
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

Introduction
Advantages of type declaration
N ti f tNotions of type
Set operations and structured types
Limitations of Type TheoryLimitations of Type Theory
Polymorphism
Type System in modern programming languagesyp y p g g g g
Type equivalence
Implementation of types
Case study
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

Types and their roleTypes and their role
Types are sets of objects with well defined properties and operations
A member of that set will follow the associated properties and operations
Type declarations provide better error correction memory allocationType declarations provide better error correction, memory allocation,
precision, and computational efficiency

Types can be static types or dynamic types
St ti t d l d t il ti E li it t i f ti iStatic types are declared at compile time. Explicit type information is
lost after compilation in static types
Dynamic types can associate type with an identifier at runtime
Strongly typed languages do not alter a type of an identifierStrongly typed languages do not alter a type of an identifier

Type violation
When a type of object is treated as another type of object due to some
programming lang age propert or constr ctprogramming language property or construct

Polymorphism (to be explained later)
Allows a subset of operations on different types of objects

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

Error correctionError correction
Type mismatches are identified at compile time

Optimized memory allocation
Different objects are allocated different amo nt of memor CompileDifferent objects are allocated different amount of memory. Compile
time declaration allows this optimized allocation at compile time
Optimized memory allocation also facilitates optimized computation
as there is no need of extra memory processingy p g

Compile-time type conversion of operands
Integers and real numbers can be mixed in arithmetic operations
The operands are coerced to other type at compile time.p yp p

Compile-time disambiguation of operators
Arithmetic operators are disambiguated when mixing integers and
reals

Code optimization
Knowledge of type declaration allows the effective use of registers
and the removal of unnecessary code

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

y

Extra precision for numbersExtra precision for numbers
Type declaration allows operations needing large numbers or extra
precision that require more memory

S ft fi t d i tSoftware refinement and maintenance
User defined types allow easy incorporation and modification of data
structures facilitating software maintenance

Concurrent execution
Declaration of semaphores and monitors used for synchronization

Use of the generic polymorphic proceduresUse of the generic polymorphic procedures
Declaration of generic procedures and generic type allows for a function
to be used for different types of data objects
Example of such operation is funding length of a list

Disadvantages: 1) difficult to track in large programs; 2)
not user-friendly due to large number of variables

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

program main %(1)program main %(1)
struct galaxy { %(2)
integer starCount; %(3)
double float distance; } %(4)double float distance; } %(4)
{ integer x, y; % integer takes 4 bytes on a 32 bit machine (5)

float w, z; % float takes 8 bytes on a 32 bit machine (6)
double a b; % takes 8 bytes on a 32 bit machine (7)double a, b; % takes 8 bytes on a 32 bit machine (7)
string c, d; %(8)
galaxy neighbors[10]; %(9)
x = 4; y = 6; %(10)x = 4; y = 6; %(10)
w = x + y; % ‘+’ is integer addition; the evaluation is coerced to float (11)
z = w + y; % ‘+’ is a floating point addition; ‘y’ is coerced to float (12)

c = “Milky Way” % (13)c Milky Way % (13)
d = z + c % type mismatch error (14)
neighbors[1].starCount = 32567823418; % extra accuracy (15)
neighbors[1].distance = 4.5 E**12; } % (16)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6

neighbors[1].distance 4.5 E 12; } % (16)

Types are sets with well defined properties and operationsTypes are sets with well defined properties and operations
Basic types

Mathematical types such as integers, floating point, Boolean, sets etc.
String processing types such as char, list
Computer organization information such as bit, byte, word, longword etc.
Synchronization primitives such as semaphore and monitor

Declaring references to objects
Structured types formed by joining multiple types
T bTypes can be

Passed as parameters as in parametric polymorphism
Declared as subtypes that follow the properties of original types, and is
called inclusion typecalled inclusion type
An object can be transformed to an object of higher type without loss of
information – Coercion
An operator or symbol may have multiple meanings - overloading

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

An operator or symbol may have multiple meanings overloading

Set operations generating new sets create new types
Set operations are

Set Operations Corresponding Types
Ordered sets Enumeration and subrange
Cartesian product Record/struct/Tuplep p
Finite mapping Arrays / Association list
Disjoint union Variant record
Power set Set of subsetsPower set Set of subsets
Cartesian product + Disjoint
union

Recursive data types

Abstract data types impose additional properties and
restrictions, and may have new operations on sets

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 8

Cartesian product produces a set of n-tuples of the form
(a1

i, a2
i, ⋯, an

i) (1 ≤ i ≤ n) ∈ S1 × S2 × ⋯ × Sn

Size of the set is size-of(S1) × size-of(S2) × … × size-of(Sn).

composite data-entities are written using syntactic
constructs ‘struct’ or ‘record’ , or tuples in different
languageslanguages

Different fields correspond to different sets

Example
Complex number: real × real
Rational number: integer × integer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

Many-to-one mapping from Domain to Co-domain
Corresponds to arrays, association lists, ordered sets
A d l dArrays are modeled as

Domain as natural numbers
Codomain as any data type
E l i t [3] h d i {0 1 2} d i t f i tExample: integer a[3] has domain = {0, 1, 2}, codomain as set of integer
values; and mapping as {0  integer-value, 1  integer value, 2 
integer value}

Association list is modeled asAssociation list is modeled as
domain as enumeration type with each element as a key

Example
Domain is {world-war-II, 1967, Earth }
Codomain is {1939, man-on-moon, water }
{ world-war-II 1939; 1967  man-on-moon; and Earth  water }

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

A t f ll b t f th i i l tA set of all subsets of the original set
Number of elements in the set = 2 size-of(original set)

A variable is bound to any subset of the enumerable set Sy
Basis of set based programming

one can define all the set operations on these subsets.

E lExample
type student = (tom, phil, jean) % declaration of enumerated set
var regular_students : set of students;

3The type student represents a power set of 2 3 = 8 elements
{{ }, {tom}, {phil}, {jean}, {tom, phil}, {tom, jean}, {phil, jean},
{tom, phil, jean}}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11

Two sets S and S are disjoint if S ⋂ S = ∅Two sets S1 and S2 are disjoint if S1 ⋂ S2 = ∅
Sets are colored using Cartesian product and mixed

Disjoint set = {Color1} × S1  {Color2} × S2

Example
Set1 = {Mary, Nina, Ambika, Susan} ; Set 2 = {Tom, Rubin, Mark}
Color1 = girl; Color2 = boyColor1 girl; Color2 boy
Set1 ⨄ Set 2 = {girl} × {Mary, Nina, Ambika, Susan} 

{boy} × {Tom, Rubin, Mark}

Variant records: two parts - fixed part and variant partVariant records: two parts - fixed part and variant part
Variant part is modeled as disjoint union as fields are selected based
upon a multiple valued variable or a Boolean flag
Set = Fixed-part × {true} × variant-set1 {false} × variant-set2Set Fixed part {true} variant set1  {false} variant set2

Problems with disjoint union
Different types of object may overlap on the same memory space
I t ti d t t i l ti

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

Incorrect operations on memory space due to type violation

Modeled using Cartesian product and disjoint unionModeled using Cartesian product and disjoint union
base case and recursive part connected through disjoint union
Concatenation in recursive part connected using Cartesian product

Li f ll li f diff iList represents set of all lists of different sizes
Recursive definition gives the same set as the set operations involving
Cartesian product and disjoint union
Li t t f l t  t f t l t List = set of one element  set of two elements  …
List = {false} X {nil}  {true} X data-type X list (that can be expanded)

Binary tree represents set of all trees of different depths
Recursive definition gives the same set as the set operations involving
Cartesian product and disjoint union

Recursive definition Set operation

<list> ::= <data> <list> | nil <list> ::= <data> × <list> ⨄ nil

bt bt d t bt | il bt bt d t bt ⨄ il
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 13

<bt> ::= <bt> <data> <bt> | nil <bt> ::= <bt> × <data> × <bt> ⨄ nil

T t

Pointer

Type system

Monomorphic Polymorphic

Class

ReferenceScalar Structured
Integer
Real

Universal Adhoc
Parametric

I l i
Overloading

Cart. Prod. Struct/ tuple
Real
Boolean
Char
Sema

Inclusion Coercion

Finite map Array / association list
Disjoint union Variant record

Byte
Word

Power set Set of subsets

Disjoint union Variant record

Cart. Prod. +
Disjoint union Recursive type

Ordinal Power set Set of subsets

Ab t t t d fi d t d fi d b t t ti

Ordinal
Enumerated set

Subrange

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

Abstract type = user-defined type + user-defined abstract operations

Program properties that alter at runtime are not captured
Compiled code has no boundaries between data objects

Example of runtime alterable propertiesExample of runtime alterable properties
Array bound check: The index of an array element is computed at
runtime, and can violate start and end marker
Substring of a string: start and length of the substring are computableSubstring of a string: start and length of the substring are computable
at runtime, and can violate the overall size of a string.
Variant part of a variant record: Variant part’s type interpretation is
dependent upon the value of the flag that is altered at runtime.p p g
Accessing elements in the data area using independent pointer that
allow pointer arithmetic. Pointers can violate data-object boundary
and program segment boundaries.

Monomorphic types limit operations to one type of data
objects

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

Program
The variable j is multiplied by 2
every time for six times giving final
value as 64

program main
integer i, j;
real a[50];value as 64

a[j] means nonexistent a[64]
Goes into memory space bound to
some other variable and corrupts

real a[50];
…

{ j = 1;
for (i = 1; i <= 6; i++) j = 2 * j; % j

Solution
Perform array bound check before
accessing any array element

O h d

for (i = 1; i <= 6; i++) j = 2 j; % j
is 64

a[j] = 120.2; % A non-existent data
element a[64] is being assigned a Overhead

Requires two additional operation
for every array element access
Computationally very slow

[] g g
value.

…
}p y y

Vendors provide a compile time
switch for executing programs with
and without array-bound check

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved slide 16

Program analysis
After the execution of for-loop,
the value of j is 16

program main
{ string my_name, short_name;

integer i, j, k;j
Length of the string is 6
Length of the substring is 4
Substring looks for substring of

integer i, j, k;
my_name = “Arvind”; j = 1;
for (i = 0; i <= 3; I++) j = 2 * j;

short name =Arvind from position 16 of
length 4

Effect

short_name =
substring(my_name, j, 4);

}

Erroneous location after the
substring allocation

To correct this effect, string start
and end needs to be carried and
checked at runtime causing
excessive overhead

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved slide 17

Polymorphic

Universal Adhoc

Polymorphism allows the same function or operation to work on

Adhoc
Parametric
Inclusion

Overloading
Coercion

Polymorphism allows the same function or operation to work on
multiple types of data objects.

Supports reusability of code
Universal polymorphism allows indefinite types of data objects

f fAdhoc polymorphism allows finite types of data objects
Parametric polymorphism

Uses type variables, and passes concrete types as parameters.
I l i l hiInclusion polymorphism

Uses subset inclusion to inherit properties and operations of bigger set
Coercion converts one type to another

l di ll lti l i t t / b l
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

overloading allows multiple meaning to an operator / symbol

Allows the use of generic functions on different types of objects
The operation is more associated with the structure of the data objects,
rather than the property of individual data elements
E l ddi li t f i t ti th l t i li tExamples are adding list of integers; counting the elements in a list
Polymorphic type is written as input type  output type

Mechanism of generic functions
Call subprogram is a generic function
Formal parameters of generic functions are expressed as type variables
Calling function passes the concrete type as parameters
C ll d f ti i i li d t ifi tCalled function is specialized to specific type

Examples
Polymorphic type of counting function: list()  integer where
list() ::=  × list() ⨄ nil
Polymorphic type of sum-of-a list: list()   where   { integer, real}
Polymorphic type of append is list() x list()  list()

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 19

Any subset of an original type is a subtype
2N possibilities where N is the number of elements in the original set
For infinite size original set such as integer or real there are infinite

ibl b t h i fi it b f btpossible subsets hence infinite number of subtypes
Subtype inherits the properties and operations of the original type

No need to redefine the properties or operations for subtypes
Subclass inherits all properties and operations from parent class

Limitations: closure property may be violated such as
Subtract(natural-number 1 – natural-number 2) is not necessary a
natural-number despite natural-number being a subtype of integer

Example
subtype Month is INTEGER range 1..12
subtype age is INTEGER range 0..150
type Weekday is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Workingdays is Weekday range Mon..Fri

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 20

Automatic conversion to anotherAutomatic conversion to another
type to support mixed types
Conversion preserves information
Transitive and antisymmetric

Example
integer m, n;
float x, y;

Transitive and antisymmetric
Does not alter the original object
Only consumer occurrences
support coercion in statically

double d1, d2;
{m = 4; n = 6; x = 3.4; y = m + x; d1
= n + y; d2 = d1 + 5;}

support coercion in statically
typed languages

Mechanism

Explanation
M coerced in y = m + x from
integer to floatMechanism

Create a temporary location for
the converted object
Perform the operation

ege o oa
N and y coerced to double float
in d1 = n + y
5 coerced to double float
equivalent in d2 = d1 + 5p

Integer  float  double float
Integer  long integer  quad
integer

equivalent in d2 = d1 + 5

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

g

Arithmetic operators such as ‘+’,
‘*’, ‘/’, ‘-’ have different meanings
based upon operands

Example
integer x, y;
float a, b;

Adhoc polymorphism

Example

…
x = 3; a = 5.3;
y = x + 6;

‘+’ can be integer addition,
floating point addition, complex
number addition, insertion of an
element in a set etc.

b = a + 7.4;
Explanation

‘+’ in y = x + 6 is integer
dditi i b th d

Disambiguation of operators
At compile-time In statically
t d l

addition since both operands
are integers
‘+’ is b = a + 7.4 is floating point
addition since 7.4 is a floating

typed language
At runtime in dynamically typed
language

point number

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

S t f b th hi d l hi tSupport for both monomorphic and polymorphic type
Polymorphism includes universal and adhoc polymorphism
Monomorphic type supports scalar, structure and reference

Further classification
Scalar types can be integer, float, Boolean, char, semaphores, byte,
word, ordinal types, extra precision in integer and float, complex number
Structured types involve set operations: Cartesian products for tuple,
ordered sets for sequences; finite mapping for arrays and association
lists; disjoint types for unions / variant records; combination of Cartesian
product and disjoint union for recursive data typesproduct and disjoint union for recursive data types
Reference types are used for objects and classes
Strings are sequences of characters. Have been treated as class in
object oriented languagesj g g

Pointers are treated differently in languages
Some languages do not support independent pointers for safety
Pointer arithmetic makes pointers unsafe

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

Pointer arithmetic makes pointers unsafe

Type system

Pointer

Type system

Monomorphic Polymorphic

Class

ReferenceScalar Structured
Integer
Real

Universal Adhoc
Parametric

I l i
Overloading

Cart. Prod. Struct/ tuple
Real
Boolean
Char
Sema

Inclusion Coercion

Finite map Array / association list
Disjoint union Variant record

Byte
Word

Power set Set of subsets

Disjoint union Variant record

Cart. Prod. +
Disjoint union Recursive type

Ordinal Power set Set of subsets

Abstract type = user-defined type + user-defined abstract operations

Ordinal
Enumerated set
Subrange

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 24

Abstract type user defined type + user defined abstract operations

Obj t i t d l t f t tObject oriented languages support reference type to
access objects stored in the heap

Reference is an internal representation that does not support pointer
arithmetic or independent status like pointersarithmetic or independent status like pointers

Different languages name reference type differently
Java calls it object type; C++ and C# call it void *; CLU calls it any;
Modula 3 calls it refanyModula 3 calls it refany

Object referred by universal reference type are altered
dynamically
C ili i l f t i fCompiling universal reference type is unsafe

It can be associated with uncompatible type of objects at runtime
Approaches to handle type compatibility at runtime

Casting – transforming one type of object to another. Two types of
casting: upward casting and downward casting
Dynamic type tags – each data object keeps a type tag that is checked at
runtime for compatibility before performing operation

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

p y p g p

Two types carrying same information should be equivalentTwo types carrying same information should be equivalent
Problem of equivalence is difficult because

Cartesian product is commutative
Same information may be grouped at different nesting level in a structSame information may be grouped at different nesting level in a struct
Many fields may have the same type but different information
Difficult to align flexible base index in languages that support
Same basic type may represent incompatible informationyp y p p

Example: Same information with two different tree
typedef struct { integer age; string name; float assignment_score;} student1;
typedef struct { string name; integer age;} person;yp { g ; g g ;} p ;
typedef struct { person individual; float assignment_score;} student2;

integer × float × char × integer char × integer × float × integer

integer char integer float integer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 26

integerfloat char
g integer

Structure Equivalence Name EquivalenceStructure Equivalence
Based upon structural matching
Structures are equivalent if they

th i f ti

Same name in addition to carrying
the same information
R t i ti b t t t

Name Equivalence

carry the same information
Problems

Ambiguity by multiple fields of the
same basic type

Restrictive but protects
programmer’s intention
Easy to implement

the ease of type matchingsame basic type
Commutativity of Cartesian product
Same type but different entity
Same information different nesting

L M d l 3 C d ML

the ease of type matching
during compilation

Languages : Ada, Pascal, Java,
C# support name equivalenceLanguages: Modula 3, C and ML

Conservative approach
Two fields with same name and
type are equivalent

C# support name equivalence
Example

Type Coordinate = Record x, y
: INTEGER;

Disallow permutation in the
arrangement of fields, or
Permutation allowed if name and
basic type matches

;
Type Complex = Record x, y :
INTEGER;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Type information and various attributes are carried in symbol tableType information and various attributes are carried in symbol table
In statically typed language, the attribute information is lost after
compilation

The information is inherently compiled into operations in code areaThe information is inherently compiled into operations in code area
Implementation parts: Type descriptor and memory allocation
Type descriptor during compilation

Name of the type
Type classification such as array, record etc.
Number of elements and bytes held by each element

Tuples carry the information about
(tuple-name, number of fields , information about each specific field,
number of bytes in each field, offset of each field).

Arrays carry the information about
(array-name; number of elements; domain type, lower index, upper
index; codomain type, bytes in each element, range of allowed values)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 28

Student: tuple of the form ((name: string, age: integer, major: string)
Type descriptor is of the form: (entity-type, name, bytes, total-size, individual
field information)

(record, student, 3, 514,(, , , ,
(string, name, 256, 0), % information of field 1
(integer, age, 2, 256), % information of field 2
(string, major, 256, 258) % information of field 3

)).
Class: array [1..30] of student

Type descriptor is of the form: (entity-type, name, size, total bytes, domain
information, codomain information))

(array, class, 30, 514,
(integer, 1, 30), % domain information
(student, reference(student-descriptor)) % range information

))
Code generator takes this information from type descriptor and
embed it in the code area and the frame information

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

Inference of implicit polymorphism is called type inference.
Languages like Prolog and Lisp have implicit polymorphism.

Given explicit type, validating inferred types and declared types is
called type checkingcalled type checking.
In statically typed language such as Scala type inference is used for
inferring undeclared types.
Polymorphic type componentsPolymorphic type components

Type variables declared as alpha, beta, gamma etc.
Concrete types such as integer, real, Boolean
Union of types, disjoint union of types; Cartesian product; mapping;Union of types, disjoint union of types; Cartesian product; mapping;

Polymorphic type declaration
Input parameter type  output type
Multiple parameters are connected using Cartesian product α1 × … × αN1 N
Function composition f  g where input to g is , output of g is , and
output of f is , then the polymorphic type of f  g is ( )  
Values are converted to concrete type during inference

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 30

Polymorphic typePolymorphic type
Function Type Function Type

first list(α)  α length list(α)  integer
rest
cons
null

list(α)  list(α)
α × list(α)  list(α)
list(α) Boolean

append
insert
apply all

list(α) × list(α)  list(α)
α × list(α)  list(α)
(α  β) × list(α) list(β)

Example
(defun my_sum(Data)

null list(α)  Boolean apply_all (α  β) × list(α)  list(β)

(if (null Data) 0 (+ (first Data) (my_sum (rest Data))))
)

Type inference starts with  
+ operator limits the output of the function to integer or real
The value 0 further limits the output to the type integer
The function first sets input to list(integer)
Th fi l l hi i li (i) i

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31

The final polymorphic type is list(integer)  integer

Implementing polymorphism requires runtime specialization
Type variable requires runtime binding and specialization

Source code can be translated differently to machine codey
Uniform polymorphism: source code and machine code both exhibit
polymorphism; same memory allocation scheme for different types of
objects; memory allocation not optimized; extra effort and wastage to

t i t f d tseparate pointers from data
Textual polymorphism: polymorphism only is at source code level.
Multiple specialized code at machine level. Excessive memory overhead
for code areafor code area
Tagged polymorphism: data is represented differently for different types
of objects; machine code uses uniform code; different dynamic sequence
of code executed for different types of objects using type check and
branch statements; used for operator overloading

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

Type system

Access

Type system

Monomorphic Polymorphic

Object

ReferenceScalar Structured
Boolean
Char

Universal Adhoc
Generic

S bt
Overloading

Cart. Prod. Record
Char Subtype Coercion

Finite map Array
disjoint union Variant record

Real
Fixed
Float j a a t eco d

Cart. Prod. +
Disjoint union Recursive type

Float
Numeric

Integer
Complex

Ordinal
Enumerated set

Rational

Abstract type = user-defined type +
user-defined abstract operations

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

Subrange
p

Type system in C++
Strongly typed language
Supports basic types such as integer, float, char, Boolean and string
Structured types such as struct, arrays, union, and recursive data types;
reference type (class); and pointers
Supports different types of polymorphisms: parametric, inclusion,

l di d ioverloading, and coercion
Supports string as class library

Type system in Modula – 3
Strongly statically typed language
Supports structural equivalence instead of name equivalence
Supports all structured types including set based constructs
Pointers as independent type
Supports objects as reference type
Supports procedure type, and procedures can be passed as parameters

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Type system is a classification system based upon well defined
properties and operations.
Types are sets, and user defined structural types are generated by
operations and structures based upon set operations

The major set operations are: ordered sets, ordered bags, Cartesian
product, finite mapping, disjoint union, and power set.
CCartesian Product  tuple; Finite-mapping  arrays; Power-set
 set declarations; ordered set  enumeration type and range;
disjoint union  variant record; disjoint union and Cartesian product
 recursive data type recursive data type

Reference types are used for object representation
Polymorphic types allow same operation or functions on multiple
types of objectstypes of objects

Universal polymorphism: parametric and inclusion
Adhoc polymorphism: overloading and coercion

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

The advantages of types are inThe advantages of types are in
Identifying mismatch error, optimized memory allocation, extra precision,
compile time overloading and coercion, user defined types for better
software maintenance etc.

The disadvantage of types is
Extra effort by the programmer to mentally keep track of variables, lack
of reusability of variables for different types of objects.y y j

Statically typed languages loose type information after compilation
Type descriptor is used to

Detect type mismatch memory allocation implicitly embed typeDetect type mismatch, memory allocation, implicitly embed type
information in code area by compiling to corresponding operations
Type descriptor includes information about attributes, number and size of
the fields, size of the data elements etc.

Universal reference type is used to implement objects in the heap
Implementation of polymorphic types can be

Uniform tagged or textual

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 36

Uniform, tagged, or textual

