
Author: Arvind Bansal
Kent State UniversityKent State University

Kent, OH 44242

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

1
1

Abstract concepts in computation (section 2 4)Abstract concepts in computation (section 2.4)
Environment and store

Control flow diagrams (chapter 1)
von Neuman machine (section 2.1)
Discrete structures (section 2.2)

Finite State machines (subsection 2.2.5)
Recursion (subsection 2.2.4)

Data structures
Trees (subsection 2.3.5)
Graphs (subsection 2.3.6)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 2Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Introduction to syntax and semantics
Grammars
S t diSyntax diagrams
Validating sentence structure
Different types of SemanticsDifferent types of Semantics
Summary

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 3Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Two major components: syntax and semantics
Syntax: validation of sentence structure

Has grammar rules alphabets and validation that a sentence can beHas grammar rules, alphabets and validation that a sentence can be
derived using grammar rules
Alphabet is the set of reserved words in a programming language

Semantics: associating unique meaning to a sentenceSemantics: associating unique meaning to a sentence
Needs a semantic domain where meaning is defined
Semantic algebra describes the operations in semantic domain
Semantic rules describe the meaning of syntactic rules in the semanticSemantic rules describe the meaning of syntactic rules in the semantic
domain
There are different types of semantics: operational semantics, axiomatic
semantics, denotational semantics, action semantics, and behavior
semantics
Example: meaning of 1011 in decimal number domain  1.23 + 0.22 + 1.
21 + 1. 20 = 1110

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 4Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A quadruple of the form (, N, P, S)
 is alphabet. Terminal symbols
are subset of alphabet and make

<sentence>::= <subject> <pred>

<pred> ::= <verb><object>p
a sentence.
N is set of nonterminal symbol,
P is set of production rules

<pred> ::= <verb><object>

<subject> ::= I | We | You
<verb> ::= play | dance

S is start symbol
A grammar rule has left hand and
right hand side

LHS t i t i l

<object> ::= soccer| basketball

<sentence>
LHS contains non-terminal
symbol that is to be expanded

Parse tree
Formed by matching right had side

<subject> <pred>
Formed by matching right had side
of rule and replacing by LHS until
start symbol
Should be unique for a sentence

I <verb > <object>

play basketball

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

p y

Regular (type-3)
Describe nondeterministic FSA
Multiple states with multiple

Context free (type-2)
LHS is one nonterminal symbol;
no terminal symbol on LHSMultiple states with multiple

transitions between them
Applied in lexical analysis to
accept a reserved word and

y
RHS is a combination of
nonterminal and terminal
symbols

generate a token
States as nonterminal symbols

<S1>  <letter> <S2>

Developing parsers for CFG is
easy as nonterminal symbols
can be expanded without any
context of terminal symbol

<S2>  <letter> <S2> |
<digit> <S2> | ’_’ <S2> | 

context of terminal symbol
Used for grammar of
programming languages
more powerful than regular Accepting a variable g
grammar
Example: <S> = a <S> b
generates anbnS1 S2

Accepting a variable

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Have a terminal symbol on the LHS side that provides
the context for expanding nonterminal symbol
Is more powerful than CFG (context free grammar)Is more powerful than CFG (context free grammar)
Very difficult to write parser software for CSG due to rule
explosion. Can generate a string of the form anbncn not
possible for CFG
Example

<S> ::= a<S>c | <S> ::= a<S>c | 
<S> c ::= b<S>cc

Not used in the grammars for programming languages

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 7Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Used to represent context free grammar
Nonterminal symbols are enclosed in angular brackets
M lti l d fi iti t d b ti l b ‘|’Multiple definitions are separated by vertical bar ‘|’
Null statement is represented as 
Grammar uses multiple definitions concatenation tail-Grammar uses multiple definitions, concatenation, tail-
recursive definitions and recursive definitions

<statement-seq> ::= <statement> ‘;’ <statement-seq> | 
Limitations

New rules for multiple definitions causes explosion of rules.
Tail-recursive definitions for zero or more occurrences need an additional
rule, and cause rule explosion.
Optional definition (0 or 1 occurrence) is handled using multiple
definitions.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 8Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<expression> ::= <A-expr> | <L-expr>
<L-expr> ::= true | false | <identifier> | not <L-expr> | <comparison> |
<L-expr> <L-op> <L-expr>
<comparison> ::= <A-expr> <comp-op> <A-expr>
<A-expr> ::= <number> | <identifier> | <A-expr> <A-op> <A-expr>
<identifier> ::= <letter><alphanumerics> | <letter>
<alphanumerics> ::=  | <digit-or-letter><alphanumerics>
<digit-or-letter> ::= <digit> | <letter>
<number> ::= <digit> | <number><digit>g | g
<digit> ::= ‘0’ | ‘1’ | … |’8’ | ‘9’
<alphabet> ::= ‘a’| ‘b’ | … | ‘z’| ‘A’ | ‘B’| …| ‘Z’
<A-op> ::= ‘+’ | ‘-‘ | ‘/’ | ‘*’<A-op> ::= + | - | / |
<L-op> ::= ‘&&’ | ‘||’
<comp-op>::= ‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘ ==’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 9Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Extended BNF removes the limitations of BNF
Additional rule for multiple definition is removed by embedding multiple
definition within left and right parenthesis.
Additional rule for tail-recursive definition of zero or more occurrence is
replaced by {… }* and one or more occurrence by { … }+.
Optional (0 or 1 occurrence) is represented by square bracket […].
M lti l lt ti d fi iti t d i th iMultiple alternative definitions are represented in parenthesis:
(Alternative1 | Alternative2 | … | AlternativeN).

BNF representation EBNF representation
<NT> ::= alt1| alt2 <NT> ::= (alt1 | alt2)
<NT> ::=  | optional-feature [optional-feature]| p [p]
<NT> ::= symbol <NT> | symbol <NT> ::= {symbol}+
<NT> ::= symbol <NT> | ε <NT> ::= {symbol}*
<NT> ::= ‘0’ | ‘1’| ‘2’| ‘3’ <NT> ::= ‘0’ ‘3’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 10Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<NT> ::= 0 | 1 | 2 | 3 <NT> ::= 0 – 3

Rules for multi-definitions and tail recursive definitions have been
removed and embedded.
Multiple definition for ranges have been replaced by ranges in
<letter> and <digit>.
Rules for optional definitions have been removed.

<expression> ::= <A-expr> | <L-expr>
<L-expr> ::= [not] (true | false | <identifier> | <comparison>)

{ (‘&&’ | ‘||’) [not] (true | false | <identifier> | <comparison>)}*{ (&& | ||) [not] (true | false | <identifier> | <comparison>)}*
<comparison> ::= <A-expr> (‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘==’) <A-expr>
<A-expr> ::= (<number>|<identifier>) {(‘+’ | ‘-‘ | ‘*’ | ‘/’) (<number> | <identifier>)}*
<number> ::= { <digit>}+<number> ::= { <digit>}+
<identifier> ::= <letter> {(<letter> | <digit>)}*
<letter> ::= (‘a’ – ‘z’ | ‘A’ – ‘Z’)
<digit> ::= ‘0’ – ‘9’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 11Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

digit :: 0 9

<iteration> ::= <for-loop> | <while-loop> | <do-while-loop> | <iterators><iteration> ::= <for loop> | <while loop> | <do while loop> | <iterators>
<for-loop> ::= for ‘(‘<identifier> = <expression> ‘)’ ‘; ‘

<identifier> <op> <expression> ‘;’ <expression>’)’ <block>
<while-loop> ::= while ‘(‘ <L-expr> ‘)’ <block>while loop :: while (L expr) block
<do-while-loop> ::= do <block> ‘(‘<L-expr>‘)’
<iterator> ::= foreach (<identifier> in (<identifier> | <enumeration>) <block>
<block> ::= ‘{‘ { <statement> ‘;’}* ‘}’ | <statement> ‘;’{ { ; } } | ;
<statement> ::= <assignment> | <if-then-else> | <iteration>
<assignment> ::= <identifier> ‘=’ <expression>
<enumeration> ::= ‘{‘ <entity> { ‘,’ <entity>}* ‘}’ | <identifier>{ y { y } } |
<entity> ::= <integer> | <float> | <string>
<identifier> ::= <letter> {(<letter> | <digit>)}*
<string> ::= ‘”’ {(<alphabet> | <digit>)}* ‘”’
<letter> ::= ‘A’ – ‘ Z’ | ‘a’ – ‘z’
<integer> ::= [(‘+’ | ‘-‘)] { <digit> }+

<digit> ::= ‘0’ – ‘9’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 12Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Production rules can be associated with attributes for
Handling computer limitations, error handling, meaning for low
level code generation and constraints specificationg p

Types of architectural limitations
Size of the word; maximum size of strings; maximum limit on the
integer or floating point numbersinteger or floating point numbers

Production Rule: <int> ::= <int><digit> | <digit>
Attributes: value(<int>) > 2**31; value(<int>) < 2**31 1Attributes: value(<int>) > -2**31; value(<int>) < 2**31 - 1

value(<int>1) = 10 * value(<int>2) + value(<digit>)
length(<int>1) = length(<int>2) + 1

Att ib t l (i t) l (di it)Attributes: value(<int>) = value(<digit>)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 13Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Hyper-rules capture the general pattern in multiple
production rules
Meta definitions are multiple definitions when applied toMeta-definitions are multiple definitions when applied to
hyper-rules give multiple specific production rules
Advantages

Number of rules are reduced
Grammar becomes more expressive

ExampleExample
Multiple rules represent sequence of statements, sequence of
declarations, sequence of parameters.
Hyper-rule: <sequence> : <definition> ‘;’ <sequence> | yp q q |
Meta-definition: <definition> :: <statement> | <declaration> |

<actual-parameter> |
<formal-parameter>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 14Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

To understand the property of control and data
abstraction, syntax rules are abstracted.
Abstract language constructsAbstract language constructs

Program, block, iteration, command, assignment, expression,
declaration, formal parameter, actual parameter, definition, label etc.

PropertiesProperties
Abstract syntax rules omit low level production rules and nonterminal
symbols and low level symbols such as delimiters, white spaces literals
etcetc.
Abstract syntax is concise, and are used for code generation
There may be some ambiguity is abstract parse tree due to omission of
low level details

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 15Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<l-value> ::= <identifier> | <identifier>.<l-value> | <l-value>[<expression>]
<declarations> ::= var <identifier> <type-exp> | <type-exp>[<numeral>] |

struct {<type-exp>} <identifier> |
void <identifier> (<formal-parameters>) |
<identifier> function (<formal-parameters>)

<expressions> ::= <literal> | <identifier> | <l-value>| (<expressions>) | e p ess o s te a | de t e | a ue | (e p ess o s) |
<expression> <op> <expressions> | <op> <expressions>

<actual-parameters> ::= <identifier> , <actual-parameters>
<formal parameter> ::= <identifier> <identifier seq>’; ‘<formal parameter><formal-parameter> ::= <identifier> <identifier-seq> ; <formal-parameter>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 16Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<commands> ::= ‘{‘ <commands> ‘}’ | <l-value> ‘=‘ <expression> |
<command>’; ‘<commands> |
if <expression> then <commands> else <commands> |
if <expression> then <commands> |
while (<expression>) <commands> |
do <commands> (<expression>) |do co a ds (e p ess o) |
for ‘(‘ <l-value> ‘=‘ <expression>’; ‘

<expression> ‘;’ <expression> ‘)’
<commands><commands>

<identifier> ‘(‘…, <expression>, …’)’
<sequencer> ::= goto <numeral>

i id tifi d l ti d<program> ::= main <identifier>; <declaration> ; <command>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 17Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Definition
Visual representation of production rules
Each diagram is a directed acyclic graph merging many production rules
into one graph meaningfully

Advantages
Visual representation is easy to comprehend by humans when number p y p y
of rules are large
Combine multiple textual rules into one diagram based upon abstract
meaning

Translating Production rules to syntax diagrams
There is a input-end and an output-end
Multiple definitions becomes multiple forward pathsp p p
concatenation of symbols on RHS is represented as cascade
Tail recursive definitions are represented as feedback loop
Null definition is represented as a straight arrow

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 18Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<statement> <assignment>

<if-then-else>

<iteration>

if then else<condition> <then> <statement>
<if-then-else>

<digit>
<number>

<sequence-of-statements>

; <statement>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 19Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Component Syntax diagram

ConcatenationConcatenation
Multiple definitions in BNF or grouping in
EBNF shown as parallel forward
branches

Tail-recursive definition for one or more
occurrence shown as feedback loop

Tail-recursive definition for zero or more
occurrence: entity in feedback loop

Empty symbol: straight arrow

Optional in EBNF: a forward branch for
definition and an empty branch

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 20Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

definition and an empty branch

Grammar
Grouped into language relevant specific units that correspond to
control or data abstractions.

Translation
Top level rules are translated firstTop level rules are translated first,
Nonterminal symbols in the corresponding syntax diagrams are
expanded further

Example (see the syntax diagram in the next slide)
<identifier> ::= <letter> {(<letter> | <digit>)}*
<alphabet> = ‘A’ – ‘ Z’ | ‘a’ – ‘z’
<digit> = ‘0’ – ‘9’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 21Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<letter>

<identifier> <letter>
<letter>

<digit>

Figure 3.7a - Syntax diagram for production rule # 1 for <identifier>g y g p

a’

<identifier> ‘a’
•
•
•

Z ‘a’
•
•
•

‘Z’

Z

‘0’
•
•
•

‘9’

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 22

Figure 3.7b – Refining syntax diagram using Rules # 2 and #3

Translating syntax diagrams
Reverse of making syntax diagrams

TechniqueTechnique
1. Take a syntax diagram that does not use any existing syntax

diagram in its definition, and convert the inner most part to a
production ruleproduction rule.

2. If the production rule is already existing then use the existing
production rule.

3 Replace the inner most part by the nonterminal symbol of the3. Replace the inner most part by the nonterminal symbol of the
new production rule, and modify the syntax diagram

4. Repeat the process on the modified syntax diagram until a
single nonterminal symbol is leftsingle nonterminal symbol is left

5. Repeat this process for all the syntax diagrams

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 23Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Two step process: 1) Lexical analysis, 2) Parser
Step 1 - Lexical analysis

Identifies the reserved words in the program converts into aIdentifies the reserved words in the program, converts into a
token – internalized representation for fast processing
Sends the tokenized stream to parser

Step 2 – Parser
Takes the tokenized program, and using the grammar rules,
generates a unique parse tree. This parse tree is used for code
generation.

Parser is automatically generated using parser generators that
takes a grammar input and generates a parser. There are many
types of parsers such as LR (k) parsers, LL parsers

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 24Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

First phase of compilation
Modeled using a regular grammar and finite state automata
Identifies reserved words, identifiers and literals and converts ,
them to tokens
Identifiers are stored in symbol table so that same token can be
retrieved in future for the same identifier

Process
Start from the initial state
Use the next character to move to the next state using a lookupUse the next character to move to the next state using a lookup
table
Look ahead to resolve the ambiguity
Stop when a delimiter / end of line / end of file is foundStop when a delimiter / end of line / end of file is found,
Emit the corresponding token

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 25Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

delimiter

delimiter

S1

emits the token ‘plus’

emits the token ‘assigned_to’
S11

A digit or an letter

‘=’ S2
‘+’

delimiter
S21

symbol
tableS3

A digit or an letter
S0 letter emits an identifier token

S31

delimiter
emits an integer as token

digit

digit

delimiter

S41S4

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 26Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Parsing is a sentence validation process
Takes the tokenized program stream as input
U l d tUses a language grammar and parser to parse
Generates a tree for code generation process
ProcessProcess

Start with a given sentence
Find out a substring in the sentence that matches the right hand
side of a production ruleside of a production rule
Replace the substring by the left hand side non terminal
Repeat the process until start symbol is reached or no more
reduction is possiblereduction is possible
If the left over is not the start symbol then the sentence is not a
valid sentence

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 27Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<A-expr>

<expression>

<A-expr><A-expr>

<A-expr>

p

<number>
<number>

<A-expr> <A-expr><A-expr>

<identifier>

<digit> <digit>

<number>

<alphabet>

x + 3 4*

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 28Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Al ith b tt tAlgorithm bottom-up-parse-sentence;
Input: 1. A set of production rules R = {p1, … pn} of the grammar;

2. A sentence as a sequence of symbols S = s0, …, sm;
3 The start symbol root;3. The start symbol root;

Output: A parse tree T;
{ reduced-form = S; parsing-error = false; T = null-tree;

while ((reduced-form ≠ root) || not(parsing-error)) (() || (p g))
{ If there exists a subsequence si .. sj in reduced-form such that

si… sj == right-hand-side(pi ∈ R) where 1 ≤ i ≤ n {
nonterminal = left-hand-side(pi);
reduced-form = substitute(reduced-form, si… sj, nonterminal);

T = T + edge(si ..sj  left-hand-side(pi));}
else parsing-error = true;}

If not(parsing error) return(T); else print(‘parsing error’);If not(parsing-error) return(T); else print(parsing-error);
}

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 29Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

A grammar is ambiguous ifA grammar is ambiguous if
There are more than one parse tree for at least one sentence accepted
by the grammar
Two parse trees means two different meanings for the same sentence –Two parse trees means two different meanings for the same sentence –
a violation of principle of programming language

Cause of ambiguity
Multiple different rules merged into one multi definition ruleMultiple different rules merged into one multi definition rule

Example of ambiguous grammar
Arithmetic expressions where addition/subtraction are treated equally

l i li i /di i i i h l i d fi i i lmultiplication/division in the same multi-definition rule
Nested if-then-else where pairing of multiple ifs is unclear with the
corresponding else in multi-definition rule

H dliHandling
Stratify the rules with highest priority rule used first in parsing
Example: one multi-definition rule in arithmetic expression is split in

lti l d ti l h l h l i it d fi iti

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 30Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

multiple production rules: each rule has equal priority definitions.

A

<expression>

<A-expr>

<A-expr>

<A-expr>

<A-expr>

<identifier> <number>

<A-expr>

<alphabet>
<digit>

<number>
<identifier> <number>

<digit>

x + 3
*

4

<digit>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 31Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<A expr>

<expression>

<A-expr>

<A-expr>

<number>
< b >

<A-expr> <A-expr><A-expr>

<identifier>

<digit> <digit>

<number>

<alphabet>

x + 3 4*

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Production rules 2, 3 and 4 have been separated based upon
priority of the arithmetic-operators
Rules 5, 6 and 7 are separated based upon priorities of logical
operators.

<<expression> ::= <A-expr> | <L-expr> (1)
<A-expr> ::= <A-expr> (‘+’ | ‘-‘)<expr-mult> | <expr-mult> (2)p p (|) p | p ()
<expr-mult> ::= <expr-mult> (‘*’ | ‘/’) <A-term> | <A-term> (3)
<A-term> ::= ‘(‘ <A-expr> ‘)’ | <identifier> | <number> (4)
<L-expr> ::= <L-expr> ‘||’ <expr-and> (5)p p || p ()
<expr-and> ::= <expr-and> ‘&&’ <L-term> (6)
<L-term> ::= [not] (‘(‘ <compare> ‘)’ | ‘(‘ <L-expr> ’)’ | <identifier> | true | false (7)
<compare> ::= <A-expr> (‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘==’) <A-expr> (8)
<identifier> ::= <letter>{(<letter>|<digit>)}* (9)
<number> ::= [(‘+’|’-‘)] {<digit>}+ (10)
<letter> ::= ‘a’| ‘b’ | … |’z’| ‘A’ | ‘B’ | … | ‘Z’ (11)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 33Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

<digit> ::= ‘0’ | ‘1’| … |’9’ (12)

<expression>

<A expr>

<A-expr> <expr-mult>

<A-expr>

<A-term>

<expr-mult>

<A-term>

<expr-mult>

<A-term>

<identifier> <number>

<A term>

<number>

<digit>

*+x

<alphabet>

3

<digit> <digit>

4

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 34

Condition
Nested if-then-else statement has unequal number of if and else
statement
else-statements have to be correctly matched

Ambiguous grammar
<if-then-else-statement> ::= if <condition> then <statement><if then else statement> :: if <condition> then <statement>

else <statement>
<statement> ::= <assignment> | <iteration> | <if-then-else> | …

incorrect interpretation Correct interpretation
if (x > 4) then if (x > 4) thenif (x > 4) then

if (y > 0) then return(1);

else return(0)

if (x > 4) then
If (y > 0) then return(1);

else return(0);

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 35Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

The rule has been stratified into three different rules
<matched if-then-else> is tried in then part of <unmatched-if-then-else –
statement>

<if-then-else-statement> ::= <matched-if-then-else> |
<unmatched if then else><unmatched-if-then-else>

<matched-if-then-else> ::= if <cond> then <matched-if-then-else>
else <matched-if-then-else>|
<other-statements>

<unmatched-if-then-else> ::= if <cond> then <if-then-else-statement> |
if <cond> then <matched-if-then-else> else
<unmatched-if-then-else>

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 36Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Free of all the non-terminal
symbols in the concrete syntax
rules that are not in the abstract

‘൅’
syntax rules
Expressions are rooted at the
operators

‘*’<expression>
p

Concrete syntax to abstract
syntax conversion

Remove low level nonterminal

<expression> <expression><identifier>

Remove low level nonterminal
symbols not contributing to
meaning
Remove low level production

<number> <number>

rules
Remove delimiters and white
spaces

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

37

Top down or Bottom up
Top down parsing (Recursive descent parsing)

Left most nonterminal symbol is expanded and matched with theLeft most nonterminal symbol is expanded and matched with the
corresponding part of a sentence
In case of mismatch backtracking is used that is inefficient
Predictive parsers improve efficiency and use an M X N table where M is p p y
number of nonterminal symbols and N is number of terminal symbols.
Each cell of the table contains a production rule that matches

Bottom up Parsing (Shift Reduce Parsing)p g (g)
Starts parsing from the leaf node and moves up
Parses from the rightmost part of the sentence
LR(K) or LALR (Lookahead LR) parsers use K symbol look ahead to () () p y
identify the production rules
Advantages are: (1) non-recursive; 2) non-backtracking; 3) can parse all
programming constructs; and 4) identify grammar ambiguities

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 38Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Modeled as the transition from one state to another state
State is a triple of the form (environment, store, dump)
Declaration changes environment
Assignment changes store
Procedure-call and return from procedure changes dump

Small-step (or structural) operational semanticsSmall step (or structural) operational semantics
Uses low level abstract instructions to explain semantics
Example: evaluating a literal, looking up an identifier, assignment,
declaring a new identifier

Big-step (natural semantics)
Used for transition of computation states for high level constructs such as
for-loop, if-then-else statement, while-loop, assignment statement etc.for loop, if then else statement, while loop, assignment statement etc.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 39Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Big-step operational semantics
Modeling higher level programming constructs as composition of low
level programming constructs using control flow diagrams and small-step
operational semantics

Small-step operational semantics
(literal, σ)  literal
(identifier, σ)  r-value(identifier) (σ)

if ((identifier  l-value)  σE and (l-value, r-value)  σS

(new identifier, <σE, σS, σD>)  <σE  (identifier  l-value),
σS  (l value  undefined) σD>σS  (l-value  undefined), σD>

(exp1 op exp2, σ)  value1 op value2 and σ does not alter
where (exp1, σ)  value1 and

(exp2, σ)  value2, and
op  {add, subtract, multiply, divide}

(identifier = exp, <σE, σS, σD>) 
<σE, σS  (l-value(identifier)  value, σD>

where (exp, <σE, σS, σD>)  value

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 40Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

where (exp, σ , σ , σ)  value

Uses predicate calculus to express computation-state independent
of any computer architecture such as von-Neuman machine

Computation-state is expressed as a combination of Boolean predicates
Assignment statement changes / inserts / deletes a Boolean expression

Example 1: A = 5; B = 4; A = B + 4;
Pre-condition Statement Post-condition
undefined A = 5 A == 5
A == 5 B = 4 (A == 5) and (B == 4)
(A == 5) and (B == 4) A = B + 4 (A == B + 4) and (B == 4)() () () ()

Example 2: If (x > y) max = x else max = y;
Pre condition post conditionPre-condition post-condition
<Cond1> <Cond1> and ((x > y and max == x) OR

(X =< y and max = y))

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 41Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Handling Iteration
Iteration requires going through the loop over-and-over again
At the beginning of handling iteration initial condition is true
At the end of the iteration final condition becomes true
During the iteration, an invariant condition has to be true that can model
every iteration cycle
An invariant condition is independent of the count of the iterative cycle
{I ⋀ B} while B S; {I ⋀ ¬ B}. where {I} S {I} % I is invariant

Advantages of Axiomatic Semantics
Used to reason about final condition without executing a program
Used to reason about the correctness of the program
Used to construct a program using backward reasoning

Problem: For large programs reasoning is costly

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 42Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Syntax rule is mapped into a semantic domain with one-to-
one correspondence between syntax rule and semantic rule
Components of Denotational semanticsComponents of Denotational semantics

Define semantic domain, semantic algebra and semantic rules
Every syntax rule has the corresponding semantic rule
Same parse tree is used to derive the meaning of a sentence by p g y
substituting a syntax rule by the corresponding semantic rule

Denotational semantics vs. operational semantics

Denotational Semantics Operational Semantics
1. Denotational semantics uses

mathematical functions on syntax
l i ti d i

1. Operational semantics uses state
transition on computational states

i b t t hi hrules in a semantic domain
2. It is independent of computational

state and abstract machine

using an abstract machine such as
von-Neuman machine.

2. It has no notion of semantic
domain.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 43Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Syntax Rules: <integer> ::= <integer> <digit> | <digit> (1)Syntax Rules: <integer> ::= <integer> <digit> | <digit> (1)
<digit> ::= ‘0’ | ‘1’| … | ‘9’ (2)

Semantic domain: Base 10
S ti Al b + * Ժ × Ժ  ԺSemantic Algebra: +, * : Ժ10 × Ժ10  Ժ10

Semantic Rules: m(<integer> = 10 * m(<integer> + m(<digit> (1a)
m(<integer>) = m(<digit>) (1b)
m(<digit>) = zero | one | … | nine (2)

<integer> Two hundred thirty seven

#1a

<integer>

<integer>

#1a

#1a

two

Twenty three

#1a

#1a

<digit> <digit> <digit>

#2 #2 #2

#1b
two three seven

#2 #2 #2

#1b

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 44Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

2 73
#2 #2 #2 2 73

Rule # 1: <number> ::= <integer> | <real>

Rule # 2: <integer> ::= <sign> <whole-number> | <whole-number>

Rule # 3: <real> ::= <sign> <unsigned-real> | <unsigned-real>

Rule # 4: <unsigned-real> ::= <whole-number> ‘.’ <float> |

<whole-number> ‘.’ <float> ‘E’ <integer>

Rule # 5: <whole-number>::=<whole-number><digit>|<digit>

Rule # 6: <float> :: <digit><float> | <digit>

Rule # 7: <digit> ::= ‘0’ | ‘1’ | ‘2’ | … | ‘9’g | | | |

Rule # 8: <sign> = ‘+’ | ‘−‘

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 45Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Domain:
Real number domain Թ10
Number domain: Գ10 = Ժ10 ⨁ Թ10 % ⨁ denotes disjoint-union

Semantic Algebra:
In Թ10 : real-add ‘+R’; real-multiply ‘×R’ : Թ10 × Թ10 Թ1010 ; p y 10 10 10
In Ժ10 : int-add ‘+I’; int-multiply ‘×I’ and ‘^’ : Ժ10 × Ժ10  Ժ10
In mixed domain: exponent ∧’: (Թ10 × Ժ10)  Թ10

Semantic functions: ň; ř; ĭ;
Rule # 1: ň(<number>) ::= ĭ(<integer>) | ř(<real>)
Rule # 2: ĭ(<integer>) ::= ĭ(<sign>) ×I ĭ (<whole-number>) | ĭ(<whole-number>)Rule # 2: ĭ(integer) :: ĭ(sign) ĭ (whole number) | ĭ(whole number)
Rule # 3: ř (<real>) ::= ř(<sign>) ×R ř(<unsigned-real>) | ř(<unsigned-real>)

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013
Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Slide 46

Rule # 4: ř (<unsigned-real>) ::= ř(<whole-part>) +R ř(<decimal-part>) |
(ř(<whole-part>) +R ř(<decimal-part>)) ×(10.0 ∧ ĭ(<integer>))

Rule # 5a: ř(<whole-part>1) ::= ř(<whole-part>2) ×I 10.0 +R ř(<digit>) | 1 2

ř(<digit>)

Rule # 5b: ĭ(<whole-number>1) ::= ĭ (<whole-number>2) ×I ten +I ĭ(<digit>) |
ĭ (<digit>)ĭ (<digit>)

Rule # 6: ř(<decimal-part>1) :: ř(<digit>) +R ř(<decimal-part>2)) / 10.0 |
ř(<digit>) / 10.0

Rule # 7a: ř(<digit>) ::= float zero | float one | … | float nine % float 1 is 1.0
Rule # 7b: ĭ(<digit>) ::= zero | one | two | … | nine % interpretation of digits
Rule # 8a: ř(<sign>) ::= plus float-one | minus float-one % + 1.0 or -1.0
Rule # 8b: ĭ(<sign>) ::= plus one | minus one

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 47Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Integrates the advantages of denotational semantics,
axiomatic semantics, and operational semantics
Explains the meaning using rules in natural EnglishExplains the meaning using rules in natural English.
Components: action, data and yielders

Action are the rules in natural English that explain control and data
abstraction. Action could be completing, diverging or fail.
Two types of actions: primitive and combinatory. Primitive action is single
step, and combinatory is composite action.
Information processed by an action is called dataInformation processed by an action is called data
Yielders are used to retrieve information after an action

Advantages
Defines the meaning of programming languages comprehensibly
Uses a pragmatic approach to integrate all three semantics.

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 48Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Notations
Specification of nodes to be constructed in the abstract syntax tree uses
the notation [[…]]
Components are grouped as sequence of statements.

Example
execute [[<identifier> ‘=’ <expression>]][[p]]
Action: evaluate <expression> giving value then store the value in
the l-value(<identifier>)

Similarly, the action semantics of the if-then-else statement is given by
execute [[‘if’ <expression> ‘then’ <statement>1 ‘else’ <statement>2]]
Action: evaluate <expression> giving truth value B then

((check truth-value of B and execute <statement>1)
(check not truth-value of B and execute <statement>2))

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 49Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Used for behavioral model of object oriented languages
and domain specific languages

Overall system is a network of interacting objectsOverall system is a network of interacting objects
Overall state is a cumulative system state of all active objects
Reaction to messages is a means of transition of the system state

Modeling a state
Each class of object is modeled as n-tuple: (attributes, methods,

i d i d i i imessages received, messages emitted, transitions in response to
input messages, and triggers that initiate a reaction)
System state is a collection of states of individual objects

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 50Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

There are two major components: syntax and semantics
Syntax validates the sentence structure according to a grammar
Semantics provides the meaning to a sentence

A grammar is a quadruple { <Start symbol>, <Nonterminal
symbols>, <Alphabet>, <Production rules>}

Grammar has to be unambiguous for the unique meaning of a sentence
Programming languages use two types of grammars: regular grammar
for lexical analysis and context free grammar for parsing sentences
Regular grammar is based on FSA, and lexical analysis generates a
tokenized stream to be parsedtokenized stream to be parsed
Context free grammar is represented using BNF and EBNF
Attribute grammar augments CFG with attributes that can be restrictions
imposed by architecture or designers or meaning associated with the ruleimposed by architecture or designers or meaning associated with the rule
for code generation

Humans understand syntax diagrams better

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 51Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

Syntax Rule to Syntax Diagram Conversion
Group rules based upon control and data abstractions
Use correspondence between syntax rule and syntax diagrams to form a

it t di f hcomposite syntax diagram for each group
Syntax Diagram to Syntax Rule Conversion

Replace the innermost part by a syntax rule, and substitute that part by a
t i l b l l l t i l b l i l ftnon-terminal symbol unless only one nonterminal symbol is left

There are five different types of semantics
Operational semantics describes the meaning as transition from

t ti l t t d ib d t i l (i t t d)computational states described as triple (environment, store, dump)
Axiomatic semantics describes computational state as a combination of
Boolean predicates and is independent of any architecture
Denotational semantics describes semantics as one to oneDenotational semantics describes semantics as one to one
correspondence between syntax rules and semantic rules in a domain
Action semantics is a more comprehensible integration of above three
Behavior semantics describes state as cumulative sum of object-states

Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013

Slide 52Introduction to Programming Languages, 1st edition, 2013, ISBN: 978-146-6565142
Author: Arvind Bansal © Chapman Hall/CRC Press, 2013, All rights reserved

j

