-value

Non-local variables  l-value
Reference parameters
Formal parameters  l-value

l i bl  l l

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Local variables  l-value Environment

Slide 42

Function P dFunction

Function is a collection of
expressions

Procedure contains atleast
one command

Procedure

expressions
Function does not alter the
store as it has no destructive
updates

one command
Procedure alters the store
due to assignment
statementsupdates

Functions has four
components

Name body parameters and

statements

Name, body, parameters and
bounded variables

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Slide 43

Program execution is modeled as a state transition
Each statement transforms program to a new state.
A state is a triple of the form (σE, σS, σD) where σE is the environment, σS

i th t d D i t k f i f th f (E S) f this the store, and σD is a stack of pairs of the form (σE, σS) of the
suspended calling procedures in LIFO order.
Computational state changes when environment changes, when store
changes when a procedure is called and when control returns from achanges, when a procedure is called, and when control returns from a
procedure

Program execution modeled as Boolean state transitionProgram execution modeled as Boolean state transition
Each state is a Boolean conditions connected through logical operators:
logical-and, logical-or and negation
Boolean expression changes each time an assignment operation is
executed
Example: X = 5 + 3 makes X == 8 as true

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 44Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Program Correctness Program CompletenessProgram Correctness Program Completeness

Derived

Derived

Actual solutions
Actual

solutions

solutions

P i t if th P i l t if th

solutions
solutions

Program is correct if the
solutions derived by the
program is a subset of the
actual number of solutions to a

Program is complete if the
actual solutions to a problem is
a subset of the number of
solutions derived by theactual number of solutions to a

problem
solutions derived by the
program

Program is complete and correct when actual solutions

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

are the same as the derived solutions
Slide 45

A program executes within a small subset of the environment.
This subset is called locality

Locality change
Control flow processes different parts of a large data structure
Control moves to different parts of a large programControl moves to different parts of a large program
Current subprogram calls another subprogram

Principle of locality is important becausePrinciple of locality is important because
Only a small part of the environment and store resides into main memory
As the locality changes there is an overhead of bringing the needed
environment and store into the memoryenvironment and store into the memory

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 46Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Middleware – layer between the low level instructions and
application

Memory management, system utilities for user friendly interface, I/O
t fil t it d t kimanagement, file management, security and networking

Provides access of to multiple processes and users concurrently
Operating system concepts related to programming are

Principle of locality, virtual memory, page faults, buffers, processes and
threads

Process
A i f h i i h hi f iActive part of a program that is in the machine for execution
Is allocated memory blocks to store instructions and data
Has a stack, memory area to communicate, and status flags
States e ec ting read to e ec te sleep s spended terminatedStates: executing, ready to execute, sleep, suspended, terminated,
waiting for I/O

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 47Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Thread: a light weight process that shares its memory area with
parent process

More efficient than a process due to reduced overhead
A process can spawn multiple threads to do subtasks
concurrently

Active Suspended

Started

I/O request
Scheduler suspends

Created Ready

Started
I/O receivedScheduled

Finished

Terminated
Abort

Abort

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 48Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A programmer works into logical memory space
In a logical memory space, large data structures are contiguous

Computer runs into physical memory space that is non-
contiguous.
Virtual memory maps logical space of the programmer to
non-contiguous physical space of the memorynon contiguous physical space of the memory

Virtual blocks could be fixed size called pages or variable size called
segments
Page based virtual memory has internal fragmentation but no externalPage based virtual memory has internal fragmentation but no external
fragmentation. If an addressed page is in secondary memory then it is
called page fault. Pages are brought from secondary memory to main
memory upon page fault, and has significant overhead, and reduces
act al CPU tili ationactual CPU utilization.
Segmentation has no internal fragmentation. However, bringing a
segment may have additional overhead

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 49Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

D fi itiDefinition
Memory space between two asynchronous process so that they can
write and read from the memory at their own pace.

I l t ti i i lImplementation: using circular queue
Use of circular buffer allows memory reuse
Circular buffer is empty when both front and rear point to the same
memory locationmemory location
Circular buffer is full when (rear + 1) mod size = front

m - 1
0

Process writing

Rear-pointer

Process reading

Front-pointer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 50Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

is_empty_buffer(buffer)

is full buffer(buffer)

if (fp == rp) return(true)
else return(false);
if (((rp + 1) mod m) == fp return(true)is_full_buffer(buffer) if (((rp 1) mod m) fp return(true)
else return(false);

if not (is full buffer(buffer)) {
insert(buffer, element)

if not (is_full_buffer(buffer)) {
buffer(rp) = element;
rp = (rp + 1) modulo m;}

else raise exception(buffer full, element)

remove(buffer)

else raise_exception(buffer_full, element)

if not (is_empty_buffer(buffer))
element = buffer(front-pointer);remove(buffer) (p);
fp= (fp + 1) mod m;
return(element);}

else raise exception(buffer empty)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

_ p (_ p y)

Four major foundations of programming are:
Data structures, discrete structures, operating system concepts and
abstract computational concepts

Data structure concepts for programming are:
Stacks, queues, linked lists, trees and exhaustive search

Discrete structure concepts for programming are:Discrete structure concepts for programming are:
Sets, bags, functions, relations, mapping and recursion and FSA
Set operations are Cartesian products, union, intersection, disjoint union,
power setp
Ordered bags are important
Boolean logic is important for conditions in selection and iteration

Operating system concepts for programming are:Operating system concepts for programming are:
Principle of locality, circular buffer, virtual memory

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 52Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Abstract computation concepts are used to model the
program execution abstractly

There are many abstract entities such as literal, l-value, r-value,
variables, definitions, assignment, expression, command
Variable is identifier  l-value  r-value
Environment is a set of mapping of identifier  memory locations
St i t f i f l ti  lStore is a set f mapping of memory locations  values
An assignment statement destructively updates a memory
location
A command contains at least one assignment statementA command contains at least one assignment statement
An expression does not have an assignment statement

Scope could be static or dynamic
Static scope rule is based upon program structureStatic scope rule is based upon program structure
Dynamic scope rule is based upon the LIFO pattern of the calling
procedures

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 53Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

