
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

Concurrent Execution and AbstractionsConcurrent Execution and Abstractions
Race Condition; Threads and Dependencies; Synchronization and
Mutual Exclusion; Sequential Consistency

P D d d A t ti P ll li tiProgram Dependency and Automatic Parallelization
Control Dependency; Data Dependency; Program Dependency Graph;
Parallelization Techniques; Granularity and Execution Efficiency;
Program SlicingProgram Slicing

Task and data Parallelism
Distributed computing p g

Remote Procedures and Parameter Passing in RPC

Communicating Sequential Processes
M M d l f CMemory Models of Concurrency
Concurrent Programming Constructs
Concurrent Programming in Ada Java and Emerald

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

Concurrent Programming in Ada, Java and Emerald

Goal is to speed up computationally slow programsGoal is to speed up computationally slow programs
Advantages

Efficient execution of programs
Effi i t tili ti f lti lEfficient utilization of multiple resources

Levels of parallelism
Design new parallel algorithms
At l ith l l id tif bt k th t b t d tlAt algorithm level, identify subtasks that can be executed concurrently
Develop smart compilation to automatically incorporate parallelism
Write programs with parallel constructs

Restrictions in exploiting parallelismRestrictions in exploiting parallelism
Waiting for conditional statement on which following statements depend
Waiting for statements that produce the data being consumed
Waiting when a shared data is being used by one of the processesWaiting when a shared data is being used by one of the processes

Sequential consistency: the output after exploiting
concurrency must be the same as executing sequentially

Parallelization should not violate the property of causality

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

Parallelization should not violate the property of causality

Approaches to exploit concurrency
Parallelizing compilers: sequential programs  concurrent programs
Develop concurrent programs using concurrency constructs

Dependencies limit concurrency
Causality of actions
Dependency due to control abstractions
D d i d t d t d fl f d tDependencies due to update and flow of data
Due to order imposed by the programmer in uniprocessor execution

Dependency imposes sequential execution
D d t b i i i d ith t i l ti ti l i tDependency to be minimized without violating sequential consistency
Causility based sequentiality is inherent and unavoidable

Causes of sequentiality
Li it d h d d d t th d d b bt kLimited hardware and data access resources than needed by subtasks
Need to avoid racing condition
Need to manage shared resources

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

Race condition violates sequential consistency
Caused by the presence of shared variables updated in random order
A high level instruction is translated to multiple low level instructions
The sharing of result of partial computation by one subtask to another
subtask may produce different outcomes inconsistently different than
sequential execution

Maintaining sequential consistency
Multiple actions together should be executed as one atomic action
To ensure atomicity a Boolean variable called semaphore / lock is set

Example of race condition (x and w are aliases)
x = 4; y = 8; z = x + y; w = 5; y = 2 * w
Sequential execution gives x = w = 5; y = 10; z = 12Seque t a e ecut o g es 5; y 0;
Concurrently executed and terminating in the order x = 4; w = 5; y =
8; z = x + y, y = 2* w gives the value x = w = 5; y = 10, and z = 13

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

Thread is a sequence of actionsThread is a sequence of actions
light weight process that shares memory space with parent process

Properties of threads
Parent process spawn multiple threads that merge after terminationParent process spawn multiple threads that merge after termination
Multiple threads execute concurrently in the same memory space
Shared variables need to be handled mutually exclusively by threads

DependenciesDependencies
Shared variables introduce dependencies in thread actions

Example
X and y are shared x = y = 2X and y are shared
Thread 1 produces value of x
Thread 2 produces value of y
Thread 1 consumes value of y

x = y = 2

z = y + 4 w = x + 2;y
Thread 2 consumes value of x
Only one possibility of execution
Follows sequential consistency

z y 4

x = 4;
Thread Thread

;

y = 8;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6

Thread1 Thread2

M t l l i ti l i tMutual exclusion ensures sequential consistency
Only one process at a time. Others wait for their turn.
Lack of enforcement may cause incorrect program behavior.

Mechanism to ens re m t al e cl sionMechanism to ensure mutual exclusion
Associate a separate lock with every shared resource.
Thread using the shared resource sets the lock before entering critical
section, and releases after the end of the critical section.section, and releases after the end of the critical section.
Only one thread can grab the lock at a time.

Problems with locks
Starvation of threads if locks are used aggressively.Starvation of threads if locks are used aggressively.
Improper declaration violates mutual exclusion or causes starvation.
May cause excessive overhead of waiting if critical section is bigger.

Monitor provides mutual exclusion among threadsp g
Passive high level construct includes all mutually exclusive processes.
Uses critical section – a small chunk of code where lock is kept.
Operations within critical section are atomic operations.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

Uses two operations: lock and release to ensure mutual exclusion

Multiple threads work integer counter; max = 3000;Multiple threads work
simultaneously.
All the operations updating
shared variables and using the

integer counter; max = 3000;
Thread vote-count:
{ ask; read(vote);

counter = counter + 1;shared variables and using the
updated value are placed
together in a critical section.
All the operations in a critical

counter = counter + 1;
if (counter < max)

vote_array[counter] = vote; }
p

section are treated as one
single instruction.
Atomicity is enforced using
l k

Explanation
Shared variable is index
variable counterlocks.

During atomic operation
currently subtask will keep the
control

variable counter
counter is used access the
vote-array
If the control is passed to

th t th d ftcontrol. another voter thread after
incrementing then counter is
incremented by 2, and vote is
not recorded

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Waiting for other subtasks before executing the next
instruction
Needed to maintain sequential consistencyNeeded to maintain sequential consistency
Synchronization is needed

In the presence of shared variables among multiple threads using lock
When a subtask is waiting for an input value to be produced
To avoid race condition

Acquire lock Release lock

Use shared
resource

wait
Check lock Acquire lock release lock

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

Sequential consistencySequential consistency
The result of concurrent execution is same as sequential execution
Possible if the store attained by different permutation is the same
Possible if the operations are commutativePossible if the operations are commutative
Store can be split into N mutually exclusive partitions each effected
independently by different statement
The instructions do not update the storeThe instructions do not update the store

Program dependency
Statements are executed sequentially to maintain sequential consistency
Two types of dependency: control dependency and data dependencyTwo types of dependency: control dependency and data dependency
Dependency relationship is transitive, antisymmetric and anti-reflexive

Exploiting concurrency
Program’s execution order is modeled as a directed acyclic graph
Edges between the statements shows control or data dependency
Dependent statements are executed sequentially

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

Caused by control abstraction separate from dataflowCaused by control abstraction, separate from dataflow
Sequentialty in control dependency

Conditional statement and actions. A high level control abstraction
translated to low level instructions reveals the control dependencytranslated to low level instructions reveals the control dependency
Calling subprogram and called program

S1 dominates S2 means S2 is always executed after S1

S t d i t S if ll th th f S t d th h SS2 post-dominates S1 if all the paths from S1 to end go through S2

The directed acyclic graph showing control dependency is called
control dependency graph or CDG

If (<cond1>) {
If(<cond2>){S1; S2; S3;}
else S4;

<cond1>

else {S5; S6; S7;} S5 S6 S7<cond2>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11
S1 S2 S3

S4

integer m[4] max;integer m[4], max;
program main () % start

1) { integer i, j;
2) for (i = 0; i =< 3; i++) #2a #2b #5 #4

#1, #6

3) read(m[i]);
4) call find_max
5) write(max);
6) } % stop

#3 #2c

6) } % stop

procedure find_max () % start
7) {integer i;

#7, #14

8) max = m[0];
9) i = 0;
10) while (i =< 3)
11) if (m[i] > max)

#8 #9 #10

11) if (m[i] > max)
12) max = m[i];
13) i++;
14) } % stop

#11

#12

#13

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

Sequentialon a graph paper ty due to the presence ofSequentialon a graph paper ty due to the presence of
shared variables
Types of dependencies

P d th l t b d til d dProducer-consumer: the value can not be used until produced
Anti-dependence: all the consumers of previous values must be
executed before rewriting the shared variable
Output dependence: maintaining the sequential order of aliased variable p p g q
to ascertain that consumers use the actual values

Data dependency graph
Acyclic directed graph made of data dependencies
Loops should be unrolled to establish exact data dependencies

1 x = 4; % producer #1 #3OD x and z are aliases1. x = 4; % producer
2. y = 5; % producer
3. z = 8; % OD
4 w = x + y; % PC

#1 #3

#2 #5#4

O

PC
PC AD

x and z are aliases

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 13

4. w = x + y; % PC
5. z = 9 % OD and AD

#2 #5#4

integer m[4], max; g [], ;

program main () % start
1) { integer i, j;
2) for (i = 0; i =< 3; i++)
3) read(m[i]);

#2a #2b #5 #4

#1, 6

3) read(m[i]);
4) call find_max
5) write(max);
6) } % stop

#3 #2c

procedure find_max () % start
7) { integer i;
8) max = m[0];

#7, 14

8) max = m[0];
9) i = 1;
10) while (i =< 3)
11) if (m[i] > max)

#8 #9 #10

#11#13
12) max = m[i];
13) i++;
14)} % stop #12

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

Edge Type Edge Type

(#2a, #2b) PC (#9, #11) PC
#2a #2b #5 #4

#1, 6

(#2a, #3) PC (#9, #12) PC

(#2b, #2c) AD (#10, #13) AD

#2a

#3

#2b

#2c

#5 #4

(#2c, #2b) PC (#11, #12) AD

(#2c, #3) PC (#12, #5) PC
#7, 14

(#3, #2c) AD (#12, #13) AD

(#3, #8) PC (#13, #10) PC

#8 #9 #10

#11#13 (#3, #11) PC (#13, #11) PC

(#8, #11) PC (#13, #12) PC

#11

#12

#13

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

(#9, #10) PC

Loop must be unrolled to see all the dependencies
The following example establishes the acyclic nature

{(iter : # 2b iter : #2c) (iter : #2c iter : #2b)}{(iterk: # 2b, iterk: #2c), (iterk: #2c, iterk + 1: #2b)}
{(iterk: #2c, iterk + 1: #3), (iterk: #3, iterk: #2c)}

Edges are between two different iteration cycles

#2a

#3

#2b

#2c #3

#2b

#2c
Iteration # 1 Iteration # 2

#3 #2c

#3

#2b

#2c #3

#2b

#2c

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 16Slide 16

Iteration # 3 Iteration # 4

Actual dependency between the statements in a programActual dependency between the statements in a program
Formed by superimposing control and data dependency graphs

i program main () % start #1 #6inprogram main () % start
1) { integer i, j;
2) for (i = 0; i =< 3; i++)
3) read(m[i]);

#2a #2b #5 #4

#1, #6

4) call find_max
5) write(max);
6) } % stop

procedure find max () % start

#3 #2c

#7, #14procedure find_max () % start
7) { integer i;
8) max = m[0];
9) i = 1;

#8 #9 #10

10) while (i =< 3)
11) if (m[i] > max)
12) max = m[i];
13) i++;

#11

#12

#13

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 17

13) i++;
14)} % stop

#12

Fi d i d d t th i d d hFind independent paths in a program dependency graph
Issues in incorporating concurrency

allocation for nodes sharing data-dependency edgesg p y g
removing redundant dependencies caused by control abstractions
keeping the data transfer overhead between processors minimal

Mapping program dependency graph on processorsMapping program dependency graph on processors
Unroll the loops depending upon processor availability
Map statements on processors so that data transfer between processors
is minimal to reduce data transfer overheadis minimal to reduce data transfer overhead
Dependent statements can be mapped on the same processor

1) x = 4; % producer
#1 #3ADP1 P1

2) y = 5; % producer
3) z = 8; % OD
4) w = x + y; % PC
5) z = 9 % OD and AD

#1 #3

#2 #5#4

AD

PC
OD and AD

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

5) z = 9 % OD and AD
PCP2 P1 P1

Control abstractions introduce redundant sequentialtyControl abstractions introduce redundant sequentialty
Due to the presence of index variables and incrementing them

Examples
for (i = 0; i =< 3; i++) read(m[i]); is sequential However unrolled versionfor (i = 0; i =< 3; i++) read(m[i]); is sequential. However unrolled version
is concurrent: read(m[1]), read(m[2]), read(m[3]), read(m[4])
for (i = 0; i =< n, i++) a[i] = b[i] + 4 is sequential when not unrolled.
However, unrolled version is concurrent

Unrolling with limited processors
for (i = 0; i =< 1000; i++)

{a[i] = 10; b[i] = a[i] + 4; c[i] = 2 * b[i];} { [] ; [] [] ; [] [];}
is translated to (for four processors)
for (i = 0; i =< 250; i++)
{ a[i] = 10; b[i] = a[i] + 4; c[i] = 2 * b[i]; % on processor 1{ [] [] [] [] [] p

a[i + 1] = 10; b[i + 1] = a[i + 1] + 4; c[i + 1] = 2 * b[i + 1]; % on processor 2
a[i + 2] = 10; b[i + 2] = a[i + 2] + 4; c[i + 2] = 2 * b[i + 2]; % on processor 3
a[i + 3] = 10; b[i + 3] = a[i + 3] + 4; c[i + 3] = 2 * b[i + 3];} % on processor 4

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 19

[] [] [] [] [] } p

Issues
Due to the indefinite size, needs to exit out of the unrolled block

MechanismMechanism
Unroll the block as many times as number of processors
Implement an conditional exit statement with each statement

Illustration after unrolling with four processorsIllustration after unrolling with four processors
while (<cond>)

{ <block>; if (<cond>) exit;
<block>; if (<cond>) exit;<block>; if (<cond>) exit;
<block>; if (<cond>) exit;
<block>;

}}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 20

Granularity is the size of statement blocks executedGranularity is the size of statement blocks executed
sequentially on the same processor
Types of granularity

Fi i b f t t t i llFine-grain: number of statements is very small
Coarse-grain: number of sequentially executed statements on a
processor is large

Problems with fine-grain concurrencyProblems with fine-grain concurrency
Too much interprocessor data-transfer overhead.
The advantage gained by distributing statements is lost due to excessive
data transfer overhead

Advantages of coarse-grain concurrency
Data transfer overhead is significantly reduced

Concurrency gains only sublinear speed up due toConcurrency gains only sublinear speed up due to
Limited hardware resources such as data bus and memory ports
Shared variables in a program
Packing-unpacking cost and use of system routines in data transfer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 21

Need to exchange the objects and environments in distributed computing

Partition the programs such thatPartition the programs such that
Parts of program with lots of data dependency are grouped together and
executed on the same processor to remove data transfer overhead
Nested loops should be unrolled and the corresponding data should beNested loops should be unrolled and the corresponding data should be
distributed on processors at compile time

read(a[i]);
for (I = 1; I<1000;I++) read(b[j]);
for (I = 0; I < 100000; I++)
for (j = 0; j < 1000; j++) Front end

Proc. c# 1

D t b d tc[I, j] = a[I] * b[j];

Sequential program

processor

proc. # 100

Data broadcast

for (I = 0; I < 100000; I++)
read(a[i]);
for (I = 1; I < 1000; I++) read(b[j]);

for (I = 0; I < 100000; I++)
for (j = 10*(k -1); j < 10*k - 1; j++)

c[I, j] = a[I] * b[j];

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

(; ;) ([j]); [, j] [] [j];
Front-end partition Processor k partition

Compile-time analysis of PDG to optimize program propertiesCompile time analysis of PDG to optimize program properties
Splits a program in multiple slices to optimize the program properties

Application
matching programs; identifying duplicated code in programs; debugging g p g ; y g p p g ; gg g
the programs; software maintenance; automated parallelization

Program slicing for automatic parallelization
Minimize the data transfer overhead by dividing the programs into

lti l bl k ith i i l d t t f h dmultiple blocks with minimal data transfer overhead
Technique

Identify statement-nodes in PDG that sends data to multiple processors,
and create clones of those statementsand create clones of those statements
Identify data-dependency edges connecting two different processors and
map the sink node in the same processor

#1#2

#3

#4 #1
#2

#1 copy
#4

PDG1 PDG2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

1 2

PDG1’ proc #1 PDG2 proc # 2

processor 1: {x = 4; y = 5; m = x + y;}
processor 2: {x = 4; w = 8; n = x + w;}

x = 4; y= 5; w = 8;
m = x + y; n= x + w;

#2#1 #3#1
Proc 2

y; ;

#2#1 #3

Proc 1 Proc 3

#4 #5

#1

#4 #5
Proc 1 Proc. 2

data dependency

#4 #5

Proc. 1 Proc. 3

sequential control flowdata dependency sequential control flow

interprocessor
data transfer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 24

Spawns and manages multiple threads executing concurrentlySpawns and manages multiple threads executing concurrently
Threads spawned using thread-pool that contains inactive threads

Thread-pool removes the overhead of creating threads
Implementation in various languagesImplementation in various languages

C, C++ use a thread library such as Posix
Java uses synchronized methods
Ada uses task construct to spawn multiple subtasksp p

Issues in handling multiple concurrent threads
synchronization and handling shared resources
communication between the threads and the parent processes and
communication among threads
resource allocations to avoid starvation and deadlocks
resource deallocation when the process or threads are terminated

Starvation is indefinite waiting by a process/thread for CPU timeStarvation is indefinite waiting by a process/thread for CPU-time
Deadlock is when two more processes are waiting for resources
other processes are holding without releasing them timely

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

ApproachesApproaches
Without mutual communication that does not used any shared resources
the use of shared resources

Shared resource approachShared resource approach
Use of lock in critical sections to enforce mutual exclusion
Shared resources can be handled using high level constructs such as
monitors as in Concurrent Pascal or synchronized methods as in Java

Operations on locks
Wait_and_lock to acquire the shared resource
Release to free the shared resource

Problem with threads
Critical section has to be restarted if interrupted/aborted in between
Large boundary of critical section causes excessive wait
Blocking large objects (ex: arrays) causes unnecessary sequentiality
Objects should not be blocked for read operations
Overhead of checking the status of the locks
Improper placement of locks can cause starvation or incorrect execution

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 26

Improper placement of locks can cause starvation or incorrect execution

Reading problemReading problem
Use different types of locks: shared-read lock allows concurrent reading;
exclusive locks are traditional locks

C iti l ti b d blCritical section boundary problem
Use of transactional memory and shadow copy to allow reading
before update and after update provided no read-write conflict exists
Update is done only after the successful transaction is committedUpdate is done only after the successful transaction is committed
Each transaction keeps its read-set and write-set to avoid conflict

Read-set and Write-set conflict resolution
Eager resolution: pessimistic, finds more conflict, no rollback problem
Lazy resolution: finds less conflicts, optimistic but has overhead of
transaction rollback if the conflict resolution is late

Improper placement of lock problem: use monitors
Alternative Information exchange between threads

Asynchronous producer-consumer information exchange using buffer

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 27

Asynchronous producer consumer information exchange using buffer

Applying the same instruction on multiple elementsApplying the same instruction on multiple elements
concurrently

The data-elements should not have data-dependency
W k ll ith fl t d t t t d tWorks well with flat data structures: arrays, sequences, and sets

Example of loop with data-parallelism
for (i = 0; i =< 1000; i++) a[i] = a[i] + 4 % data_parallel for-loop

Example of loop with no data-parallelism
for(i = 1; i =< 999; i++) a[i] = a[i – 1] + a[i + 1] % sequential for-loop
It is sequential because a[i] is dependent upon the value of a[i – 1]It is sequential because a[i] is dependent upon the value of a[i 1]

Map-reduce model of data parallelism
map function sorts a collection of (key, value) pairs
Reduce function groups the sorted values into groups that can beReduce function groups the sorted values into groups that can be
handled by a user-defined function

Data parallel constructs
[1 N] b[1 N] [1 N]

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 28

a[1:N] = b[1:N] + c[1:N]

T k ll li i t d b MIMD hit tTask parallelism is supported by MIMD architecture
Data parallelism is supported by SIMD architecture
Advantage of integrationAdvantage of integration

There are problems that need both task and data parallelism.

Different approaches of integration
Multiple concurrent data parallel computations
A coordinator process that spawns multiple data parallel subtasks
Shared data abstraction (SDA) written concurrently by multiple data-

ll l tiparallel operations
Distributed shared data structures: Shared data structures is a an
accumulation of multiple distributed spaces. Each processor writes into
its own partition in data parallel manner. A subtask can access dataits own partition in data parallel manner. A subtask can access data
space on other processors too.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

Distributed computingDistributed computing
execute procedures concurrently on different processors
Supports either data migration, code migration or a combination of two

Data migration: transfer data to remote processors for computationData migration: transfer data to remote processors for computation
Useful when information exchange is not too large

Code migration: transfer code to remote processor for computation
U f l h h d f d t f i l th h d f d tUseful when overhead of code transfer is less than overhead of data
transfer; and to reduce the computational overhead on servers

Communication overhead between distributed processors
O h d f lti l l f t k t lOverhead of multiple layers of network protocol
Computational overhead of linearizing the data at source and
delinearizing the data at the destination
Synchronous communication blocks the process until theSynchronous communication blocks the process until the
acknowledgement sent by the receiver is received
Asynchronous communication: sender deposits in the mailbox that is
retrieved using a system routine

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 30

Need for access of local resources by remote processors

Executing subprograms on remote processorsExecuting subprograms on remote processors
More than one memory address apaces
Information is physically transferred across machines using network
The result may be passed back across the processorsThe result may be passed back across the processors.

Information exchange mechanism to remote processors
Passing the reference: significant overhead of information access; easy
t th fto pass the references
Passing the value: overhead of object details, channel, and buffer
address needs to be transferred

M h i t i k t dMechanism to invoke remote procedure
Pack (marshall) all the information into a packet called stub
Send the information using system call to network layer using a channel
U k th i f ti t th t d d tUnpack the information at the remote end, and execute
Pack the result back, and send through the stub to calling subprogram

Mechanism works fine in uniform operating system

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31

T f t iTypes of parameter passing
Call by move similar to call by value in single address space
Call by reference similar to call by reference in single address space
Call by copy-restore similar to call by value-result in single spaceCall by copy-restore similar to call by value-result in single space
Scheme that copies the object only once and then uses the remote copy
by looking at the object-id when requested for object. The scheme is an
integration of call by reference + call by move

Passing parameters has overhead due to
System calls, communication layer, delay in transmission, marshaling
and demarshaling, conversion of data structure to different format in
heterogeneous address spaceheterogeneous address space
Undoing the effect of changes during call by reference if the called
procedure does not terminate properly or communication fails
Suspension of the calling program to preserve the data structure when

ll d i ti i ll b tcalled program is executing in call by copy-restore
Languages supporting different parameter scheme

Emerald supports all forms
J t R t th d I ti

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

Java supports Remote method Invocation

A model of concurrent programming using guarded commands
Guards are used as input sources; commands are used as output
Concurrent processes (P || Q) are disjoint and do not share variables
No need for synchronization because there are no shared variablesNo need for synchronization because there are no shared variables

Notations for operations on concurrent processes
P : set of events seen by a process P

Operations with same alphabetOperations with same alphabet
commutativity: P ∥ Q ≡ Q ∥ P
associativity: P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R
deadlock: P ∥ StopαP ≡ StopαP∥ pαP ≡ pαP
running: P ∥ RunαP ≡ P
agreement: (c  P) ∥ (c  Q) ≡ (c  (P ∥ Q))
disagreement: (c  P) ∥ (d  Q) ≡ Stop

Operations on different alphabet
(a  P) ∥ (c  Q) ≡ (a  (P ∥ (c  Q))
(c  P) ∥ (b  Q) ≡ (b  (Q ∥ (c  P))
(a P) ∥ (b Q) ≡ (a (P ∥ (b Q)) | (b (Q ∥ (a P))

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

(a  P) ∥ (b  Q) (a  (P ∥ (b  Q)) | (b  (Q ∥ (a  P))

Sequential composition
is_associative (P; Q); R ≡ P; (P; R)
with_unit skip; P ≡ P
with_zero Abort; P ≡ Abort
distributes (a  P); Q ≡ a (P; Q)

Guarded command
is_associative (P � Q) � R ≡ P � (Q � R)
commutative P � Q ≡ Q � P
distributes (P � Q); R ≡ (P; R) � (Q; R)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

uses laws of concurrency sequential composition and guardeduses laws of concurrency, sequential composition and guarded
commands
CSP language statement

Input output commandInput  output command
input: declaration, a Boolean condition, or a process with input data.
Output command: skip, assignment, alternative command, parallel
command, iterative command, or a process that outputs data.command, iterative command, or a process that outputs data.
Syntax for input process supply data: <process>?<input-data>
Syntax for output process generating data: <process>!<output-data>
Output processes terminate when all the input processes terminate or p p p p
guards are no more true

Language support and semantics
single data entities, arrays, structured data, array of processes, g , y , , y p ,
assignment, alternative commands, iterative commands, parallel
commands, recursive processes, and subroutines.
Iterative loop continues until all input processes stop supplying data
S i f d i h d d d

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

Semantics of guards is the same as guarded commands

<parallel-command> ::= ‘[‘(<process> {∥ <process> }* ‘]’
<process> ::= <identifier> {(<command> | <declaration>}+
<command> ::= skip | <assignment> | <input-statement> |command :: skip | assignment | input statement |
<output-command> |<alternative-command> |
<iterative-command> | <parallel-command>

i t i bl i<assignment> ::= <variable> = <expression>
<input-statement> ::= <process-name>?<variable>
<output-command> ::= <process-name>!<variable>p p
<iterative-command> ::= ‘*’<alternative-command>
<alternative-command> :: ‘[‘<guarded-command>

{‘�’ <guarded command}* ’]’{ � <guarded-command}*]

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 36Slide 36

iobuffer::iobuffer::
m = 80; buffer(0..m - 1) character; c character;
rear, front: integer; rear = 0; front = 0; count = 0;
full empty: Boolean; full = false; empty = true;full, empty: Boolean; full = false; empty = true;
* [count == m - 1 full = true �

count == 0  empty = true �
not(full); producer?c % read c from the producer

buffer[front] = c;
front = front + 1 mod m;
count = count + 1;
empty = false �
not(empty)  consumer ! buffer(rear); (p y) ();
rear = rear + 1 mod m;
count = count - 1;
full = false]

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 37

full = false]

S ifi h b h d d l fSpecifies how memory behaves under models of concurrency
Memory model is important because

Compilers reorganizes the instructions for optimization many times
violating the property of sequential consistency
The memory model should provide race free execution without
introducing extra sequentiality
In the absence of a safe model hackers may attack Internet languagesIn the absence of a safe model, hackers may attack Internet languages

Synchronization properties for sequential consistency
Data-race free
F ll h i ti d i t t ith dFollow synchronization order consistent with program order
Lock action should be followed by release action
After a lock is placed, no process should violate lock before release.
This problem is difficult to maintain for many languages since they allowThis problem is difficult to maintain for many languages since they allow
unsynchronized methods to access shared resource
A read operations reads the last updated value
A write operation should wait unless all read operations on previous write

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 38

p p p
in the program order have taken place – Anti dependency property

Java 5 has an extensive memory model
Supports volatile variables to separate locks and shared variables from
other regular variables. Program order of the volatile variables is not g g
altered by the optimizing compilers

Problems in existing memory model
Lock set in one thread can not be reset in another threadLock set in one thread can not be reset in another thread
Use of shared variables in two threads gives rise to cyclic reasoning that
can only be broken by global analysis of causality
A thread may be blocked for input output interaction. Due to volatile
variable maintaining program order, all other threads waiting for volatile
variables are also blocked unless the lock is released

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 39

CoroutinesCoroutines
Control between two processes alternate
Each process saves its state before passing the control
implemented in Simula, Modula-2, Ruby, Lua and Gop , , y,

Constructs for data parallel programming
Constructs for parallel spawning of subtasks

Cobegin and Coend pair: spawns subtasks without shared variablesCobegin and Coend pair: spawns subtasks without shared variables
Fork and join: starts multiple processes, parent process suspends, and
resumes after all spawned processes terminate

Constructs for spawning multiple threadsConstructs for spawning multiple threads
thread.new() ; thread.start (); thread.join ();

Synchronization constructs to handle shared resources
Lock(v); release(v)Lock(v); … release(v)
Monitors: support mutual exclusion of procedures
Synchronized methods

Constructs for invoking remote procedures

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 40

Constructs for invoking remote procedures

Two processes alternate fact = Fiber newTwo processes alternate
They save their state before
passing the control to other
Th f th l t

fact = Fiber.new
m, n = 1, 1
loop do

Fiber.yield n
They resume from the last
suspension point
implemented in Simula,
M d l 2 R b L

y
m = m + 1
n = n * m

end
Modula-2, Ruby, Lua end

5.times {puts fact.resume}
Two coroutines: function fact
generates a factorial and the

Co-routine 1 Co-routine 2
g
external loop prints out the value
External loop starts the fact
Fact generates value using
fiber.yield and suspends and y
passes the control to external
loop
External loop resumes the fact
coroutines again using the
method fact resume

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

method fact.resume

Spawns multiple independent subtasks
No shared variables between subtasks
Main task suspends when subtasks start, and resumes after all subtasks
terminateterminate

Concurrent Pascal syntax
x := 0; z := 4;
cobegincobegin

begin x := 1; x := x + 1 end; % concurrent activity 1
begin z := 2; z := z - 1 end; % concurrent activity 2

Coend;;

SMIL syntax
<par>par

<text src = "my_resume.html" region = "text_area" dur = "60s" />
<video src = "my_presentation.mpg" region = "Video_area" />

</par>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 42

p

Monitors are passive declarations like modulesMonitors are passive declarations like modules
Embedded entities in a monitor

Shared resources
Mutually exclusive procedures that work on shared resources.y p
An initial body is executed when a monitor is called.
A process can access its own variables.

Any process has to use monitor and the corresponding
procedures to access the shared resourceprocedures to access the shared resource.

There is no direct access to shared resources.
Waiting is done using spin-lock or suspension of a process.

Abstract syntaxAbstract syntax
type <identifier> = monitor (<parameter-list>)

<shared variable declarations>
procedure <identifier> <procedure-body>p p y
procedure <identifier> <procedure-body>
…
procedure <identifier> <procedure-body>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 43

<initial-body of the monitor>

monitor iobuffer;
m = 80;
char buffer[0..m - 1];
i t f t t

front = (front + 1) modulo n;
count = count – 1;
signal(nonfull)}

integer rear, front, count;
condition nonempty, nonfull;
procedure insert(char element)
{ if (count == m - 1) then

% initial body of the monitor
{ rear = 0; front = 0; count = 0;
nonempty = false; nonfull = true }{ if (count m 1) then

await(nonfull);
buffer[rear] = element;
rear = (rear + 1) modulo m;

nonempty false; nonfull true }
…
iobuffer console;
…

count = count + 1;
signal(nonempty)}

procedure remove (char element)

{
…
console.insert(‘a’);

procedure remove (char element)
{ if (count == 0) then
await(nonempty)

result = buffer[front];

…
}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved slide 44

[]

Ad t k f t iAda uses tasks for concurrent programming
Tasks are equivalent to Java threads
Task is declared like a module
Two important features of task: entry-point and accept
Entry points-accept pair is used for parameter passing from other tasks

Abstract syntax
Procedure <proc_identifier>

task <task-name1> is <entry-points1> end <task-name1>
task body <task-name > is <block > end <task name >task body <task-name1> is <block1> end <task_name1>
…
task <task-nameN> is <entry-pointN> end <task-nameN>
task body <task-nameN> is <blockN> end <task_nameN>

begin null end <proc_identifier>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 45

WITH Ada.Text_IO;_ ;
USE Ada.Text_IO;
PROCEDURE Assignment IS

TASK SolveProblem IS ENTRY start_thinking (Problem_index: INTEGER);
END SolveProblem;END SolveProblem;

TASK BODY SolveProblem IS
BEGIN

ACCEPT start_thinking (Problem_index: INTEGER) DO
delay 240.0; −− Put delay to simulate time taken to solve a problem
Put_Line("write answer ");

END start_thinking;
END SolveProblem;END SolveProblem;

BEGIN
FOR Index IN 1..5 LOOP

S l P bl t t thi ki (I d)SolveProblem.start_thinking(Index)
Put_Line("Solving the next problem");

END loop;
Put_Line("Assignment done");

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 46

_ (g)
END Assignment

Concurrency constructs in Java
Thread primitives and synchronized methods
<thread-name>.start (), <thread-name>.yield (), <thread-
name>.sleep(<duration>), <thread-name>.setPriority (<priorityValue>)
Synchronized methods are used for shared objects that are visible to
other threads. Confined objects need not be synchronized.
M th d i h d i bl d l d h i d th dMethods using a shared variable are declared as synchronized methods

Problems with synchronized methods
Locks cannot be set in one method and released in another method.
Locks are not at the variable level but at the method level
An unsynchronized method can also update the shared variables
Synchronized method causes sequentialty slowing down the execution.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 47

Emerald supports fine grain object mobilityEmerald supports fine grain object mobility
Components of Emerald objects

Unique network id that can be generated by concatenating host-name,
process-name and local identifierprocess-name and local identifier
Data representation local to the object
Methods working on the local data
An optional process that may invoke other objects

Types of objects
Global objects – objects are completely mobile
Local objects – immovable objects embedded under another object
Direct objects – basic type used to build another object

Advantages of fine-grain mobility in Emerald
Enhances load balancing
Object mobility provides robustness against processor failure
Active objects can be moved to other processors for better efficiency
Better utilization of special software on specialized processors

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 48

Operations for object mobilityOperations for object mobility
Locate an object
Move an object
Fix an object at a particular nodeFix an object at a particular node
Unfix an object to make it mobile again
Refix an object that is a combination of unfix, move, and fix at a node

P t i i E ldParameter passing in Emerald
Call by object-reference: remote objects can be accessed only by going
through the operating system. Remote objects reference can be passed
to distributed nodes easilyto distributed nodes easily
Call by visit: object is moved to remote processor, and after the
computation, object is copied back
Call by move: object is moved to remote processor. However, it is not y j p ,
copied back from the remote processor

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 49

Concurrent programming is concerned about dividing a task into
multiple subtasks executing concurrently

Concurrent execution should maintain sequential consistency
Concurrency can be exploited using task parallelism, data
parallelism, or the integration of the two

Data parallelism is about the same operation on multiple data
Task parallelism is about different subtasks on different or same data
Integration can be done using: 1) spawning multiple data parallel tasks
concurrently; 2) distributed data structure and subtasks working
concurrentlyconcurrently

Subtasks can be executed concurrently using:
Multiple processes / threads without shared variables
Threads with shared variables: needs synchronizationThreads with shared variables: needs synchronization

There are three types of dependencies :
Control dependency and data dependency

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 50

Th t f d t d d iThree types of data dependencies
Producer-consumer, anti dependency, output dependency

Control dependency is dependent upon
C diti l t t t d d llConditional statements and procedure calls
Conditional statement is embedded in if-then-else statement, while-loop,
for-loop and case statements

Concurrency is exploited aty p
Fine-grain concurrency with packing / unpacking overhead
Coarse-grain parallelism groups multiple statements on single processor
to reduce the data transfer and packing-unpacking overhead
Program slicing reduces communication overhead by replicatingProgram slicing reduces communication overhead by replicating
statements and grouping statements to execute on one processor

Shared variable synchronization is done using
Locks and monitors
L k i t d ith h d d t d b i lLocks are associated with a shared resource, and captured by a single
process and released after the end of the critical section
Locks can cause additional sequentialty, deadlocks and starvation

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 51

C iti l ti d t i tiCritical sections and atomic operations
All operations in a critical section are treated as one atomic operation
Critical section should be as small as possible to avoid sequentiality

CSP is an algebraic treatment of processesCSP is an algebraic treatment of processes
Based upon guarded commands and algebraic theory of processes

CSP language is based upon CSP algebra
Input part is guard includes declarations and input streams
Output is command and output streams
All input processes must terminate for a process to terminate

Distributed computingDistributed computing
Is based upon code and data mobility for better resource utilization
Code mobility uses code migration or object migration
Emerald uses object migration Emerald objects are flatEmerald uses object migration. Emerald objects are flat
There is additional overhead of accessing distributed objects due to the
involve of operating systems and computer network
Emerald uses both reference and object movement for parameter

i

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 52

passing

