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 expressions and evaluation techniques-expressions and evaluation techniques
Functional Programming without variables

Kernel functions and function forming operators
Abstractions and programming in functional 
programming languages
I l t ti M d l f f ti l lImplementation Models for functional languages

SECD machine and eager evaluation
Graph reduction strategies
Implementing lazy evaluation

Integration with Other Programming Paradigms
Concurrency in functional programmingConcurrency in functional programming
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Functional programming is importantFunctional programming is important
Declarative style enhances comprehension by removing control
More concise 
Key paradigm in scripting languages Closure, Ruby, Scala, and Pythony p g p g g g , y, , y

History: from early 1970s.  Initial major language is LISP
Characteristics of  pure functional programming

Assign once variable no support for global variablesAssign-once variable, no support for global variables
Based upon calculus and function forming operators
-function has three components: variable, body and expression

Example of -expression λ ( 4) 3Example of -expression

Implementation of functional languages

λx. (x + 4) 3
Var expression value

Implementation of functional languages
SECD machine: a four stack abstract model
G-machine based upon graph reduction techniques
Evaluation strategy can be eager evaluation or lazy evaluation
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Evaluation strategy can be eager evaluation or lazy evaluation

Higher order function takes function as one of the 
arguments

The same higher order function can be used to invoke multiple functionsg p
Functions can be manipulated as data

Example
(defun foo (powerFunction Arg)(defun foo (powerFunction   Arg)

(+ (apply powerFunction    Arg) 4 )
)

(foo square 4) returns 16

(foo sqrt  4) returns 2( oo sq t ) etu s
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Components: variable, expression, parameter-value
The scope of the variable is in the following expression
Variable in expression is binding occurrence of declared variable
Parameter value is bound to the declared variable and substituted in the 
expression
-expression can be nested.  The variable declared at a nesting level is 
i ibl l i th t ti l l I t d i t l lvisible only in that nesting level.  In nested expression outer level 

expression can be used as parameter to the next inner level

E lExample
 3    4 (y. (λz. z + 2) x + yߣ .xߣ)
Has two levels: first level has two variables x and y; X is bound to value 
3 and y is bound to value 4 Their scope is the expression x + y3, and y is bound to value 4.  Their scope is the expression x + y
The inner level has variable z, and its scope is the inner expression z + 2
Expression x + y is parameter for the inner level

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal  ©  Chapman Hall/CRC Press, 2013,  All rights reserved

Slide  5

TechniqueTechnique
Parameters are bound to  variables in left to right order
Binding of parameter value to declared variables is called -reduction
The simplification of arithmetic expression is called -reductionp p
-substitution renames the variables in inner level to remove naming 
conflicts with the same name variables in outer level

Reduction techniques: AOR vs. NOR (Result is the same)
AOR (Application Order Reduction) technique solves from inner level first
NOR (Normal Order Reduction) technique solves  from outer level first

λx. ( + x  x) (λy.  y + 4) 3  

NOR Technique AOR Technique
( + ((λy.  y + 4) 3) ((λy.  y + 4) 3))
β ( + (3 + 4) ((λy y + 4) 3))

λx. ( + x  x) (λy.  y + 4) 3  
β λx ( + x x) (3 + 4)β ( + (3 + 4)   ((λy.  y + 4) 3))

δ (+  7 ((λy.  y + 4) 3))
β          (+ 7  (3 + 4))
δ  (+ 7  7)

β λx. ( + x  x) (3 + 4)
δ λx. ( + x  x) 7
β (+ 7  7)
δ 14
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( )
β 14

T t k l f ti d f ti l fTwo parts: kernel functions and functional forms
Kernel functions are basic functions that can not be split further
Functional-forms that combine functions to make bigger function

FP programming
FP separates functions from parameters, and does not have variables
It pulls parameter values using identity functiong y
FP has kernel functions for arithmetic operations, comparison operations, 
metalogical predicates, constructing sequences, selector 
functions(accessing elements from sequences), insertion functions 
(inserting an element in a sequence) transpose functions and(inserting an element in a sequence), transpose functions, and 
miscellaneous functions such as length, reverse, identity, rotate etc.
Functional forms are composition, apply-all, insertion, construction, 
conditionals, iteration and recursion,
Parameters are stored in a sequence in the form <d1, … dN>
Functions are written in the form <function-name> : <parameters>

Example: + : < 2 3> evaluates to five; >: < 3 2> returns true
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Example: + : < 2, 3>  evaluates to five;  >: < 3, 2> returns true

Selects an element indexed from left or rightSelects an element  indexed from left or right
left-selector - 1l:<1, 2, 3> gives 1;  3 l:<a, b, c> gives c
right-selector - 1r:<1, 2, 3> gives 3;  2 r:<a, b, c> gives b
left tail tl:<1 2 3> gives <2 3>; tl: <a b c> gives < b c>left-tail – tl:<1, 2, 3> gives <2, 3>;  tl: <a, b, c>  gives < b, c>
right-tail – tlr: <1, 2, 3> gives <1, 2>;  tlr: <a, b, c> gives <a, b>
1l: < > will give the bottom symbol ٣
tlr: <> will give the bottom symbol ٣tlr: <> will give the bottom symbol ٣

Construction function
insert an element in the sequence or joins two sequences
apndl:<1,  <a, b, c>> will derive <1, a, b, c>
apndr: <1, <a, b, c>> will derive <a, b, c, 1>
apndl: (1, 2) will derive bottom symbol ٣ since second element is atom
insert:<3,  <a, b, c, d>, x> will derive <a, b, x, c, d>
append: <<1, 2, 3>, <a, b, c>> will return <1, 2, 3, a, b, c>
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Transpose functionsTranspose functions
Make ith row as ith column; jth column as jth row
transpose: <<1, 2, 3>, <4, 5, 6>> gives <<1, 4>, <2, 5>, <3, 6>>

M l i l P diMetalogical Predicates  
Check the type of the objects
Example: is_float,  is_ null, is_nonnull, is_atom, is_sequence
is_float: 4.5 returns true;  is_float: a returns false
is_atom : <1, 2, 3> will return false

Miscellaneous functions
length:<a, b, c> will return 3
distl: <1, <a, b, c>> will return <<1, a>, <1, b>, <1, c>>
distl:<1, <>> will return < >
distr: <1, <a, b, c>> will return <<a, 1>, <b, 1>, <c, 1>>
rotl : <2, <a, b, c, d, e>> would return a sequence <c, d, e, a, b>
rotr : <2, <a, b, c, d, e>> would return a sequence <d, e, a, b, c>
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reverse: <1, 2, 3> would return <3, 2, 1>

Constant function
maps every input value to a constant function
4(x)  4

Identity function
returns the input value as itself:  id(x)  x
Used to pull in the parameter value inside the functionUsed to pull in the parameter value inside the function
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Combines functions to form complex functionsCombines functions to form complex functions
Composition: cascades the results: fg(x)   f(g(x))

square  1l :  <4, 5, 6> will first apply 1l : <4, 5, 6> to derive the value 4, 
and then square : 4 will derive 16and then square : 4 will derive 16. 

Construction: applies each function in a sequence of 
functions to the input parameter to derive a sequence

[square 1l length 1r] : <4 5 6>  <16 3 6>[square  1l, length, 1r] : <4, 5, 6>  <16, 3, 6>
Insert: inserts a dyadic operator f between elements

/+:<1, 2, 3>  is equivalent to 1 + 2 + 3 = 6
Formal definition of insert function is recursiveFormal definition of insert function is recursive 
 /f:<x>   x  and   /f : <x1, …, xN>   f: <x1, /f: <x2, … xN>>

average   divide  [/+, length]
Apply all: applies a function to all elements of aApply-all: applies a function to all elements of a 
sequence and returns a sequence

square: <1, 2, 3>  <1, 4, 9>
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Condition functional form: similar to if-then-else
Format is (if <predicate>    <then-function>     <else-function>)
(if >[Id, 0]    Id *  [-1, Id])  is equivalent to 

if (n > 0)  return x else return (- n)

Iterative functional-form : similar to while loop
Format is (while <predicate> <function>)Format is (while <predicate> <function>)
The function is applied every time the predicate returns true, and the 
intermediate input in the next iteration is altered to <function>: <input>.  If 
the predicate returns false then output becomes the current input
factorial ≅ 2l  (while >  [1l, 0]     [ −  [1l, 1],   *  [1l, 2l]])  [Id, 1]

Recursive form: use recursion to form functions
factorial ≅ (if >= [Id, 1]         *  [ Id, factorial  −  [Id, 1] ]   1)acto a ( [ d, ] [ d, acto a [ d, ] ] )
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Simple sort by finding maximum valueSimple sort by finding maximum value
minimum ≅ /<
delete ≅ (if   =[2l, 1l1r] tl1r 1r)
 (while and  [> [1l, 0],  not  =[2l, 1l1r]]     [ −  [1l, 1], 2l, rotl1r ]) ( [ [ , ], [ , ]] [ [ , ], , ])
 [length2l, 1l, 2l]
sort ≅ (if null     < > apndl  [minimum,  sort  delete  [minimum, Id ]])
Adding two matricesg
group  ≅ (if   null  1l   <> apndl  [[1l  1l, 1l  1r], group  [tl  1l, tl  1r]])
add-row  ≅ α+  group
add-matrix ≅ (if and  [=  [length  1l,  length  1r],     

[l th 1l 1l l th 1l 1 ] dd )=  [length  1l  1l, length  1l  1r]  α add-row  group)

-expression FPP
  expressions use variables 1 FPP does not use variables -expressions use variables.  

Variables are convenient.
 -expression uses nesting.

1. FPP does not use variables
2. FPP uses functional forms.
3. FP allows naming for callable 

functions
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functions

expression FPP
  expressions use variables The 1 FPP does not use variables

Classification of functional programming languages
Pure functional programming languages
That support mutative objects and destructive updates -expressions use variables.  The 

use of variables is convenient
 -expression uses nesting

1. FPP does not use variables
2. FPP uses functional form 

abstractions
3. FP allows naming for callable 

That integrate functional programming with object-oriented programming
That support concurrent programming
Multiparadigm languages

functionsExamples
Haskell is a pure functional programming language
LISP, Scheme and ML mix up imperative programming paradigm with , p p p g g p g
functional programming paradigm
Ruby, Scala, and Emerald mix up object-oriented programming with 
functional programming paradigm
Scala and Ruby are multiparadigm languages that support functional 
programming, concurrent programming, and object-oriented 
programming.
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Pure functional programming
Does not support destructive updates and global variables
Data structures are immutable and assign once
Control abstractions based upon destructive updates of index variables 
such as conventional for-loop are missing
Programming uses more recursive style programming
Tail recursion is used to simulate iteration
Control abstractions are mainly based upon lists 
Supports functions as first class objects

Facilities in later functional programming languages
Iterators are used instead of index based iteration
Limited destructive update in global variables and array based operations
Multiparadigm languages like Ruby allow both mutable and immutable 
variables and mutable dynamic arrays
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Functional programming mainly uses sequences
Lisp uses linked-lists in early days to implement sequences
All the languages use immutable assign-once variables

Lisp family of languages (Lisp, Scheme) use linked-lists, 
arrays, association-lists, global variables and frames
CLOS S l d R b t OOPCLOS, Scala and Ruby support OOP
Haskell also supports tuples
Functional languages inherently support polymorphismFunctional languages inherently support polymorphism

ML, Hope and Scala are strongly typed polymorphic languages

Haskell also supports modules
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Support for kernel functionsSupport for kernel functions
Almost all languages support the kernel function features of FPP
Some languages do not support explicit rotation

Support for functional formsSupport for functional forms
All support composition, apply-all, conditionals, iteration, and recursion. 
Lisp family supports Mapcar that is same as apply-all.
All functional programming languages support iteratorsAll functional programming languages support iterators.
Functional forms insertion and construction are simulated.
Lisp family and Ruby support indefinite and definite iteration, and iterators.
Ruby and Scala support while-loop.

Evaluation  strategy: eager evaluation or lazy evaluation
Lisp uses applicative eager evaluation
Haskell uses call by need and lazy evaluation
Functional languages uses three techniques to perform I/O operations: 1) 
stream based IO; 2) continuation based IO; and 3) monads. 
Monads are abstractions for side-effect based I/O programming.
Continuation based IO refers to read and write operation as a transaction
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Continuation based IO refers to read and write operation as a transaction

Lisp / Scheme use s-expression LISP ProgramLisp / Scheme  use s-expression
(function   Arg1, …., ArgN)
Data uses a quote
Use variables instead of identity

LISP Program
(defun add5( Value)   (+   5    Value))
(defun square( Value)   (* Value  Value))
(defun constr( FuncList     Argument)Use variables instead of identity 

function or constant functions
LISP vs.   Scheme

Minor syntactic differences such 

(if ( null   FuncList)    nil 
(cons  (apply   (first   FuncList) 

(list    Argument))
(const  (rest    FuncList)   ArgsList)))y

as ‘defun’ and ‘define’
Scheme is statically scoped

LISP program explanation

( ( ) g )))
)

)
Scheme Program
(d fi l ll(M F A Li t)construction is recursive

calls itself with rest of FuncList
cons concatenates 

(define apply_all(MyFunc     ArgsList)
(if    (null ArgsList) nil

(cons (apply MyFunc  (list ( first 
ArgsList)))

Scheme program explanation
apply_all is recursive
Apply applies function one 

l t t ti

(apply_all MyFunc ( rest 
ArgsList)))

)
)
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(defun greet ( )  (print “Hello  World”))  ; defining a function greet( g ( ) (p )) ; g g
(defun add5 (x) (+ x 5)) ; defining a function 
(defun square(x)  (*   x  x))
(setq m   5)  ; setting the value of a global variable m to 5
(setq p  ‘(4    “Hello World”))  ; binding a global variable p to a list
(setq q   (*  (first p)   m))   
;  Implementing apply-all using mapcar  
(defun add5 to all (ArgList) (mapcar ‘add 5 ArgList))(defun add5_to_all (ArgList) (mapcar add_5  ArgList))  
(defun square_and_add( x ) (add5  (square    x )))   ; composition 
(defun hypotenuse (x   y)  (sqrt (+ (square  x)  (square  y)))) 
; Recursive definition of factorial using if-then-else; Recursive  definition of  factorial using if then else  
(defun factorial(n) (if (=   n    0)     1     (*    n    ( factorial    (- n   1)))))
; Recursive definition using conditional statement 
(defun my_sum(DataList)

(cond ( (null DataList)   nil)
(t (+  (first DataList)  (my_sum  (rest DataList))))

)
)
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)

; apply-all  using mapcar to add two sequences 
(defun add_row (Seq1, Seq2)
(mapcar ‘+   Seq1   Seq2)  ; add corresponding elements of Seq1 and Seq2

; recursion with multiple arguments to add two matrices 
(d f dd t i [(M t i 1 M t i 2)(defun add_matrix [(Matrix1, Matrix2)

(if (null Matrix1)   nil    (cons (add_row  (first Matrix1)   (first Matrix2))
(add_matrix   (rest Seq1)  (rest Seq2)))

))
)
; printing using dolist
(defun print-matrix (Matrix)

(dolist (V Matrix) (print   V)))  ; iterate until the rows are consumed
;printing using dotimes
(defun print-matrix (Matrix)

(l t (( i (l th M t i ))) i bl i l th f th t i(let ((size (length Matrix)))  ; variable size = length of the matrix
(dotimes (Index size) (print (nth Index Matrix))) 

)
)
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Hope is t l hHope is 
Polymorphic language
Integrates functional 
programming and pattern

typevar alpha
dec append: list(alpha)  # 

list(alpha)   list(alpha)programming and pattern 
matching
Uses type variables

Pattern matching is between 

;‘#’ is Cartesian product
append(nil, Ys)  Ys.
append(x :: Xs, Ys) g

RHS call and LHS of the rule
Control abstractions

If-then-else

x :: append(Xs, Ys).
; :: means concatenation

If then else
While loop and recursion
Higher order functions

First program appends two

dec apply_all : list ( num ) # 
( num  num )  list ( num ) 
apply all ( nil function )  nil ; baseFirst program appends two 

sequences 
Second program implements 
apply_all

apply_all ( nil, function )  nil ; base 
case
apply_all ( first :: rest, function ) 
function ( first ) :: apply all( rest, 
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St ti ll t d t fStatically typed type-safe 
Supports parametric polymorphism

Programs divided into modules
Module name same as file nameModule name same as file name
Functions private to modules unless exported
Functions in the form LHS = RHS. LHS is function name followed by 
parameters

S t d t l b t tiSupported control abstractions
Composition, iteration, recursion, insert, conditionals, and apply_all
(square.add5) x  ‘square  add5 
map (add5) [1, 2, 3]   [6, 7, 8] p ( ) [ , , ] [ , , ]

Supported data abstractions
Lists within square brackets
Expressions in infix form
Tuples are in parenthesisTuples are in parenthesis
Fst is first; snd is second; 

Comments are written  as {- -}.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal  ©  Chapman Hall/CRC Press, 2013,  All rights reserved

Slide  22

d l i hmodule main  where
main   =   putStrLn "Hello World" {-
add5   x = x + 5  {- Add 5 to parameter -}
square x = x * x { return square of number }square    x = x * x  {- return square of number -}
m = 5  {- assigning a value to a variable   -}
p = (4, "Hello World")   {- assign    tuple -}
q = fst p * mq  fst p    m
hypotenuse  :: Float  Float  Float
hypotenuse  x  y   = sqrt   (square x  + square y)
square and add   x = (add5.square)    x  q _ _ ( q )
add5_to_all   x  =  map   (add5)    x  
{- finding factorial using case statement   -}
factorial n = case n of

{ 1 -> 1;  {- base case   -}
_ ->  n * factorial (n - 1)  

}
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factorial1 1 = 1 {- base case -}factorial1 1 = 1  {- base case  -}
factorial1 n = n * factorial1 (n-1)  {- recursive definition of factorial   -}
{- finding factorial using if-then-else   -}
f t i l2 if 0 th 1 l * f t i l ( 1)factorial2 n = if n == 0 then 1 else n * factorial ( n - 1)
{- Guards   -}
my_minimum    x    y   |  x   <=  y  = x

|  y    <=   x  = y
{- recursive programming and concatenation at the end   -}
my_reverse [ ] = [ ]   {- base case   -}
my_reverse  (x : xs) = my_reverse   xs ++ [x]  {- ‘++’ adds at the end   -}
{- Recursive programming with multiple arguments    -}
add row  [ ] [ ] = [ ]   {- base case -}_ [ ] [ ] [ ] { }
add_row (x : xs) (y : ys) = (x + y : add_row   xs   ys)
add_matrix [ ] [ ] =  [ ]  {- base case   -}
add matrix (r : rs) (w : ws) = (add row r w : add matrix rs ws)
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add_matrix (r : rs) (w : ws)  = (add_row  r  w : add_matrix   rs  ws)



Scala integrates functional and object oriented programmingScala  integrates functional and object oriented programming
Treats every value as an object
Statically typed type-safe language; supports polymorphism
infers type if not declared.
Block structured language

Scala is built on top of Java
Programs are compiled to Java bytecode.
Supports both mutable and immutable data structuresSupports both mutable and immutable data structures.

Data abstractions
Supports arrays, associative maps, lists, tuples and sets
Sets and associative maps can be used in both mutable and immutable waySets and associative maps can be used in both mutable and immutable way 
using traits - abstract interfaces extending class of the data objects
Creating array: val   studentNames = new array[String](20).
Creating lists: List(1, 2, 3); List(1, 2) ::: List(3, 4, 5)  derives List(1, 2, 3, 4, 5).

CControl abstractions
supports if-then-else, case statement, while-loop, do-while-loop, iterator 
foreach-loop, definite iteration for-loop, and recursive function calls.
Supports destructive update in index variables.
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Supports destructive update in index variables.

val x = 2 + 3  // declare a global variable 
println("Hello World")  
def add5(n: Int): Int = {n + 5}  // Add 5
def square(x: Double): Double = {x * x}  // square using double_float
def int_square(x: Int): Int = {x * x} 
def square add(x: Int): Int = int square(add5(x))  // Compositionde squa e_add( t) t t_squa e(add5( )) // Co pos t o
def power_rec(x: Double, n:Int): Double =

{ if  (n == 0)  1  
else x * power rec(x n 1)}else x  power_rec(x, n-1)} 

def power_iter(x : Int, n : Int) : Int =   //iterative version of power
{ var a = n;   var b = 1;

hil ( 0 ) {b * b 1}while (a > 0 ) {b = x * b; a = a - 1}
b // return final value of b

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal  ©  Chapman Hall/CRC Press, 2013,  All rights reserved

Slide  26

def sum_list(xs:List[Int]):  Int = 
{   if (xs.isEmpty)   0  

else xs.head +  sum_list(xs.tail)
}
def add_rows(xs : List[Int],   ys : List[Int]) : List[Int] = 

{   if (xs.isEmpty) Nil{ ( s s pty)
else xs.head +   ys.head ::     

add_rows(xs.tail,   ys.tail)
}}
def apply_all(my_func:Int = Int, xs:List[Int]) : List[Int] =  {xs  map my_func}
def construction(my_funcs : List[Int => Int], n:Int) : List[Int] =  

{ if ( f i E t ) Nil{ if (my_funcs.isEmpty)  Nil 
else my_funcs.head(n) :: construction(my_funcs.tail,   n)
}
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Integrates imperative object oriented and functional paradigmIntegrates imperative, object oriented and functional paradigm
Used as a scripting language (to be discussed later)
Supports mutable objects and immutable objects 
Is a dynamically typed polymorphic language

Supports integers, floating point, strings, indexible sequences, sets, hash 
tables, and class.  Indexible sequences are dynamic arrays or vectors

“ “ “ “multiarr A = [[a, b, c], [1, 2, 3], [“Hello”, “There”, “Friends “]
Rich library to manipulate matrices; ‘+’ can add two matrices
Strings are treated as indexible sequence

Control abstractions
Nested blocks, parallel assignment, if-then-else, unless (opposite 
semantics compared to if-then-else), case statement, for-loop, while-
loop until loop (equivalent to repeat until) a loop construct that needs aloop, until-loop (equivalent to repeat until), a loop-construct that needs a 
conditional exit, multiple syntax for iterators, recursion, explicit λ-
expressions and function calls.  Uses ‘def’ to define a function
Supports multithreading and exception handling
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def greet  # illustrating functiong g
puts(“Name:”); gets(Name ); puts(“Hello ”  +  Name) 
end
m = [[1, 2, 3], [‘a’, ‘b’, ‘c’]]  # Array has different types of objects
m = “cat”;  n = 4;  m1, m2  = m2, m1 # parallel assignment

def factorial(n)  # illustrating recursion and if-then-else
if (n == 0) then 1if (n == 0) then 1 
else n * factorial(n – 1)
end

endend
def fibonacci(n)  # Illustrates the syntax of case statement 

case (n)
when 0 then 1
when 1 then 1
else fibonacci(n – 1) + fibonacci(n – 2)

end
d
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end

def sum seq(xs) # illustrating iterators and destructive updatedef sum_seq(xs)  # illustrating iterators and destructive update
accumulator = 0
for n in xs do accumulator = accumulator  * n    end
return accreturn acc

end
def append(xs, ys)  # appends two sequences

zs = xs + ys
end
def add_seq(xs, ys) 

zs = Array.new  # creating a dynamic array
length1 = xs.length - 1 
for n in 0..length1  # another form of iterator

zs[n] = xs[n] + ys[n]  # expanding dynamic array
end
return zs

end
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d f dd t i ( 1 2) # f hil ldef add_matrix(m1, m2) # use of while-loop
m_final = Array.new ;  size = m1.length ; index = 0
while (index < size)    # while loop

m_final[index] = add_seq(m1[index], m2[index])  # function call
index += 1

end
return m_final

end  
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Applicative order reductionApplicative order reduction
Uses eager evaluation - evaluates parameters eagerly before passing 
the parameters
LISP is a language that uses AORLISP is a language that uses AOR 
A popular implementation model for eager evaluation is SECD machine
SECD machine has four stacks: 1) evaluation stack; 2) environment; 3) 
command string; 4) dump.  Dump stores the environment of the calling g; ) p p g
functions

Normal order reduction
Uses lazy evaluation – delays evaluation of parameter expressionUses lazy evaluation delays evaluation of parameter expression
Haskell is a language that uses NOR
Uses call by need to improve efficiency 
A popular implementation model for lazy evaluation is graph reduction.  p p p y g p
ABC machine is used to implement graph reduction
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SECD machine is a state transition machine with 4 stacksSECD machine is a state transition machine with 4 stacks
Set of states is the Cartesian product of all possible sets of four stacks
-reduction: (id  Value) goes into the environment stack E
-reduction: done on the expression stack S by looking at operator on C
Upon a function call, triple (S, E, C) is dumped on stack D

State transitions based upon input symbol
<literal>: new state becomes (<literal> ::S, E, rest(C), D).
Identifier X:  new state is (value-of(X) :: S, E, rest(C), D).
λ-expression [<bound-variables>, <body>]: new state is ([<bounded-
variables>, <body>, E] :: S, E, C, D) closure on top of S
Closure on top of S: state transition is given by ([bounded-variables, body,Closure on top of S:  state transition is given by ([bounded variables, body, 
E1] :: <args> :: rest(S), E, C, D)   (nil, {bounded_variables  <args>} ⨁
E1, [<body>], (rest(S), E, C) :: D)
<kernel> <args> : new state is (eval(<kernel>(<args>)) :: rest(S), E, C, D).
Top(c) == apply (<func> <args>) new state is (S E <args> :: <func> :: @Top(c) == apply (<func>, <args>) new state is (S, E,  <args> :: <func> :: @ 
:: rest(C), D).
nil: (<result> :: rest(S), E, C, (Spre, Epre, Cpre) :: Dpre)   (result::Spre, Epre, 
Cpre, Dpre) where (Closure :: <args> :: Spre, Epre, Cpre, Dprev)
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Conditional form <predicate> cond <func1> <func2>  @ skip <func2> if true

Uses directed graphs to model expressionsUses directed graphs to model expressions 
Shared variables are modeled as single nodes
The nodes can be bounded variable, operator, or apply-node ‘@’.
Common subexpressions are subgraphs excessed using pointersCommon subexpressions are subgraphs excessed using pointers
λ-expression λx. <body> represented as a tree with edges from declared 
variable x to the body

-expression with parameter expression with parameter
Left subtree of apply node is  function; right subtree is argument (Fig. 2)
Traverses the expression-graph until apply node

λx

<body> λy

λx λyλx

<parameter-

@

λx
@

+

@
y

y
+

<parameter
subgraph>

<body>

λx
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+ x yx
body

There are four valid possibilities for the graph GThere are four valid possibilities for the graph G
Single node atomic data object;
Another λ-expression;
Composite tuple with n≥ 1
Primitive function of arity k.  

-reduction and reductions are needed in two cases
G is a primitive function
G i d fi d λ iG is a user defined λ-expression

-reduction using graphs
Short-circuit the edges to the body of λ-expressions
Connect nodes of the substituted variables to the argument subgraphConnect nodes of the substituted variables to the argument-subgraph
Multiple occurrence of variables need multiple edges

reduction 
Argument subgraph is reduced and the value is passed to the nodesArgument subgraph is reduced, and the value is passed to the nodes 
connecting to the argument subgraph
δ-reduction of the parameter expression behaves like call-by-need 
Only one evaluation for multiple subexpressions, and the value is passed 
to all the nodes connected to the red ced al e node
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to all the nodes connected to the reduced value node

@@

λx +

6 Representation of 
argument-subgraph

@
6

*

54@ x

(a) Original graph representation for λx. (x + x)  4 * 5 + 6
x+

26
@

@

@

6*@

+

(c) After the δ-reduction of 
the parameter-expression

@

+(b)  After β-reduction .  Broken pointers  
point to the same argument-subgraph

4 5+
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ABC Machine implements graph reduction for NOR reductionABC Machine implements graph reduction for NOR reduction
ABC machine is also a state transition machine
Program is translated to a set of microinstructions that alters state

Composition of ABC Machinep
A graph store to store the graph to be rewritten
A program store to store instructions
A-stack to store reference to the graph nodes
B t k t h dl d ti f b i lB-stack to handle reduction of basic values
C-stack like traditional control stack
A descriptor store to translate the coded value to actual symbol
An I/O channel to display the resultsAn I/O channel to display the results

Microinstructions classification
Get an instruction into a program store; 
Increment and update the program counter; p p g ;
Get a node, create a new node, delete a node and update a node value;
Extract information stored in a node; 
Redirect an edge to another node
G t th d i ti f b l f th d i t t
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Get the description of a symbol from the descriptor-store

Deferring evaluation in NOR reduction is called 
nonstrictness

Nonstrictness is lazy evaluation y
Lazy evaluation is suitable for handling infinite data structures

Issues in lazy evaluation
Substitution to multiple occurrence of subexpression is demand basedSubstitution to multiple occurrence of subexpression is demand based
Lack of eager evaluation causes computational and memory overhead
Part of overhead is reduced by call by need
Part of overhead is reduced by strictness analysisPart of overhead is reduced by strictness analysis

Strictness analysis
A compile-time program analysis technique in abstract domain
It id tifi l b i th t b l t d fi t b fIt identifies complex subexpressions that can be evaluated first before 
parameter passing to reduce the overhead
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Concurrency can be exploited in functional languages byConcurrency can be exploited in functional languages by
Making parallel binding of the values to the bounded variables
By concurrently reducing the arguments
By spawning separate processes for conditionals
By spawning separate processes / threads for closures

Concurrency in Lisp
Uses future to eagerly evaluate expressions in advance 
C li th d b d lib i t fCommon lisp uses thread based library interface

Concurrency in Haskel
Supports concurrency using forkio and Mvar
MVar is a shared box that is either full or empty It can be used as lockMVar is a shared box that is either full or empty.  It can be used as lock,
shared channel between two threads, or 3) asynchronous I/O

Concurrency in Scala 
Uses Java concurrency model and asynchronous message passingUses Ja a co cu e cy ode a d asy c o ous essage pass g

Concurrency in Ruby
Interpreter supports multithreading, multiprocessing, mutex locks for 
synchronization, conditional variables for waiting for resources while in a 

iti l ti d i li i
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critical section, and pipelining

F ti l i i b d th ti l f tiFunctional programming is based on mathematical functions 
Pure functional programming does not support destructive update and 
global variables
 i h th t i bl i d texpressions have three components: variable, expression and arguments
Reduction involves two steps: -reduction and -reduction
There are two reduction techniques: AOR and NOR. 
AOR reduces from innermost level outwards, and NOR reduces from the 
outermost level inwards
AOR is suitable for eager evaluation and NOR is suitable for lazy evaluation
Eager evaluation evaluates the arguments first before binding to the 
variables, and uses call by value
Lazy evaluation defers the evaluation until needed, and uses call by need
FPP is a variableless way of writing functions
FPP has kernel predicates and functional forms to form complex functions
Major limitation of functional programming is the lack of archiving 
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partial computations, and excessive recursive programming



Lisp Scheme Haskell Hope Ruby and Scala support functionalLisp, Scheme, Haskell, Hope, Ruby and Scala support functional 
programming paradigm

Haskell and Scala are statically typed type safe programming languages
Ruby is a dynamically typed languageRuby is a dynamically typed language

Functional programming languages have been implemented using 
SECD machine, G-machine and ABC machine

SECD machine uses eager evaluation and is a 4-stack machineSECD machine uses eager evaluation and is a 4-stack machine
ABC machine is a graph reduction machine, and uses microinstructions 

Graph reduction uses lazy evaluation and is used in Haskell
F ti l i i i t t d ith i diFunctional programming is integrated with various paradigms

Imperative, concurrent, object oriented, and logic programming
Concurrency has been exploited in 

Concurrent evaluation of arguments, future evaluation of expressions, 
concurrent evaluation of conditionals, concurrent execution of closure
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