
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

L i P i F d t lLogic Programming Fundamentals
Unification – Bidirectional Information Flow
Representing Logic ProgramsRepresenting Logic Programs
Abstract Implementation Model

AND-OR Tree
Warren Abstract Machine

Programming using Prolog
Nondeterministic ProgrammingNondeterministic Programming
Extending Logic Programming Paradigm
Integration with Other ParadigmsIntegration with Other Paradigms
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

Declarative programming paradigmDeclarative programming paradigm
Popular logic programming is based upon first order predicate calculus
Applied in expert systems, nondeterministic programming, game playing,
intelligent system, genome comparison, natural language processing etc.

Components of Predicate Calculus
Propositional calculus – variableless axioms and complex facts derived
by combining axioms using logical operators such as AND, OR, negation
Quantification: universal or existential
Universal quantification associates a property with elements of a set
Existential quantification identifies at least one member in a set with
desired propertiesdesired properties

Classification of logic programming
Constraint logic programming – handles constraints
Deductive logic programming - new axioms using existing axiomsDeductive logic programming new axioms using existing axioms
Temporal logic programming – incorporates time based reasoning
Inductive logic programming – generalizes examples into rules
Higher order logic programming – treats relations as arguments

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

Two types of information: Rules and facts
Facts are axioms that are treated as true.
Rules are used to split a complex query into multiple simpler queries
connected through logical AND
Rule is of the form Clausehead  sungoal1 …  subgoalN
There can be more than one rules connected through logical-OR used to

d threduce the same query:

Example of logic program
((∀X ∀Y sibling(X, Y)  ∃Z parent(X, Z) ⋀ parent(Y, Z) ⋀ ¬ (X == Y)) ⋁
(∀X ∀Y sibling(X, Y)  ∃Z fraternity(X, Z) ⋀ fraternity(Y, Z) ⋀ ¬ (X == Y))
parent(tom, mary) ⋁ parent(neena, mary) ⋁ parent(tom, john)

Corresponding Prolog programp g g p g
sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y) .
sibling(X, Y) :- fraternity(X, Z), fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

p (y) p (y) p (j)

F d R i tForward Reasoning system
Takes known facts, and uses all the applicable rules eagerly to derive
new derived facts.
L t f d d t t tiLot of redundant computations
Useful for monitoring system, logical databases, prediction systems
Example of forward reasoning system is OPS5

Backward Reasoning system
Starts from a query, and splits query into simpler subqueries using rules

d l i l t l i l AND l i l OR d i li tiand logical operators logical-AND, logical-OR and implication
More focused and efficient, uses depth first search for implementation
All subqueries must be satisfied by given facts to satisfy top level query
Useful in expert systemsUseful in expert systems,
Example of backward reasoning system is Prolog

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

Traditional data structures are sequences tuples tree and factsTraditional data structures are sequences, tuples, tree, and facts
List is included within square brackets; tuples within
[a, b, “Arvind Bansal”] ; (4, 5, 6) is a tuple
n-ary tree is represented as <functor-name>(Arg1, … ArgN)
Constant starts with small letters; variable starts with a capital letter
Ground term has all constants; nonground term has atleast one variable
[1, 2, 3] can be represented in many ways: [1| [2, 3]], [1, 2 | [3]]

M d l l t i h d t t t hModern languages also support rich data structures such as
Dynamic arrays, blackboards, associative maps, graphs, sets

. class[1 2 3]

1 .

2 .
‘PL’ cs

time

10 11

[1, 2, 3]

2

3 @
rest of the list

10 11

class(‘PL’, cs, time(10, 11))

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6
a. representation of list b. representation of an n-ary tree

A t t t l i l tA means to equate two logical terms
Finds out a set of substitutions when applied makes terms equal
Does not evaluate any expression, and information flow is two way
Used to pass parameters between a query and the LHS of a rule

Pattern matching and binding in unification
Matching is done position by position for g y
Unification performs both pattern matching of constants and binding of
variable to a logical subterm
Two unbound variables become aliases of each other

Example
b(1, X) = b(Y, b) gives substitution {X/b, Y/1}
(a, X, X) = (a, 3, Y) will yield the set of bindings (X/3, and Y/3)() () y g ()
b(X, Y, [3, a(d, e)]) = b(N, M, [M, N]) would give the binding set {X/a(d, e),
Y/3, M/3, N/a(d, e) }.
b(1, 1) = b(X, 4) will fail since constants 1 and 4 do not match

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

Algorithm unify ⨀ means apply substitutionAlgorithm unify
Input: Two logical terms: T1 and T2
Output: Binding set S;

⨀ means apply substitution
+ means insert in a set⋃ union of two sets
¬ negation

{ I1 = T1; I2 = T2; S = { }; unified = true;
for each position p in I1 and I2

{ if (is_variable(I1(p)) ⋀ is_variable(I2(p)) then
S = S + I (p) ∥ I (p);

 negation

S = S + I1(p) ∥ I2(p);
elseif (is_variable(I1(p)) ⋀ non-ground(I2(p))) then

S = S + I1(p)/ I2(p);
elseif (non-ground(I1(p)) ⋀ is_variable(I2(p))) then

S = S + I2(p) / I1(p);
elseif (ground(I1(p)) ⋀ ground(I2(p)) ⋀ ¬ (matches(I1(p), I2(p))))

{unified = false; exit}
else {Sp = unify(I (p) I (p)); S = S ⋃ Sp;} % unify non ground termselse {Sp = unify(I1(p), I2(p)); S = S ⋃ Sp;} % unify non-ground terms

I1 = I1 ⨀ S; I2 = I2 ⨀ S;
}

if unified then return S;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 8

}

Logic program is a set of proceduresLogic program is a set of procedures.
Procedure is a set of rules / facts having the same name and
arity.
A r le is of the form Cla sehead S bgoal S bgoalA rule is of the form Clausehead :- Subgoal1, …, SubgoalN
A fact has RHS as trivially true.
Examplep
factorial(0, 1). % mode is factorial(+, -)
factorial(M, N) :- M > 0, M1 is M – 1, factorial(M1, N1), N is M * N1.

fib i(0 1) fib i(1 1) % d i fib i(+)fibonacci(0, 1). fibonacci(1, 1). % mode is fibonacci(+, -)
fibonacci(M, N) :-

M > N, M1 is M – 1, M2 is M – 2,
fibonacci(M1, N1), fibonacci(M2, N2),bo acc (,), bo acc (,),
N is N1 + N2.

append([], Ys, Ys). % works in two different modes
d([X|X] Y [X|Z]) d(X Y Z)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

I l t tiImplementation process
Map logic program on AND-OR tree
map AND-OR tree on a low level abstract machine
Popular abstract machine is Warren Abstract Machine (WAM)

AND-OR tree: a logical tree
Has two types of nodes: AND node and OR node that alternatey
An AND-node is true if all its children are true
An OR-node is true if atleast one of its children are true

Level 0 – OR-node

⋁ ⋁ Level 1 - AND-nodes

⋀ ⋀ ⋀ Level 2 OR nodes

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

⋀ ⋀ ⋀ Level 2 OR-nodes

A query is an OR-nodeA query is an OR-node
LHS of a rule is AND-node; and RHS subgoals are OR nodes
LHS of a fact is AND-node; RHS is trivially true.
Process

Rules with the same name and arity are identified
OR-node is unified with AND-node to generate a set of substitution
Substitution is applied on the RHS of the rule to generate a conjunctionSubstitution is applied on the RHS of the rule to generate a conjunction
of subqueries. Each subquery is recursively solved for solution
If the AND-node is LHS of a fact then successful unification returns true
In case of facts substitution returns the value of unbound variables
If all subqueries return true then AND-node is true
If one of the rule is successful then OR-node is true

Example
ibli (X Y) (X Z) (Y Z) (X Y)sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y) .

sibling(X, Y) :- fraternity(X, Z), fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).

Query: sibling(tom M)?

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11

Query: sibling(tom, M)?

sibling(tom, M)?

{X/tom, Y/M}

OR-node parent(tom, mary). - F1
parent(neena, mary). - F2
parent(tom, john). - F3

sibling(X, Y) AND-nodes

parent(tom, Z)
OR-nodes

parent(M, Z) not(M = Z)

Producer-consumer
dependencyF1 F2 F3 F1 F2 F3 AND-nodes

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

S ti l i l t ti D th fi t hSequential implementations use Depth first search
Concurrent implementations also use breadth-first search
Depth first search implementationDepth first search implementation

AND-OR tree is expanded in a focused way
First clause is tried first followed by next clauses
Leftmost subgoal in a clause is tried first followed by the second subgoalLeftmost subgoal in a clause is tried first followed by the second subgoal.

Searching the options in Depth-first search
OR-nodes are points of exploring different rules. If one rule does not yield

l ti t l i t i dsolution, next rule is tried.
OR-nodes are called choice-points
Trail of choice points are stored in a special stack to explore next rule.
The stack is called trail stackThe stack is called trail stack
Trail stack stores the choice points in the LIFO order

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 13

B kt ki th l t h i i t t l

expression FPP
  expressions use variables The 1 FPP does not use variables

Backtracking pops the last choice-point to explore
alternate rules

Pop the last choice point from the trail-stack
Unbind all the variables that were bound between the last choice point -expressions use variables. The

use of variables is convenient
 -expression uses nesting

1. FPP does not use variables
2. FPP uses functional form

abstractions
3. FP allows naming for callable

Unbind all the variables that were bound between the last choice point
and the failed subgoal
Pick up next unexplored clause (AND-node)
Unify the OR-node corresponding to the choice point and the next AND-

functionsnode to pick up new set of bindings
Solve the subqueries (OR-nodes) in the subgoals of the new rule

Termination condition for the search
All the choice-points have been consumed, and trail-stack is empty

Example
sibling(X, Y) :- parent(X, Z), parent(Y, Z), not (X = Y).
parent(billy, linda). /* fact F1 */
parent(billy, bill). /* fact F2 */
parent(john, bill). /* fact F3 */

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

OR d

sibling(X, Y) :-

sibling(billy, W)?

{X/billy, Y/W}

OR node
AND-node

parent(X, Z),
parent(Y, Z),
not (X = Y).

sibling(X, Y)

parent(billy, linda). % F1
parent(billy, bill). % F2
parent(john, bill). % F3

CP # 1 CP # 2
parent(john, bill). % F3

parent(billy, Z) not(W = Z)parent(W, Z)

F1 F2 F3 F1 F2 F3
Going back to
previous choice point

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

WAM is a low level abstract machine for compiling logic programsWAM is a low level abstract machine for compiling logic programs
Uses a hash table to jump to specific procedure
Uses a variation of if-then-else and exit to try different rules
Uses registers to pass the arguments to the called procedure
Uses a special stack called trail-stack for backtracking
Local variables in control stack; and complex logical terms in heap
Nested structure represented as multicells connected through pointers
A structure f(a b(M N) L) maps to register ↝ f(a X1 L) X1 ↝ b(M N)A structure f(a, b(M, N), L) maps to register1 ↝ f(a, X1, L), X1 ↝ b(M, N).

WAM Architecture: Registers, control stack, heap, trail-stack, code area
WAM Instructions:

h hi d it d fi t thashing on procedure-name, arity and first argument,
set_structure, set_value,
get_structure, get_value, put_value,
conditional jump arithmetic operationsconditional jump, arithmetic operations,
unify_variable, and unify_value,
try_me_else <Label> ; retry_me_else <Label>,
trust_me_else_fail

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 16

proceed

TranslationTranslation
clausehead(Args0) :- subgoal1(Args1), … subgoalN(ArgsN)
When translated in WAM will have following pattern:

Allocate N % for at least N variablesAllocate N % for at least N variables
get_arguments of Clausehead in the registers

put_arguments of subgoal1;
call subgoal ;call subgoal1;
…
put arguments of subgoalN;
call subgoalN;call subgoalN;

Instructions after compiling clauses
try_me_else <label> stores the label <label> in the control stack, and
executes the first clause If the first clause fails then it pops the labelexecutes the first clause. If the first clause fails, then it pops the label
<label> from the stack and jumps to the next clause
try_me_else_fail is used for the last clause, and states that if the clause
does not succeed then go back to the previous choice point

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 17

Program analysis is used to
Derive new properties of the program in some abstract domain
Abstract domain could be type domain, modes etc.

Applications of Program Analysis
Derive types and modes of the argumentsDerive types and modes of the arguments
Derive concurrency in the program
Derive producer-consumer relationship for automatic parallelization of
the program
Used for compiler optimization such as tail recursive optimization

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

Prolog programsProlog programs
Horn clause has one term on LHS and multiple subgoals on RHS
Prolog uses negation as failure that means failure of a subgoal is
equivalent to negation.
Prolog rules are not mutually exclusive.
Prolog programs support nondeterministic programming due to
unification allowing bidirectional information flow
Supports meta programming to reason about programsSupports meta programming to reason about programs
Prolog can build predicates as data

Prolog uses backtracking and depth first search
Backtracking can be enforced to generate multiple solutions to a queryBacktracking can be enforced to generate multiple solutions to a query
Clauses are tried top to bottom and subgoals are tried left to right

Archiving partial computations
Blackboards or assert/retract to substitute for global variablesBlackboards or assert/retract to substitute for global variables
A fact can be asserted (inserted in the database) or retracted (deleted)
from the database providing capability of destructive update
Blackboard is a global data structure that is destructively updated

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 19Slide 19

Bl kb d b d iBlackboard based programming
Improves efficiency by storing partial computation
Can be used a global variable

f t i l bb(N V) bb t(f t N V) !factorial_bb(N, V) :- bb_get(fact:N, V), !.
factorial_bb(N, V) :- factorial(N, V), bb_put(fact:N, V).

factorial(N M) : N > 0 ! N1 is N 1 factorial bb(N1 M1) M is N * M1factorial(N, M) :- N > 0, !, N1 is N – 1, factorial_bb(N1, M1), M is N * M1.
factorial(0, 1).

Use of cuts
Cuts of the choice-points in that rule
Improves efficiency if no more solutions are needed from rule
Used to simulate control abstractions such as if-then-else and repeat-loop

b (X [X|]) !member(X, [X|_]) :- !.
member(X, [_ | Xs]) :- member(X, Xs).

Unsafe use of cut may cause incorrectness by not deriving a solution

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 20

Programming with sets: the predicate setof/3Programming with sets: the predicate setof/3
Arguments: 1) the variable to hold mutiple values; 2) predicate to be
executed; and 3) a variable to hold the set of solutions

cs majors(Students) :-cs_majors(Students) :
setof(C, cs_majors(C), CS_Scientists),
setof(B, biology_majors(B), Biologists),
setof(B math majors(B) Mathematicians)setof(B, math_majors(B), Mathematicians),
union([Biologists, Mathematicians], Set1),
subtract(CS_Scientists, Set1, Students).

compbio majors(Students) :-compbio_majors(Students) :
setof(C, computer_science_majors(C), CS_Scientists),
setof(B, biology_majors(B), Biologists),
intersection(CS Scientists, Biologists, Students).intersection(CS_Scientists, Biologists, Students).

cs_majors('Ahmad'). cs_majors('Kevin'). cs_majors('Shivani').
biology_majors('Ahmad'). biology_majors('Julie').
math majors('Tom'). math majors('Kevin').

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 21

a _ ajo s(o) a _ ajo s(e)

N d t i i i t d d tNondeterminism is supported due to
Logical OR between the rules since OR is commutative
Logical AND between the subgoals since AND is commutative
Bidirectional information flow during unification between a goal and theBidirectional information flow during unification between a goal and the
corresponding clausehead

Example I
member(X, [X |]).member(X, [X | _]).
member(X, [_ | Xs]) :- member(X, Xs).
Member/2 can be executed in two modes: member(-, +) or member(+, +)

Example IIp
append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).
append/3 can be executed in 2 modes: append(+, +, -); append(-, -, +);

Advantages of unification
Multiple problems with alternative strategies can be programmed easily
Examples: missionary and cannibal problem; various games

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

Prolog supports tuples linked-lists dynamic arrays sets factsProlog supports tuples, linked lists, dynamic arrays, sets, facts
Tuples are used to simulate dynamic creation of structures
Linked-lists can be traditional or they can be extended indefinitely
Logic programs also support difference lists in the form [a|X] – X to describe
an efficient extensible listan efficient extensible list.
Arrays are implemented as dynamically extensible trees
Trees are also used to handle association-lists and dictionaries for looking
up a value given the key
Dynamic insertion of facts is used to build new information for reasoningDynamic insertion of facts is used to build new information for reasoning

Example of dynamic structure creation
student_new(Name, Age, Course, Id) :- student_template(Template),
Template = student(name(Name)-age(Age)-course(Course)-id(Id))Template student(name(Name) age(Age) course(Course) id(Id)),
assert(Template), !.
% mode student_info(+, +, ?).
student_info(age, Name, Age) :- student(name(Name) -age(Age) - _ - _).
t d t i f (N C) t d t((N)student_info(course, Name, Course) :- student(name(Name) - _ -

course(Course) - _).
student_info(id, Record, Id) :- student(name(Name)- _ - _ - id(Id).
student template(student(name()-age()-course() – id()).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

_ p (((_) g (_) (_) (_))

Logic programs supportsLogic programs supports
if-then-else, repeat-loop and recursive programming
Control abstractions can be simulated using cuts, blackboards, and
tail-recursive programming

E l f Di ti d if th l i Si t P lExample of Dictionary and if-then-else in Sicstus Prolog
% mode lookup(+-?, ?).
lookup(Key-Value, Dictionary) :-

(Di ti) f t(“D t t i t i di ti ?” [])var(Dictionary), format(“Do you want to insert in dictionary?”, []),
read(Answer),
(Answer == ‘y’  Dictionary = (Key-Value, _, _)
; otherwise true; otherwise true
).

lookup(Key-Value, Dictionary) :-
Dictionary = (Key1-Value1, _, _), Key == Key1, Value = Value1, !.

lookup(Key-Value, Dictionary) :- Dictionary = (Key1-_, Left, _) :-
Key < Key1, !, lookup(Key-Value, Left).

lookup(Key-Value, Dictionary) :- Dictionary = (Key1-_, _, Right) :-
K K 1 ! l k (K V l Ri ht)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 24

Key >= Key1,!, lookup(Key-Value, Right).

Simulating if-then-elseSimulating if-then-else
If-then-else(Predicate, ThenGoal, ElseGoal) :-

call(Predicate), !, call(ThenGoal).
If-then-else(Predicate, , ElseGoal) :- call(ElseGoal).(, _,) ()

Simulating negation of a goal
\+(Goal) :- call(Goal), !, fail.() (), ,
\+(Goal) :- !.

Simulating iteration using tail-recursionSimulating iteration using tail recursion
print_hello :- read(N), write_hello(N, 1).
write_hello(Max, Index) :-

(Index =< Max  write(“Hello”), nl,
NewIndex is Index + 1,
write_hello(Max, NewIndex)

;otherwise true
)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

).

Unification does not evaluate an expression
Needs additional predicates to flatten expressions
Parameters can not evaluate complex expressions

Not Allowed in Standard Prolog Corresponding Prolog Program
factorial(0, 1).
factorial(N M) :-

factorial(0, 1).
factorial(N M) :-factorial(N, M) :

factorial(N-1, M1), M is N*M1.
factorial(N, M) :

N1 is N – 1,
factorial(N1, M1), M is N*M1.

Occurs check: X = f(X) will not terminate
overhead of storing the choice points even for the
deterministic programs with multiple clauses

Needs program analysis to differentiate deterministic and
nondeterministic procedures to remove unnecessary choice-points

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 26

Concept of truthfulness of a predicate in a time intervalConcept of truthfulness of a predicate in a time interval
Predicate may be true in one time interval and false in another
Temporal logic programming languages: Templog and Tokio

O i l l iOperators in temporal logic programs
Predicate p is true at the next time instant.
Predicate p is always true
Predicate p is never true
Predicate p eventually becomes true;
Predicate p precedes predicate q
P di t i t til di t b tPredicate q is true until predicate p becomes true.

Some application of temporal logic programming
Scheduling queues – to execute requests in a chronological order
Message processing – sending messages and acknowledging in
chronological order

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 27

Puts restrictions to prune the search space in deriving the solutionPuts restrictions to prune the search space in deriving the solution
Applications

Space optimization problems, time scheduling problem, planning,
resource allocation, message routing to balance the traffic load, load
balancing profit maximization problemsbalancing, profit maximization problems

Format of clause in constraint logic programs
Clausehead(X, Y) :- constraint(X), predicate1(X, Z), predicate2(Z, Y).

Implementation modelp
WAM augmented with a constraint store and constraint solver
Constraint is stored in constraint store and solved using constraint solver
Predicates go through standard unification process

i eConstraint programming languages: CHIP and Eclipse

% handling interval logic
:- lib(ic). % use interval constraint library

d l (lib (i)) % l d i t l t i t:- use_module(library(ic)). % load interval constraints
year(M) :- M :: 1..12. % assign interval 1 .. 12 to the variable M
winter(4). fall(9).
summer months(M) :- year(M) winter(W) fall(F) M #> W M #< F % 5 8

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 28

summer_months(M) : year(M), winter(W), fall(F), M #> W, M #< F. % 5..8

D d ti l i i d i f i ti d t bDeductive logic is used reasoning from existing database
Not good for learning new rules from examples

Inductive logic programming is about learning new rules
Uses positive and negative examples and background knowledge
Background knowledge includes background facts and rules

Technique to form generalized rule
The process is of forming generalization followed by specialization
Find out the patterns relating the arguments in positive examples
Form a generalized rule using the pattern
Specialize using the negative examplesSpecialize using the negative examples

Example
Facts: parent(tom, mary). parent(joe, mary).

parent(cathy john) parent(nina john)parent(cathy, john). parent(nina, john).
second arguments of fact3 and fact 4 are the same
Generalized rule: my_relationship(X, Y) :-

parent(X, Z), parent(Y, Z), not (X == Y).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

p () p () ()

Operator ‘=..’ transforms
[predicate_name, Arg1, …, ArgN] to predicate_name(Arg1, …, ArgN)
The new predicate can be called dynamically
The operator can simulate apply_all, construction, and insertion
functional forms.

Construction apply allCo st uct o app y_a
construct(PredList, Data, ResList) :-

(PredList == []  Result = []
; otherwise 

apply_all(Pred, Data, ResList) :-
(Data == []  Result = []
; otherwise 

PredList = [PredName | Fs],
ResList = [Result | Rs],
append(Data, [Result], Args),
Goal = [PredName | Args]

Data = [Data | Ds],
ResList = [Result | Rs],
Goal =.. [Pred, Data, Result],
call(Goal)Goal =.. [PredName | Args],

call(Goal),
construct(Fs, Data, Rs)

).

call(Goal),
apply_all(Pred, Ds, Rs)

).

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 30

The integration has been achieved byThe integration has been achieved by
Combining bidirectional informational flow present in unification with
unidirectional information flow in expression reduction
Interfacing functional and logic programming languagesInterfacing functional and logic programming languages
Modifying unification to handle -expressions

Techniques for integration
Narrowing - minimal substitution between two terms using unification soNarrowing - minimal substitution between two terms using unification so
that a term can be reduced using term-reduction techniques
sum_list(nil) <= 0.
sum list(X::Xs) <= X + sum list(Xs)._ () _ ()
Residuing - delay the evaluation of expressions containing
uninstantiated variables until the logical variables get instantiated. It is
sufficient for functional programming style. However, fails for logic

i t l d t th f d ’t i blprogramming style due to the presence of don’t care variables
Semantic unification - finds out the semantically equivalent expressions
and performs minimum reduction until the two terms can be unified
(X X) = (5 2 + 3) succeeds giving binding as {X/5}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31

(X, X) = (5, 2 + 3) succeeds giving binding as {X/5}

A bj t i OOLP h th d lik P l dAn object in OOLP has method like Prolog procedures
OOLP methods are invoked like <object>.<method>

Preprocessor translate OOLP to logic programs p g p g
compiled to WAM
Two approaches to incorporate OOLP

P b d I t i i V l CPU OOPP d OLPSCPreprocessor based: Intermission, Vulcan, CPU, OOPP, and OLPSC.
Library of Object-oriented programming: Sicstus Prolog

Languages integrating Logic, Functional and OOP
G, FLOOPS, UNIFORM, PARADISE and LIFE

Oz/Mozart is a multiparadigm language integrating
Logic programming, object-oriented programming, and concurrent og c p og a g, object o e ted p og a g, a d co cu e t
programming
Supports both deterministic and nondeterministic programming

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

T fTypes of concurrency
OR-parallelism: clauses are spawned separately on different processors
AND-parallelism : subgoals are spawned concurrently on different
processors
Stream parallelism : producer-consumer relationship between subgoals
through shared variables having multiple solutions

P l t i lPopular concurrent programming languages
Concurrent Prolog and variations: exploiting stream and AND parallelism
Parlog and variations: exploiting OR parallelism

Logic programs have been implemented on distributed
computers and massive parallel computers

Unification level parallelism on SIMD computersp p
Multiple sequential execution of different clauses to exploit coarse-grain
concurrency
Coordinator based model where a coordinator facilitates data transfer on

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

multiple concurrently executing chunks of sequential programs

L i i fi t d di t l lLogic programming uses first order predicate calculus
First order predicate calculus integrates propositional calculus,
universal quantification and existential quantification
Logic program is a set of procedures each having multiple rules
There are two types of reasoning systems: forward reasoning and
backward reasoningg
Logic programming uses unification for equating two logical terms

Unification has two directional information flow, does not evaluate
expressions, and performs matching position by position

The implementation model of logic programs is AND-OR tree
OR nodes correspond to subgoals and AND-nodes to clauseheads
Low level instruction machine for compilation is Warren Abstract Machinep

WAM stores choice-points on trail-stack to support backtracking
Prolog is implemented using depth-first search

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Prolog uses blackboards and assert/retract for destructive updateProlog uses blackboards and assert/retract for destructive update
and global variables. Some implementations explicitly support
global variables or destructive updates as in GNU Prolog.
Logic programs support multiple data abstractions through the useLogic programs support multiple data abstractions through the use
of tuples, lists, sets, and facts.
Control abstractions can be supported through the use of cuts, tail-
recursive programming, and use of ‘=..’ that allow predicates to be p g g p
built as data
Logic programming can be extended using the notion of temporal
ness, constraints, induction, and integration with functions

Temporal logic programming allows time interval based truthfulness of
axioms.
Constraint logic programming uses a combination of constraint store,
constraint solver and Prolog engine to solve constraint logic programs.g g g p g
Inductive logic programming uses background information generalization
and specialization to learn new rules.
Integration with functions uses three techniques: narrowing, residuation
and semantic unification to integrate unification with term reduction

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

and semantic unification to integrate unification with term reduction.

