
Author: Arvind BansalAuthor: Arvind Bansal
© Chapman Hall / CRC Press

ISBN: 978-146-6565142
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

ISBN: 978-146-6565142
1

Introduction
Data abstractions
Control abstractionsControl abstractions
Information exchange
Parameter passing
Side effects
Exception handling
Nondeterministic computationsNondeterministic computations
Program as data
Software reuse
Case study
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 2

A program manipulates structured data in a well mannered
way: sequentially or concurrently

Program execution maintains causality.
Th fi l t t h ld th ltThe final state holds the result.

Program can be written at multiple levels
Machine level; Assembly level; Procedural; Declarative; Event based
High level programming supports more abstractions and maintainabilityHigh level programming supports more abstractions and maintainability

Types of abstractions: data and control
Data abstractions are declared
Control abstractions are in program-bodyControl abstractions are in program-body
In certain class of languages, the difference between program and data
becomes fuzzy: a program can be created as data and then transformed
A meta program may treat other programs as data
In modular languages, program and data are grouped in package

Encapsulation provides natural visibility boundary
Information can be hidden using encapsulation.
I t t h i h i f ti b t d l

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 3

Import-export mechanism exchanges information between modules

St t d i f ti b d tt ib tStructured information based upon common attributes
Can be specific or generic.
Generic data-entities can hold different types of information

Classification of data entitiesClassification of data entities
Single entity is an atom or literal that can not be split further.
Composite data-entity groups different types of elements
Extensible data entity can be extended dynamicallyExtensible data entity can be extended dynamically
Collection is a bag of data-entities sharing some common attribute that
is being accessed or processed
Aggregation allows the same repeated operation on different elements.
I di id l d t l t ld b i l it ll tiIndividual data elements could be single, composite, collection or
extensible

A data entity is visible and manipulated within its scope
W t d t titiWays to access data entities

Use a name. Multiple names referring to the same entity is called aliasing
The extent of distance from the point of declaration

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 4

Single data-entity
integer, real, atom, character, bit, byte, semaphore
Strings can be treated as both single-entity as well as aggregation

Aggregation : composite, collection, extensible
Composite data-entity is modeled as a tuple

E h l t f th it d t tit b d t b t tiEach element of the composite data-entity can be any data abstraction:
single or aggregate
Tuples can be named or unnamed. Most languages use named tuple as
a template for declaring different data-entities using the same templatea template for declaring different data entities using the same template
Recursive definition of tuple such as linked-list is used to model an
extensible data-abstraction as described later

List = (info, List) or nil(,)
Tree = (tree, info, tree) or null tree

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 5

Collection: an indexible bag of data-abstractions
A bag can have more than one element having the same value
All elements in the collection have same data-abstraction
Collection can be modeled as: 1) an indexible sequence; or 2) a content
addressable bag of (key, value) pairs
Indexible sequences are modeled as arrays or vectors
Arrays can be static or dynamic. Dynamic arrays and vectors are
extensible

Extensible: recursive and dynamic tuple
Extensible data structure have indefinite size, and need dynamic
allocation due to indefinite size
Implemented using pointers as pointers can point to new memory
locations at runtimelocations at runtime
Vectors, trees, and vectors all use pointers for extension

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 6

Data abstraction: class
Abstraction-type: tuple
Attribute-size: 6Attribute size: 6
Begin attribute-description

attribute1: single-entity course-number
tt ib t 2 i l titattribute2: single-entity course-name

attribute3: single-entity instructor
attribute4: bag of studentg
attribute5: tuple location
attribute6: tuple time

End attribute descriptionEnd attribute-description
End data abstraction

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 7

Data-abstraction: student
Abstraction-type: tuple
Attribute-size: 4Attribute size: 4
Begin attribute-description

attribute1: single-entity student-id
tt ib t 2 i l tit t d tattribute2: single-entity student-name

attribute3: single-entity department-name
attribute4: single-entity years-in-collegeg y y g

End attribute-description
End data-abstraction

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 8

D t b t ti l tiData-abstraction: location
Abstraction-type: tuple

Begin attribute-description
tt ib t 1 i l tit b ildiattribute1: single-entity building

attribute2: single-entity room
End attribute-description

End data abstractionEnd data-abstraction

Data-abstraction: time
Abstraction type: tupleAbstraction-type: tuple

Begin attribute-description
attribute1: single-entity start-time
attribute2: single entity durationattribute2: single-entity duration

End attribute-description
End data-abstraction

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 9

In program individual fields are written as
<data-entity>.<field-name>

Composite data-entities use offset method to retrieve

Base - address

fields in low level implementation
Code generator calculates the offset of each individual
field, and adds the offset to the base address

Collection of data-entities uses the index and
individual size of data-entity to compute the address
of the ith data-element

Address of the ith data-element =
base-address + (I – 1) * size of(data-element)

Tree based representation uses key-comparison
In hash based implementation, hash function is used
to find the index of the element

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 10

Interconnected data-entities relate multiple data-entities
using some relationship

Relationship could be between entities or between attributes or between
tt ib t f tit d th tit th t d fi th tt ib tattribute of one entity and other entity that defines the attribute

Interconnected data-entities can be modeled as a graph
Data-entities are modeled as nodes in the graph
R l ti hi d l d d i th hRelationships are modeled as edges in the graph
Interconnected network is called semantic network in Artificial
Intelligence

In Lisp each entity is modeled as a frameIn Lisp, each entity is modeled as a frame
Frame is a pair of the form (entity-name, property-list)
Property-list is {(property1, value1), …, (propertyN, valueN)})
Where (property, value) could be (attribute, value) or (relationship, (p p y,) (,) (p,
destination-entity) or (property, procedure to compute value)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 11

Two major properties
Visibility across programs
Effect beyond life-time of a program / programming module

Example of persistence
Writing in a file
Writing in a databaseWriting in a database

Global Transient data-entities
Visbility across program modules within a program
Effect limited to the life time of a programEffect limited to the life time of a program

Example of Global transient data entities
Blackboards: a tuple space of (key, value) pairs

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 12

File is a persistent sequence of data-entities that is kept
on a secondary storage

Files can be very large, and may not fit in memory space of a computery g , y y p p
Only part of a file may be used in a memory space at a time

Stream is an active subsequence of a file that is in
memory and is being processedmemory and is being processed

Streams are necessary because files can be very large
Allows resource reuse avoiding wastage of memory space
Allows concurrent processing of subsequent data being brought inAllows concurrent processing of subsequent data being brought in

Stream is used in
Processing large files, multimedia processing, and Internet based

i f d tprocessing of data

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 13

Environment is mapping of identifiers  l-value (in the case of
variables) or identifiers  r-value (as in the case of constants)
Declaration changes the computational state (E, S, D) by g p () y
changing the environment E

Declaration can be: sequential or parallel
Sequential declaration D1; D2 updates the environment one declarationSequential declaration D1; D2 updates the environment one declaration
at a time: D1; D2 (E) = D2(D1(E)) = D2(’E) where ’E = D1(E)
Parallel declaration D1 || D2 updates the original environment
simultaneously and independently for both the declarations.

Examples from functional language Scheme
Sequential declaration: (let* ((X 4) (Y (+ X 4))) will make the environment
E as E ⊕ {X  4} ⨁ {Y  8}.
Parallel declaration: E = {x  6}

(let ((X 4) (Y (+ X 4))) will make new environment as
{x  4, Y  10}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 14

Types of control abstractions
Constructors – create a new data-entity
Mutators – destructively update the value of a data-entityy p y
Selectors – retrieve individual fields of an aggregate
Conditionals – picks up an alternative sequence of statement based
upon the evaluation of a conditionp
Iterations – Repeated execute a set of statements until the final
condition is satisfied
Iterators – operate repeatedly the same operation on a collection of p p y p
data elements
Evaluators – instructions that evaluate an expression
Sequencers – jump statements that take control to some label
Invocations – instructions that call another function and procedures

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 15

Continuation is the actual sequence of statements that
are executed at runtime in a program

Continuation are difficult to predict at compile-time in the presence of
d diti l t t tsequencers and conditional statements

Continuation of control abstractions involving condition evaluation and
jump statements is decided at run time
Continuation of the iterative statements involves completely unfolding p y g
the statements in the loop

Example
x = 4; z = 6; goto L;
z = 8;
L: y = 5;
while (z > 4) { x = y + 5; z = z – 1; }
C ti ti f 4Continuation of x = 4:

{z = 6; y = 5; if z > 4 then exit; x = y + 5; z = z – 1; if z > 4 then exit;
x = y + 5; z = z – 1; if z > 4 then exit}.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 16

A ti f i t t t tAction of an assignment statement
Retrieve the values of the identifiers on the RHS expression
Evaluate the RHS expression
Write the evaluated value into the memory location of the variableWrite the evaluated value into the memory location of the variable

Assignment statement changes the computational state by changing
the store

(E S D) i t t t t (E S’ D)(E, S, D) + assignment-statement  (E, S , D)
Assignment sequence: x = 4; y = x + 4

Assignment x = 4 changes the store to S⊕ {l-value(X)  4} then y = X
+ 4 deri es S ⊕ {l al e(X) 4} ⨁ {l al e(Y) 8}+ 4 derives S ⊕ {l-value(X)  4} ⨁ {l-value(Y)  8}.

Multiple assignment: x = y = 4 (Ruby, C++, Python)
Applies both the assignments simultaneously on the original store

S b S⊕ {l l (X) 4} ⊕ {l l (Y) 4}S becomes S⊕ {l-value(X)  4} ⊕ {l-value(Y)  4}
Parallel assignment: var1, … varN = exp1, …, expN

Assigns eval(expI) to varI

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 17

Major types of assignment statements
1) Destructive update or mutation; 2) Assign-once; 3) Unification

Destructive updateDestructive update
Destroys the old value; supports memory reuse; causes side-effect. One
direction information flow. LHS is always a variable

Assign onceAssign-once
Used in declarative languages. The value of variable once assigned can
not be altered; less side-effect; does not support memory reuse without
smart program analysissmart program analysis.

Unification
Does not evaluate any expression. Information flow is bidirectional, and
variables bound in both LHS and RHSvariables bound in both LHS and RHS
Matches arguments position by position, and is assign-once
Used in logic programming

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 18

<if-then-else> ::=
if ‘(‘<cond>’)’ then <stat> [

General purpose conditional in Lisp
(cond ((<predicate1><expr1>)if (<cond>) then <stat> [

else <stat>]’;’

h t t Wh d

(cond ((<predicate1><expr1>)
…

(<predicateN><exprN>)
(t < catch all expr>))<when-stat> ::= When <cond>

<expr>
<unless-stat> ::=

(t < catch-all-expr>))
)
Case Statement

unless <cond> <stat>
else <stat>

‘Unless’ is equivalent to ‘if not’

case (<expr>) of :
<value-set1>: <command-seq1>;
…Unless is equivalent to if not .
<value-setN>: <command-seqN>;

otherwise: <command-seqN+1>
end case

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

D fi it it ti f lDefinite iteration: for-loop
Four major components: index, lower bound, upper bound and step-size
Index and lower limit and upper limits cannot be modified by the

ithi it ti bl k f t t tprogrammer within iterative block of statements
Index is updated after the statement of blocks using the step size
Can be simulated using indefinite iteration or tail-recursive procedures
Number of iterations = (upper bound lower bound) / step size Number of iterations = (upper-bound - lower-bound) / step-size 

Multi-paradigm languages like Ruby treat for-loop as
methods as every data-element in Ruby is an object

10.times {|i| puts i} will write 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 in separate lines

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 20

Definite iteration picks index-value from a list of expressions
for ‘(‘ <index-variable> in <list-of-expressions> ‘) ‘ <block>

A definite iteration picks index-value from an ordered set
for ‘(‘<index-variable> in <set> ‘) ‘ <block>

Definite iteration can be simulated using indefinite iteration

Definite Iteration Indefinite Iteration Simulation

for (<index-variable> = <initial-expr>;
<final-expr>; <step-expr>)

<block>

initial-value = eval(<initial-expr>);
step-size = eval(<step-expr>;
final-value = eval(<final-expr>);
I d i iti l lIndex = initial-value
while (index =< final-value) {

<block>; index = index + step-size;}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 21

The embedded iterative block keeps getting executed
until the condition is satisfied

The condition can be altered in the embedded iterative block
The loop can repeat indefinitely if the conditions are always true

Example constructs of single-entry single exit loops
while ‘(‘<condition>’)’ ‘{‘ <statement block> ‘}’while (<condition>) { <statement-block> }
repeat <statement-block> until <condition>
do <statement-block> while <condition>

Multiple exit iterative loops (supported in Ada)Multiple exit iterative loops (supported in Ada)
A general case of single-exit loops
There are multiple embedded conditions. If any of the conditions are
satisfied then control can get out of the loopsatisfied then control can get out of the loop

<multiple-exit-iter> ::= loop { <cond-exit> ; <command-seq>}* end-loop
<cond-exit> ::= if <condition> then exit;

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

Iterators pick up the elements in a bag in a sequential manner.
However, access is not index-based
Iterators support iteration on list based and bag based collections in
declarative and multiparadigm languages
Example constructs

foreach <variable> in <ordered-bag> <block>g
for (iterator i = data-object.iterator(); i.hasNext();) % in Java

… visit i.next() …
[4, 5, 6].foreach {|i| puts i} % will write 4, 5, and 6 in Ruby

Advantages
Low level implementation detail of the data abstraction is not known to
the programmer

Disadvantages
Elements can not be skipped. They have to be processed in fixed order

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 23

Blocks are a set of declarations followed by a set of commands
Blocks can be nested
Declarations in outer blocks are visible in inner nested blocks if there is no
name conflict. In case of name conflict nearest declaration is visible
Sibling blocks do not share the environment
Memory used by sibling blocks can be reused by later siblings since
memory locations of siblings are not sharedmemory locations of siblings are not shared

A AA
B

C

D

B
E

E
C D
Nesting Level Tree

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 24

A group of declarations and statements bound to an identifier,
and can be invoked multiple times from different places

Some languages allow nested declarations / nested procedures

EBNF for abstract syntax of program units
<program-unit> ::= (program | function | procedure) <identifier> <block>
<block> ::= ‘{‘ [{<declaration>}*] [{<command>}*] ‘}’{ [{ }] [{ }] }
<declaration> ::= <sequencer-decl>| <type-decl> | <variable-decl>
<command> ::= null | <assignment>| <conditional> | <definite-iteration> |

<indefinite-iteration> | <iterator> | <subprogram-call>|
‘{‘<block>’}’ | <sequencers>

Compilation process is independent of number of invocations
Each program module is compiled exactly oncep g p y

Invocation of a program is modeled as a DAG
Direction from calling program unit to called unit
Each invocation of a program unit creates a distinct environment

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 25

p g

Self-recursive procedure
A procedure that calls itself A

Example: factorial(n)
function fact(integer n)

return (n * fact(n – 1))
B C

fact(3)  fact(2)  fact(1)

Mutually-recursive procedure
F G

Starts a cycle of invocation
such that last invocation
invokes the first procedure
length(c cle) > 0

D E
H

Self-recursion Mutual length(cycle) > 0
P0, P1, …, PN, P0

utua
recursion

Nesting Level Tree

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

M d l i l i l l ti t t l i ibilit fModule is a logical encapsulation to control visibility of
the embedded declarations and program units

Provides multiple units to use the same name
Allows reusable library by importing the module in a program
Regulates interaction with the program by using export and import.

Declaration can be
Importing some program unit from other module
Exporting some program unit to make it visible outside
Declared variables or program unit or nested modulesp g

Abstract syntax
<module> ::= module <identifier>

[export {<program-unit>}*][export {<program-unit>}]
[import {<program-unit>}*]
{ <declaration>}* {<program-unit>}* {<module>}*
end <identifier>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 27

end identifier

E tExport

Makes an embedded unit
i ibl t th

Allows an exported unit
from other module to be

Import

visible to other program
units

All the embedded units can be

from other module to be
used

All the exported units from a
module can be imported

exported
A limited set of embedded units
can be exported selectively

module can be imported
A limited set of exported units
can be imported
Unless imported, exported units
are not accessibleare not accessible

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

An independent active unit of information
Encapsulates data entities and methods to work on data-entities
Encapsulation provides information hiding
Has a runtime computational state
Objects can be flat (single level) or nested depending upon language
design philosophy
Methods / data-entities in an object are accessed by
 <object-name>. <method-name> or <object-name>.<entity-name>

Object-classes
Passive template generally with a hierarchical structure
Terminology used are base-class for the root node, subclasses for the
descendant nodes
Objects are active instances of the object classes
Supports inheritance of methods between ancestor class and
descendant classes

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 29

I h it d Vi ibilitInheritance and Visibility

Class structure is nested
Child subclass inherits from the

<class> ::= class <identifier>
[subclass-of] <identifier>

Abstract Syntax and Example

Child subclass inherits from the
parent class
Inheritance relationship is
transitive and anti-symmetric

Properties of inheritance

[subclass-of] <identifier>
[private {<data-decl>}*]
[protected {<data-decl>}*]
[public { <data-decl> }*]Properties of inheritance

Inherited methods can be
overridden
Methods can be sealed in parent

[public { <data decl> }]
[private {<method-decl>}*]
[protected {<method-decl>}*]
public {<method-decl>}+class to avoid inheritance

Visbility
Private methods/entities are
invisible to objects from other

public {<method decl>}+

Examples
Hash-tables Arrays Matricesinvisible to objects from other

classes
Public methods / entities are
visible to objects from other
s bclasses / classes

Hash tables, Arrays, Matrices
Supporting Languages

CLOS, C++, Java, C#,
Modula-3, Ruby, Scala

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

subclasses / classes

A means of sharing subset of environment and store
between two program modules using attributes of
information holdersinformation holders

Information holders are variables, identifiers
Attributes are name, address of the entity, and value of the entity

Information is communicated using different mechanismsInformation is communicated using different mechanisms
Global variables – all programming modules can see
Nonlocal variables – outer modules  inner modules
Point of point visibility using parameter attributes of variables such asPoint of point visibility using parameter attributes of variables such as
name, address, or value

Examples
Bl k t t d l l b l / l l i bl d iBlock structured languages use global / nonlocal variables and various
parameter passing mechanisms
Fortran also uses a common block defined as ‘Common’. It is error
prone due to alignment of two arrays

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 31

prone due to alignment of two arrays

Point to point information exchange between calling and
the called program

The point of information exchange in the calling program is called actual p g g p g
parameter
The corresponding point in the called program is called formal
parameter

Parameter attributes can be name, address or value
Different Correspondence between actual and formal
parameterparameter

Aligned left to right – most popular
Matched using name association as in Ada
If numbers of actual and formal parameters do not match then formalIf numbers of actual and formal parameters do not match then formal
parameter takes default values
‘Param’ declaration – formal parameter can take indefinite size of actual
parameters by treating as a list

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 32

p y g

V i bl i l ti lVariable is name  location  value
Call by name – textual substitution of formal parameter
by actual parameter textby actual parameter text
Call by reference – formal parameter is a pointer to the
location of the actual parameter
Passing the value: three possibilities

Call by value; call by result; and call by value result

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 33

Information exchange in object-oriented languages
Class variables seen in every objects of every subclass of a class
Static global variable seen across all the objects of every class
Parameter passing between methods of the same class

Information exchange in functional programming
languageslanguages

Can pass the whole function as a parameter
Dual nature of building function as data, and then transforming back to a
functionfunction
Substitutes formal parameter by the text of the actual parameters

Information exchange in logic programming languages
Uses unification of logical terms for parameter passingUses unification of logical terms for parameter passing

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Also called call-by-copy or call-by in-mode
Process of call-by-value

Creates memory locations fort each formal parameterCreates memory locations fort each formal parameter
Evaluates the expression of the actual parameter
Evaluated value is copied to formal parameters’ memory locations
After copying the evaluated value there is no more information sharingAfter copying the evaluated value there is no more information sharing
Information sharing is one way actual parameter  formal parameter

Advantages
Store of the calling procedure is not updated by the called procedureStore of the calling procedure is not updated by the called procedure
Used when called procedure needs the value to perform computation

Disadvantages
Result is not shared with the calling procedure
Excessive memory requirement and copying overhead in case of large
data structures

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 35

Example 1 Example 2Example 1
program main
{ integer x, y, z;

program main
{integer x[100]; y[100];

Example 2

read(x, y);
z = square_sum(x, y)
print(“square sum of the numbers:

d d d i d”)

for (i = 0, i =< 99; i++) read(x[i], y[i]);
call my_print(x, y);

}
~d and ~d is ~d”, x, y, z);
}
function integer square_sum(a, b)
{ t (* + b*b) }

subprogram my_print(integer
a[100], b[100])
{ integer c[100];

f (i 0 i < 99 i++) {{ return(a*a + b*b); }

Formal parameters: a and b
a ↔ x and b ↔ y

for (i = 0; i =< 99; i++) {
c[i] = a[i] + b[i];

for (i = 0; i =< 99, i++)
print(“c[d] ” d n” i c[i])a ↔ x and b ↔ y

x and y are copied in a and b
x and y are not destructively
updated by a and b

print(“c[~d] =” ~d~n”, i, c[i]);
}

}
Excessive memory locations

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Excessive memory locations

C l bj t i d t t t t iblComplex objects: recursive data structures, extensible
objects, dynamic objects are stored in heap

A pointer (or reference) from the environment to the object’s first
location in heap
Objects are shared by copying the pointer (or reference)

Sharing is done bySharing is done by
call by copying – a variation of call by value

Environment
calling
subprogram A Object

Environment
calling
subprogram A Objectsubprogram A

HeapBefore invocation Heap
Environment
called subprogram
A

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 37

eapBefore invocation p
After invocationA

Passes the l-value of the actual parameter to the formal parameter
Formal parameter is just a pointer to the first memory location of the
actual parameter
A specific data element is accessed using a combination of formalA specific data element is accessed using a combination of formal
parameter to access the base address and offset of the data-entity within
the actual parameter

Advantages
Minimal memory overhead for complex data structures
No need to explicitly pass the result back to actual parameter
Copying overhead during parameter passing is absent

DisadvantagesDisadvantages
Actual parameter location can be erroneously updated by called
subprogram causing incorrect program behavior
Extra level of indirection causes memory access overhead in called y
subprogram
In distributed memory space call by reference is expensive due to data
residing in different processor

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 38

ProgramProgram
program main
{ integer d[100], i, j, final_count;

for (i = 0; i =< 99; i++)
d0base

Environment of main

for (i = 0; i =< 99; i++)
d[i] = random_number(1, 200);
j = 50;
call count (& d j & final count);

…
di
…base + 4 * i

i

jcall count (& d, j, & final_count);
}
subprogram count (integer *b,
last_index, *accum)

d99base + 4 * 99
final_count

_)
{ integer index;

*accum = 0;
while (index =< last_index) b

Environment of count

{if (*b[index] > 100)
*accum = *accum + 1; % end_if
index = index + 1;

last_index

accumulator

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 39

} % end_while
accumulator

Read-only call by reference: in C++ and Modula3
Actual parameter can only be read but not updated
Advantage: no additional memory overhead or copying cost
Disadvantage: additional overhead of indirection in accessing

Call by sharing: used in C# Java CLU and C++Call by sharing: used in C#, Java, CLU, and C++
First parameter passing is call by reference; subsequent are call by value
All call subprograms point to the actual parameter memory location
Advantage: same as call by reference for the chain of calledAdvantage: same as call by reference for the chain of called
subprograms
Disadvantage: same as call by reference

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 40

C ll b V lCall by Value

Excessive copying cost
E i h d

Minimal copying cost
Mi i l h d

Call by Reference

Excessive memory overhead
No passing of the result

Minimal memory overhead
Continuous update of the
actual parameter

Single memory access
overhead
No erroneous update of the

Additional memory access
overhead due to indirection
May cause erroneous No erroneous update of the

actual parameter

Useful when the local

y
destructive update of actual
parameter location
Useful when the local Useful when the local

computation on passed
parameter is heavy in the
called procedure

computation is light but passed
parameter is quite large in size

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

called procedure

Also called copying out mode
Mechanism

The actual parameter does not effect initial value of the formalThe actual parameter does not effect initial value of the formal
parameters
The formal parameter is initialized to some default value
During the execution of the called procedure, there is no communication g p ,
between formal and actual parameters
After the called procedure is over, the result from formal parameters is
passed back to the corresponding actual parameters

Overheads: same as call-by-value
Excessive overhead of copying cost and memory allocation

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 42

Also called parameter passing by in-out mode
Actual parameter value  formal parameter value

Like call by value formal parameter is treated like local variablesLike call-by-value, formal parameter is treated like local variables
Evaluated value of the actual parameter expression is passed initially to
the formal parameter
No communication during the execution of the called procedureg p
The result is passed back after the end of the called procedure

Advantages
Like call by reference the result is passed back to the actual parameterLike call by reference the result is passed back to the actual parameter
Formal parameters are accessed directly as local variables

Disadvantages
fTwice the copying overhead of call-by-value

Same memory overhead as call by value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 43Slide 43

Program main
{ integer a[100], b[100], c[100, 100], i;
for (i= 0; i =< 99; i++) read(a[i]);

Copies the values of
a[100] into x[100],
b[100] into y[100] andfor (i= 0; i =< 99; i++) read(a[i]);

for (I = 0; i =< 99; i++) read(b[i]);
call multiply (value-result a[100],
b[100] c[100 100]);

b[100] into y[100] and
c[100, 100] into z[100, 100]

Passes the result back of
x[100] into a[100]b[100], c[100, 100]);

}
subprogram multiply(integer x[100],
y[100] z[100 100])

x[100] into a[100]
y[100] into b[100]
z[100, 100] into c[100, 100]

Information is passed left toy[100], z[100, 100])
{ integer i, j;
for (i = 0; j =< 99; i++)

f (j 0 j 99 j)

Information is passed left to
right

a[100]  x[100] followed by
b[100]  y[100] followed by for (j = 0; j=< 99; j++)

z[i, j] = x[i] * y[j];
}

b[00] y[00] o o ed by
c[100, 100]  z[100, 100]

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Call by Reference Call by Value-resultCall by Reference
Continuously modifies the
actual parameters with
computation order

Modifies actual parameters
only after the end of called
procedure in correspondence

Call by Value result

p

Needs only one memory
location to point to actual

procedure in correspondence
order
Needs equal number of
memory locations as actualp

parameter

Additional overhead of

memory locations as actual
parameters
Minimal overhead of access as
formal parameters are in localaccessing due to additional

level of indirection
No copying cost

formal parameters are in local
environment
Excessive copying cost

Good where actual parameter
has large memory locations but
computational requirement is
less

Good when computation
outweighs the copying
overhead

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

less

Call by Reference Call by Value-resultCall by Reference Call by Value result
main ();
integer i;

main ();
integer i;

{i = 1; sub(& i, & i);}
void sub(integer *j, *k);
{*k = 4; *j = 2}

{i = 1; sub(value-result i, i);}
void sub(integer j, k);
{k = 4; j = 2}

The final value is dependent
upon the order of writing into

The final value is dependent
upon the order of p g

the memory location.
The formal parameters j and k
both point to memory locations

f t l t I

correspondence between the
formal and actual parameter

The last value passed is k
Th fi l l i d id d bof actual parameter I

The final value in call by
reference is i = 2

The final value is decided by
the value of k and not the last
computation
The final value of I is 4

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 46

The final value of I is 4

Formal parameter substituted by text of the actual parameterFormal parameter substituted by text of the actual parameter
Substituted body is evaluated on demand using thunking

Thunk is a parameterless procedure that is evaluated every time on
demand when actual parameter is accessed in calling proceduredemand when actual parameter is accessed in calling procedure
Name conflict between actual parameter and local variable in the called
procedure is resolved by renaming the local variable
Expression evaluation is delayed until actual parameter is accessedp y p

Program Runtime behavior after call to sub
program main
{ i t

program main
{ i t{ integer x, y, z;

real w;
x = 3; y = 4; z = 5;

call sub(x + y, x + z, w); }

{ integer x, y, z;
real w;
x = 3; y = 4; z = 5;
{ integer z1; % rename the variable(y, ,); }

subprogram sub (name a, b, w)
{ integer z;

z = a * a + b * b; w = square_root(z); }

{ g ;
z1 = (x + y) * (x + y) + (x + z) * (x + z);
w = square_root(z1); }

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 47

Overhead of demand based evaluation every time actual
parameter is accessed
Overhead of runtime renaming of local variables
Memory location mix-up with name due to on demand evaluation
In the following example, instead of swapping the value of k =2
and a[2] in the second swap call, it copies the value of k = 2 in
[0] d [2] i t h d

program main
{ integer i, j, k; integer a[5];

program main
{ integer i, j, k; integer a[5];

a[0], and a[2] remains untouched

k = 3; j = 2;
for (I = 0; I =< 4; i++) a[i] =0;
swap(name j, k);
swap(name k a[k]; }

k = 3; j = 2;
for (I = 0; I =< 4; i++) a[i] =0;
{ integer temp;

temp = j; j = k; k = temp; }swap(name k, a[k]; }
subprogram swap(name m, n);
{ integer temp;

temp = m; m = n; n = temp; }

temp = j; j = k; k = temp; }
{ integer temp;

temp = k; k = a[k]; a[k] = temp; }
}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 48

Call by need caches the evaluated value after the first
time evaluation of the expression.

Value is retrieved from the cache in future
Call by need is call-by-name in the first evaluation and call by value in
subsequent evaluation

ExampleExample
z1 = (x + y) * (x + y) + (x + z) * (x + z);
(x + z) and (x + y) are evaluated only once, and the value is put in cache.
Second time it is looked in cache

Advantages
More efficient than call by name
In most cases indexes of the subscripted variables is not reevaluatedIn most cases indexes of the subscripted variables is not reevaluated.
Hence there no need of call by name
Used in functional language Haskell to improve the efficiency

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 49

Pass the reference to the first instruction and the
environment of the function to the called procedure
IssuesIssues

Runtime checking of the arguments of the passed function such as type
information and number of arguments
Statically typed languages have this problem of checking types ofStatically typed languages have this problem of checking types of
arguments
Dynamically typed languages do not have such problem
Dynamically typed languages can also check types using metalogical y y yp g g yp g g
predicates

Not preferred in statically typed languages

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 50

Distributed computing needs invocation of procedures on
remote processors

Calling program and called subprogram may execute on different
ddaddress spaces

Information transfer requires communication across processors
Involves evaluation of expression and copying the object to remote
processorsp

Types of parameter passing
Call by moving also called call-by copy: makes a copy of the object
on the remote processor executing called procedure. However, object is
not copied back. It is equivalent to call-by-value
Call by reference: The address of the object of the calling program is
transferred to the remote processor. Object remains on the original
processor.p
Call by visit or call by copy restore: makes a copy of the object on the
remote processor executing called procedure. Resulting object is copied
back. It is equivalent to call by value-result

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 51

A permanent effect that outlives program mainA permanent effect that outlives
the called subprogram

Updates the store of other
programs
Writing in the persistent objects

program main
{ integer A, B, X, Y;

X = 3; Y = 4;
A = sq sum(&X, &Y) + X; % A = 34Writing in the persistent objects

such as file or stream
Raising an exception

Store of other programs can be
effected by the use of

q_ (,) ;
B = X + Y; % B = 25
print(A, B, X, Y);

}
effected by the use of

Global variables; reference;
non-local variables; persistent
data objects

U

function integer sq_sum(integer *X, *Y);
{ *X = *X * *X; *Y = *Y * *Y;

return (*X + *Y);
}Usage

Send results to calling programs
Sharing results of partial
computations with other
programs

}
Scratch pad computation on X and Y in
function sq_sum effects the actual
parameters incorrectly; X becomes 9; Y
becomes 16 after call to sq sumprograms

Memory reuse
Problems

Loss of commutativity

becomes 16 after call to sq_sum

sq_sum(&X, &Y) + X is not the same as
X + sq_sum(&X, &Y)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Slide 52

y

Ali i t iAliasing means two names or
pointers map to same memory
location

Binding one variable also binds

program main
{ integer x, y, z;

x = 3; y = 4; z = 5;
Binding one variable also binds
the other variable
May have drastic effect if the
shared location is written into in

swap(&y, &z); % y  z
swap(&x, &x); % move(x, 0)
print(x, y, z)

called procedure
Example

First swap properly swaps the

% x = 0; Y = 5 and z = 4
}
subprogram swap(integer *x, *y);p p p y p

value of y and z
Second swap makes x = 0
instead of keeping the same

l d t th f f l

p g p(g , y);
{ *x = *x + *y;

*y = *x - *y;
*x = *x - *y;value due to the use of formal

parameters x and y pointing to
same location

x = x - y;
}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Multiple pointers pointing to a shared subset of memory locations
Releasing one pointer may release and recycle shared memory
locations
This may cause allocation of recycled memory to other processes
causing memory corruption
In the figure below releasing P may also release data structureIn the figure below releasing P may also release data structure
shared by Q

˄
P

Q

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 54

Q

Programmer’s discipline
Use local variables for scratch-pad computations
Variables with scope outside the local environment should be modified
only for known information exchange

Disallow pointer arithmetic
No arithmetic on pointer types to disallow type violation across data-

9

p yp yp
entities at run-time

Disallow independent pointers
Pointers only associated with recursive data structures or dynamic dataPointers only associated with recursive data structures or dynamic data
objects internally to avoid inconsistent operations across different data-
entities of different types

Disallow destructive updatesDisallow destructive updates
Variables are assign-once as in functional and logic programming
The variables in calling programs are not modified by the called
subprograms

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 55

p g

Slide 55

i ()program main()
{ integer i, j, k, a[6];

i = 0; j = 0; k = 2;
for (i = 1; i =< 5; i++) a[i] = 10;
messy(a[1], &a[2], &j, &j, #a[3], $k);

}
subprogram messy(integer A, *B, *C, *D, E, F)
{ A = *B + *C; % statement 1: A = value(a[2]) + value(j) = 10 + 0 = 10

*B = *D + E + F; % a[2] = value(j) + value(E) + value(F) = 0 + 10 + 0 = 10; % [] (j) () ()
*C = A + E; % j = value(A) + value(E) = 10 + 10 = 20
*D = *C - *D; % j = value(j) – value(j) = 20 – 20 = 0
E = *B + *C; % E = value(a[2]) + value(j) = 10 + 0 = 10E = B + C; % E = value(a[2]) + value(j) = 10 + 0 = 10
F = E + A; % statement 6: value(E) + value(A) = 10 + 10 = 20

}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 56

A programming language
construct for graceful
termination in case of error
conditions

<extend-stat> ::= try <stat>
if <exp1> raise <excep1>;
if <exp2> raise <excep2>;

conditions
Error can be data dependent
and not logical
Operating system traps do not

…
if <expM> raise <excepM>;

exception-handlers p g y p
provide graceful error-handling
Handlers can be built-in or user
defined

Exception handlers can:

{ when <excep1>: <block1>
when <excep2>: <block2>

…
Exception handlers can:

Pass control to other routine;
Release resources;
Correct error condition,

when <excepN>: <blockN>;
}

[finally <blockF>],
Return control to the next
instruction after the handler
Return to the calling routine

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved Slide 57

subprogram illustrate_exceptions
integer i;
real deposit, account;
file myfile;file myfile;
stream mystream;
exception incorrect_debt; % user defined exception
open_file(myfile, mystream, read);p _ (y y)
exception-handler {

when file-not-found: write(‘Account file missing’); return }
read(mystream, account);
if (account > 0) raise incorrect_debt; % raise the user defined exception
exception-handler { % handle the user defined exception

when incorrect_debt: write(‘Incorrect deposit ’); close(mystream); return; }
close(mystream);close(mystream);
return

Two exceptions: file-not-found and incorrect_debt
File-not-found is built-in, and incorrect debt is user-defined

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 58

File not found is built in, and incorrect_debt is user defined

Allows alternate control flows provided final condition is met
If the solution of the problem is modeled as directed graph:

Each computational state is modeled as node in the graph
Each edge shows the statement executed to go to next state
Nondeterministic computation allows multiple paths from the initial state
to the final state

Properties of programs supporting non-determinism
Commutativity of operators such as ‘+’, ‘*’, logical-OR, and logical-AND
Selection statements and constructs such as if-then-else statements,
case statements
Two independent statements whose effect on store is disjoint

Example
if (X >=Y) then smaller = Y |
if (Y >= X) then smaller = X

if (Y >= X) then smaller = X |
if (X >= Y) then smaller = Y

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 59

Two parts to a computation
Part that checks the

If { <Bool-Expr1 >  <Com1> |
<Bool-Expr2 > <Com2> |Part that checks the

computational state, and can
only read the values
Part that modifies the store

<Bool Expr2 > <Com2> |
… |

<Bool-Exprn >  <Comn> }

Boolean expressions that only
read the values can be
executed in any order
All Boolean expressions areAll Boolean expressions are
equally likely

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A high level construct for nondeterministic computationA high level construct for nondeterministic computation
A guarded command is a Guard followed by the corresponding command
If then-else and case statements can be transferred to a disjunction of
guarded commands called guarded-commands.g g

Features of guarded commands
Boolean expressions are weakest preconditions known as guards that
are tested before executing the corresponding commands
G d l d f t l d itGuards can only read from store; only commands can write
Guards are necessary conditions but not sufficient
Corresponding command is executed only after the guard succeeds
After a guard succeeds other guards are not triedAfter a guard succeeds, other guards are not tried

Limitations of guarded commands
Guarded commands are incomplete. A solution may exist in a different
guarded command other than the guarded command where guard
succeeds

Advantages
Can be used to scientifically build program using stepwise construction

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 61

Two major constructs
Selection construct
Loop construct

S l ti t t

Selection construct
If { <Guard1 >  <Com1> |

…
Selection construct

Described earlier
Loop construct

Guarded commands embedded

<Guardn >  <Comn>}
Loop construct

loop { <Guard1 >  <Com1> |Guarded commands embedded
inside a loop
Loop executes until there is no
successful guard in the
embedded g arded commands

…
<Guardn >  <Comn> }

Exampleembedded guarded commands
Final condition includes

¬ Guard1 ⋀ … ⋀ ¬ GuardN

a p e
loop {

a0 > a1  swap(a0, a1) |
a1 > a2  swap(a1, a2) |() |
a2 > a3  swap(a2, a3)

}
Final condition: a0 ≤ a1 ≤ a2 ≤ a3

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Progressively move from final condition to initial condition
Use axiomatic semantics to find out the weakest preconditions using post
conditions and statements
U D M ’ l t d i t i di id l d f ditiUse De Morgan’s law to derive out individual guards from pre-conditions

Example
Final condition: a0 ≤ a1 ≤ a2 ≤ a3  a0 ≤ a1 ⋀ a1 ≤ a2 ⋀ a2 ≤ a3Final condition: a0 a1 a2 a3  a0 a1 ⋀ a1 a2 ⋀ a2 a3

Statements: swap(ai, ai +1) Pre-condition ai > ai +1; Post-condition ai ≤ ai +1
Given statement and post condition

a0 ≤ a1 and swap(a0, a1) precondition: a0 > a1
a1 ≤ a2 and swap(a1, a2) precondition: a1 > a2
a2 ≤ a3 and swap(a2, a3) precondition: a2 > a3

De Morgan's theorem connects logical-and to logical -r of conditions in guards
Guard is ai < ai+1 and command is swap(ai, ai+1)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 63

Many languages support duality of program and data
Program are constructed as data, converted to program, and executed
Program constructed as data is called first class objects. The process of

ti d t i ll d ifi tirepresenting a program as data is called reification
Application of this dual nature

Programs are written to analyze or reason about another programs for
f l ti t ti S h ll d tuseful properties at runtime. Such programs are called meta-programs

An editor needs to modify a program as data
Functions as first class objects

Declarative languages support metalogical predicates that convert data
to function (or predicate) and vica versa
Example: (apply ‘first ‘(Arvind Tom)) returns ‘Arvind

M t P i d R fl i itMeta Programming and Reflexivity
Manipulate or reason about program properties
Languages supporting metaprogramming are called reflexive
Example: Lisp Prolog Scala Ruby etc

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 64

Example: Lisp, Prolog, Scala, Ruby etc.

Need for software reuseNeed for software reuse
To avoid duplication of the previously developed software
To reduce bugs during software development

Need for InteroperabilityNeed for Interoperability
To integrate with software developed using different languages in
different programming paradigms
Paradigms often differ in supported control and data abstractions

Interoperability revisited
Information transfer across subprograms written in different languages
Two approaches to solve the problem of interoperability: 1) development
of a common middleware language or 2) translation of data types fromof a common middleware language, or 2) translation of data types from
one language to another language

Common Middleware Language
Uses common type and metadata to transfer information across different Uses co o type a d etadata to t a s e o at o ac oss d e e t
languages
Metadata contains abstract information in tables about data structures in
compiled program
Common middleware approaches are NET and Java Virtual Machine

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 65

Common middleware approaches are .NET and Java Virtual Machine

Data abstractions can be single entity, composite entity, collection of
data entities or extensible data entities
Single data entity could be

M th ti l t h i t fl t B l h t t iMathematical type such as integer, float, Boolean, character, string
Enumeration type

Composite entity could be name tuple where each field is
A composite entity single entity collectionA composite entity, single entity, collection

A collection could be
A set, an ordered bag, and a bag of key value pairs

Extensible entities can be implemented usingExtensible entities can be implemented using
Linked-lists, vectors, trees, and hash tables

Control abstractions can be
Assertion; expression evaluation; definite and indefinite iteration like for-Assertion; expression evaluation; definite and indefinite iteration like for
loop, while-loop, do-while loop; selection like if-then-else and case
statements; recursions; and procedure calls
Blocks provide natural visibility boundaries for data and code

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 66

Modules regulate visibility of embedded subprograms and entities
Blocks are contained within subprogram; module contain subprograms
Modules can be saved as library to be used by different programs

I f ti h b t bInformation exchange between subprograms
Variables are information holders needed to exchange information
Using global variables, non-local variables, and parameter passing

Parameter passingParameter passing
Value exchange based: call by value and call by sharing. Call by value
copies the value, and call by sharing copies the memory location. Call
by sharing is used in object based languages to access objects in heap
Memory location exchange: call by reference. Copies the address of
the actual parameters’ base address into formal parameter
Name exchange: the formal parameter is substituted by the text of
actual parameter, name conflicts are removed by local variable renaming p , y g
and substituted program is used instead of procedure call
Call by need: call by name during the first invocation followed by call by
value in subsequent expression evaluation

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 67

Information exchange in distributed computing
Call by copying copies the object to remote processor
Call by reference copies the address of the object to remote processor
Call by visit copies the object to remote processor that is copied back
after the termination of the called procedure

Side-effects and aliasing
Updating a store that modifies the store beyond the lifetime of the called
subprogram; used for information exchange; can have bad effect if used
for purposes other than information exchange
Can break fundamental laws of computations such as commutativityCan break fundamental laws of computations such as commutativity

Exception Handling
Exception handlers are programming language constructs to recover
from error conditions gracefully without crashing the programfrom error conditions gracefully without crashing the program
Exception handlers return the control to a block that handles the error,
and then either exits or takes the control back for further execution

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 68

Software Reuse and Interoperability
Needed for robust software development with reduced duplication, and
for using programs written in different languages
Interoperability needs development of common interface data structureInteroperability needs development of common interface data structure,
and middleware languages to which all other languages are translated

First class objects and meta-programming
First class objects are functions built as data at runtimeFirst class objects are functions built as data at runtime
Metaprograms treat other programs as data, reason about programs, or
transform other programs to new programs

Nondeterministic computation and guarded commandsp g
Allows alternate paths in the computational space provided final
condition is met
Guarded commands is a high level programming constructs used for
nondeterministic computationnondeterministic computation
Guarded commands has two parts: guard that tests the weakest
precondition in the computational state, and command part that alters the
computational state. Guards are necessary but not sufficient conditions

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 69

