
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

Introduction
Abstract Computing Machine
T l ti C t l Ab t tiTranslating Control Abstractions
Static Allocation
Hybrid AllocationHybrid Allocation
Implementing Parameter Passing
Low Level Behavior of Recursive Procedures
Implementing Exception Handlers
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

Static allocation
Fixed memory allocation at compile time; no runtime growth
Wastage of memory if not used; efficient due to direct memory access
D t t i d i d d i d tDoes not support recursive procedures, recursive, and dynamic data
structures.

Stack based allocation
Memory is allocated on control stack frame by frame at runtimeMemory is allocated on control stack frame by frame at runtime
Supports recursive procedures, but not recursive data structures.
Uses pointer based access. Is slower than static allocation

Heap based allocationHeap based allocation
Memory allocation on demand in a common memory called heap.
Deallocated manually or automatically
Supports recursive procedures and recursive data structures pp p
Memory recycling overhead up to 30%. Pointer access overhead

Hybrid allocation
Combination of the above three schemes to exploit the advantages

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

p g

Consists of data area code area instruction pointerConsists of data area, code area, instruction pointer,
registers, and program status word – a set of flags

Code area is a sequence of low level instructions
I t ti i t t t th h th i t ti i th dInstruction pointer to step through the instructions in the code area
Data area is a pair of the linear structures (heap, control stack) growing
in opposite direction
Control stack is a sequence of frames holding the store of proceduresControl stack is a sequence of frames holding the store of procedures
Control changes either through IP or by jump statements

Static area

RegistersInstruction

Heap
Static area

eg ste s

Code area

pointer
Static allocation for static and

global

Data area

Control stack
P S W

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

Code area Data area

Each frame is indexible and containsEach frame is indexible and contains
Local dynamic variables
Image of the registers that would be updated in the called subprogram
Various pointers to access data entities and framesVarious pointers to access data-entities and frames
The frozen state of the calling subprogram
Simple dynamic objects that do not outlive the subprogram
Parameters passed to the called subprogramParameters passed to the called subprogram.

Memory access: direct, indirect, offset based
Memory location in a frame are accessed using d[FP + offset]. Indirect
memory access is d[d[FP + Offset]]memory access is d[d[FP + Offset]].

Control stack during program invocation
Calling programs frame is saved
Frame of the called program is placed on top of the stack
Various pointers are updated to link the code area and data area of the
called subprogram and calling program
Code area jumps from the calling program to the called program

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

Code area jumps from the calling program to the called program

Code area is a sequence of low level instructions
Instructions are accessed using c[index]
I t ti f diff t tInstructions are of different types

Arithmetic operations; logical operations; conditional jumps;
unconditional jumps; accessing data from memory; storing data into
memory; moving data from one register to another registermemory; moving data from one register to another register

Types of memory access
Direct access :- suitable for static variables
Indirect access :- uses a pointer, provides independence from fixed
locations; overhead of an additional access
Offset based access :- used to access memory locations in frame

St t flStatus flags
Negation bit, zero bit, overflow bit, Boolean flag are set by various
arithmetic and logical instructions

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6

Process
Make a control flow diagram of the high level control abstractions
Map control flow diagrams to low level instructions using a combination
of conditional jumps and low level instructions

Control flow diagram low level abstract instructionsControl flow diagram  low level abstract instructions
Control flow diagrams are two dimensional while low level instructions
are single dimensional
Sequence of contiguous single dimensional statements are connected
using conditional branches if needed
Registers are used for temporary storage and scratchpad computations

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

Process involves
Reading the variables from the memory locations
Evaluating the subexpressions
Storing the common subexpressions in a register to avoid reevaluation of
the common subexpressions
Laws of computation such as associativity, commutativity, and
di t ib ti it d f i lifi tidistributivity are used for simplification

Example: (X + Y + 5) + 2 * (X + Y)
load X, R1load X, R1
add Y, R1, R2
add #5, R2, R3
multiply #2 R2 R4 % looking up the common subexpressionmultiply #2, R2, R4 % looking up the common subexpression
add R3, R4, R3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 8

Assignment state includes
Evaluation of the right hand side expression
Writing into the memory-location of the variable on the left hand side

Example: x = y + 5
load y R0 % load the value of y in register R0load y, R0 % load the value of y in register R0
add # 5, R0, R0 % add 5 to the value in the register R0
store R0, x % store the value of R0 in the variable X

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

ProcessProcess
Evaluate the predicate
Set the status flags based upon the pedicate evaluation
Based upon the status flags branch to execute either the block ofBased upon the status flags branch to execute either the block of
statements in then-part or the block of statements in the else-part.

condition 1. evaluate not (<condition>)
2 branch on true else

else-block

False

then-block

True
2. branch-on-true else
3. execute <then-block>
4. jump exit
5 else: execute <else-block>then block 5. else: execute <else block>
6. exit:

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

Can be translated to low level instructionsCan be translated to low level instructions
Use a set of if-then-else statements, or
Use hash table. Hash table contains a triple of the form (expected-value,
label-number pointer to next triple) After evaluating the expression thelabel-number, pointer to next triple). After evaluating the expression, the
control jumps to the index given by the hash-value of the evaluated
expression.

0 (l 4 l b l 4) ⋀0
1
2
3

(val-4, label-4) ⋀
value = evaluate(<expression>);
lbl-id = hash(value);
if (lbl-id .ne. null) jump lbl-id; 3

4
5
6

(val-1, label-1) ⋀if (lbl id .ne. null) jump lbl id;
else jump default-label
lbl-1: { <block1>; jump exit; }
lbl-2: {<block2>; jump exit; }

7
8
9

(val-2, label-2) ⋀
(val-1 label-1) ⋀

{ 2 j p }
…
lbl-4: {<blockN>; jump exit;}
default-label: <default-block>;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11

10
(val-1, label-1) ⋀<exit>:

ProcessProcess
Make the control flow diagram using negation of the condition-test.
Label the entry point of while-loop and the exit-point.
Check for the negation of the condition and jump to the exit on successCheck for the negation of the condition and jump to the exit on success.
Fall through the then part.
Add an unconditional jump after then part to the exit-point.

1. loop: evaluate not (<condition>)
2. branch-on-true exit
3. execute <while-block>

¬ condition
t 4. jump-to loop

6. exit:<while-block>

true
Exit

false

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

1. assign(i, evaluate(<initial-expr>))
2. loop: evaluate not (<final-expr>)
3 b h i

i= eval(<initial-expr>)
3. branch-on-true exit
4. execute <for-block>
5. assign(I, i + evaluate(<step-expr>))
6. jump loop
7. exit:

eval <final-expr >

true

false<for-block>

i = i + eval(<step-
expr>)

exit

for block

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

All tiAllocation
Memory is allocated at compile time, and can not grow
Wastes memory space as all the allocated memory allocation may not be

d i i l i tiused in a single invocation
Does not support recursive procedure and recursive data structures
Advantage: direct memory allocation is efficient

D t t d fi d di i lData area represented as fixed one dimensional array
Data elements are accessed as d[index]
Code area is accessed as c[index]

Program invocation
A return pointer that stores the next instruction in the calling program to
be executed is stored in the activation record of the called procedure.
Unconditional jump to jump to first instruction of the called program
Return from the subroutine takes the location from the return pointer, and
makes unconditional jump.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

PROGRAM MAIN 0 assign(d[5] 1)PROGRAM MAIN
DIMENSION M[4]
INTEGER I, J, Max
COMMON /DATA/ M[4], MAX
D0 20 I = 1 4 1

0. assign(d[5], 1)
1. cmp(d[5], 4)
2. brgt (ip + 4) % ip = 6
3. read(d[0 + d[5]])
4 assign(d[5] d[5] + 1)

0 M[1]
1 M[2]
2 M[3]D0 20 I = 1, 4, 1

20 READ(M[I])
CALL FIND_MAX
END

4. assign(d[5], d[5] + 1)
5. jump(ip – 4)
6. assign(d[<R>], ip + 2)
7. jump(ip + <S>)
8 halt

2 M[3]
3 M[4]
4 MAX
5 I

SUBROUTINE FIND_MAX
DIMENSION M[4]

8. halt

0. assign(d[4], d[0])
1 assign(d[6] 2)

5 I
6 J
0 M[1]

DIMENSION M[4]
INTEGER MAX, I
COMMON /DATA/, M[4], MAX
MAX = M[1]
DO 10 I = 2 4 1

1. assign(d[6], 2)
2. cmp(d[6], 4)
3. brgt (ip + 6) % ip = 9
4. cmp(d[0 + d[6]], d[4])
5 brle (ip + 2) % ip = 7

1 M[2]
2 M[3]
3 M[4]DO 10 I = 2, 4, 1

10 IF (M[I] > MAX) MAX = M[I]
RETURN

5. brle (ip + 2) % ip = 7
6. assign(d[4], d[0 + d[6]])
7. assign(d[6], d[6] + 1)
8. jump(ip – 6)
9 jump(d[5])

3 M[4]
4 MAX
5 return

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

9. jump(d[5]) 6 I

Multiple program units are compiled separatelyMultiple program units are compiled separately
Separately compiled units lack

Information about where to jump when a subprogram is called
How much to jump when a subprogram is called

Program linking joins the
Code areas of the complied programs into one single large code areaCode areas of the complied programs into one single large code area
Data areas of the compiled programs into one single large data area
The order of compiled code is independent of the calling order of the
programs. Rather it depends on the order in the linking commands

Effect of linking
The return location and the location of the first instruction is the called
routine is known, and filled in,
The memory location of variables of the subprograms in the linked
programs gets shifted
Common area is put first followed by the sequence of remaining

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 16

activation records: <common, (R1, L1), …, (RN, LN)>

Linked code area Linked data area
0. assign(d[5], 1)
1. cmp(d[5], 4)
2. brgt(IP + 3)

0 M[1]
1 M[2]
2 M[3]

Common Area

3. read(d[0 + d[5]])
4. d[5] = d[5] + 1
5. jump(ip – 4)
6. assign(d[7], IP + 2)

2 M[3]
3 M[4]
4 MAX

6. assign(d[7], IP 2)
7. jump(IP + 2)
8. halt
9. assign(d[4], d[0])

10 i (d[8] 2)

5 I-main
6 J
7 Return- sub

10. assign(d[8], 2)
11. cmp(d[8], 4)
12. brgt (IP + 5)
13. cmp(d[0 + d[8]], d[4]) Common area has been merged ,

d b ti ’ i i

8 I-sub

p([[]], [])
14. brle(IP + 2)
15. d[4] = d[0 + d[8]]
16. jump(IP – 5)
17 jump(d[7])

and subroutine’s remaining
activation-record has been
shifted resulting into update of
the code area

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 17

17. jump(d[7]) the code area

H b id ll ti bi i ll ti hHybrid allocation combines various allocation schemes
Static memory that remains fixed during runtime, and is efficiently
accessed using direct access. Static variables can be local or global
Frames allocated on the stack when a subprogram is invoked, andFrames allocated on the stack when a subprogram is invoked, and
released when the subprogram is over
Dynamic data structures in heap

Frame contains
Local dynamic stack variables
Saved state information of the calling program such as pointers, registers
to be modified in the called programs
Incoming parameter space and outgoing parameter spaceIncoming parameter space and outgoing parameter space
Space for scratchpad computation

Pointers
1) frame pointer 2) dynamic link 3) static link 4) return pointer 5) top of1) frame pointer, 2) dynamic link, 3) static link, 4) return pointer, 5) top of
the stack pointer

Incoming parameter space of the called subprogram and the
outgoing parameter space of the calling programs overlap

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

g g p p g p g p

Allocation of static
and global
variables Temporary

Outgoing actual
parameters

Stack
growth

Heap
Temporary

computations

Local variablesCalled

Various access
pointers

FP

Control stack Incoming formal

Saved state
information

Overall data area Frame schematics

g
parametersCaller

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 19

Current Frame pointer (FP)Current Frame pointer (FP)
Used to access the data area of the currently executing subprogram.
Points to the first memory location of the frame.

Top of the stack pointer (ToS)Top of the stack pointer (ToS)
Used to point to the first free location in the stack.

Return Pointer (RP)
Used to access the next instruction of the calling subprogram after returnUsed to access the next instruction of the calling subprogram after return
from the called subprogram.
Stored in the frame of the called subprogram since the same subprogram
can be called multiple times.

Dynamic Link (Previous Frame Pointer)
Points to the first memory location of the frame of the calling subprogram
Used to return the access of the frame of the calling subprogram back

Static link (SL)
Points to the frame of the subprogram under which currently executing
subprogram is nested to access the nonlocal dynamic variables

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 20

P i tiProgram invocation
Exchange the information between the calling and the called subprogram.
Save the PSW and registers to be modified.
The memory location of next instruction is pushed the control stackThe memory location of next instruction is pushed the control stack.
Calling program’s frame pointer is pushed in the control stack.
The static link is set and pushed in the control stack.
The current TOS value is copied in the frame pointer.
IP is set to the location of the first instruction in the called subprogram.
TOS is incremented by activation record size in the called subprogram

R t f th bReturn from the subprogram
Copy the saved registers back of the calling subprogram.
Set the FP back to the previous frame pointer using dynamic link.
Reclaim the data area of the called subprogram by resetting the TOSReclaim the data area of the called subprogram by resetting the TOS
pointer back to the TOS of the calling subprogram’s TOS.
Set IP to the value stored in the return pointer to jump back to the next
instruction in the calling program.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 21

Copy the parameter values from outgoing parameter locations.

TOSLocal
variables

TOSLocal
variables

FP

DL
SL

variables

RP

FP

DL
SL

variables

RP
Saved

Registers

RP
Saved

Registers

RP

Frame

TOS

Frame

TOS

F

Formal
param

Frame

Formal
param

I k i I k B T i t B I k C

Frame
main

FP

Frame
main

FP

Frame
main

Frame
main

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

Invoke main Invoke B Terminate B Invoke C

Individual programs are compiled to generate the low level compiled
code with embedded activation record.
During linking code area is joined together in the order of user
specification to make a bigger code area.
The information about the return pointer and the first instruction
pointer is set up from symbol table during linking process.y g g
Access to data area is embedded in the code area.
During program invocation frame of the called program is placed on
top of the stacktop of the stack.
After program termination, the memory location of the frame is
recovered.
The offset of the pointers RP DL SL are negativeThe offset of the pointers RP, DL, SL are negative.
FP points to the first memory location where the local variables start.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

integer m[4], max;
program main ()
{ integer i, j;

for (i = 0; i =< 3;

assign(d[FP], 0)
cmp(d[FP], 3)
brgt (IP + 4)
read(d[d[FP]])

0
1
2
3

m[0]
m[1]
m[2]

0
1
2for (i = 0; i =< 3;

i++)
read(m[i]);
call find_max

}

read(d[d[FP]])
add(d[FP], 1)
jump (IP – 4)
push(ip + 5) % ret. ptr

h(FP) % d Li k

3
4
5
6
7

m[2]
m[3]
max
i

2
3
4
5

Previous
FP = 5

} push(FP) % dyn. Link
assign(FP, TOS)
jump(IP + 2)
halt

7
8
9

10

i
j
RP = 10
DL = 5

5
6
7
8 previous

TOS = 7

void find_max ()
{ Integer i;

max = m[0];

add(TOS, 1) % frame size
assign(d[4], d[0])
assign(d[FP], 1)
cmp(d[FP], 3)
b (IP 5)

11
12
13
14
15

i
8
9
10
11

TOS = 7

max = m[0];
i = 1;
while (i =< 3)

if (m[i] > max)
max = m[i];

brgt (IP + 5)
cmp(d[d[FP]], d[4])
brle(IP + 2)
assign(d[4], d[d[FP]])

15
16
17
18

FP = 911

max m[i];
} jump (IP – 5)

assign(TOS, FP – 2)
assign(FP, d[FP -1])
jump(d[TOS])

19
20
21
22

Stack Growth

TOS = 10

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 24

10

Outgoing parameter space of the calling subprogram
and incoming parameter space of the called subprogram
overlap

Calling program writes into its outgoing parameter space
Called program reads and updates its incoming parameter space

Formal parameters are allocated in incoming parameter
space of the called program

Call by value, call by result and call by value-result creates local
variables for formal parameters in incoming parameter space
C ll b f t i t f l t i thCall by reference creates pointers as formal parameters in the
incoming parameter space

Offset scheme
The offset of the formal parameter space the saved register spaceThe offset of the formal parameter space , the saved register space
and the pointers is negative.
The offset of locally declared variables and scratch pad computation
space is positive

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

The expression is evaluated and copied into the
outgoing parameter space of the calling program
The outgoing parameter space of the calling programThe outgoing parameter space of the calling program
becomes incoming formal parameter space of the called
subprogram

Actual parameter is copied into formal parameter space using a
statement assign([FP + offset1], [FP + offset2]) where offset1 is the
offset of the actual parameter and offset2 is the offset of the outgoing
parameter locationparameter location.

Offset of the parameter space
The offset of the formal parameter space in called subprogram is
negative with respect to the frame pointernegative with respect to the frame pointer.
The access to formal parameters is d[FP + Offset] where offset is
negative.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 26

program main ()
{ integer i, j;

assign(d[FP], 1)
assign(d[FP + 1], 2)
push(d[FP])

0
1
2

i
j

0
1

Previous
FP = 0

i = 1;
j = 2;
call swap(i, j);
write(i)

push(d[FP])
push(d[FP+1])
push(ip + 5) % return ptr.
push(FP) % dynamic link

2
3
4
5

j
x
y

RP = 9

1
2
3
4

Previous
TOS= 2

write(i)
} assign(FP, TOS) % FP

jump(IP + 3)
write(d[FP])
halt

6
7
8
9

RP = 9
DL = 0
temp

4
5
6

void swap (integer x, y)
{ Integer temp;

temp = x;

halt

add(TOS, 1) % temp
assign(d[FP], d[FP - 4])

i (d[FP 4] d[FP 3])

9

10
11
12

7

FP= 6
temp x;
x = y;
y = temp;

}

assign(d[FP- 4], d[FP - 3])
assign(d[FP - 3], d[FP])
assign(TOS, FP - 4)
assign(FP, d[FP - 1])

12
13
14
15

TOS = 7

Program Code area Data area

g (, [])
assign(IP, d[TOS + 2])16

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 27

g

A pointer is created in the outgoing parameter space ofA pointer is created in the outgoing parameter space of
the calling procedure that

Points to the first memory location of the actual parameter.
El t i t l t d i d[d[FP ff t]Elements in actual parameters are accessed using d[d[FP + offset1] +
offset2] where offset1 is negative and offset2 is positive.
Offset1 is negative because the formal parameter is allocated before the
activation recordactivation record.
Offset2 is positive as it is used to access the fields or elements in the
actual parameter that is part of the activation record of the calling
subprogram.

Setting up of the formal parameter
Formal parameter is set by the statements assign(d[FP + offset1], FP +
offset2) where offset1 is the offset of the outgoing parameter and offset2 is 2) 1 g g p 2
the offset of the actual parameter in the frame of the calling program.
Formal parameters are set in the calling program.

There is no need to copy any result back

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 28

There is no need to copy any result back

assign(d[FP], 1)
assign(d[FP + 1], 2)
push(FP)
push(FP +1)

0
1
2
3

program main ()
{ integer i, j;

i = 1;
i
j

0
1 Previous

push(FP +1)
push(ip + 5) % return pointer
push(FP) % dynamic link
assign(FP, TOS)

3
4
5
6

j = 2;
swap(& i, & j);
write(i)

j
x-ptr
y-ptr

RP = 8

2
3
4

FP = 0

Previousg ()
jump(IP + 3)
write(d[FP])
halt

7
8
9

} RP = 8
DL = 0
temp

4
5
6

Previous
TOS = 2

add(TOS, 1) % add frame-size
assign(d[FP], d[d[FP-4]])
assign(d[d[FP-4], d[d[FP-3]])

10
11
12

void swap (integer
*x, *y)
{ integer temp;

*

7

FP = 6
assign(d[d[FP-3]], d[FP])
assign(TOS, FP – 4)
assign(FP, d[FP - 1])
jump(d[TOS + 2])

13
14
15
16

temp = * x;
*x = *y;
*y = temp;

}

TOS = 7

jump(d[TOS + 2])16

Program Code area Data area

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

Th i i l t d d i d i t th t i tThe expression is evaluated and copied into the outgoing parameter
space of the calling program
The outgoing parameter space of the calling program becomes
i i f l t f th ll d bincoming formal parameter space of the called subprogram

Actual parameter is copied into formal parameter space using a statement
assign([FP + offset1], [FP + offset2]) where offset1 is the offset of the actual
parameter and offset2 is the offset of the outgoing parameter locationparameter and offset2 is the offset of the outgoing parameter location

The offset of the formal parameter space in called subprogram is
negative with respect to the frame pointer.
The access to formal parameters is d[FP + Offset] where offset isThe access to formal parameters is d[FP + Offset] where offset is
negative.
After coming from the called subprogram

Formal parameter is copied into actual parameter using a statementFormal parameter is copied into actual parameter using a statement
assign([FP + offset1], [FP + offset2]) where offset1 is the offset of the formal
parameter in outgoing parameter space and offset2 is the offset of the actual
parameter.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 30

program main ()

{integer i, j;
i = 1;

assign(d[FP], 1)
assign(d[FP + 1], 2)
push(d[FP])

h(d[FP 1])

0
1
2

i
j

0
1
2

Previous
FP = 0

Previousi = 1;
j = 2;
swap(# i, # j);
write(i);

push(d[FP+1])
push(IP + 5) % return ptr.
push(FP) % save dyn. Link
assign(FP, TOS) % new FP

3
4
5
6

x
y
RP= 8

2
3
4

TOS = 2

}
assign(FP, TOS) % new FP
jump(IP + 5) % jump to swap
assign(d[FP], d[TOS])
assign(d[FP+1], d[TOS + 1])

6
7
8
9

DL=0
temp

5
6

7 FP= 6write(d[FP])
halt

add(TOS 1) % frame-size

10
11

12

FP= 6

TOS = 7void swap (integer x, y)
{ integer temp;

temp = x;
x = y;

add(TOS, 1) % frame size
assign(d[FP], d[FP- 4)
assign(d[FP- 4], d[FP- 3])
assign(d[FP- 3], d[FP])
assign(TOS FP – 4)

12
13
14
15
16

TOS = 7

Stack growth

y = temp;
}

assign(TOS, FP 4)
assign(FP, d[FP - 1])
assign(IP, d[TOS + 2])

16
17
18

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31
Program Code area Data area

Every invocation creates a new
frame on top of the stack
Th i f th

main
There is no access of the
environment of multiple invocations
of recursive procedures
Static link of all invocation of a selfStatic link of all invocation of a self
recursive procedure point to the
subprogram under which it is
nested

factorial(2)

Static
links

Dynamic
linksDynamic link of a of a self recursive

procedure points to the frame of
previous invocation

factorial(1)

linkslinks

Recursive procedures have
additional overhead of

Saving computational state of
previous invocation

factorial(0)

Stack
growth

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

previous invocation

Exception handling techniques
First technique is using the same control stack, exception flag and the
use of branching instructions
Second technique is to keep a separate exception stackSecond technique is to keep a separate exception stack

First technique
Use an exception flag that is set in case of the exceptional condition
After the exception flag is set the control returns to the callingAfter the exception flag is set the control returns to the calling
subprogram with exceptional handler, and exception handler is executed
If exception flag is not set then a branch instruction is used to skip the
exception handler
After the successful execution of an exception handler, the control
remains in the same subprogram with exception handler

Second technique
Th dd f th fi t i t ti t th ti h dl d thThe address of the first instruction to the exception handler and the
topmost activation frame is pushed on the execution stack.
After executing the exception-handler, all the frames above the frame of
the successful exception handler are removed from the control stack.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

Abstract machine contains code area, data area instruction pointer,
and registers
High level instructions are transferred to a sequence of low level
instructionsinstructions
Conditional and iterative constructs are transferred using the control
flow diagram and translation to low level instructions
Memory allocation scheme is a combination of static allocationMemory allocation scheme is a combination of static allocation,
stack based dynamic allocation, and heap based dynamic allocation

Static allocation has advantage of direct access but does not support
recursive procedures and recursive data structures
Stack based allocation supports memory reuse and recursive
procedures. However, does not support recursive and dynamic data
structures
Heap based allocation is most general However it has overhead ofHeap based allocation is most general. However, it has overhead of
memory recycling

Block structured languages are implemented using hybrid
allocation

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Hybrid allocation uses
Static allocation for static local variables and global variables
Uses stack for dynamic local variables and saved computational state
Heap for the recursive data structures and dynamic objects

Parameter passing implementation
Outgoing parameter space of the calling program is the same as
incoming parameter space of the called program
The offset of the incoming parameter space and the saved computational
state on the stack is negative
Th ff t f th l l d i i bl f th ll d b iThe offset of the local dynamic variable of the called subprogram is
positive
Call by value and call by value-result evaluates the expression, and
copies the value from the evaluated expression to outgoing parametercopies the value from the evaluated expression to outgoing parameter
space
Call by reference copies the location of the actual parameter to the
outgoing parameter space

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

