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Declarative programming paradigmDeclarative programming paradigm
Popular logic programming is based upon first order predicate calculus
Applied in expert systems, nondeterministic programming, game playing, 
intelligent system, genome comparison, natural language processing etc.

Components of Predicate Calculus
Propositional calculus – variableless axioms and complex facts derived 
by combining axioms using logical operators such as AND, OR, negation
Quantification: universal or existential
Universal quantification associates a property with elements of a set
Existential quantification identifies at least one member in a set with 
desired propertiesdesired properties

Classification of logic programming
Constraint logic programming – handles constraints
Deductive logic programming - new axioms using existing axiomsDeductive logic programming  new axioms using existing axioms
Temporal logic programming – incorporates time based reasoning
Inductive logic programming – generalizes examples into rules
Higher order logic programming – treats relations as arguments
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Two types of information: Rules and facts
Facts are axioms that are treated as true.
Rules are used to split a complex query into multiple simpler queries 
connected through logical AND
Rule is of the form Clausehead  sungoal1 …  subgoalN
There can be more than one rules connected through logical-OR used to 

d threduce the same query: 

Example of logic program
((∀X ∀Y sibling(X, Y)  ∃Z parent(X, Z) ⋀ parent(Y, Z)  ⋀ ¬ (X == Y)  ) ⋁
(∀X ∀Y sibling(X, Y)  ∃Z fraternity(X, Z) ⋀ fraternity(Y, Z) ⋀ ¬ (X == Y) ) 
parent(tom, mary)  ⋁ parent(neena, mary)  ⋁ parent(tom, john)

Corresponding Prolog programp g g p g
sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y) .
sibling(X, Y) :- fraternity(X, Z),  fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).
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F d R i tForward Reasoning system
Takes known facts, and uses all the applicable rules eagerly to derive 
new derived facts.
L t f d d t t tiLot of redundant computations
Useful for monitoring system, logical databases, prediction systems
Example of forward reasoning system is OPS5

Backward Reasoning system
Starts from a query, and splits query into simpler subqueries using rules 

d l i l t l i l AND l i l OR d i li tiand logical operators logical-AND, logical-OR and implication
More focused and efficient, uses depth first search for implementation
All subqueries must be satisfied by given facts to satisfy top level query
Useful in expert systemsUseful in expert systems, 
Example of backward reasoning system is Prolog
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Traditional data structures are sequences tuples tree and factsTraditional data structures are sequences, tuples, tree, and facts
List is included within square brackets; tuples within 
[a, b, “Arvind Bansal”] ; (4, 5, 6) is a tuple
n-ary tree is represented as <functor-name>(Arg1, … ArgN)
Constant starts with small letters;  variable starts with a capital letter
Ground term has all constants;  nonground term has atleast one variable
[1, 2, 3] can be represented in many ways:  [1| [2, 3]], [1, 2 | [3]]

M d l l t i h d t t t hModern languages also support rich data structures such as
Dynamic arrays, blackboards, associative maps, graphs, sets

. class[1 2 3]

1 .

2 .
‘PL’ cs

time

10 11

[1, 2, 3]

2

3 @
rest of the list

10 11

class(‘PL’, cs, time(10, 11))
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a. representation of  list b.  representation of an n-ary tree

A t t t l i l tA means to equate two logical terms
Finds out a set of substitutions when applied   makes terms  equal
Does not evaluate any expression, and information flow is two way
Used to pass parameters between a query and the LHS of a rule

Pattern matching and binding in unification
Matching is done position by position for g y
Unification performs both pattern matching of constants and binding of 
variable to a logical subterm
Two unbound variables become aliases of each other

Example
b(1, X) = b(Y, b) gives substitution {X/b, Y/1}
(a, X, X) = (a, 3, Y) will yield the set of bindings (X/3, and Y/3)( ) ( ) y g ( )
b(X, Y, [3, a(d, e)]) = b(N, M, [M, N]) would give the binding set {X/a(d, e), 
Y/3, M/3, N/a(d, e) }.
b(1, 1) = b(X, 4) will fail since constants 1 and 4 do not match
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Algorithm unify ⨀ means apply substitutionAlgorithm unify
Input: Two logical terms: T1 and T2
Output: Binding set S;

⨀ means apply substitution
+ means insert in a set⋃ union of two sets
¬ negation

{ I1 = T1; I2 = T2; S = { }; unified = true;
for each position  p in I1 and I2

{   if  (is_variable(I1(p) ) ⋀ is_variable(I2(p)) then
S = S + I (p) ∥ I (p);

 negation

S = S + I1(p) ∥ I2(p);
elseif (is_variable(I1(p) ) ⋀ non-ground(I2(p))) then

S = S + I1(p)/ I2(p);  
elseif (non-ground(I1(p)) ⋀ is_variable(I2(p))) then

S = S + I2(p) / I1(p);
elseif  (ground(I1(p)) ⋀ ground(I2(p))  ⋀ ¬ (matches(I1(p), I2(p))))

{unified = false; exit}
else {Sp = unify(I (p) I (p)); S = S ⋃ Sp;} % unify non ground termselse {Sp  = unify(I1(p), I2(p)); S = S  ⋃ Sp;} % unify non-ground terms

I1 = I1 ⨀ S;    I2 = I2 ⨀ S;    
}

if unified   then return  S;
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}                  



Logic program is a set of proceduresLogic program is a set of procedures.
Procedure is a set of rules / facts having the same name and 
arity.
A r le is of the form Cla sehead S bgoal S bgoalA rule is of the form Clausehead :- Subgoal1, …, SubgoalN
A fact has RHS as trivially true.
Examplep
factorial(0, 1).  % mode is factorial(+, -)
factorial(M, N) :- M > 0,  M1 is M – 1, factorial(M1, N1), N is M * N1.

fib i(0 1) fib i(1 1) % d i fib i(+ )fibonacci(0, 1). fibonacci(1, 1).  % mode is fibonacci(+, -)
fibonacci(M, N) :-

M > N, M1 is M – 1, M2 is M – 2, 
fibonacci(M1, N1), fibonacci(M2, N2),bo acc ( , ), bo acc ( , ),
N is N1 + N2.

append([ ], Ys, Ys).  % works in two different modes
d([X|X ] Y [X|Z ]) d(X Y Z )
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append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

I l t tiImplementation process
Map logic program on AND-OR tree
map AND-OR tree on a low level abstract machine
Popular abstract machine is Warren Abstract Machine (WAM)

AND-OR tree: a logical tree 
Has two types of nodes: AND node and OR node that alternatey
An AND-node is true if all its children are true
An OR-node is true if atleast one of its children are true

Level 0 – OR-node

⋁ ⋁ Level 1 - AND-nodes

⋀ ⋀ ⋀ Level 2 OR nodes
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⋀ ⋀ ⋀ Level 2  OR-nodes

A query is an OR-nodeA query is an OR-node
LHS of a rule is AND-node; and RHS subgoals are OR nodes
LHS of a fact is AND-node; RHS is trivially true.
Process

Rules with the same name and arity are identified
OR-node is unified with AND-node to generate a set of substitution
Substitution is applied on the RHS of the rule to generate a conjunctionSubstitution is applied on the RHS of the rule to generate a conjunction 
of subqueries.  Each subquery is recursively solved for solution
If the AND-node is LHS of a fact then successful unification returns true
In case of facts substitution returns the value of unbound variables
If all subqueries return true then AND-node is true
If one of the rule is successful then OR-node is true

Example
ibli (X Y) (X Z) (Y Z) (X Y)sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y) .

sibling(X, Y) :- fraternity(X, Z),  fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).

Query: sibling(tom M)?
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Query: sibling(tom, M)?

sibling(tom, M)?   

{X/tom, Y/M}

OR-node parent(tom, mary).      - F1
parent(neena, mary).  - F2
parent(tom, john).       - F3

sibling(X, Y) AND-nodes

parent(tom, Z)
OR-nodes

parent(M, Z) not(M = Z)

Producer-consumer 
dependencyF1    F2    F3   F1   F2     F3 AND-nodes
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S ti l i l t ti D th fi t hSequential implementations use Depth first search
Concurrent implementations also use breadth-first search
Depth first search implementationDepth first search implementation

AND-OR tree is expanded in a focused way
First clause is tried first followed by next clauses
Leftmost subgoal in a clause is tried first followed by the second subgoalLeftmost subgoal in a clause is tried first followed by the second subgoal.

Searching the options in Depth-first search
OR-nodes are points of exploring different rules.  If one rule does not yield 

l ti t l i t i dsolution, next rule is tried.
OR-nodes are called choice-points
Trail of choice points are stored in a special stack to explore next rule.  
The stack is called trail stackThe stack is called trail stack
Trail stack stores the choice points in the LIFO order
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B kt ki th l t h i i t t l

expression FPP
  expressions use variables The 1 FPP does not use variables

Backtracking  pops the last choice-point to explore 
alternate rules

Pop the last choice point from the trail-stack
Unbind all the variables that were bound between the last choice point -expressions use variables.  The 

use of variables is convenient
 -expression uses nesting

1. FPP does not use variables
2. FPP uses functional form 

abstractions
3. FP allows naming for callable 

Unbind all the variables that were bound between the last choice point 
and the failed subgoal
Pick up next unexplored clause (AND-node)
Unify the OR-node corresponding to the choice point and the next AND-

functionsnode to pick up new set of bindings
Solve the subqueries (OR-nodes) in the subgoals of the new rule

Termination condition for the search
All the choice-points have been consumed, and trail-stack is empty

Example
sibling(X, Y)  :- parent(X, Z),  parent(Y, Z), not (X = Y).
parent(billy, linda).   /* fact F1 */
parent(billy, bill).  /* fact F2  */ 
parent(john, bill). /* fact F3 */
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OR d

sibling(X, Y) :-

sibling(billy, W)?  

{X/billy, Y/W}

OR node
AND-node

parent(X, Z),
parent(Y, Z),
not (X = Y).

sibling(X, Y)

parent(billy, linda). % F1
parent(billy, bill). % F2
parent(john, bill). % F3

CP # 1 CP # 2
parent(john, bill).    % F3

parent(billy, Z) not(W = Z)parent(W, Z)

F1    F2    F3        F1   F2     F3
Going back to 
previous choice point
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WAM is a low level abstract machine for compiling logic programsWAM is a low level abstract machine for compiling logic programs
Uses a hash table to jump to specific procedure
Uses  a variation of if-then-else and exit  to try different rules
Uses registers to pass the arguments to the called procedure
Uses a special stack called trail-stack for backtracking
Local variables in control stack; and complex logical terms in heap
Nested structure represented as multicells connected through pointers
A structure f(a b(M N) L) maps to register ↝ f(a X1 L) X1 ↝ b(M N)A structure f(a, b(M, N), L) maps to register1 ↝ f(a, X1, L),  X1 ↝ b(M, N).

WAM Architecture: Registers, control stack, heap, trail-stack, code area
WAM Instructions: 

h hi d it d fi t thashing on procedure-name, arity and first argument, 
set_structure, set_value, 
get_structure, get_value, put_value, 
conditional jump arithmetic operationsconditional jump, arithmetic operations, 
unify_variable, and unify_value, 
try_me_else <Label> ; retry_me_else <Label>, 
trust_me_else_fail
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TranslationTranslation
clausehead(Args0)  :- subgoal1(Args1),  … subgoalN(ArgsN)
When translated in WAM will have following pattern:

Allocate N % for at least N variablesAllocate N % for at least N variables
get_arguments of Clausehead in the registers

put_arguments of subgoal1;
call subgoal ;call subgoal1;
…
put arguments of subgoalN;
call subgoalN;call subgoalN;

Instructions after compiling clauses
try_me_else <label> stores the label <label> in the control stack, and 
executes the first clause If the first clause fails then it pops the labelexecutes the first clause.  If the first clause fails, then it pops the label 
<label> from the stack and jumps to the next clause
try_me_else_fail is used for the last clause, and states that if the clause 
does not succeed then go back to the previous choice point 
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Program analysis is used to 
Derive new properties of the program in some abstract domain
Abstract domain could be type domain, modes etc.

Applications of Program Analysis
Derive types and modes of the argumentsDerive types and modes of the arguments
Derive concurrency in the program
Derive producer-consumer relationship for automatic parallelization of 
the program
Used for compiler optimization such as tail recursive optimization
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Prolog programsProlog programs
Horn clause has one term on LHS and multiple subgoals on RHS
Prolog uses negation as failure that means failure of a subgoal is 
equivalent to negation.  
Prolog rules are not mutually exclusive. 
Prolog programs support nondeterministic programming due to 
unification allowing bidirectional  information flow
Supports meta programming to reason about programsSupports meta programming to reason about programs
Prolog can build predicates as data

Prolog uses backtracking and depth first search
Backtracking can be enforced to generate multiple solutions to a queryBacktracking can be enforced to generate multiple solutions to a query
Clauses are tried top to bottom and subgoals are tried left to right

Archiving partial computations 
Blackboards or assert/retract to substitute for global variablesBlackboards or assert/retract to substitute for global variables
A fact can be asserted (inserted in the database) or retracted (deleted) 
from the database providing capability of destructive update
Blackboard is a global data structure that is destructively updated
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Bl kb d b d iBlackboard based programming
Improves efficiency by storing partial computation
Can be used a global variable

f t i l bb(N V) bb t(f t N V) !factorial_bb(N, V) :- bb_get(fact:N, V), !.
factorial_bb(N, V) :- factorial(N, V),  bb_put(fact:N, V).

factorial(N M) : N > 0 ! N1 is N 1 factorial bb(N1 M1) M is N * M1factorial(N, M) :- N > 0, !, N1 is N – 1, factorial_bb(N1, M1), M is N * M1.
factorial(0, 1).

Use of cuts
Cuts of the choice-points in that rule 
Improves efficiency if no more solutions are needed from rule
Used to simulate control abstractions such as if-then-else and repeat-loop

b (X [X| ]) !member(X, [X|_]) :- !.
member(X, [ _ | Xs]) :- member(X,  Xs).

Unsafe use of cut may cause incorrectness by not deriving a solution
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Programming with sets: the predicate setof/3Programming with sets: the predicate setof/3
Arguments: 1) the variable to  hold mutiple values; 2) predicate  to be 
executed; and 3) a variable to hold the set of solutions

cs majors(Students) :-cs_majors(Students) :
setof(C,  cs_majors(C),  CS_Scientists),
setof(B,  biology_majors(B),   Biologists),
setof(B math majors(B) Mathematicians)setof(B,  math_majors(B),   Mathematicians),
union([Biologists,  Mathematicians],   Set1),
subtract(CS_Scientists,  Set1,  Students).

compbio majors(Students) :-compbio_majors(Students) :
setof(C,  computer_science_majors(C),   CS_Scientists),
setof(B,  biology_majors(B),  Biologists),
intersection(CS Scientists, Biologists, Students).intersection(CS_Scientists,  Biologists,  Students).

cs_majors('Ahmad'). cs_majors('Kevin'). cs_majors('Shivani').
biology_majors('Ahmad'). biology_majors('Julie').
math majors('Tom'). math majors('Kevin').
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N d t i i i t d d tNondeterminism is supported due to
Logical OR between the rules since OR is commutative
Logical AND between the subgoals since AND is commutative
Bidirectional information flow during unification between a goal and theBidirectional information flow  during unification between a goal and the 
corresponding clausehead

Example I
member(X, [X | ]).member(X, [X | _]).   
member(X, [ _ | Xs ]) :- member(X,  Xs).
Member/2 can be executed in two modes: member(-, +) or member(+, +)

Example IIp
append([ ],  Ys,  Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs,  Ys,  Zs).
append/3 can be executed in 2 modes:  append(+, +, -); append(-, -, +); 

Advantages of unification
Multiple problems with alternative strategies can be programmed easily
Examples: missionary and cannibal problem; various games
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Prolog supports tuples linked-lists dynamic arrays sets factsProlog supports tuples, linked lists, dynamic arrays, sets, facts
Tuples are used to simulate dynamic creation of structures
Linked-lists can be traditional or they can be extended indefinitely
Logic programs also support difference lists in the form [a|X] – X to describe 
an efficient extensible listan efficient extensible list. 
Arrays are implemented as dynamically extensible trees
Trees are also used to handle association-lists and dictionaries for looking 
up a value given the key
Dynamic insertion of facts is used to build new information for reasoningDynamic insertion of facts is used to build new information for reasoning

Example of dynamic structure creation
student_new(Name,  Age,  Course,  Id) :- student_template(Template), 
Template = student(name(Name)-age(Age)-course(Course)-id(Id))Template  student(name(Name) age(Age) course(Course) id(Id)), 
assert(Template), !.
% mode student_info(+, +, ?).
student_info(age,  Name,  Age) :- student(name(Name) -age( Age) - _ - _).
t d t i f ( N C ) t d t( (N )student_info(course,  Name,  Course) :- student(name(Name) - _ -

course(Course) - _).
student_info(id,  Record,  Id) :- student(name(Name)- _ - _ - id(Id).
student template(student(name(  )-age(  )-course(  ) – id(  )).
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Logic programs supportsLogic programs supports
if-then-else, repeat-loop and recursive programming 
Control abstractions can be simulated using cuts, blackboards, and 
tail-recursive programming

E l f Di ti d if th l i Si t P lExample of Dictionary and if-then-else in Sicstus Prolog
% mode lookup(+-?, ?).
lookup(Key-Value,  Dictionary) :-

(Di ti ) f t(“D t t i t i di ti ?” [ ])var(Dictionary), format(“Do you want to insert in dictionary?”, [ ]),
read(Answer),
( Answer == ‘y’  Dictionary   = (Key-Value, _, _)
; otherwise true; otherwise true
).

lookup(Key-Value,  Dictionary) :-
Dictionary = (Key1-Value1,  _,  _),  Key == Key1,  Value = Value1, !.

lookup(Key-Value,  Dictionary) :- Dictionary = (Key1-_,  Left,  _) :-
Key < Key1, !, lookup(Key-Value,  Left).

lookup(Key-Value,  Dictionary) :- Dictionary = (Key1-_,  _,   Right) :-
K K 1 ! l k (K V l Ri ht)
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Key >= Key1,!, lookup(Key-Value, Right).



Simulating if-then-elseSimulating if-then-else
If-then-else(Predicate,  ThenGoal, ElseGoal) :-

call(Predicate), !, call(ThenGoal).
If-then-else(Predicate, , ElseGoal) :- call(ElseGoal).( , _, ) ( )

Simulating negation of a goal
\+(Goal) :- call(Goal), !, fail.( ) ( ), ,
\+(Goal) :- !.

Simulating iteration using tail-recursionSimulating iteration using tail recursion 
print_hello :- read(N),  write_hello(N, 1).
write_hello(Max, Index) :-

( Index =< Max  write(“Hello”), nl,
NewIndex is Index + 1,
write_hello(Max, NewIndex)

;otherwise true
)
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Unification does not evaluate an expression
Needs additional predicates to flatten expressions
Parameters can not evaluate complex expressions

Not Allowed in Standard  Prolog Corresponding Prolog Program
factorial(0, 1).
factorial(N M) :-

factorial(0, 1).
factorial(N M) :-factorial(N, M) :

factorial(N-1, M1), M is N*M1.
factorial(N, M) :

N1 is N – 1,
factorial(N1, M1), M is N*M1.

Occurs check:  X = f(X)  will not terminate
overhead of storing the choice points even for the 
deterministic programs with multiple clauses

Needs program analysis to differentiate deterministic and 
nondeterministic procedures to remove unnecessary choice-points

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal  ©  Chapman Hall/CRC Press, 2013,  All rights reserved

Slide  26

Concept of truthfulness of a predicate in a time intervalConcept of truthfulness of a predicate in a time interval
Predicate may be true in one time interval and false in another
Temporal logic programming languages: Templog and Tokio

O i l l iOperators in temporal logic programs
Predicate p is true at the next time instant.  
Predicate p is always true
Predicate p is never true
Predicate p eventually becomes true;
Predicate p precedes predicate q
P di t i t til di t b tPredicate q is true until predicate p becomes true.

Some application of temporal logic programming
Scheduling queues – to execute requests in a chronological order
Message processing – sending messages and acknowledging in 
chronological order
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Puts restrictions to prune the search space in deriving the solutionPuts restrictions to prune the search space in deriving the solution
Applications

Space optimization problems, time scheduling problem, planning, 
resource allocation, message routing to balance the traffic load, load 
balancing profit maximization problemsbalancing, profit maximization problems

Format of clause in constraint logic programs
Clausehead(X, Y) :- constraint(X), predicate1(X, Z), predicate2(Z, Y).

Implementation modelp
WAM augmented with a constraint store and constraint solver
Constraint is stored in constraint store and solved using constraint solver
Predicates go through standard unification process

i eConstraint programming languages:  CHIP and Eclipse

% handling interval logic
:- lib(ic). % use interval constraint library

d l (lib (i )) % l d i t l t i t:- use_module(library(ic)).  % load interval constraints
year(M) :- M :: 1..12.  % assign interval 1 .. 12 to the variable M
winter(4). fall(9).
summer months(M) :- year(M) winter(W) fall(F) M #> W M #< F % 5 8
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summer_months(M) : year(M), winter(W), fall(F), M #> W, M  #< F.    % 5..8



D d ti l i i d i f i ti d t bDeductive logic is used reasoning from existing database
Not good for learning new rules from examples

Inductive logic programming is about learning new rules
Uses positive and negative examples and background knowledge
Background knowledge includes background facts and rules

Technique to form generalized rule
The process is of forming generalization followed by specialization
Find out the patterns relating the arguments in positive examples
Form a generalized rule using the pattern
Specialize using the negative examplesSpecialize using the negative examples 

Example
Facts: parent(tom, mary). parent(joe,  mary).    

parent(cathy john) parent(nina john)parent(cathy, john). parent(nina, john).
second arguments of fact3 and fact 4 are the same
Generalized rule: my_relationship(X, Y) :-

parent(X, Z), parent(Y, Z), not (X == Y).
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p ( ) p ( ) ( )

Operator ‘=..’ transforms 
[predicate_name, Arg1, …, ArgN] to predicate_name(Arg1, …, ArgN)
The new predicate can be called dynamically
The operator can simulate apply_all, construction, and insertion 
functional forms.

Construction apply allCo st uct o app y_a
construct(PredList, Data,   ResList) :-

(PredList  == [ ]    Result = [ ]
; otherwise  

apply_all(Pred,  Data,   ResList) :-
(Data == [ ]  Result = [ ]
; otherwise 

PredList = [PredName | Fs],        
ResList = [Result | Rs],  
append(Data,  [Result],  Args),
Goal = [PredName | Args]

Data = [Data | Ds],   
ResList = [Result | Rs],
Goal  =..  [Pred, Data, Result],      
call(Goal)Goal  =.. [PredName | Args],      

call(Goal), 
construct(Fs,  Data,  Rs)

).

call(Goal),
apply_all(Pred,  Ds,  Rs)

).
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The integration has been achieved byThe integration has been achieved by
Combining bidirectional informational flow present in unification with 
unidirectional information flow in expression reduction
Interfacing functional and logic programming languagesInterfacing functional and logic programming languages
Modifying unification to handle -expressions

Techniques for integration
Narrowing - minimal substitution between two terms using unification soNarrowing - minimal substitution between two terms using unification so 
that a term can be reduced using term-reduction techniques
sum_list(nil) <= 0.
sum list(X::Xs) <= X + sum list(Xs)._ ( ) _ ( )
Residuing - delay the evaluation of expressions containing 
uninstantiated variables until the logical variables get instantiated.  It is 
sufficient for functional programming style.  However, fails for logic 

i t l d t th f d ’t i blprogramming style due to the presence of don’t care variables
Semantic unification - finds out the semantically equivalent expressions 
and performs minimum reduction until the two terms can be unified
(X X) = (5 2 + 3) succeeds giving binding as {X/5}
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(X, X) = (5, 2 + 3) succeeds giving binding as {X/5}

A bj t i OOLP h th d lik P l dAn object in OOLP  has method like Prolog procedures
OOLP methods are invoked like <object>.<method>

Preprocessor translate OOLP to logic programs p g p g
compiled to WAM 
Two approaches to incorporate OOLP

P b d I t i i V l CPU OOPP d OLPSCPreprocessor based: Intermission, Vulcan, CPU, OOPP, and OLPSC.
Library of Object-oriented programming: Sicstus Prolog

Languages integrating Logic, Functional and OOP
G, FLOOPS, UNIFORM, PARADISE and LIFE

Oz/Mozart is a multiparadigm language integrating
Logic programming, object-oriented programming, and concurrent og c p og a g, object o e ted p og a g, a d co cu e t
programming
Supports both deterministic and nondeterministic programming
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T fTypes of concurrency
OR-parallelism: clauses are spawned separately on different processors
AND-parallelism : subgoals are spawned concurrently on different 
processors
Stream parallelism : producer-consumer relationship between subgoals 
through shared variables having multiple solutions

P l t i lPopular concurrent programming languages
Concurrent Prolog and variations: exploiting stream and AND parallelism
Parlog and variations: exploiting OR parallelism

Logic programs have been implemented on distributed 
computers and massive parallel computers

Unification level parallelism on SIMD computersp p
Multiple sequential execution of different clauses to exploit coarse-grain 
concurrency
Coordinator based model where a coordinator facilitates data transfer on 
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multiple concurrently executing chunks of sequential programs

L i i fi t d di t l lLogic programming uses first order predicate calculus
First order predicate calculus integrates propositional calculus, 
universal quantification and existential quantification
Logic program is a set of procedures each having multiple rules
There are two types of reasoning systems: forward reasoning and 
backward reasoningg
Logic programming uses unification for equating two logical terms

Unification has two directional information flow, does not evaluate 
expressions, and performs matching position by position

The implementation model of logic programs is AND-OR tree
OR nodes correspond to subgoals and AND-nodes to clauseheads
Low level instruction machine for compilation is Warren Abstract Machinep

WAM stores choice-points on trail-stack to support backtracking
Prolog is implemented using depth-first search 
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Prolog uses blackboards and assert/retract for destructive updateProlog uses blackboards and assert/retract for destructive update 
and global variables.  Some implementations explicitly support 
global variables or destructive updates as in GNU Prolog.
Logic programs support multiple data abstractions through the useLogic programs support multiple data abstractions through the use 
of tuples, lists, sets, and facts.
Control abstractions can be supported through the use of cuts, tail-
recursive programming, and use of ‘=..’ that allow predicates to be p g g p
built as data
Logic programming can be extended using the notion of temporal 
ness, constraints, induction, and integration with functions

Temporal logic programming allows time interval based truthfulness of 
axioms.
Constraint logic programming uses a combination of constraint store, 
constraint solver and Prolog engine to solve constraint logic programs.g g g p g
Inductive logic programming uses background information generalization 
and specialization to learn new rules.
Integration with functions uses three techniques: narrowing, residuation 
and semantic unification to integrate unification with term reduction
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and semantic unification to integrate unification with term reduction.


