
Author: Arvind Bansal
Kent State University

Kent, OH 44242

Slide 1Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 1

Topics covered
Multitude of problem domains
Learning outcomes
Program components
Interoperability of programming languages
Criterion for good Languages
S ft d l t lSoftware development cycle
Programming paradigms and history
Programming language classifications
SummarySummary

Slide 2Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

S i tifi tiScientific computing
Large matrices, excessive memory, needs efficient computation

Text processing
String processing capability user friendlinessString processing capability, user friendliness

Database programming
Search and file management capability; fast indexing capability

Business applications
Report generation, decimal number specification

System programming
Memory manipulation, fast execution, low level instructions

Real time processingReal time processing
High priority to real-time tasks, quick decision making

Intelligent systems
Symbolic computation, heuristic and probabilistic reasoningy p , p g

Web based applications
Portability across machines, visualization, quick data conversion

Slide 3Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Automating real-world processes
Requires high level specification of solution.
Programs are organized symbols to communicate and instruct computers
i i f lin meaningful way.
Computers are low level machine incapable of understanding human
intentions.

P i l i t i i i f lProgramming language is a way to organizing meaningful
symbols

Symbols can be textual, voice, visual, gestures, or multimodal.
Instructions could be static dynamically created and/or mobileInstructions could be static, dynamically created, and/or mobile.
Instructions should have unique meaning and express programmer’s
intention unambiguously for correct solution.
Language supports ease of expression and program evolutionLanguage supports ease of expression and program evolution.
Meaningful: intended action is the same as actual action

Slide 4Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Technology, society and language requirements are intricately
related

As the technology evolves, it impacts the society that fuels new
i trequirements.

New requirements mean new ways of solving problems, and new ways
to express the solutions.
New languages and new technologyNew languages and new technology

Society
impacts generates

Technology New requirements

New languages

Slide 5Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

New languages

Shorter learning curve or new languages
Deeper understanding of paradigm abstractions
Help in understanding multi-paradigm languages of future

Awareness of low level behavior of program constructs
Avoid pitfalls of programming errors
Improve the development of efficient programs

Background for the development of compilers
Understanding low level behavior is essential for code generation.

Improvement in programming stylep p g g y
Learn constructs and abstractions from different programming styles
Avoid programming pitfalls

Better selection of languages for specific problemsBetter selection of languages for specific problems

Slide 6Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

ProgramProgram
Specifications of a solutions to handle dataflow between modules
A sequence of meaningful symbols instructing computer

Components of programp p g
Logic - high level specification of solution
Abstraction – modeling entity by desired common attributes
Control – mapping solution on von-Neuman machine where an
instruction progressively changes the state of computationinstruction progressively changes the state of computation

Program = A sequence of
meaningful symbols to repeatedly

Programmer
alter computation states to reach
the final state Computer

Slide 7Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Problem: Sorting an unsorted bag of numbers
Abstraction: identifying entity by desirable attributes

Model bag as an indexible sequence
Logic: stepwise formal specification of solution

Exchange the adjacent number if a[i] > a[I + 1];
Perform exchanges for all the adjacent pairs in the sequence starting g j p q g
from the first element;
Leave the last element in the subsequence;
Repeat the process until one element is left.

Control: progressive change of computational state
Map indexible sequence on memory locations
Destructively update memory location during exchanges

Slide 8Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Components
 Program name
 Importing previously developed software library
 Parameters - exchange data with other program units
 Local environment - data types and variables
 Body - where computation is done

Needs code structuring for better comprehension
Needs unique meaning for structures for one-to-one mapping
to low level machine code
Needs modularity for software evolution and maintenance

Slide 9Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Two types of abstractions
Data abstractions and control abstractions
Data abstractions are abstraction related to modeling real-world entities

i b t f b t t tt ib tusing a subset of abstract attributes
Control abstractions are abstractions related to grouping program
statements using some common properties such as if-then-else, for-loop,
while-loop etcwhile loop etc.

const class_size = 20;
struct student {struct student {

string student-id;
string student-name;
char letter-grade;
}

student class[class_size];

Slide 10Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

initialize indexinitialize index

condition

conditionelse-
t t t

false

then-
statement

true

true
exit

false

then-stat
index =
index + step

statementstatement

(b) for-loop

p

(a) If-then-else

Slide 11Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 1111

diti
statement

blockcondition

falsetrue

block

block

exit

false
condition

()

false
true exit

) D hil l

Slide 12Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

(a)While-loop (b) Do-while loop

TechniqueTechnique
Start from the outermost control abstraction;
Treat inner blocks as a single block;
Make the control flow diagram for the outermost abstraction;Make the control flow diagram for the outermost abstraction;
Progressively expand inner blocks.

if (<cond1>) {

if (<cond >

truecond1
true

if (<cond1>
if (<cond2>)

<block1>
else <block2>

cond2
block2

false

false

trueelse <block2>
else <block3> block11

block

Inner block

Slide 13Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

block3

Developed software needs maintenance because
Need evolves
Programmers move on
Programmers forget their code and approach
Technology changes, and software needs to be ported

Program maintenance needs
Enough comments
Better program comprehension using structured programming
More abstraction
Simplicity of abstraction

Slide 14Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Structured programs
Programs have mostly forward flow with little jumps.
Jumps are embedded inside control abstractions
Jumps are only used to exit out of nested blocks

Criteria for better Program comprehension
Background knowledge and training in programming
Level of abstractions provided in a program
Simplicity of code and abstractions
Structured programs, easily categorized, modular in function

S1 S2 S300 S301 S’1 S’2 S’299 S’300 S’301

 

Slide 15Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

a. structured program b. program with jumps

The language constructs of a programming language should be
well defined.
There should be a unique meaning for every language
construct as computers do not handle ambiguities.
Each high level instruction should be translated to a sequence
of low level instructions that perform the same action
consistently on a computer every time.
A computer should execute consistently the same sequence of
low level instructions producing the same final result.p g

Slide 16Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Inner most layer: low level machine code
Middle layer: operating system and user interfaces
Uppermost layer: application layerUppermost layer: application layer

Application layer in high level language

Operating system, user interface

Lowlevel machine
executing machine code

Operating system, user interface

executing machine code

Slide 17Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

C ilCompiler
Static translation and then execute; No runtime overhead

Interpreter
Translate and execute one statement at a time – runtime
overhead; an order of magnitude slower

Just-in-time compilation (to be discussed)

Compiler Low level

High level

Compiler
instructions

Interpreter (run time) repeatedly

Execute

program p () p y
translate one statement at a time

Slide 18Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Compiler Interpreter

Static translation
No runtime overhead
Faster by an order of magnitude

Interleaved runtime translation and
execution
Runtime overheadFaster by an order of magnitude

Many times not sufficient
technology to compile all languages
Problem is compiling mobile code

Slower by an order of magnitude
Easy to develop
Support execution of dynamicallyProblem is compiling mobile code

Just-in-time compilation for web-
based languages

Support execution of dynamically
typed languages and mobile code
Use abstract machine for portability

better machine independence

Slide 19Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 19

Approach
Compile at runtime once
and cache the compiled

Intermediate code in
Internet language

p
code
Execute if already in
binary code library or in
cache native binary code

Security checker

cache
Runtime compilation
overhead
Performance between

Method in
binary code yes

Library

Performance between
interpreter and
compiler no Execute

binary code

Compilable
compile the fragment to

M hiJVM Compilable
fragmentt?

no

Machine
code cache

Slide 20Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 20

Execute using JVM Compile and cache

U i t f l CILUses a common interface language CIL
Transforms C# to CIL
Uses JIT and built-in class loader to translate to executable
code

C# to CIL compilerC# to CIL compiler

Base class libraries
and user libraries CIL Code

Class loader JIT compiler Platform specific instructions

Executable code

Class loader  JIT compiler  Platform specific instructions

Slide 21Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Executable code

C ilLexical analyzer
Converts into tokenized
format

High level program Compiler

Lexical anal

E
R
R

Parser
Checks validity of
sentence structure using
grammar

S
Y
M

Lexical anal

Parsing

O
R

Hgrammar
Outputs in tree structure

Code generator
G t i t ti Intermediate code

B
O
L

Code generation A
N
D
L

Generates instructions
into intermediate code
Optimizes the code

Translator Shared

Intermediate code

Translation
T
A
B

E
R

Translator
Converts intermediate
code to object code

Linker links multiple code

Shared
Libraryobject codeB

L
E LoaderLinker CPU

executable

Slide 22Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Linker links multiple code

Ability of code fragment in one language to interact with code
fragment of another language
Need

Different problems have more than one problem domains needing more
than one paradigm and language.
Improve efficiency by interfacing with libraries in low languages.
Maximize code reuse by using libraries in other languages.

Mechanism
Exchange information using shared metadata – a separately declared
data being shared between two languages
Convert back-and-forth from data-structure to meta-data, or
C l ifi ti d t d d d t tCommon language specification and standard common data type
Use common types across multiple languages
Common mechanism to store and retrieve data types in across
languages

Slide 23Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

languages

A large software can be millions of lines of codeA large software can be millions of lines of code
May involve more than one problem domains and more than one programming
paradigm and language.
Requires a team of programmers, system analysts, field testers.

Stages in life cycle of software
Requirement analysis, system analysis and design, development, implementation,
initial verification, field testing, deployment, and incremental evolution
Requires feedback at every stage to refine the previous stageRequires feedback at every stage to refine the previous stage

Requirement analysis: knowledge gathering from client

System analysis: Analyze scope and model information flow

D i hDesign phase: Information flow is split in modules and linkages

Development phase: Data structures, algorithms and interfaces

Software testing : Testing the usefulness for the problem

Software modification and maintenance :
Modular (factorized), portable, easy to comprehend; Evolution against new
requirements, change in technology, change in the developmental team

Slide 24Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

System analysis Model and forms to
capture data flow

Industry
data flow
information

Module development
with input and output

Module refinement

information flow and
module functions

ModulesAlgorithm
development

Cycle multiple times

Code
development

Alpha testing
and refinementCode

High level
solution

y p

Need
evolution

Beta testingDeployed
code

Refined code

Slide 25Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Abstraction
modularity
Orthogonality – language constructs independentOrthogonality language constructs independent
Exception handling – get out of error condition gracefully
User-friendliness – better interfaces
R d bilit lf l t i bl d tReadability – self explanatory variables and comments
Ease of comprehension and maintenance
Overall simplicityp y
Portability: moving application to different architectures
Efficient execution
Requirements are contradictoryRequirements are contradictory

Slide 26Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Abstraction
Formal specification

Efficiency
Jump statementsFormal specification

Structured
Better comprehension
Ease of maintenance: modular

Jump statements
Machine dependent
Difficult to understand

routines; locality of features
Slow execution Compile time declaration

Difficult to program
Declaration free

Ease of programming
Run time program failure

Difficult to program
Fast execution
Compile time error detection
Memory optimizationMemory optimization

Slide 27Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 27

Imperative programming
Mutable variables destructive update, explicit user control, reusability,
side-effects, past lost

Declarative programmingDeclarative programming
Immutable assign-once variables, transparent control, memory
explosion, less side-effect, first class objects & meta-programming
logic programming and functional programming used for AIg p g g p g g

Object-oriented programming
Modularity, inheritance, templates, information hiding

Concurrent and distributed programmingConcurrent and distributed programming
Synchronization and independent subtasks

Visual programming – drag and drop screen based
Web based programmingWeb based programming

Code and data mobility, visualization, interaction
Multiple resources, user-friendliness, security
Multiple modality of visualization: text, image, video etc.

Slide 28Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

p y g

Multimedia based programming
Multimodal visualization – text, sound, image, video, gesture and their
integration
S h i ti f di tSynchronization of media streams

Event based programming
Actions based upon events rather than procedures
Used popularly for graph and web based interaction

Paradigm Integration
Modern languages integrate more than one paradigm
C# and Java : event based + multimedia + imperative + web based +
object oriented + concurrent programming
C++ : imperative + object oriented
P di i t ti b b ilt i f b i t f i ith libParadigm integration can be built in for by interfacing with a library

Slide 29Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

1960s - Large scientific computation
Fortran – subroutines, goto statements
ALGOL 60 - supported recursion and recursive data types, block
t t d i t t i b t t tstructured processing, text processing, abstract types

1970s - Text processing, portability, and modularity
Low level languages for system programming based on ALGOL
High level languages such as Pascal, Modula, PL-1 etc.
Functional programming language Lisp used for AI

1980s - Modularity, software and concurrency
Logic programming language Prolog
Concurrent languages such as Parallel Fortran, Concurrent C
Object oriented programming paradigm: C++, Eiffel, Smalltalk

1990s: Web, Multimedia, event and paradigm integration
Languages: Java, JavaScript, PhP, SMIL, C#, Alice,

Slide 30Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Multiple old languages evolved
Integrating newer constructs and paradigms to take care of the previous
limitations

Examples
Fortran 66  Fortran 77  Fortran 90  Fortran 2008
Ada 85  Ada 93  Ada 2005  Ada 2012
Cobol has a revised version Cobol 2002
C  C++  Java  C#

Modifications
Fortran got block structuring, object oriented programming
Cobol 2002 supports object oriented programming
Paradigm shift from C to C++ to Java and C#

Slide 31Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Implementation based classification
Static allocation: upfront memory allocation, no runtime growth
Stack allocation: runtime growth, recursive procedures
Heap allocation: heap is a common shared space. supports
recursive data types: trees, lists, dynamic objects, overhead of
memory of allocation & recycling
Integrated allocation: use all three appropriately

Type based classification
Monomorphic vs polymorphic type: polymorphism allows same
function or operator on multiple data types
Statically vs dynamically typed: dynamically typed variable is bound
to data type at runtime based upon assignment

Paradigm based classification: already discussed
Modern day languages use all the useful properties, and
boundaries have become fuzzy

Slide 32Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Program = logic + control + abstraction
Two types of abstractions: control abstraction and data abstraction
Programming language is an organized way of communicating with
computers using unambiguous meaningful symbols
Languages evolve based upon technology and society needs
Criteria for good programming languages are often contradictory
Multiple programming paradigms are there: imperative programming,
declarative programming, object oriented programming, concurrent
programming, visual programming, web and multimedia programming,
event based programming etcevent based programming etc.
Modern day languages support multiprogramming paradigm
There are three types of memory allocations: static, stack based and heap
based Modern languages integrate all three allocationsbased. Modern languages integrate all three allocations
Languages can use monomorphic types, polymorphic types, or a
combination of both. Languages are statically typed or dynamically typed

Slide 33Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

