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Figure 4.9: Free vibration of a mass-spring-damper system

characteristics of the system cannot change. We will illustrate this using a state
transformation and a few identities from Linear Algebra.

As has been mentioned, there is no unique set of differential equations for a
given dynamic system. Equivalent models, however, describe the same dynamic
system and must therefore have the same core characteristics including eigenval-
ues. Take two different models of the same system given in state-space form as

ẋ = Ax+Bu (4.14)

y = Cx+Du (4.15)

and

˙̃x = Ãx̃+ B̃u (4.16)

y = C̃ x̃+Du (4.17)

where
x = Tx̃ or x̃ = T−1x .

Note that both models have the same inputs u and output y. The state transforma-
tion T, which also relates the derivatives (i.e. ẋ = T ˙̃x), can be substituted into the
first model (Equations 4.14 and 4.15) to arrive at the second,

˙̃x = T−1ẋ = T−1(Ax+Bu)

= T−1Ax+T−1Bu

= T−1ATx̃+T−1Bu

= Ãx̃+ B̃u
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