
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

Heap organization
Allocation and deallocation of dynamic data objects
FragmentationFragmentation
Garbage collection - recycling heap memory
Start-and-stop garbage collection

 Mark-and-scan Algorithm
 Copying Garbage Collection
 Generational Garbage Collection

I t l b ll tiIncremental garbage collection
Reference-count garbage collection
Concurrent garbage collectionConcurrent garbage collection
Real-time Garbage Collection
Issues in Garbage Collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

Summary

Memory reuse recycles released dynamic memoryMemory reuse recycles released dynamic memory.
Dynamic memory management is about allocation /
release in heap.p
Dynamic memory in control stack

Has lifetime of the called procedure,
is generally allocated contiguously at the time of the procedure callis generally allocated contiguously at the time of the procedure call
Is recovered by shifting TOS pointer at the end of the called procedure

Dynamic memory in heap
i d d t diff t tiis on demand at different times.
Can have lifetime beyond the called procedure.
Is recovered using a special class of programs called garbage collection.
Is needed for recursive data structures dynamic data objectsIs needed for recursive data structures, dynamic data objects.

Memory recycling
Can be done continuously, incrementally, or periodically after the heap

t f f ll ti

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

runs out of space for allocation.

Organized as structured linear array to allocate data objectsOrganized as structured linear array to allocate data objects
A heap block has three types of information

Header field containing size, information field, pointer to another block
Th t f bl k ti l d d fThree types of memory blocks: active, released, and free
Modeled as a sequence of blocks of the form

(allocated, <block-size>, <start-address> <end-address>), or
(released, block-size, <start-address> <end-address>), or
(free, block-size, <start-address> <end-address>)

Right size block is allocated on demand
Free blocks can be allocated contiguously as in stack based allocation
Free blocks can be indexed and chained according to size of the blocks
Free blocks can be chained serially for first allocation

A data object is a chain of allocated blocks
The first pointer to the data object is allocated in a processor register or
control stack

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

Free block pointer
13500

Free block pointer

Data-entity 1

Data-entity 1
11500
10500

Data-entity 2

Data-entity 2

8000

First pointers are
stored in control

6000
5000

3000stack, or processor
registers, or handles

3000

500
0

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

0

Dynamic data objects are a logical sequence of cellsDynamic data objects are a logical sequence of cells
Cells have three fields: headers, value, pointer to another cell

Header contains the information about flags, size, number of fields in the
data structure or memory offsets from the start of the fielddata structure, or memory offsets from the start of the field
Flags can be type, released / active

Cells can be fixed size or variable sized
C ll t d i h i f i tCells are traversed using chain of pointers.
There is an memory overhead of headers in heap based allocation
for marking the fields as value / pointer / header

header value Linked-list cell

header value Tree cell

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6

size 13500

1

2

500 - 999

1000 - 1999
11500
10500

3 ˄2000-2999
8000

6000
5000

30003000

500
0

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

0

Heap is treated as a stack with
begin and end marker and TOS Beginbegin and end marker and TOS
Space allocation is done using
TOS
Memory recycling is done after

Allocated
AreaMemory recycling is done after

TOS catches up with end
marker
Before memory allocation the

Area

Before memory allocation, the
availability of requested size is
verified
Used in copying garbage

Free
memoryStack

TOS

Used in copying garbage
collection for compaction of
active data objects’ space

areagrowth

End

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved slide 8

Data objects allocation
Automatically as in C#, C++, or Java or
On demand by programmer as in C

First-fit allocation
Traverses the chain of free block, and allocates the first bigger block
Disadvantage: lopsided fragmentation in the beginningDisadvantage: lopsided fragmentation in the beginning

Next fit allocation
Traverses the chain of free blocks from the previous allocation point and
allocates the first bigger blockallocates the first bigger block
Advantage: evenly distributed fragmentation

Best fit allocation
fThe smallest free block bigger than the requested size

Suitable for indexed heap organization with grouped similar blocks

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

Deallocation depends upon a language and the lifetimeDeallocation depends upon a language and the lifetime
of the object

Objects with lifetime as called procedures are deallocated automatically
at the end of the called procedureat the end of the called procedure.
Objects with lifetime beyond procedure in which they are created are
deallocated by programmer’s action.

Deallocation is done by breaking the first link from theDeallocation is done by breaking the first link from the
processor register or control stack to heap

No need to traverse every block of the deallocated data structure.
The deallocated may be marked released based upon garbage collection
scheme or may be instantly collected.

Inactive memory locations are candidates for memory
recycling in the next cycle

Active cells are traversed and marked as active.
Untraversed cells are treated as garbage and collected.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

data-entity 1

pointer 1
data entity 1 released

Data entity 2

pointer 1

data-entity 2 Data entity 2

pointer 2

data-entity2
pointer 2

data-entity 2 data entity2

releaseddata entity 1

releaseddata entity 1

data-entity 2 data-entity2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11

Formation of smaller block sizes that can not beFormation of smaller block sizes that can not be
individually allocated to bigger size block requests

With allocation and deallocation, fragments keeps increasing

Problems with fragmentation
Despite available memory, fragmented blocks can not be allocated
Too many small fragments causes excessive overhead of accessing
pages and populating cache memory

Types of fragmentation: external or internal
External fragmentation is caused by left over memory blockg y y
Internal fragmentation is caused by fixed page based allocation

Handling external fragmentation
Merge neighboring fragmented blocksMerge neighboring fragmented blocks
Compact all the blocks of the same data structure by copying

Internal Fragmentation
U id bl i b d h

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

Unavoidable in page based scheme

Two processes: mutator (task) and collector (garbage collector)
Three stages of memory: free, active and released
GC is collecting released memory blocks for reallocationGC is collecting released memory blocks for reallocation
GC overhead: memory and computational is upto 20 % – 30%
Types of garbage collection

St d t t i t l ti t d l tiStop-and-start, incremental, continuous, concurrent, and real-time

Stop-and-start
Suspends processing when

ActiveAllocate to
GC starts

Incremental / continuous
Interleaves processing and GC

Free Active
process

ReleaseGarbage
Real-time

Suspend GC for high priority
process

Released

ReleaseGarbage
collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 13

p

Start and stop
Processing stops when garbage collection starts
Overhead of garbage collection is 20% - 30%
Not suitable for real time processing: misses real-time events

Incremental / continuous garbage collection
Process is interleaved with garbage collectionProcess is interleaved with garbage collection

Concurrent
Collector and mutators are executed in different threads
Possible if mutator and collector work in separate memory spacePossible if mutator and collector work in separate memory space
Mutator and collectors are synchronized when working on the same space

Hard real-time
Gives high priority to real-time events
Temporarily suspend garbage collection when real-time event occurs

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

ApproachApproach
Two phases: Mark phase and scan phase
Mark phase: marks active cells starting from the first pointer stored in the
registers or the control stack and traversing the chain of pointersregisters or the control stack and traversing the chain of pointers
Scan phase: scan all the memory and collect inactive cells

Mark phase technique and requirement
U i d t f th l ft t i ht t t d t t tUses recursive descent from the left to right to traverse data structures
Set the mark bit to 1 for the active cells
Needs additional stack for recursive traversal during garbage collection

SScan phase
Traverses sequentially cell by cell
Chains all the inactive cells together
Does not collect marked bit but resets mark bit to 0 for future cycle

Problems: fragmentation; traverses active cells twice;
needs additional memory for stack; stop-and-start;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

needs additional memory for stack; stop and start;

R f t ti b i d t t t t tiRemoves fragmentation by copying one data structure at a time
Uses stack based heap organization
Semi-spaces: active space and idle space

Only active space is used for allocation
Garbage collection process

GC starts when TOS(active-space) + requested-size ≥ (p) q
end-marker(active-space)

Garbage collection copies from active space to idle space
One data structure at a time until all pointers to heap are consumed
Naïve copying garbage collection uses recursive descent
Uses a forward pointer for shared data structures to avoid multiple copies

Advantage: Fragmentation is removedg g
Disadvantage of Naïve Scheme

Stack overhead of recursive descent; 50% memory utilization
Start-and-stop algorithm misses real-time events

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 16

Start and stop algorithm misses real time events

Begin1

active space

Block 1

Begin1

TOS1 Idle spaceBlock 2 released

Entity-1

Begin1

Entity-2

B i

Block 3
Block 4 End1

(switched)

end
TOS1

Block 2 released

Begin2

Idle space
Begin2

Entity-2
Entity-1

end1

TOS2

End2

Active space
End2

Free space
TOS2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 17

Active space

1-1 1-2 1-3 s-1 s-2 ⋀
2-1 2-2 (a) Partial sharing of data structure

Entity-1
Entity-2

() g

Entity-1

released

Forward
pointerEntity-2 pointer

TOS2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

Goals and AdvantageGoals and Advantage
Reduce overhead of recursive descent by removing stack overhead

To space cells: black, grey, and white (free)
Black cells have been already traversed by the scan pointer
Grey are yet to be traversed by the scan pointer

Techniqueq
Use breadth-first search instead of depth first search
Use To-space as queue to avoid memory overhead of the queue
Use an additional scan pointer that points to the remaining data p p g
structure in from space. Scan pointer chases TOS.
The data is copied if the cell pointed by scan pointer is in From-space,
Allocation in From-space stops once garbage collection starts
Garbage collection is done one data structure at a time
GC terminates when Scan pointer ≥ TOS(TO-space) and all external
pointers to heap are consumed

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 19

From Space
Light green – From-space Begin1Light green From space
Yellow – yet to be copied
blocks in From-space

To space
yet to be
copied data

Begin1

To-space
Black – traversed by scan
pointer called black space
G t t b t d

p
structure

Begin

End1

Grey – yet to be traversed
memory location by scan
pointer
White free memory Grey

Scan pointer
Black

Begin2

White – free memory
locations in To-space Free

Grey

To-space

TOS
Stack

growth
End2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Slide 20

To-space 2

Goal: to avoid wastage of idle memory space
Technique

More than two version spaces Version spaces have an age countMore than two version spaces. Version spaces have an age count.
Only one version space is idle at a time.
Filled version-space is copied into an idle version space.

CharacteristicsCharacteristics
A data structure may be spread over multiple version spaces.
Older version space do not fill up fast due to principle of locality.
Requires keeping tracking of pointers of split-data structures.

Table of pointers for split data structures
Points to the first cell of a split data structure. Also keeps a pointer to the
last previous cell of another version space.
Only the entries in the table needs to be modified during copying.

Disadvantage: copying and memory overhead of the
table

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 21

free Data-cell 5
Stack spaceStack
growth

Data-cell 2

Data cell 1

Data-cell 3

D ll 3

Data-cell 4

F ll i

Data-cell 1 Data-cell 3

Old i
Entity 1

Full version space
age = 1

Idle version spaceOlder version space
age = 2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

copy

Extension of Cheney's algorithm proposed by BakerExtension of Cheney s algorithm proposed by Baker
Goal: continuous garbage collection instead of start-and-stop

Technique
Allocate cells in To-space after GC starts
Collect K cells (K >> 1) for allocating every allocated cell in To-space

Semi-space size calculation
Let N be the active memory locations at the time of garbage collection
N/K is the newly allocated cells during garbage collection
Free cells in To-space = N + N /K
Total cells in a semi space = allocated cells + free cells = 2N + N/KTotal cells in a semi-space = allocated cells + free cells = 2N + N/K

Large K makes stop-and-start; small K GC slows down

Garbage collection period
Process
execution

Process
execution

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

Areas
Black: Traversed and copied
Black: newly allocated

To space

Begin2

copiedGrey: not traversed by the scan pointer
White: free area

Pointers

To-space
organization

Scan

copied
(black)

Scan pointer: points to first location of
the grey area
Bottom pointer: points to the last

Grey
Scan

Bottom
location of the grey area
Top pointer: points to the first free
location in free area

T i ti
top

Free

Termination
Scan pointer =< Bottom pointer and
all pointers to the heap are
consumed

new alloc.
(black) End2

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved slide 24

consumed

Continuous garbage collection useful for data structuresContinuous garbage collection useful for data structures
with shared memory blocks
Advantage: avoids dangling reference problem and

li f hil i b th d t t trecycling of memory while in use by other data structure
Technique

Keep a reference count with every cell
Increment the ref-count when additional pointer is added
Decrement the ref-count of all the constituting cells after deletion of a
data structure until the first shared cell
Garbage collect when reference count = 0Garbage collect when reference count 0
Do not garbage collect when reference count ≥ 1

1 1 1 2 1 ⋀1 1 1 2 1 ⋀
1 1

Data-entity-1
#1 #2 #3 #6 #7

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

Data-entity-2 #4 #5

1 1 1 2 1 ⋀
Data-entity-1 #1 #2 #3 #6 #7

1 1
Data-entity-2

#1 #2 #3

#4

#6 #7

#5

1 1 1 3 1 ⋀
Data-entity-1

#1
y

#1 #2 #3 #6 #7
1 1

Data-entity-2 #4 #5#4
1 1

Data-entity-3 #8 #9

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 26

Ref count of all cells in the deleted data structure areRef-count of all cells in the deleted data structure are
decremented until first cell with ref-count > 1 or null ptr.
Cells with ref-count == 0 are recycled y

1 1 1 2 1 ⋀2

1 1

Data-entity-1

Data-entity-2

#1 #2 #3

#4

#6 #7

#5

1 1 1 1 1 ⋀
y #4 #5

1

0 0

Data-entity-1 #1 #2 #3 #6 #7

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 27

Data-entity-2 #4 #5

Handling cyclic data structures
Reference-count of cyclic data-structure’s start cell ≥ 2
Deleting will decrement the reference count by only one
Detecting cycles is computationally expensive for large cycles

Practical solution
Only 2% of memory is lost by ignoring the cyclesOnly 2% of memory is lost by ignoring the cycles.
It is better to ignore the cycles and not to recollect them

data-entity
#1 #2 #999 #1000

2 1 1 1

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 28

Handling overhead of deleting large data structures
Use a to-be-decremented stack that stores the address of the first cell of
the yet-to-recycled deleted data structures
The cells’ address is popped on demand, and the reference-count is
decremented by one
Those cells with reference-count == 0 are collected until the shared cell
with reference count ≥ 1with reference-count ≥ 1

#599 #600#501
TBD
Stack #599 #600

Data-entity 2 #501
1 1 1

Stack

#399 #400
Data-entity 1 #1

1 1 1
501

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

1 1 11

Allows finer grain than incremental garbage collection
Runs collector and mutator in two different threads.
Independent action in memory not shared by the collectors and mutator.
Synchronize the actions on memory shared by collectors and mutators.

Concurrent copying garbage collection
Allows concurrency as well as compaction of the data structuresAllows concurrency as well as compaction of the data structures.
Uses special data structures: mutation log and Relocation map
Relocation map stores the copied entries, and is of the form (from-
location, to-location). Implemented using a hash-table.
Mutation log keeps all the changes in the From-space during garbage
collection to be incorporated in To-space by collector.
No need of forward pointer due to the presence of relocation map.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 30

Begin1

Begin

LogRelocation
map

End1

G

Scan pointer
Black

Begin2

Free

Gray
TOS

End2

Stack
growth

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31

Overhead of garbage collection is 20 – 30%
Stop-and-start GC misses real-time events
M l k d tMemory leak due to

Not collecting cyclic data structures due to excessive overhead
Mix up of data and pointer due to lack of tag separating data and pointer
in garbage collectors for traditional lang ages as Cin garbage collectors for traditional languages as C

Mix-up of data and pointer during garbage collection
Pointer treated as data causes lack of marking of active cells and
improper garbage collection causing memory corruption
Data cell treated as pointer causes memory leak

Techniques used to separate data and pointers
Word-alignment of data; and
Initializing data to some padded value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

Heap is a common memory area visible to all subprograms for the
allocation of recursive and dynamic data structures
Free block organization in heap can be single chain based, index
based, or stack based
Allocation scheme can be first fit, best fit, or next fit
Logical data structures are a chained blocks in heap arranged inLogical data structures are a chained blocks in heap arranged in
chronological order of allocation
First pointer to heap is stored in processor register or control stack
Deallocation is done by removing the first pointer to heapDeallocation is done by removing the first pointer to heap
Memory in heap has three states: active, released and free
Garbage collection can be start and stop or real-time
Real-time can be achieved by

Incremental garbage collection, continuous garbage collection,
concurrent garbage collection, or hard real time garbage collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

Data structure traversal can be done using depth-first (using stack)
or breadth-first (using queue)

Depth first traversal has additional overhead of stack. Breadth first
h T t ll i t th h d f thsearch uses To-space to alleviate the overhead of the queue

Mark-and-scan algorithm
Mark phase marks active cells, and scan phase collects remaining cells
Has limitations of: 1) stack overhead; 2) traversing active cells twice; 3)
stop-and-start; and 4) fragmentation

Copying garbage collection removes fragmentation by copying one
l i l d i h i ll i l ilogical data structure in physically contiguous locations
Cheney's improvement removes stack overhead by performing
breadth-first search and use of To-space as queue
Baker’s algorithm provides incremental garbage collection by
copying K (K >> 1) cells for every newly allocated cell during GC

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Generational garbage collection uses multiple version spaces.
overhead of keeping connectivity tables to connect split data structures
Older data structures are not recycled

Reference-count garbage collection is
Continuous garbage collection and is useful for shared data-space
Has problem with cyclic data structures
Memory overhead of reference counts
Computational overhead of traversing deleted data structure, uses TBD-
stack for demand based recycling

Concurrent garbage collection uses multiple threads, atomicity and
synchronization for shared space.
Hard real-time garbage collection

Uses priority scheduling for real-time tasks in addition to concurrent
garbage collection

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

