Chapter 6 — Dynamic Memory
Management

Introduction to
Programming Languages
First Edition, 2013

Author: Arvind Bansal
© Chapman Hall / CRC Press
ISBN: 978-146-6565142

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 1
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Topics Covered

Heap organization

Allocation and deallocation of dynamic data objects
Fragmentation

Garbage collection - recycling heap memory

Start-and-stop garbage collection
¢ Mark-and-scan Algorithm
¢ Copying Garbage Collection
¢ Generational Garbage Collection

m Incremental garbage collection

m Reference-count garbage collection
m Concurrent garbage collection
|
|

Real-time Garbage Collection
Issues in Garbage Collection

® Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 2
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Introduction

m Memory reuse recycles released dynamic memory.

m Dynamic memory management is about allocation /
release in heap.

m Dynamic memory in control stack
m Has lifetime of the called procedure,
m is generally allocated contiguously at the time of the procedure call
m |s recovered by shifting TOS pointer at the end of the called procedure

m Dynamic memory in heap
m is on demand at different times.
m Can have lifetime beyond the called procedure.
m |s recovered using a special class of programs called garbage collection.
m |Is needed for recursive data structures, dynamic data objects.

m Memory recycling

= Can be done continuously, incrementally, or periodically after the heap
runs out of space for allocation.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 3
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Heap Organization

Organized as structured linear array to allocate data objects

m A heap block has three types of information
m Header field containing size, information field, pointer to another block
m Three types of memory blocks: active, released, and free
Modeled as a sequence of blocks of the form
m (allocated, <block-size>, <start-address> <end-address>), or
m (released, block-size, <start-address> <end-address>), or
m (free, block-size, <start-address> <end-address>)
m Right size block is allocated on demand
m Free blocks can be allocated contiguously as in stack based allocation
m Free blocks can be indexed and chained according to size of the blocks
m Free blocks can be chained serially for first allocation
m A data object is a chain of allocated blocks

m The first pointer to the data object is allocated in a processor register or
control stack

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 g|ide 4
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Chained Free Blocks

Free block pointe .
Data-entity 1

Data-entity 1

Data-entity 2

Data-entity 2

First pointers are
stored in control
stack, or processor
registers, or handles

[/500 \/

0

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

Dynamic Data Objects

Dynamic data objects are a logical sequence of cells

Cells have three fields: headers, value, pointer to another cell

m Header contains the information about flags, size, number of fields in the
data structure, or memory offsets from the start of the field

m Flags can be type, released / active
Cells can be fixed size or variable sized
Cells are traversed using chain of pointers.

m There is an memory overhead of headers in heap based allocation
for marking the fields as value / pointer / header

—)‘ header |va|ue | —’—) Linked-list cell
—H Tree cell

——)| header | value | |

Y

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 6
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Size Based Organization of Heap

size 13500
1 | 500 - 999 [
3 P 11500
2 (1000 - 1999 .)§ » 10500
3 | 2000-2999
8000
> 00
5hoo
3000
1 S0V
0

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

Stack Based Organization of Heap

—

m Heap is treated as a stack with -
Begin

begin and end marker and TOS

m Space allocation is done using
TOS Allocated

m Memory recycling is done after Area
TOS catches up with end
marker

m Before memory allocation, the
availability of requested size is v Free

verified
. . Stack memory
m Used in copying garbage growth area
collection for compaction of

active data objects’ space End
<—

TOS

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 slide 8
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Allocation of Objects in Heap Deallocation of Dynamic Objects

= Data objects allocation m Deallocation depends upon a language and the lifetime

m Automatically as in C#, C++, or Java or of the ObJeCt
= On demand by programmer as in C m Objects with lifetime as called procedures are deallocated automatically
. . . at the end of the called procedure.
m First-fit allocation m Objects with lifetime beyond procedure in which they are created are
m Traverses the chain of free block, and allocates the first bigger block deallocated by programmer’s action.

= Disadvantage: lopsided fragmentation in the beginning

m Deallocation is done by breaking the first link from the

m Next fit allocation processor register or control stack to heap

m Traverses the chain of free blocks from the previous allocation point and = No need to traverse every block of the deallocated data structure.

allocates the first bigger block m The deallocated may be marked released based upon garbage collection

= Advantage: evenly distributed fragmentation scheme or may be instantly collected.
m Best fit allocation m Inactive memory locations are candidates for memory
= The smallest free block bigger than the requested size recycling in the next cycle

m Suitable for indexed heap organization with grouped similar blocks » Active cells are traversed and marked as active.

m Untraversed cells are treated as garbage and collected.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 9 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 10
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

: : . Fragmentation
Deallocating Objects in Heap : 9 :
m Formation of smaller block sizes that can not be
individually allocated to bigger size block requests
dataentity1 | . released m With allocation and deallocation, fragments keeps increasing
ointer ! . .
P o | m Problems with fragmentation
» pointer 2 | » = Despite available memory, fragmented blocks can not be allocated
_ data-entity 2 data-entity2 m Too many small fragments causes excessive overhead of accessing
pointer 2~ N pages and populating cache memory
- m Types of fragmentation: external or internal
data entity released .
m External fragmentation is caused by left over memory block
= Internal fragmentation is caused by fixed page based allocation
data entity 1 released m Handling external fragmentation
m Merge neighboring fragmented blocks
data-entity 2 data-entity2 m Compact all the blocks of the same data structure by copying
[m Internal Fragmentation
Unavoidable in page based scheme
niroduction t6 Programming Languages, st eédition, 2013, TSBN: 978-146-6565142 Siide 11 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 12

Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Garbage Collection Garbage Collection Approaches

Two processes: mutator (task) and collector (garbage collector) m Start and stop
Three stages of memory: free, active and released m Processing stops when garbage collection starts
GC is collecting released memory blocks for reallocation = Overhead of garbage collection is 20% - 30%

GC overhead: memory and computational is upto 20 % — 30% = Not suitable for real time processing: misses real-time events

Types of garbage collection m Incremental / continuous garbage collection
m Process is interleaved with garbage collection

m Stop-and-start, incremental, continuous, concurrent, and real-time

m Stop-and-start m Concurrent

= Suspends processing when \ m Collector and mutators are executed in different threads
GC starts Active m Possible if mutator and collector work in separate memory space

. = Mutator and collectors are synchronized when working on the same space
m Incremental / continuous

= Interleaves processing and GC m Hard real-time
m Real-time = Gives high priority to real-time events' .
m Suspend GC for high priority m Temporarily suspend garbage collection when real-time event occurs

Garbage Release
collection

Released

process
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 13 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 14
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Mark-and-scan Algorithm Copying Garbage Collection

m Approach m Removes fragmentation by copying one data structure at a time
= Two phases: Mark phase and scan phase
m Mark phase: marks active cells starting from the first pointer stored in the
registers or the control stack and traversing the chain of pointers
m Scan phase: scan all the memory and collect inactive cells

m Mark phase technique and requirement
m Uses recursive descent from the left to right to traverse data structures
m Set the mark bit to 1 for the active cells
= Needs additional stack for recursive traversal during garbage collection
m Scan phase
m Traverses sequentially cell by cell

m Chains all the inactive cells together
m Does not collect marked bit but resets mark bit to 0 for future cycle

Uses stack based heap organization

Semi-spaces: active space and idle space
m Only active space is used for allocation

m Garbage collection process
m GC starts when TOS(active-space) + requested-size =
end-marker(active-space)
Garbage collection copies from active space to idle space
One data structure at a time until all pointers to heap are consumed
Naive copying garbage collection uses recursive descent
Uses a forward pointer for shared data structures to avoid multiple copies

m Advantage: Fragmentation is removed
m Disadvantage of Naive Scheme

m Problems: fragmentation; traverses active cells twice; m Stack overhead of recursive descent; 50% memory utilization
needs additional memory for stack; stop-and-start; m Start-and-stop algorithm misses real-time events
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 15 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 16

Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

. - Forwarding Pointer
Copying Garbage Collection g
Entity-1, [T F»{12] F-+[13] Fofsa] F[s2]a]
Entity-2
Begin, 24] 22| (a) Partial sharing of data structure
—_— Begin, > —f <
. active space i \3
Entltw/_\ Block 1 TOS |d|e space Entlty-1 - - -
Block 2 released !) P | =
Block 3 (switched)
Entity-Z.—> , R —_— ~ released E g
TOS, Block4 Endr— Entity-2 | e orwar
end, < ’ B> ; pointer
Beglnz/ egin
TOS, | Idle space Entity-1 =
Entity-2 @ > vy
TOS "
v > 2 > Free space =
End, End, o &
Active space v
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 Slide 17 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 Slide 18
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
- - , L] . u
Cheney’s Modification Cheney’s Modifications
m Goals and Advantage
m Reduce overhead of recursive descent by removing stack overhead
T lis: black d white (f = From Space f—
m To space cells: black, grey, and white (free) . = Light green — From-space Begin,
m Black cells have been already traversed by the scan pointer .
G t1o be t dbv th int = Yellow — yet to be copied
] reylareye o be traversed by the scan pointer blocks in From-space] yet to be
m Technique = To-space copied data
m Use breadth-first search instead of depth first search structure
. m Black — traversed by scan
m Use To-space as queue to avoid memory overhead of the queue . End
» .) . pointer called black space . 1
m Use an additional scan pointer that points to the remaining data G t to be t d ‘Begin
structure in from space. Scan pointer chases TOS. = brey - yle Ot' © tr)averse Black 2
m The data is copied if the cell pointed by scan pointer is in From-space, me.njtory ocation by scan Scan pointer
m Allocation in From-space stops once garbage collection starts pointer Y T
o : ® White — free memo Grey
m Garbage collection is done one data structure at a time -) ry Stack <
m GC terminates when Scan pointer 2 TOS(TO-space) and all external locations in To-space growth Free TOS
pointers to heap are consumed End
To-space =Nd:
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 19 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 Slide 20
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Generational Garbage Collection

m Goal: to avoid wastage of idle memory space

m Technique
= More than two version spaces. Version spaces have an age count.
m Only one version space is idle at a time.
= Filled version-space is copied into an idle version space.

m Characteristics
= Adata structure may be spread over multiple version spaces.
m Older version space do not fill up fast due to principle of locality.
m Requires keeping tracking of pointers of split-data structures.

m Table of pointers for split data structures

last previous cell of another version space.
= Only the entries in the table needs to be modified during copying.

table

m Points to the first cell of a split data structure. Also keeps a pointer to the

m Disadvantage: copying and memory overhead of the

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjige 21

Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

|
1
1
Data-cell 5
Stack
growth
A
Data-cell 2 Data-cell 4
Data-cell 1 .:) C Data-cell 3
Entity 1
Older version space Full version space
age =2 age =1

Idle version space

copy

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 Slide 22
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Incremental Garbage Collection

m Extension of Cheney's algorithm proposed by Baker
Goal: continuous garbage collection instead of start-and-stop

m Technique

m Allocate cells in To-space after GC starts

m Collect K cells (K >> 1) for allocating every allocated cell in To-space
m Semi-space size calculation

m Let N be the active memory locations at the time of garbage collection

m N/Kis the newly allocated cells during garbage collection

m Free cells in To-space =N + N /K

m Total cells in a semi-space = allocated cells + free cells = 2N + N/K

m Large K makes stop-and-start; small K GC slows down

Ci}arbage collection perlod

Process
execution

Process
execution

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 23

Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

To-space during Garbage Collection

m Areas

Black: Traversed and copied

Black: newly allocated

Grey: not traversed by the scan pointer
White: free area

m Pointers
m Scan pointer: points to first location of
the grey area
m Bottom pointer: points to the last
location of the grey area
m Top pointer: points to the first free
location in free area

m Termination

= Scan pointer =< Bottom pointer and
all pointers to the heap are
consumed

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

1

<— Begin,

copied To-space
(black) organization
== Scan
Grey
<«— Bottom
Free
< top
new alloc.
(black) End,

slide 24

Reference-count Garbage Collection 4 Insertion in Reference Count

m Continuous garbage collection useful for data structures
with shared memory blocks
, : —{1 | {1 -H 1 | +-i1 [A
m Advantage: avoids dangling reference problem and Data-entity-1 1‘ ‘ ‘ 2 ‘ ‘ ‘
recycling of memory while in use by other data structure 1#2 #6 #1
m Technique Data-entity-2
. #4 #5
m Keep a reference count with every cell
m Increment the ref-count when additional pointer is added
m Decrement the ref-count of all the constituting cells after deletion of a 1 1
data structure until the first shared cell - > 1 » 3 » 1 A
m Garbage collect when reference count = 0 Data-entity-1
#1 #2 #6 #7
= Do not garbage collect when reference count = 1 1 p
J1 1 J1 12 4 A Data-entity-2 #4 #5
. a1 >l 1
Data-entity-1 > > p
#1 #2 #6 #H1 -entity-
AL Ap — Data-entity-3 #8 #9
Data-entity-2 #4 #5
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjige 25 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 26
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Deletion in Reference Count

m Ref-count of all cells in the deleted data structure are

Handling Cyclic Data-structures

-) m Handling cyclic data structures
decremented until first cell with ref-count > 1 or null ptr. u Reference-count of cyclic data-structure’s start cell > 2
m Cells with ref-count == 0 are recycled = Deleting will decrement the reference count by only one
m Detecting cycles is computationally expensive for large cycles
m Practical solution
o 1 ‘ NP ‘ |:|1 ‘ [‘ L1 ‘A‘ . . .
. [[2 | = Only 2% of memory is lost by ignoring the cycles.
Data-entity-1 . .
’_#_1 #2 #6 #7 m |tis better to ignore the cycles and not to recollect them
> 1 j > 1
Data-entity-2 4, Iﬁ
ESEES e e
Data-entity-1 ;
'y M H2 #3.—" / #6 #7 dataentit ! #2 #999 #1000
o T - ’f_,,—/ 1 1
o [Lo - 4 ==L [P [Frecea T
5Data-entity-2 T
““““ . P - e

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjige 27 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjige 28
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

To be Decremented Stack

m Handling overhead of deleting large data structures
m Use a to-be-decremented stack that stores the address of the first cell of
the yet-to-recycled deleted data structures
m The cells’ address is popped on demand, and the reference-count is
decremented by one
m Those cells with reference-count == 0 are collected until the shared cell
with reference-count = 1

TBD
Stack #501 #599 #600
Data-entity 2
co—ft [{1]
01 ¢ #399 #400
51 Data-entity 1 IIE oo _’{ —I—b{ ‘ ‘

IntrodUction 1o Programming Languagés, T1st edition, 20713, ISBN:978-146-6565142 " Sjide 29
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Concurrent Copying GC

m Allows finer grain than incremental garbage collection
= Runs collector and mutator in two different threads.
= Independent action in memory not shared by the collectors and mutator.
m Synchronize the actions on memory shared by collectors and mutators.

m Concurrent copying garbage collection
= Allows concurrency as well as compaction of the data structures.
m Uses special data structures: mutation log and Relocation map

= Relocation map stores the copied entries, and is of the form (from-
location, to-location). Implemented using a hash-table.

Mutation log keeps all the changes in the From-space during garbage
collection to be incorporated in To-space by collector.

= No need of forward pointer due to the presence of relocation map.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 30
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Concurrent Copying GC

Begin,
I— —-— e - o - m——— — l
> = 1
') v
Relocation End, Log
map I
Begin,
I Black |
| <Scan pointer |
| Gray | v
< TOS Stack
L — — = Free = == = = == growth
) End,

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjige 31
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Issues in Garbage Collection

Overhead of garbage collection is 20 — 30%
Stop-and-start GC misses real-time events

m Memory leak due to

= Not collecting cyclic data structures due to excessive overhead

= Mix up of data and pointer due to lack of tag separating data and pointer
in garbage collectors for traditional languages as C

Mix-up of data and pointer during garbage collection

m Pointer treated as data causes lack of marking of active cells and
improper garbage collection causing memory corruption
m Data cell treated as pointer causes memory leak

m Techniques used to separate data and pointers
= Word-alignment of data; and
= Initializing data to some padded value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 32
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Summary | Summary i
m Heap is a common memory area visible to all subprograms for the m Data structure traversal can be done using depth-first (using stack)
allocation of recursive and dynamic data structures or breadth-first (using queue)
m Free block organization in heap can be single chain based, index m Depth first traversal has additional overhead of stack. Breadth first

based. or stack based search uses To-space to alleviate the overhead of the queue

m Allocation scheme can be first fit, best fit, or next fit m Mark-and-scan algorithm

Logical data structures are a chained blocks in heap arranged in m Mark phase marks active cells, and scan phase collects remaining cells
chronological order of allocation m Has limitations of: 1) stack overhead; 2) traversing active cells twice; 3)

stop-and-start; and 4) fragmentation

m First pointer to heap is stored in processor register or control stack
o) i i m Copying garbage collection removes fragmentation by copying one

m Deallocation is done by removing the first pointer to heap logical data structure in physically contiguous locations

® Memory in heap has three states: active, released and free m Cheney's improvement removes stack overhead by performing

m Garbage collection can be start and stop or real-time breadth-first search and use of To-space as queue

m Real-time can be achieved by m Baker’s algorithm provides incremental garbage collection by

m Incremental garbage collection, continuous garbage collection, copying K (K >> 1) cells for every newly allocated cell during GC
concurrent garbage collection, or hard real time garbage collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 33 Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 34
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Summary il

m Generational garbage collection uses multiple version spaces.
m overhead of keeping connectivity tables to connect split data structures
m Older data structures are not recycled

m Reference-count garbage collection is
m Continuous garbage collection and is useful for shared data-space
= Has problem with cyclic data structures
= Memory overhead of reference counts
m Computational overhead of traversing deleted data structure, uses TBD-
stack for demand based recycling
m Concurrent garbage collection uses multiple threads, atomicity and
synchronization for shared space.

m Hard real-time garbage collection
m Uses priority scheduling for real-time tasks in addition to concurrent
garbage collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142 gjide 35
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

